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ABSTRACT. The problem of recognizing when a complicated mathematical expression equals 
zero has great importance in symbolic mathematics. This paper gives two algorithms which can 
be applied to many such problems, and discusses a concrete example. 

The algorithms are based on the recognition that many interesting functions (such as ex- 
ponentiation) are eigenvectors of well studied transformations (such as differentiation). 
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1. Introduction 

The problem of dealing with general mathematical  expressions by computer  has 
been intensively studied. Brown [1], 5ioses [2-4], Risch [5], and Richardson [6] have 
all described environments in which, with some success, one can do ari thmetic 
operations and integration over certain classes of functions. On the other hand, 
Richardson [7] and Caviness [8] have shown that  the problem of deciding whether 
a mathematical  expression is identically zero is undecidable for certain other classes 
of functions. 

The above authors begin by defining a class of expressions which represent mathe-  
matical functions, and describing ari thmetic operations on these expressions. The 
development of algorithms using this approach is frequently complex, and the 
results are limited to the particular class of functions studied. The results are 
immediately applicable to computer  algebra systems, however, 

This paper  describes two general mathematical  algorithms for deciding when a 
sum of elements of a commutat ive  ring R is zero, given appropriate  conditions. 
They reduce the recognition of zero sums in R to the recognition of zero expressions 
in a subset of R. Because these algorithms are stated abstractly,  their development 
is fairly simple. The actual application of these algorithms to computer  algebra 
systems requires representing abstract  rings and fields in a computer,  in such a 
way that  these algorithms can be effectively computed. We will thus assume tha t  
the rings and fields to be discussed in the following are well represented in concrete 
terms in the computer.  In  particular, the arithmetic operations and all functions 
considered will be considered effectively computable,  and various other simple 
mathematical operations (such as cancellation and the distributive law) will be 
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assumed to be effectively applicable in the representat ion.  A formal exposition of 
the required properties of the representat ion,  as well as a comparison with the 
results of Brown [1] and Richardson  [6], will await  a later paper.  

2. The Algorithms 

This section is devoted  to some mathemat ica l  background  and the s ta tements  of 
the two algori thms which will be applied in the remaining sections. The reader  may  
find it profitable to read this section in parallel with the next  two sections. 

Le t  K be a field whose s t ructure  is known completely  for our purposes. I n  par-  
ticular, we shall assume tha t  we can recognize when an expression in K equals zero. 

Let  R be a commuta t ive  ring which contains K,  and let ~ be an effectively com- 
putable  funct ion q : R  --~ R. 

Definition: An element u E 
E(u) C K with 

R, u ~ 0, is an eigenvector of ~ if there is an element 

e(u) = E(u)u. 

E(u) is called the eigenvalue of u. 
At  this point,  we need to make a practical  convent ion;  when we say tha t  u is an 

eigenvector,  we shall mean  tha t  we know not  only u bu t  also its eigenvalue. This is a 
crucial requirement ,  since the eigenvalue is in K,  and we have assumed tha t  the 
s t ructure  of K is well understood.  

Throughou t  the following, we will deal with t ransformat ions  ~ which satisfy 
three axioms: 

Axiom1: e(u  + v) = @(u) + @(v), for all u, v E R. 
Axiom2: ~(K)  c K, and~(1) = 0. 
Axiom 3: I f  u is an eigenvector,  then u is invertible and u -1 is an eigenvector. 

I f  u and v are eigenvectors, then uv is. Moreover ,  we mus t  be able to effectively 
compute  the eigenvalues of u -1 and uv from their representations.  

We now draw some simple consequences from the axioms, which can be quickly 
proved by  the interested reader. 

Axiom 1 implies t ha t  ~(0)  = 0. Moreover ,  Axiom 2 implies tha t  every  nonzero 
element  of K is an eigenvector.  By  Axiom 3, we thus deduce tha t  e applied to an 
eigenvector  is either 0 (if and only if its eigenvalue is 0) or another  eigenvector, 
whose eigenvalue can be effectively computed.  

