
Analysis of Graphs by Ordering of Nodes

C. P. E A R N E S T , K. G. B A L K E , * AND J. A N D E R S O N

Computer Sciences Corporation, El Segundo, California

ABSTRACT. A method of analyzing directed graphs by establishing a particular ordering for
the nodes is presented, and properties of the ordered graph are derived. Both the method and
the resultant order are interesting graph-t heoretically, and also practically: the method is quite
efficient, and the results of the analysis are part icularly useful to an object code optimizer for
programs. The paper includes examples of interesting graphs, and a conjecture about a refine-
ment of the method.

KEY WORDS AND PHRASES: program flow graph, directed graph, strongly connected region,
predominator, object code optimization

CIt CATEGORIES: 4.12, 5,32

1. Introduction

A program can be and often is represented as a directed graph, in which each arc
represents a flow path, and each vertex represents a "basic block"-- that is, a set
of instructions having the property that each time any member of the set is exe-
cuted, all are. For many purposes, it is necessary to analyze the structure of a
graph representing a program--to discover strongly connected regions, basic blocks
which predominate others, basic blocks which can occur on a path from one basic
block to another, etc.

We present here a new method of graph analysis, based on the notion of estab-
lishing an ordering for the vertices. Algorithms are presented which establish an
order which is consistent with certain natural precedence relations between the
vertices, and which makes a certain set of strongly connected regions readily
apparent.

Previous work reported in the literature has been concerned with finding either
all [3] or only the maximal [4] strongly connected regions. For many purposes, the
first is not necessary, and the second is not sufficient. The method given here finds a
set of nested strongly connected regions, such tha t for any pair of regions R~ and
R~ in the set, either R~ C Rj or R~ C R~ or R~ N Ri is empty. Further, every strongly
connected region which is not found is a subset of, and has a region entry node in
common with, some found region.

The method and the theoretical results, while applicable to any directed graph,

Copyright @ 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of this material is granted,

provided that refere~.ce is made to this publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.

* Present address: Burroughs Corporation, City of Industry, California. This research was
partly supported by the National Science Foundation under Grant NSF-GJ-95, at the Courant
Inst i tute of Mathematical Sciences, New York Universi ty.

Journal of the Associalion for Computing Machinery, Vol. 19, No. 1. January 1972. pp. 23.-42.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321679.321683&domain=pdf&date_stamp=1972-01-01

24 EARNEST, BALKE, AND ANDERSON

are of most use for graphs having a single "en t ry" vertex from which there is a pa th
to every other vertex. The algorithms are quite fast and require little space- -
probably not much more efficient ones are possible. They were developed originally
as eminently practical solutions to the problem of analysis of program flow graphs
for the purpose of object code optimization. The order established is useful for
either of two rather different styles of optimizers. The first views the program as a
set of nested regions, to be processed from the inside out, at each step reducing the
inner region to a loop-free set of one or more vertices. The other views the program
as a single straight sequence of steps, with flow arrows connecting different parts
of the sequence, to be processed in order, taking note of significant events which
affect each step by virtue of the flow arrows. Both methods I are described in [2];
in both cases, information about strongly connected regions and the flow within
them is important . Such information is developed by the analysis algorithms of this
paper.

2. Definition; Notation

Our usage will be consistent with tha t of Berge [1]. Assume we have a finite set X,
and a function F mapping X into X; the pair (X, F) is a finite (directed) graph.

• An element of X is a vertex or a node. I t will be necessary to refer to nodes by either
their names, or their ordering indices within a particular order, or both. The name
of a node never changes (it is assumed to exist to s tar t with); the ordering index
may change, and is initially undefined. Thus we establish the follo~4ng notation:

N is any node,
N ~ is the unique node with name i,
N~ is the node (at most one) with ordering index = k,

N , ~ is the node x~ith name i and ordering index = k,
O(N ~) is the ordering index, or 0 attr ibute, of node N i, defined by O(Nk ~) = k.

An arc of the graph is a pair (N ~, NJ), where N i E r N ~. Such an arc is said to be
from N ~ to N ~. The notation N ~ --. N i will be used both as a name for an arc from
N ~ to N j and as a relation indicating tha t such an arc exists; which is meant will be
clear from the context. If N ~ --, N j and N j --~ N k, this may be x~Titten as N ~ --. N j --*
N k (etc.). I f N ~ ---* N~ then N i is an immediate predecessor of N;, and N : is an
immediate successor of N ~.

A path in the graph is a sequence of two or more (not necessarily distinct) nodes
N 11, N is, • • • , N ~k such that N ix --~ N ~'s --. • • • - . N ;*. The path is said to include Nil,
N ~*, • • • , N;k; the path is said to be from N ~ to N ~k. The path is said to be within a
set of nodes S if and only if {N ~x, N ;~, . . . , N ~*} __c S.

A strongly connected region is a set of nodes such that there is a path within the
set from any node to any node. (For convenience, this definition allows a single
node as a strongly connected region; Berge's strongly connected graph must have at
least two nodes.)

The graph is assumed, without real loss of generality, to have one and only one
entry node N ~ such that there is no N k for which N k --~ N' .

The second method, called the linear nested region scheme in [2], was developed chiefly by
the present authors, particularly K. G. Balke.

Journal of the Association for Computing Machinery, Vol. 19, No. I, January 1972

Analysis of Graphs by Ordering of Nodes 25

A node N b predominates another node N ~ if and only if every path from the entry
node to N ~ includes Nb; in that case N b is a predominator of N ~. A node N b is the
immediate prcdominator of a set of nodes C if and only if N b predominates every
node in C, and N b does not predominate any other node which predominates every
node in C. A node N" is a serial predecessor of another node N ° if and only if N ~
predominates N ~, or N d is the immediate predominator of the set {N ~, N¢I and
there exists a path not including N d from N ~ to N ~, but not such a pa th from N ~ to

N a"
Note tha t the set of prcdominators of a node N ~ is ordered by the predomination

relationship: Let N ~ and N b both be predominators of N~; every pa th from the
entry node to N ~ thus includes both N ~ and N b. In every such path, either N ~ or
.V b must be closest to N~; we assume that in one such path, N b is c loses t - - tha t is,
the latter part of the p~th from the entry node to N ~ is a path not including N =
from .\;b to N ~. There can then be no pa th not including N ~ from the entry node to
.V b, for such a path could obviously be extended to reach to N ° without including
A "~, contradicting the assumption that N ~ predominates N ~. Thus ever), pa th from
the entry node to N b includes N ~, or in other words, N ~ predominates N b.

