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ABSTRACT. A method of analyzing directed graphs by establishing a particular ordering for 
the nodes is presented, and properties of the ordered graph are derived. Both the method and 
the resultant order are interesting graph-t heoretically, and also practically: the method is quite 
efficient, and the results of the analysis are part icularly useful to an object code optimizer for 
programs. The paper includes examples of interesting graphs, and a conjecture about a refine- 
ment of the method. 
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1. Introduction 

A program can be and often is represented as a directed graph, in which each arc 
represents a flow path, and each vertex represents a "basic block"-- that  is, a set 
of instructions having the property that  each time any member of the set is exe- 
cuted, all are. For many purposes, it is necessary to analyze the structure of a 
graph representing a program--to discover strongly connected regions, basic blocks 
which predominate others, basic blocks which can occur on a path from one basic 
block to another, etc. 

We present here a new method of graph analysis, based on the notion of estab- 
lishing an ordering for the vertices. Algorithms are presented which establish an 
order which is consistent with certain natural precedence relations between the 
vertices, and which makes a certain set of strongly connected regions readily 
apparent. 

Previous work reported in the literature has been concerned with finding either 
all [3] or only the maximal [4] strongly connected regions. For many purposes, the 
first is not necessary, and the second is not sufficient. The method given here finds a 
set of nested strongly connected regions, such tha t  for any pair of regions R~ and 
R~ in the set, either R~ C Rj or R~ C R~ or R~ N Ri is empty. Further, every strongly 
connected region which is not found is a subset of, and has a region entry node in 
common with, some found region. 

The method and the theoretical results, while applicable to any directed graph, 
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24 EARNEST, BALKE, AND ANDERSON 

are of most use for graphs having a single "en t ry"  vertex from which there is a pa th  
to every other vertex. The algorithms are quite fast and require little space- -  
probably not much more efficient ones are possible. They were developed originally 
as eminently practical solutions to the problem of analysis of program flow graphs 
for the purpose of object code optimization. The order established is useful for 
either of two rather  different styles of optimizers. The first views the program as a 
set of nested regions, to be processed from the inside out, at  each step reducing the 
inner region to a loop-free set of one or more vertices. The other views the program 
as a single straight sequence of steps, with flow arrows connecting different parts  
of the sequence, to be processed in order, taking note of significant events which 
affect each step by virtue of the flow arrows. Both methods I are described in [2]; 
in both cases, information about strongly connected regions and the flow within 
them is important .  Such information is developed by the analysis algorithms of this 
paper. 

2. Definition; Notation 

Our usage will be consistent with tha t  of Berge [1]. Assume we have a finite set X, 
and a function F mapping X into X;  the pair (X, F) is a finite (directed) graph. 

• An element of X is a vertex or a node. I t  will be necessary to refer to nodes by either 
their names, or their ordering indices within a particular order, or both. The  name 
of a node never changes (it is assumed to exist to s tar t  with);  the ordering index 
may change, and is initially undefined. Thus we establish the follo~4ng notation: 

N is any node, 
N ~ is the unique node with name i, 
N~ is the node (at  most one) with ordering index = k, 

N ,  ~ is the node x~ith name i and ordering index = k, 
O(N ~) is the ordering index, or 0 attr ibute,  of node N i, defined by O(Nk ~) = k. 

An arc of the graph is a pair (N ~, NJ), where N i E r N ~. Such an arc is said to be 
from N ~ to N ~. The notation N ~ --. N i will be used both as a name for an arc from 
N ~ to N j and as a relation indicating tha t  such an arc exists; which is meant  will be 
clear from the context. If  N ~ --, N j and N j --~ N k, this may be x~Titten as N ~ --. N j --* 
N k (etc.).  I f  N ~ ---* N~ then N i is an immediate predecessor of N;, and N :  is an 
immediate successor of N ~. 

A path in the graph is a sequence of two or more (not necessarily distinct) nodes 
N 11, N is, • • • , N ~k such that  N ix --~ N ~'s --. • • • - .  N ;*. The path  is said to include Nil, 
N ~*, • • • , N;k; the path  is said to be from N ~ to N ~k. The path  is said to be within a 
set of nodes S if and only if {N ~x, N ;~, . . .  , N ~*} __c S. 

A strongly connected region is a set of nodes such that  there is a path  within the 
set from any node to any node. (For convenience, this definition allows a single 
node as a strongly connected region; Berge's strongly connected graph must  have at 
least two nodes.) 

The graph is assumed, without real loss of generality, to have one and only one 
entry node N ~ such that  there is no N k for which N k --~ N' .  