The set of all t in R with e ( t )  = 0, the kernel of ~ [denoted ker(e) ] ,  is of central 
impor tance  in this work. Notice tha t  every  nonzero element of ker (~)  is an eigen- 
vec tor  with cigenvalue 0. Since 1 is in ker (~) ,  all the integers which are in K are 
also in ker (~) .  I n  general, however,  ker(~)  is not  contained in K.  

We now describe the first zero recognit ion algori thm: 

ALGORITHM 1 

Suppose we have some algorithm for deciding, given t E ker(e), if t = 0. Then, given a sum 
S = ~ = 1  ui , with the ui eigenvectors, i = 1, • • • , n, we may decide if S = 0 as follows : 

(1) If n = 1, then J ~ 0. Return. 
(2) If n > 1, then compute 

T = v(u~lS) 
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and test it for zero. (See details below). 
(3) If T ~ 0 then S # 0. Return. 
(4) If T = 0, then uT~S ~ ker(~). By assumption, we can test if u~S = O. 
(5) If u~IS ~ O, then S ~ 0. Return. 
(6) If u~lS = 0, then S = 0. Return. 

I t  r emains  to expla in  S tep  (27. W e  have :  

u~is -~- ~ unlui 
i=1 

n--1 

= 1 + ~ u;~u~. 
ill 

By Axiom 3, we m a y  compu te  the  e igenvalues  b~ = E(uT~u~), i = 1, . . .  , n - 1. 
Thus  

n--I 

T = ~o(u~S)  = ~ b~(u~u~). 

If  all the  b; a re  zero, t hen  T = 0. Otherwise  T is a sum of a t  most  n - 1 e igenvectors  
with known nonzero  e igenvalues ,  and  we m a y  a p p l y  A lgo r i t hm 1 recurs ive ly  to 

decide whe the r  T = 0. 
We m a y  in fact  go even f a r the r  in th is  d i rec t ion .  Suppose ,  as above,  t h a t  we can 

decide when e lements  of k e r ( ~ )  are  zero. Le t  A~,  • • • , A~ C R have  the p r o p e r t y  
tha t  ~(A~)  is an  e igenvector ,  i = 1, . . .  , n. ( N o t e  t h a t  all e igenvec tors  have  this  
p r o p e r t y . )  Then  we m a y  use the  following a lgor i thm to decide if S = ~ ; ~  A~ 

is zero. 

ALGORITHM 2 

Use Algorithm 1 to decide if ¢(S) =~ ~?=1 ¢(Ai) is zero. If ~o(S) ~ 0 then S # 0. If ~o(S) = 0, 
then S is in ker (¢), so we can decide if it is zero by assumption. 

Clear ly ,  th is  process  m a y  be ex tended  to al low us to decide  when a sum ~ - 1  A ,  
is zero, p r o v i d e d  on ly  t h a t  each A ;  can be t r ans fo rmed  to a finite sum of eigen- 
vectors  b y  a finite n u m b e r  of app l i ca t ions  of 9. 

3. A n  Application 

Let  R be a field, and  le t  ~ be a derivation on R;  t h a t  is, ~ satisfies:  
(1) add i t i on  law:  ~o(a + b) = ~ ( a )  + ~ ( b ) ,  
(27 mu l t i p l i ca t i on  law:  ~o(ab) = a~o(b) + b~o(a). 
The  mos t  common  ease of a de r iva t i on  is when R is a field of inf in i te ly  dif- 

fe rent iab le  funct ions,  and  ~o is di f ferent ia t ion.  
Le t  K be a subfield of R with  ~o(K) c K .  Then  we have  the  following resul t .  

TUEOREM. The axioms of Section 2 hold for  ~o. 
P R O O F ,  

K and  

o r  

Axiom 1 is p rec ise ly  the  add i t i on  law. Axiom 2 follows because  ~o(K) c 

~(1.1)  = 1.~(1) + 1.~(1) 

Journal of the Association for Computing Machinery, Vol. 18, No. 4, October 1971 



5 6 2  s . c .  J O H N S O N  

so that  

~(1) = O. 