A number of terms dependent on an ordering of the nodes of the graph are now
defined; in the absence of such an ordering, these terms are undefined: A backward
arc is an arc from Ni to Nk , where i > k; all nodes Nj- for which k < j , < i are
said to be ~mder the backward arc. Two backward arcs N= --~ N~., Nk ---* N; are
said to be interlocked if i < j < k < m. A forward arc is an arc from N~to Nk ,
where i < k. A forward path from Ni, to N , k is a sequence of two or more nodes
Ni~, N i . , . . . , N, , such tha t Ni, ~ N<~ ~ . . . ~ Ni , and ia < i,+1 for all n,
1 < n < /c (that is, a pa th from N,, to N~ k which contains only forward arcs).
For convenience, we denote a contiguously indexed set of nodes {Ni, Ni+ l , N;+~,
• .. , Nj}, i < j, as (N~:N¢). A potential loop is a set of nodes (N I : N j) such tha t
cither :V~ ---+ N~, or there exist Nk , N,~ such tha t i < k < m < j and both (N~:N,~)
and (Na.:Ni) are potential loops. I f (N;:N~) is a potential loop, then N~ is a loop
l~cad, and for each backward arc N,, --+ Ni , i < n, N,, is a latching node. (Informally,
a potential loop is the set of nodes under a backward are, or is the union of sets of
nodes under interlocking backward arcs. Note tha t by this definition, a potential
loop need not contain a strongly connected region, since it is defined in terms of an
arbitrary ordering.)

& Basic Numbering Algorithm

The ordering algorithm consists of two distinct parts: the basic numbering algo-
rithln (BNA), which establishes an initial ordering for the nodes by assigning a
distinct ordering index to each node; and the loop cleansing algorithm (LCA),
which establishes a somewhat different ordering by changing some of the initial
ind(,x assignm(,nts. We present first the basic numbering algorithm, which is so
simple ~hat it is not likely to be new. Next, we demonstrate some of the properties
of the ordered graph, which have apparent ly not been explicitly stated before.

It should be noted tha t the versions of both the BNA and the LCA given herein
have b(.~,n chosen to be as clear as possible; a more efficient version of the entire
combined B N A / L C A algorithm is possible, but has neen omit ted to save space.

For convenience, we denote the set of all indexed nodes by S. S is initially empty;

Journal of the Association for Computing Machinery, Vol. 19, No. I, January 1972

26 E A R N E S T , B A L K E , A N D A N D E R S O N

the a lgor i thm will insert the nodes into it one a t a time. The number of nodes in S

at a given t ime is denoted by n (S) .

THE BASIC NUMBERING ALGORITHM

(1) Insert the entry node into S by assigning it the index 1. That is, set O(N ~) := 1, where
N ' is the entry node.

(2) Set n(S) := 1 (count the entry node as a member of S) .
(3) Set p := 1 (p is a cursor po in t ing to the node currently being processed) .
(4) If there is an immediate successor N" of Np which is not yet indexed (i.e., N~ --* N °

and N ~ ~ S), then:
(a) Increase the indices of all following nodes by 1. That is, for all i such that p < i <__

n(S), set 0 (N i) : = O(N~) ~ 1.
Co) Insert N ~ into S by assigning it the index p T 1. That is, set O(N") := p + 1.
(c) Set p := p ~ 1 (p now points to the node just inserted; that is, N ~ is now N~).
(d) Set n(S) := n(S) -t- 1 (count the new member of S).
(e) Return to Step (4).

(5) If there is no immediate successor of N~ which is not yet indexed, and p > 1, then set
p := p - 1 and return to Step (4). Otherwise (p < 1) the algorithm terminates. (Note that
if there is a path from the entry node to every other node, then the termination can be
made to occur when every node has been indexed , w i t h a probable sav ing of t ime over the
above method).

4. Properties of the Graph After Basic Numbering

I t is clear t h a t the basic number ing a lgor i thm assigns a dist inct index i i , 1 _~ ij _~
n (S) , to each node to which there is a pa th f rom the en t ry node. For the remainder
of the paper, we consider only these n o d e s - - t h a t is, the nodes in S.

I t should be noted t h a t the order established by appl icat ion of the B N A to a
given graph is not unique in gene ra l - - i t depends on the order in which the imme-

diate successors of a node are chosen.
For use in sho~ing the properties of the graph after application of the B N A , we

need another definition: a direct path to a node Nk is a p a t h f rom NI to N~ such t h a t
for all i, 1 _~ i < k, N~ --* N~+I (i.e., N1 - * N2 -~ • • • - * Nk).

LE.~L~XA 1. A t all times during the application of the basic numbering algorithm,
a direct path to the node being processed (Np) exists, except when Np = N1 = the

entry node.
PROOF. I f the lemma is t rue just before the indexing of a node N a, it is still

t rue thereafter , because N" is an immedia te successor of the former N ~ , by defini-
t ion of the B N A ; the arc Np-1 --~ N ~ either creates (if p = 2) or extends a direct
pa th to N ~ . Decreasing the value of p by 1 only removes a node f rom the direct
pa th to N~ ; a direct pa th continues to exist (unless of course p = 1). Thus the
lemma is (vacuous ly) t rue to s tar t ~ i th , and remains t rue t h rough any possible
change in the value of p during the B N A . Q E D

LE.~L~IA 2. I f after application of the B N A , Nk ~ -* Ni a and i ~ k (i.e., there is a
backward arc from N ~ to N~), then just after N ° was inserted in S, the direct path to
it included N ~.