The second method, called the linear nested region scheme in [2], was developed chiefly by 
the present authors, particularly K. G. Balke. 
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Analysis of Graphs by Ordering of Nodes 25 

A node N b predominates another node N ~ if and only if every path from the entry 
node to N ~ includes Nb; in that  case N b is a predominator of N ~. A node N b is the 
immediate prcdominator of a set of nodes C if and only if N b predominates every 
node in C, and N b does not predominate any other node which predominates every 
node in C. A node N" is a serial predecessor of another node N ° if and only if N ~ 
predominates N ~, or N d is the immediate predominator  of the set {N ~, N¢I and 
there exists a path  not including N d from N ~ to N ~, but  not such a pa th  from N ~ to 

N a" 
Note tha t  the set of prcdominators of a node N ~ is ordered by the predomination 

relationship: Let N ~ and N b both be predominators of N~; every pa th  from the 
entry node to N ~ thus includes both N ~ and N b. In  every such path, either N ~ or 
.V b must be closest to N~; we assume that  in one such path,  N b is c loses t - - tha t  is, 
the latter part  of the p~th from the entry node to N ~ is a path  not including N = 
from .\;b to N ~. There can then be no pa th  not including N ~ from the entry node to 
.V b, for such a path could obviously be extended to reach to N ° without including 
A "~, contradicting the assumption that  N ~ predominates  N ~. Thus ever), pa th  from 
the entry node to N b includes N ~, or in other words, N ~ predominates N b. 

A number of terms dependent on an ordering of the nodes of the graph are now 
defined; in the absence of such an ordering, these terms are undefined: A backward 
arc is an arc from Ni  to Nk ,  where i > k; all nodes Nj-  for which k < j ,  < i are 
said to be ~mder the backward arc. Two backward arcs N= --~ N~., Nk ---* N;  are 
said to be interlocked if i < j < k < m. A forward arc is an arc from N~to  Nk ,  
where i < k. A forward path from Ni, to N ,  k is a sequence of two or more nodes 
Ni~, N i . ,  . . .  , N, ,  such tha t  Ni,  ~ N<~ ~ . . .  ~ Ni ,  and ia < i,+1 for all n, 
1 < n < /c ( that  is, a pa th  from N,,  to N~ k which contains only forward arcs). 
For convenience, we denote a contiguously indexed set of nodes {Ni,  Ni+ l ,  N;+~, 
• .. , Nj}, i < j, as (N~:N¢). A potential loop is a set of nodes ( N I : N j )  such tha t  
cither :V~ ---+ N~, or there exist Nk ,  N,~ such tha t  i < k < m < j and both (N~:N,~) 
and (Na.:Ni) are potential  loops. I f  (N;:N~) is a potential  loop, then N~ is a loop 
l~cad, and for each backward arc N,, --+ Ni  , i < n, N,, is a latching node. (Informally,  
a potential loop is the set of nodes under a backward are, or is the union of sets of 
nodes under interlocking backward arcs. Note  tha t  by this definition, a potential  
loop need not contain a strongly connected region, since it is defined in terms of an 
arbitrary ordering.) 

& Basic Numbering Algorithm 

The ordering algorithm consists of two distinct parts:  the basic numbering algo- 
rithln (BNA),  which establishes an initial ordering for the nodes by  assigning a 
distinct ordering index to each node; and the loop cleansing algorithm (LCA),  
which establishes a somewhat  different ordering by  changing some of the initial 
ind(,x assignm(,nts. We present first the basic numbering algorithm, which is so 
simple ~hat it is not likely to be new. Next,  we demonstrate  some of the properties 
of the ordered graph, which have apparent ly  not been explicitly stated before. 

It should be noted tha t  the versions of both the BNA and the LCA given herein 
have b(.~,n chosen to be as clear as possible; a more efficient version of the entire 
combined B N A / L C A  algorithm is possible, but  has neen omit ted  to save space. 

For convenience, we denote the set of all indexed nodes by S. S is initially empty;  
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the  a lgor i thm will insert  the  nodes into it one a t  a time. The  number  of nodes in S 

at  a given t ime is denoted  by  n (S) .  

THE BASIC NUMBERING ALGORITHM 

(1) Insert the entry node into S by assigning it the index 1. That is,  set  O(N ~) := 1, where 
N '  is the entry node.  

(2) Set n(S) := 1 (count the entry node as a member of S) .  
(3) Set  p :=  1 (p is a cursor po in t ing  to the  node currently being processed) .  
(4) If there is an immediate successor N" of Np which is not yet indexed (i.e., N~ --* N ° 

and N ~ ~ S), then: 
(a) Increase the indices of all following nodes by 1. That is, for all i such that p < i <__ 

n(S), set 0 ( N i ) : =  O(N~) ~ 1. 
Co) Insert  N ~ into S by assigning it the index p T 1. That is,  set  O(N") :=  p + 1. 
(c) Set  p := p ~ 1 (p now points to the node just inserted; that is, N ~ is now N~). 
(d) Set n(S) := n(S) -t- 1 (count the new member of S). 
(e) Return to Step (4). 

(5) If there is no immediate successor of N~ which is not yet indexed, and p > 1, then set  
p := p - 1 and return to Step (4). Otherwise (p < 1) the algorithm terminates. (Note that 
if there is a path from the entry node to every other node, then the termination can be 
made  to occur when every node has been  indexed ,  w i t h  a probable  sav ing  of t ime  over the 
above  method). 