Let  u and v be eigenvectors with eigenvalues E(u)  and E(v) .  Then one can 
easily show that  

~(uv) = (E(u) + E(v) )uv 

and 
~(u -1) = - E ( u ) u  -~ 

Thus, uv and u -1 are eigenvectors, and we have 

E(u -I) = - E ( u ) ,  

E(uv) = E(u) + E(v). 

The eigenvectors of ~o may include many interesting functions, for example 
(1) rational functions, 
(2) ae b, with a and b rational functions, 
(3) b", with b a rational function and a any rational number. 
Algorithm 2 enables us to deal with functions A such that  ~o(A) is an eigenvec- 

tor; that  is, indefinite integrals of eigenvectors. This set may include 
(4) log b, for b a rational function, 
(5) arctan x, arcsin x, 
(6) ef t (x)  = f~ e-X~dx. 
The problem of recognizing zero expressions in ker(~) is typically a hard theo- 

retical problem, but  provides little practical difficulty. Brown (1) and 5ioses (3) 
suggest practical approaches. 

~. Another Application 

Let K be a field of rational functions in one variable m. Let  R be a field of functions 
of m such that  R includes K. Define ~:R---~R as 

~(u ) (m)  = u(m + 1) -- u(m) ,  u E R: 

that  is, ~ is the first difference function. 
Definition: A function u(m) E R is factential if there is a rational function a(m) 

C K with 

u(m + 1) = a(m)u(m) .  

For example, with K equal to the field of rational functions in m over the rational 
numbers, 2 m and m! are factential, but  2 m + 1 and (m 2) i are not. The name "fac- 
tcntial" describes the fact that  both factorial and exponential functions are fac- 
tential. 

We leave to the reader the following simple proposition. 
THEOREM. (1) All rational functions are factential; 
(2) factential functions are closed under the operations of taking inverses and mul- 

tiplication; 
(3) The nonzero factential functions are precisely the eigenvectors of ~; if  u( m + 1) 

= a (m)u(m) ,  then E(u)  = a(m) -- 1; 
(4) ~ satisfies the three axioms. 
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Thus Algorithm 1 can be used to allow us to tell when sums of factentials are 
identically zero, provided that  we can tell when a function u(m)  in ker(~) is iden- 
tically 0. 

Moreover, Algorithm 2 allows us to deal with functions 

A ( m )  = ~ u( i ) ,  

where u(m)  is factential, since ~(A)  = u. 

5. An  Example 

We give a computational example of the use of these algorithms. Let  K be the 
field of rational functions of x over the rational numbers, and let q~ be differentia- 
tion with respect to x. Let  R be a field of infinitely differentiable functions of x. 
Then, for eigenvectors u and v, and a rational number r, we have 

(a) E(r )  = O, 

(b) E(uv)  = E ( u )  + E(v) ,  

(c) E ( u / v )  = E ( u )  - E ( v ) ,  

(d) E ( u  r) = rE(u) .  

Moreover, if s(x)  is a rational function, 

(e) E ( s ( x ) )  = s ' ( x ) / s ( x ) ,  

(f) E(e  "(~)) = s ' (x).  

We shall investigate the expression 

2xe3X(3x + 1) ½ - f0 ~ 
3te 3t 

Set 

fo x (3t + 1)~ dt -- 2[et(3t + 1)t] 3 dt. 

A1 = 2xe3X(3x + 1) ~, 

fo x - 3te 3t 
A2 (3t + 1), dt, 

A3 = - 2[et(3t + 1)½] 3 dt. 