PROOF. Note first t ha t the B N A never changes the relative order of nodes as
determined by their indices, once these have been assigned. Thus, if after the B N A ,
for N ~ and Nk ~, if i _< k, then it is never t rue during the B N A tha t O(N °) > O(N°).

Journal of the Association for Computing .~Iachinery, Vol. 19, No. 1, J anua ry 1972

Analysis of Graphs by Ordering of Nodes 27

If N a was not in S just after N ' was added, then N a would have been inserted to
follow N C- tha t is, so that O(N a) > O(N~). This is so because the cursor p could
never have been set to a smaller value than O(N ~) until N a was in S, because
N" --~ N a [Step (5) could not be operated with N ~ --- N~ unless N a was in S]. But
as noted above, the relation O(N a) ~> O(N ~) is impossible; thus N ~ was in S just
after N ~ was added. But at tha t time, by Lemma 1, there was a direct path to N °,
and since N" was in S and O(N ~) ~ O(N ~) was true, that direct path must have
included N ~. QED

THEORE.~I 1. After application of the BNA, for each backward arc, there is a forward
path from the loop head to every other node under the backward arc.

PROOF. Let the given backward arc be N~ ¢ --* N~, where i _< k. When N ¢ was
inserted in S, there was a direct path to it which included N a, by Lemma 2; thus at
that time the theorem was clearly true. For any node inserted later with a larger
index than O(Na), there was at the time of its insertion a direct path to it which
included N ", by Lemma 1 and the definition of direct path. The existence of these
paths meeting the conditions of the theorem could not be affected by later insertions
into S. QED

Theorem 2 is immediately clear from Theorem 1; Theorem 3 and Corollary 1 are
clear from Lemma 1; all are given without proof.

THEORE.~I 2. After application of the BNA, every potential loop includes a strongly
connected region.

THEORE.~ 3. After application of the BNA, there is a forward path from NI to
every other node in S.

COROLLARY 1. After application of the BNA, every potential loop can be entered
through the loop head.

That is, if after application of the BNA Nk --* N~ and i ~ k, there is a forward
path from N~ to N~.

THEOn~a~ 4. I f N ~ predominates N b and there is a forward path from Nz to every
other node (as there is after application of the BNA), then O(N') < O(Nb).

PROOF. By definition of predominator, every path from the entry node to N b
includes all predominators of N b. Thus the forward path from N~ to N b includes
N a, and so O(N ~) < O(Nb). QED

5. Loop Cleansing Algorithm

The basic numbering algorithm ensures that the set of nodes under every backward
arc includes a strongly connected region. I t does not ensure that every loop head is
the first node of a contiguously indexed set of nodes which is strongly connected,
however. For example, the order shown in Figure 1 could result from basic num-
bering. 2

The loop cleansing algorithm (LCA) is designed to remedy this situation, in a
sense which will be made clear.

As mentioned above, the loop cleansing algorithm accepts as initial input the
indexed set S produced by the basic numbering algorithm. The LCA reassigns
indices to nodes in S, to establish a different ordering. The algorithm follows.

2 In all examples of graphs in the paper, arcs enter only at the top of nodes and leave only
at the bot tom. The assigned order is the order of the nodes from top to bo t tom of the page.

Journal of the Association for Computing Machinery~ Vol. 19, No. I, January 1972

28

()

(

(,)
B N A order

(Order of insertion into S: N,, N ~, N °, N d,
N b)

Fro.

EARNEST~ BALKE~ AND ANDERSON

Q

@
Preferred order

[(N~; N °) in a strongly connected region]

The Loop Cleansing Algorithm

(1) Set i := n(S); erase all marks.
(2) Inspect N~ as a possible loop head: for the set of all backward arcs to N~ , denote the cor-

responding set of latching nodes by L = {Ni I i < j <_ n(S) and .,V# --* N~}. If L is empty
(i.e., N~ is not a loop headS), go to Step (3). Otherwise, cleanse separately one potential
loop for each backward arc to N~ as follows.
(a) Select from L the Nz having the smallest index of any node in L (i.e., Nl C L, and there

is no Nk C L such that k < 1). (This causes the potential loops to be cleansed in order
from the inner to the outer.) If N~ is marked, go to Step (2f).

(b) Mark N~ .
(c) Recursively mark all nodes Nk for which i <(k <_ n(S) and there is an N~ such that

Nk --~ Nm and N,~ is marked. (That is, mark all immediate predecessors of Nz , then
mark all immediate predecessors of those nodes, etc., except that no node Nb, b _< i,
is marked.)

(d) Set t := the largest index belonging to a marked node. We define N~ to be the loop
tail.

(e) Cleanse the potential loop (N~:Nt) by removing unmarked nodes from it: Let M be
the set of marked nodes and U be the set {X~ I i <(u < t and N , not markedl . Re-
assign consecutive indices i + 1, i -t- 2, .. • , t to all nodes in M (J U in such a way
that the original relative order within M and within U is preserved, but so tha t every
node in M now has a smaller index than any node in U.

(f) Set L := L - {Nl}. (Remove the latching node from L.) If L is not yet empty, return
to Step (2a). Otherwise, proceed.

(g) Erase all marks.
(3) Set i := i - 1. If i _> 1, return to Step (2).

If i < 1, the algori thm terminates.

6. Properties of the Graph after Loop Cleansing

N o t e t h a t , for a g i v e n o rde r e s t a b l i s h e d b y t h e B N A , t h e o rde r a f t e r t h e L C A is

u n i q u e ; t h e c o n v e r s e is in gene ra l n o t t rue . T h a t is, t h e L C A does n o t i n t r o d u c e

any n e w n o n u n i q u e n e s s ; ne i the r does i t necessa r i ly p r e s e r v e t h e n o n u n i q u e n e s s

c r e a t e d b y t h e B N A . W e will r e fe r to t h e o r d e r e s t a b l i s h e d b y t h e L C A as L C A
order.

s Except possibly for the trivial loop N~ --* N~.

Journal of the Association for Computing Machinery, Vol. 19, No. I, January 1972

Analysis of Graphs by Ordering of Nodes 29

As we will show, LCA order has the important property that every formal loop
is a strongly connected region, where formal loop is defined recursively as follows:

(NI:N~.) is a primitive formal loop if and only if N~ --, N i , i < k, and there is no
N,~--~ Nj such that i < j < k < m.

(Nh:Nk) is a formal loop if (Nh:Nk) is a primitive formal loop, or if (N~:Nk)
is a formal loop and there is some Ni -* Nh such that h < i < j < k.

A more intuitive, less precise definition offor~Tml loop follows: For each backward
branch N~- -~ Nh, h < j , there is a formal loop R with loop head Nh. R can be
constructed as follows: R is initially (Nh:Ni). If there is a backward arc from out-
side R to a node in R other than Nh (i.e., Nk --~ N~, h < i < j < k) then extend R
to include the latching node of that arc and all nodes between [i.e., R:= (Nh:Nk)].
Repeat this e×tension procedure as long as possible--the final set R is then a (not
necessarily unique) formal loop. I t is clear that these two definitions of formal loop
are equivalent; the first "builds" formal lovps from the bottom up, the second from
the top down. The second definition reflects the way in which the LCA works:
Each potential loop cleansed is in fact a formal loop.

Some examples of formal loops are shown in Figure 2. Note that the set under a
backward arc is not necessarily a formal loop, and is not necessarily a strongly
connected region after application of the LCA. Figure 3 shows the simplest example
which illustrates this. The example shows a possible LCA order, but one in which
(N~:N ~) is neither a formal loop nor a strongly connected region (though it is a
potential loop). Other examples appear in Appendix A.

The properties of an order which are of interest to us can be summarized in a
definition, which does not depend on any particular algorithm: Straight order is ~n
ordering of the nodes of a single entry directed graph such that :

(1) every formal loop is a strongly connected region,
(2) there is a forward path from the entry node to every other node, and
(3) For every backward arc, there is a forward path from the loop head to

every other node under the backward arc.

Fro. 2 FIQ. 3

Journal of the Association for Computing Machinery, Vol. 19, No. I, January 1972

30 EARNEST, BALKE, AND ANDERSON

These three properties are independent, in that no one can be derived from the
other two, as is shown in Figure 4. As was shown in Theorem 4, property (2) en-
sures that, in a straight order, predominators precede the nodes they predominate.

It will come as no surprise that an order established by the LCA is a straight
order (although not vice versa), as we will now show, by demonstrating that the
LCA preserves properties (2) and (3) from the order established by the BNA
and in addition establishes every formal loop as a strongly connected region.

LEMMA 3. The LCA does not destroy any forward paths. That is, if after the B N A
there is a forward path from N ~ to N b, the same forward path exists after the LCA.

PaOOF. If before cleansing a potential loop, O(N a) < O(Nb), then that same
relation holds after completion of the cleansing unless N a E" U and N b E M [the
sets U and M for that cleansing--see Step (2e), LCA]. For this case, however,
there cannot have been a forward path from N a to N b, for then N ~ would have been
marked (by definition of the marking procedure) and would be in M, not U.

• Clearly, forward paths not including some N a E U and some N b E M (i.e. all
forward paths) axe not affected by the cleansing. QED

LEMMA 4. The LCA does not change the direction of any arcs. That is, i f N ~ .-, Nb, -
the LCA does not change the sign of O(N ~) - O(Nb).

P~OOF. This follows immediately from Theorem 1 and Lemma 3. If before the
LCA O (N ~) < O(Nb), then there is a forward path from N" to N b, which by Lemma
3 is not destroyed. If before the LCA O(N ~) > O(Nb), there is by Theorem 1 a
forward path from N b to N'; by Lemma 3 this is not destroyed. If O (N ~) .= O(Nb),
it is clear that N ~ and N b are the same node, which is of course not split.

L~..~IA 5. The LCA inspects each node exactly once as a possible loop head in the
reverse order from that established by the B N A ; further, the order of nodes not yet
inspected is that established by the B N A .

PROOF. At any given time during the LCA, the cursor i divides the set S of
nodes into the two disjoint sets A = {N k] O(Nk) < i} and B = {N~'I O (N i) >_ i}.
Cleansing potential loops with loop head N~ cannot affect the order within or the
composition of the set A; the setting of i to i - 1 [Step (3), LCA] simply removes
the node with largest index from set A and adds it to set B for inspection as a

(1) and (2) only (2) and (3) only (1) and (3) only

Fro. 4

Journal of the Association for Computing Machinery, Yol. 19, No. 1, January 1972

Analysis of Graphs by Ordering of Nodes 31

Q

Before LCA After LCA

FIo . 5

possible loop head. The value of i is never increased, so that once a node is in B it
cannot be removed.. QED

THEOREM 5. The LCA terminates, given a finite graph. 4
PI~OOF.]33" Lemma 5, the LCA inspects each node as a possible loop head

exactly once; each such inspection can trigger at most one cleansing for each back-
ward branch to the loop head. The number of nodes is finite; the number of back-
ward branches to each node is also finite, and by Lemma 4, no new backward
branches are inserted during tim LCA. The marking and moving procedure obvi-
ously terminates each t ime (at most every node could be marked, and there is a
finite number of nodes). QED

LE.~I.~L~ 6. TM LCA inserts a new node N k into the set (Na :N c) under a backward
arc N ~ ~ N ~, O(N ~) <__ O(N ~) only during the cleansing of some pole~tial loop with
loop twad N ~, w]iere before the cleansing, O(N ~) < O(N b) < O(N ~) < O(N~).