We wish to see if A1 + A2 + A3 is zero. Applying algorithm 2, we examine ¢~(A1) + 
~(A2) + ~(A3), a sum of eigenvectors, to see if it is zero. A1 is already an eigen- 
vector: we have 

E(A1)  = E(2x)  + E(e  3~) + ½E(3x + 1) 

2 3 
- - - + 3 +  

2x 2(3x + 1) 

18x 2 + 15x + 2 
2x(3x + 1) 
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Thus  we write 

18x 2 + 15x + 2 
U1 = ~(A1) = A1, 

2x(3x + 1) 

_ 3xe 3~ 
U2 = ,p(A2) - 

(3x + 1)½' 

U~ = ~(A3) = -- 2[eX(3x + 1)2'] ~. 

U~, U~, and Ua are eigenvectors;  their  eigenvalues are given by  

E(U~) = E(18x  2 + 15x + 2) -- E ( 2 x )  -- E(3x + 1) + E(A~) 

_ 9 ( 36x ~ + 60~: + 27x + 4 

18x 2 + 9x + 2 
E ( G )  = 

2x(3x + 1) 

E(U3)  = ~ 3x + " 

We now ask if Ut + U2 + U3 is zero. Apply ing  Algor i thm 1, ask if ~ (Ui /U3)  + 
~(U2/U3) is zero. We have 

V~ = ~ ~ = [ E ( U 1 )  - -  E ( U 3 ) ]  

( U 2 ) =  1 - - 3 /  U2 
V2 = ~ \ ~ /  x(3x + 1) " U~" 

U1 3(1 - 3x) U1 
U~ (18x 2 + 15x + 2)(3x + 1) U~' 

Vx and V2 are eigenvectors, and we have 

E(Vt)  = E ( 3 ( 1  -- 3x)) - E(3x + 1) -- E(18x  2 + 15x + 2) + E(Ut) -- E(U3) 

= - 6 ( 3 x  + 9 ) / ( 3 x  + 1)(3x - 1) 

and 

E(V2) = - 6 ( 3 x  + 9 ) / ( 3 x  + 1)(3x - 1). 

Apply ing  algori thm 1 to Vi + V2, we examine the eigenvector V~/V2. The 
eigenvalue of Va/V2 is 

E ( V , / V : )  = E ( V i )  - E ( G )  = O. 

T h u s ,  V1/V2 ~ ker (~) ,  so 1 + V1/V2 is a constant .  We must  now appeal to a pro- 
cedure which tells when elements of ker(~)  are zero. I n  this case, we could substi- 
tu te  x = 1; we have 

A , (1 )  = 4e 3, 

Ui(1)  = ( ~ ' 4 e  3) = ~¢-e 3, 

3 3 U2(1) = - ~ e ,  

Us( l )  = - 2 ( e . 2 )  ~ = - 1 6 e  3, 
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and thus  

v ~ ( 1 )  - 
- -6  U , (1 )  3 

35 .4  Ua(1) 6 4 '  

v = ( 1 )  - 
- - 2  U2(1) - -3  

4 Ua(1) 64 

Thus 1 + V i ( 1 ) / V 2 ( 1 )  is zero, so V1 + V2 is. Now, going backwards ,  we know t h a t  

1 + U1/Ua + U2/Ua E k e r ( ~ ) .  

We aga in  ask  if th is  is zero; reasoning  as above  we find 

Ui (1 )  U2(1) 35 3 
1 + U3(1----) + Ua(1) - 1 - ~ +  ~ = 0 .  

Thus U1 + U2 + Ua is zero, so A1 + A o + Aa C ker  (~). Now our  kerne l  examin ing  
a lgor i thm could subs t i t u t e  x = 0, and  recognize t h a t  Ai(0)  = A2(0) = A3(0) = 0, 
so the  or iginal  sum A1 + A2 + Aa is zero. 

Not ice  tha t ,  once we knew the e igenvalues ,  no s impl i f icat ion was necessary  
except in the  r a t iona l  funct ion  field. The  only t ime  t h a t  the  ac tua l  r ep re sen ta t i ons  
of the  e igenvec tors  were examined  was when i t  was necessary  to tel l  if an e lement  
of ke r  (~)  was in fact  zero. 
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