PnOOF. I f N k is not already in (N~:N ~) before the cleansing, either O(N k) <
O(N ~) or O(N ~) < O(Nk). Consider first the case in which (before the cleansing)
O(N k) < O(N°). The LCA can reverse the order of N k and N ~ only if N k ~ U and
N ~ C M for some cleansing. Note tha t if N" ff M during a cleansing, then N * E M
also, bec,~use N ~ --~ N ~ and O(N ~) < O(N°). Thus even if N k ff U for the cleansing,
the resultant order af ter moving will be O(N ~) < O(N ~) < O(Nk); N k will not be
inserted into the set (N~:N¢).

The opposite ease: O(N ~) < O (N k) , N ~ C U, a n d N ~ ff M c a n o c c u r and can
result in the order O(N ~) < O(N k) < O(N¢); Figure 5 shows an example. But if
this is the resultant order, N" is not in U for the cleansing (else the cleansing would
reverse the or(h.r of N ~ and Nk). N a also is not in M, nor is N ~ -- N b, for in tha t
case N c would be in M, as noted earlier. Therefore N ~ ~ (Nb:N~), the potential
loop beil/g cleansed. Since N ~ ff U c (Nb:N~), and O(N ~) <_ O(N*), we have
O(N °) < O(N ~) < O(N°). QED

THEOI~E~r 6. For a graph in LCA or&r, for every backward arc N ~ ~ N ~, O(N ~) <_
O(N~), there is a fo~'ward path fl'om the loop head N ~ to every other node N ~ in the set
under the arc [i.c. for which O(N ~) < O(N k) < O(N*)].

This is prove~ because it may not be immediately clear; it is obvious that the BNA termi-
nates, given a finite graph.

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972

32 EARNEST~ BALKE, AND ANDERSON

PROOF. By Theorem 1, this is true just after the BNA; Lemma 3 shows that
the forward paths from the loop head to nodes under the arc after BNA cannot be
destroyed. I t is therefore sufficient to show that the LCA does not insert into
(N~:N ~) nodes to which there is not a forward path from N ". The proof is by re-
cursive reasoning: we assume that at the start of any cleansing the theorem is true,
and show that the cleansing does not affect its t ruth.

By Lemma 6, any insertion of a node N k into the set (N~:N ¢) can take place only
during the cleansing of a potential loop with loop head N b, such that O(N ~) <
O(N b) < O(N ~) < 0 (Nk) ; by assumption, we therefore have a forward path from
N ~ to N b [since N ~ --~ N ~, O(N ~) < O(N b) < 0(N~)].

I t is easy to see that for the cleansing of a potential loop with loop head N b and
loop tail N t, the marking procedure in the LCA guarantees a path within the set
M* = M [J {N b} from every marked node N ~ to N b. Each such path must obvi-
ously include a backward arc N ~ --~ N *, such that O(N b) ~ O(N ~) <_ O(N "~) ~_
O(N~). By the recursion assumption, either N ~ = N ~, or there is a forward path
from N * to N ~. But note tha t N * is itself in M*, so either N ~ = N b, or there is a
forward path from some loop head N ~, O(N b) <_ O(N ~) < O(N~), to N z, by the
same reasoning. Clearly, this sequence of loop heads with smaller and smaller
indices, all greater than or equal to 0 (Nb), ~ill eventually lead to Nb; thus there is a
forward path from N b to every marked node, including N k.

Putt ing these two forward paths together, we have a forward path from N ~ to
N b to N k. QED

COROLLARY 2. The LCA does not insert nodes into a previously cleansed potential
loop [i.e. into the set (N~:Nb), where N ~ was the loop head and N b the loop tail for a
previous cleansing].

PROOF. I t is clear from the definition of the LCA that (Na:N b) is a formal
loop just after it has been cleansed. That is, at that time (N~:N b) is a set under a
backward arc, or the union of two or more sets under interlocked backward arcs.
For each such backward arc N d --* N °, O(N ~) < O(N c) < O(N ~) <_ O(Nb). By
Lemma 5, if (Na:N b) has been cleansed, O(N ~) >_. i (the LCA cursor). But by
Lemma 6, insertion of a new mode into (NC:N d) can occur only if O(N °) < i, which
is not the case.

Note that the LCA never causes interlocked arcs to become disjoint: tha t is, for
N'--~ N p, N ~-* N q, O(N ~) < O(N q) ~_ O(N') < O(N ~) at any time after the
BNA, the LCA will not remove N q from (NP:Nr), because the proof of Theorem 6
shows that there are forward paths from N p to N q and from N q to N' , which by
Lemma 3 are not destroyed by the LCA. Therefore the set (N~:Nb), once it has
been cleansed, will always consist of a set under a backward arc, or the union of two
or more such sets, and as we have shown, insertion under any backward arc within
(N °: N b) is impossible. QED

This proof, together with Theorem 6, leads immediately to the following:
COROLLARY 3. For a previously cleansed "set (N°:Nb), there is a forward path

from N ~ to every N k for which O(N ~) < O(N k) <_ O(Nb).
LE.~I.~IA 7. The LCA does not remove nodes from previously cleansed potential

loops. That is, given the previously cleansed set (Na:N °) and any N b such that O (N ~) <
O(N b) < 0(N°) , the LCA will not reverse the order of N ~ and N b, or of N b and N ~.

PROOF. "By Corollary 3, there is a forward path from N ~ to Nb; by Lemma 3
this cannot be destroyed, so the order of N ~ and N b cannot be reversed.

Journal of the Association for Computing Machinery, Vol, 19, No. 1, January 1972

Analysis of Graphs by Ordering of Nodes 33

By Corollary 2, N b was in (Na :N ~) just after that set was cleansed (it could not
have been inserted later). I t is clear that the marking procedure guarantees that ,
at that time, (Na:N °) also contained at least one immediate successor N k of N b -
that is, N b -~ N k, N b ~- N k, N k ~ (Na:Nc). I f O(N b) ~ O(Nk), then removal of
N b without removal of N k would reverse the direction of the N b ~ N k arc, which
cannot happen, by Lemma 4. I f O(N b) > O(Nk), the removal of N b without re-
moral of N k would cause the insertion of at least N c into the N b --, N k backward
arc; since O(N k) >_ O(Na), this cannot happen, by Lemma 6.

Therefore N b can be removed from (Na:N c) only if every immediate successor
of N b in (Na:N c) is removed as well. Thus all nodes which are immediate prede-
cessors of N a cannot be removed; neither can immediate predecessors of these
nodes, etc. But this is precisely the set M, and M (J IN a} = (Na:N°). QED

T~EORE~I 7. A graph in LCA order is also in straight order.
PROOF. Lemma 3 and Theorems 3 and 6 have established that LCA order has

properties (2) and (3) of straight order. I t remains to be shown only tha t for LCA
order, every formal loop (Nh :N t) is a strongly connected region. As noted earlier,
it is clear that the marking procedure guarantees the existence of a pa th within
M* = M U {N h} from any N k ~ M to the loop head N h of the cleansed potential
10op. By Corollary 3, there is a forward pa th from N h to any N j ~ M. M* is there-
fore a strongly connected region, and thus so is (Nh:N t) just after it has been
cleansed [the new (Nh:N t) ~ M*].

It has also been shown (Corollary 2 and Lemma 7) that the LCA neither inserts
nodes into nor removes nodes from previously cleansed potential loops. Therefore,
at the completion of the LCA, every cleansed potential loop is a strongly connected
region. I t remains to be shown that every formal loop (as defined after completion
of the LCA) was either a cleansed potential loop or is a strongly connected region
in any case.

Let (N~:N b) be a formal loop after the completion of the LCA. By the definition
of formal loop, there is a backward arc N ~ --~ N ~, O(N ~) < O(N ~) _< O(Nb), which
by Lcmmas 4 and 5, triggered a cleansing unless either (1) N ~ = N ~, or (2) N ~ was
marked when N ° --~ N ~ was inspected. Case (1) is the trivial loop N ~ ~ N ~, which is
not affected by the BNA or the LCA. In case (2), N c could have been marked only
if it were in (N~:N~), a previously cleansed set with the same loop head. The
cleansing of (N~:N ~) could have been triggered only by a backward arc N k --~ N ~,
where O(N ~) < O(N k) ~ O(N~), because of the order in which the LCA processes
latching nodes. From Theorem 6 and Corollary 3, it is apparent t h a t there would
be a forward path from N k to N ~. Thus even if all marks were erased and the mark-
ing procedure begun again with N ~, N k would again be marked, and so at least all
of (N~:N d) - !N ~} would be marked - - i n other words, the fact that N ~ ~ N ~ did not
trigger a cleansing could not cause a different result than if it had triggered one.
Thus we can assume that at least (N~:N ~) was cleansed.

By the definition of formal loop, either (N~:N ¢) ~ (N'~:N ~) or there is some
N ~-~ N j, for which O(N ~) ~ O(N s) _< O(N °) ~ O(N~). If such an arc exists after
c0mplction of the LCA, it must have existed when (Na:N °) was cleansed, because
by Lemma 7, N ~ could not have been removed since that cleansing, by Corollary 2,
N f could not have been inserted, and by Lemma 4, the backward arc N ~ ~ N s
forces O(N s) ~ O(N ~) at all times during the LCA. But then the set cleansed
would have been at least (Na:N~). This same argument continues (a finite number
~f steps) to show tha t the potential loop cleansed was at least (Na:Nb). Since there

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972

34 EARNEST, BALKE, AND ANDERSON

is no N k ---, N j, O(N a) < O(N i) < O(N b) < O(Nk), by the definition of formal
loop, there could have been none when (N~:N b) was cleansed, by Lemmas 4 and 7
and Corollary 2 (as above). Thus the potential loop cleansed was precisely (Na:Nb).

QED
Given a graph in straight order, a set of nested strongly connected regions--i.e.,

the formal loops--is easily found. I t is not so easy to decide which strongly con-
nected regions will be formal loops in some straight order. I t is clear that , for two
strongly connected regions R~ and Ri for which R~ fl Ri is not empty, and R~ ~ Ri
and R# ~ R~, at most one of the two will be a formal loop in a particular straight
order. If R: c R i , then in some cases both regions will be formal loops, and in some
cases only R# will be; Figure 6 gives an example. The following exposition is in-
tended to show that, for some purposes, it is more convenient to have available the
set of formal loops for some straight order rather than the set of all strongly con-
nected regions of the graph.

We define an innermost formal loop to be a formal loop R ~ = (Na:Nb), such that
there is no formal loop R i = (N°:N d) for which (N~:N d) c (N~:Nb). Note that
an innermost formal loop is a primitive formal loop, but not necessarily vice versa.

THEOREM 8. For an innermost formal loop R = (N~:Nb), the only backward arc
lo a node in R is the arc N b ---, N ~.

PROOF. Since an innermost formal loop is a primitive formal loop, we have
N b --* N a. There can be no included backward arc N ~ --~ N' , where either O(N ~) <_
O(N ~) ~ O(N d) < O(N b) or O(N) a < O(N ~) < O(N d) <_ O(Nb), because then
(N~:Nd), not (N~:Nb), would be an innermost formal loop. There can be no back-
ward arc N d ~ N °, where O(N ~) < O(N °) ~ O(N b) < O(Nd), for then R would
not be a formal loop. QED

We now define a reduced graph to be the graph produced by performing the fol-
lowing alterations on any graph in straight order which contains a formal loop:

Choose any innermost formal loop R = (N ~:Nb).
Remove all nodes in R from the graph and replace them ~-ith a single new node

N R, such that :

(1) O(N R) = O(N°),
(2) N s ---* N R iff N j ~ R and there was some N k E R for which N i --* N k [note

tha t O(N j) < O(Na), because R is a formal loop],
(3) N R --* N ~ iff N ~ ~ R and there was some N" E R for which N" --* N ~.

An example of such a graph reduction is shown in Figure 7.

SCR's and formal loops SCR's
(N., N b) (N., N c)
(N s, N b, N c) (N a, .~b, No)

I Formal loops
(N~, •b, N c)

FIG. 6

Journal of the Association for Computing Machinery, Vol. 19, No. I, January 1972

Analysis of Graphs by Ordering of Nodes

Graph in straight order

Fro. 7

)

Reduced graph

35

THEOREM 9. Every reduced graph is in straight order.
PROOF. I t is clear that all paths not within R which existed before reduction

continue to exist thcreafter, except that wherever a path included a sequence of
one or more nodes in R, it includes after reduction the single node N R. Further, all
new arcs are forward or backward accordingly as the arcs they effectively replace
were forward or backward. Thus the reduction preserves the three properties of
straight order. QED

(I t is also possible to prove that if the reduction process is performed on a graph
in LCA order, the result is a graph in LCA order, which is a bit stronger. As the
proof is tedious, and the result not useful unless other useful properties of LCA
order are discovered, it is omitted.)

THEORE~f 10. For a graph in any given order, every strongly connected region in the
graph is a subset of, and includes the loop head of, some formal loop.

PROOF. Assume there is a strongly connected region R = {N ~, N ~2, . - . , Nak},
with O(N al) < O(N ~2) < • • • < O(N ak) in the given order. By definition, there is
a path within R from N a~ to N "'. Clearly such a path includes a backward arc to
N °~ (a forward arc to N ~ would perforce be from a node not in the region). I t is
easy to see from the definition of formal loop that N "1 is thus the loop head of one
or more formal loops; of these, choose the one having the most nodes--call it F.
Assume that there is a node N" in R but not in F. Since the nodes in F are contiguous,
and N ~ E F, and O(N ~) > O(N~'), then O(N ~) > O(N:) for any N: C F. By
definition of strongly connected region, there is a path from N ~ to N ~, which must
clearly include a backward arc from a node not in F to a node in F. But then there is
a formal loop with loop head N "~ which contains more nodes than F, which is a
contradict ion-- thus every node in/~ is in F. QED

THEOREM 11. I f N ~ is a serial predecessor of N b, then when the graph is in straight
order, O(N ~) < O(Nb).

PaOOF. The result is immediate if N ~ predominates N b, by Theorem 4.
If not, let N "D be the immediate predominator of {N ~, Nbl; we will use the fact

throughout the proof that N ~, N b, and N B~ are three distinct nodes. By the defini-
tion of serial predecessor, there is a path not including N "~ from N" to Nb; if O(N ~) >
O(N b) that path must include a backward arc N a --~ N ", where O(N BD) < O(N ~) <

Journal of the Association for Computing Machinery, Vol. 19, No. I, January 1972

36 EARNEST, BALKE, AND ANDERsoN I

)
)

Fro. 8

O(N b) < O(N ~) <_ O(N~). Figure 8 shows an example. Note that O(N B~) <
O(N ~) : Every path from N1 to N a must include N ~', by definition of predominator.
By definition, there is a forward path from N~ to N ~ (and to every other node) ; thus
if O(N ~) < O(NB~), every path from N ° to N ~ would have to include N Bu, which
is not the case.

Thus there is a formal loop (N~:Ng), where O(N g) >_ 0(N~), which is by defini-
tion a strongly connected region. Thus there is a path within (N~:N g) from N b to
N ~, not includingN B~. But this is not the case by the definition of serial predecessor.
Therefore, O(N ~) < 0(Nb), since O(N ~) > O(N b) leads to a contradiction. QED

7. Summary

We have presented a graph analysis algorithm in two parts--called basic numbering
and loop cleansing--which establishes a straight order for the nodes of a directed
graph. In general, for a given graph, there is more than one possible straight order.
The most important or useful properties of straight order are summarized infor-
mally here:

(1) For ever), backward arc, there is a contiguously ordered set of nodes which
is a strongly connected region. The first node in the set is the loop head of the back-
ward arc; the last node in the set is the latching node of the latest backward arc
which interlocks, directly or indirectly, with the first one (cf., the definition of
formal loop). The set of ranges so defined is thus a set of nested strongly connected
regions.

(2) The set of formal loops is convenient in that an innermost formal loop is the
set under a single backward arc, and if an innermost formal loop is replaced by a
single node, the resultant reduced graph is again in straight order. Thus the set of
formal loops can be used to direct a straightforward "inside-out" processing of the
entire graph, if desired: an innermost formal loop, which is topologically very simple,
is first inspected, then reduced to a single node (with which is presumably associated
the pertinent information about the former formal loop). This procedure is simply
repeated until the entire graph has been processed.

(3) Straight order is compatible with serial predecessor order, so that if the
graph is inspected in straight order, all the immediate predecessors of a node are in-
spected before the node itself, unless the node is a loop head. Straight order also en-
sures that predominators precede the nodes they predominate.

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972

Analysis of Graphs by Ordering of Nodes 37

(4) There is a forward path to every node, both from the entry node and from
the loop heads of any enclosing backward arcs. This of course means that every po-
tential loop can be entered through the loop head.

8. A Conjecture

For some purposes, single entry strongly connected regions are more convenient to
deal with--a strongly connected region is single entry if every branch from a node
not in the same region to one in the region is to the same node. This partly explains
the rationale behind building formal loops from the bottom up: for interlocked back-

Single entry SCR's M~dtiple
and formal loops entry SCR
(N b, N ~) (N", N b)
(N", N b, N °)

Fro. 9

{
Formal loops
(N b, N°)
(N b, N c, N d) .

Single entry SCR's
(:~b Nd)

FIG. 10

)
FIG. II

Journal of the Association for Computing Machinery, Vol. 19, No. I, January 1972

38 EARNEST~ BALKE~ AND ANDERSON

w a r d arcs, t h e set under t he first is never single en t ry , while t he set under t he las t

m a y be, as is shown in F igure 9, for example .
I t is in genera l no t t rue t h a t for a g r a p h in s t r a igh t order , eve ry single en t ry

s t rong ly connec t ed region R~ is a fo rma l loop, except t h a t where the re is ano the r

Possible BNA orders Straight order

FXG. 12

BNA order
Nested NR --* N%
Nested Ng --* N~,
Interlocked N d --~ N b,
Disjoint N d --* N b,

FIG. 13

()

Straight order
N ~ --. N ~ Disjoint
N a --. N b Interlocked
N e --* N ° Nested
N~ --* N e Nested

Journal of the :kssociation for Computing Machinery, Vol. 19, No. 1, January 1972

Analysis of Graphs by Ordering of Nodes 39

single entry strongly connected region Rj such tha t R~ n R1 is not empty, and
R~ ~ Ri and Rj ~ R~ then at most one of R i , Rs is a formal loop. This is shown by
the counterexample in Figure 10.

I t is conjectured tha t if the following changes are made to the loop cleansing
algorithm, the order which it then establishes is a straight order for which the above
statement is true. The changes enable the LCA to re-order latching nodes from
which there is an arc to the same loop head. The changes:

(1) Associate with each node Nj a loop entry count, denoted b y E (N ~) , initially

zero.
(2) Reverse the order of Steps (2f) and (2g). This causes all marks to be

erased after each backward arc is processed, ra ther than waiting until all for a
given loop head have been processed.

\

/

Valid straight order; (N~:N d) is not a
strongly connected region. Other orders are
possible, but in none of them are both the
conditions true

FIG.

Q

)
Every set under a backward arc is strongly
connected, but there is not a forward path
from N1 to N b

14

G

Possible BNA order (N d is a serial prede-
ccssor of N c)

Q

Valid straight order

FIG. 15

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972

40 EARNEST, BALKE, AND ANDERSON~

(3) Insert the following steps between Steps (2e) and (2d):

(2cl) Set E(NI) := 1. For each marked node Nk for which there is at least one Nj such that
N1 --* Nk and j < i, set E(N,) := E(Nz) -b 1 (that is, count the entries to the potential
loop, and keep the count with the latching node).

(2c2) Mark all nodes Np for which 0 < E(Np) <_ E(N~). If any additional nodes are thereby
marked, repeat Step (2c); otherwise, proceed. (Informally: mark all nodes belonging
to potential loops having the same loop head as, and no more entries than, the cur-
rent potential loop.)

(4) Add Step (2h), following Step (2g):

(2h) Set E(ND := 0 for all k.

Appendix

A number of graphs which for some reason are interesting follow:
(1) Figure 11 shows two possible straight orders for the same graph, one hav-

ing more backward arcs than the other. Neither order seems preferable to the
other.

(2) It is not true that for every graph, one of the possible orders producible by
basic numbering only is a valid straight order; see Figure 12.

(3) The LCA sometimes changes nested backward arcs to interlocked ones,
and vice versa, and disjoint backward arcs to nested ones, and vice versa.
Figure 13 gives an example.

(4) It is not true that every graph can be ordered so that (1) every set under a
backward arc is a strongly connected region and (2) there is a forward path from
N1 to every loop head. Figure 14 illustrates this.

(5) In general, the BNA order is not compatible with serial predecessor order,
as is shown in Figure 15.

(6) Even where the BNA order is compatible with serial predecessor order,
loop cleansing may be necessary to produce a valid straight order, as Figure 16
shows.

(7) It is not true in general that if N a is not a serial predecessor of N b, and N b is
not a serial predecessor of N ~, then there is a straight order in which O(N a) <
O(Nb), and a straight order in which O(N ~) > O(Nb). This is shown by Figure 16:

Possible BNA order

(D
Straight order

Fro. 16

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972

Analysis of Graphs by Ordering of Nodes 41

Neither N b nor N ~ is a serial predecessor of the other, but the only straight order
has O(N ~) < O(Nb). I t is not clear how to simply define a relation < . between
nodes which has the property tha t N = < • N b implies tha t O(N °) < O(N b) in a
straight order, and 3o that - I ((N a < . N b) Y (N b < . N")) implies that both
O(N") < O(N ~) and O(N ~) > O(N b) are possible in different straight orders.

In an)' case, straight order cannot be defined by a pairwise relation between nodes
(although of course a straight order can be). In Figure 17, three possible straight
orders are shown, illustrating tha t for each of the six possible pairs of nodes (N b, N c,
N ~, NO), either member of the pair may precede the other. Another possible non-
straight order is shown for the graph.

Q

)
P o s s i b l e s t r a i g h t o rde r s

Q

(

N o n s t r a i g h t o rde r

FIG. 17

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972

42 EARNEST~ BALKE~ AND ANDERSO~

R E F E R E N C E S

1. BERGE, CL=~UDE. The Theory of Graphs and Its Applications. Wiley, New York, 1964.
2. COCKE, JOHN, AND SCHWARTZ, J . T . Programming Lang~ages and Their Compilers: Pr~

liminary Notes. Coura~t Ins t i tu te of Mathematical Sciences, New York U., New York, 197q
3. PROSSER, 11. Applications of BooleaH matrices to the anulysis of flow diagrams. Pro~

Eastern Joint Comptd. Conf. 1959 (Spartan Books, Washington, 1).C.), pp 133-137.
4. RAMAMOORTHY, C. V. Analysis of graphs by connectivi ty considerations. J. ACM 1

(1966), 211-222.

RECEIVED MAY 1969; REVISED AUGUST 1971

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972