4. Properties of the Graph After Basic Numbering 

I t  is clear t h a t  the basic number ing  a lgor i thm assigns a dist inct  index i i ,  1 _~ ij _~ 
n ( S ) ,  to each node to which there is a pa th  f rom the  en t ry  node. For  the remainder  
of the paper,  we consider only these n o d e s - - t h a t  is, the  nodes in S. 

I t  should be noted t h a t  the order  established by  appl icat ion of the  B N A  to a 
given graph is not  unique in gene ra l - - i t  depends on the  order in which the  imme- 

diate successors of a node are chosen. 
For  use in sho~ing  the properties of the  graph  after application of the  B N A ,  we 

need another  definition: a direct path to  a node Nk is a p a t h  f rom NI to N~ such t h a t  
for all i, 1 _~ i < k, N~ --* N~+I (i.e., N1 - *  N2 -~  • • • - *  Nk).  

LE.~L~XA 1. A t  all times during the application of the basic numbering algorithm, 
a direct path to the node being processed (Np) exists, except when Np = N1 = the 

entry node. 
PROOF. I f  the  lemma is t rue  just  before the  indexing of a node N a, it is still 

t rue thereafter ,  because N" is an immedia te  successor of the  former N ~ ,  by  defini- 
t ion of the B N A ;  the arc Np-1 --~ N ~  either creates (if p = 2) or extends a direct 
pa th  to N ~ .  Decreasing the value of p by  1 only removes a node f rom the  direct 
pa th  to N~ ; a direct pa th  continues to  exist (unless of course p = 1). Thus  the 
lemma is (vacuous ly)  t rue to s tar t  ~ i th ,  and  remains t rue  t h rough  any  possible 
change in the  value of p during the  B N A .  Q E D  

LE.~L~IA 2. I f  after application of the B N A ,  Nk ~ -* Ni  a and i ~ k (i.e., there is a 
backward arc from N ~ to N~), then just after N ° was inserted in S, the direct path to 
it included N ~. 

PROOF. Note  first t ha t  the B N A  never changes the relative order of nodes as 
determined by  their indices, once these have been assigned. Thus,  if after the B N A ,  
for N ~  and Nk ~, if i _< k, then it is never t rue during the B N A  tha t  O(N °) > O(N°). 
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Analysis of Graphs by Ordering of Nodes 27 

If N a was not in S just after N ' was added, then N a would have been inserted to  
follow N C- tha t  is, so that  O(N a) > O(N~). This is so because the cursor p could 
never have been set to a smaller value than O(N ~) until N a was in S, because 
N" --~ N a [Step (5) could not be operated with N ~ --- N~ unless N a was in S]. But  
as noted above, the relation O(N a) ~> O(N ~) is impossible; thus N ~ was in S just 
after N ~ was added. But  at tha t  time, by Lemma 1, there was a direct path to N °, 
and since N" was in S and O(N ~) ~ O(N ~) was true, that  direct path must have 
included N ~. QED 

THEORE.~I 1. After application of the BNA,  for each backward arc, there is a forward 
path from the loop head to every other node under the backward arc. 

PROOF. Let the given backward arc be N~ ¢ --* N~, where i _< k. When N ¢ was 
inserted in S, there was a direct path to it which included N a, by Lemma 2; thus at 
that time the theorem was clearly true. For any node inserted later with a larger 
index than O(Na), there was at the time of its insertion a direct path to it which 
included N ", by Lemma 1 and the definition of direct path. The existence of these 
paths meeting the conditions of the theorem could not be affected by later insertions 
into S. QED 

Theorem 2 is immediately clear from Theorem 1; Theorem 3 and Corollary 1 are 
clear from Lemma 1; all are given without proof. 

THEORE.~I 2. After application of the BNA,  every potential loop includes a strongly 
connected region. 

THEORE.~ 3. After application of the BNA,  there is a forward path from NI to 
every other node in S. 

COROLLARY 1. After application of the BNA,  every potential loop can be entered 
through the loop head. 

That  is, if after application of the BNA Nk --* N~ and i ~ k, there is a forward 
path from N~ to N~. 

THEOn~a~ 4. I f  N ~ predominates N b and there is a forward path from Nz to every 
other node (as there is after application of the BNA ), then O(N') < O(Nb). 

PROOF. By definition of predominator, every path from the entry node to N b 
includes all predominators of N b. Thus the forward path from N~ to N b includes 
N a, and so O(N ~) < O(Nb). QED 

5. Loop Cleansing Algorithm 

The basic numbering algorithm ensures that  the set of nodes under every backward 
arc includes a strongly connected region. I t  does not ensure that  every loop head is 
the first node of a contiguously indexed set of nodes which is strongly connected, 
however. For example, the order shown in Figure 1 could result from basic num- 
bering. 2 

The loop cleansing algorithm (LCA) is designed to remedy this situation, in a 
sense which will be made clear. 

As mentioned above, the loop cleansing algorithm accepts as initial input the 
indexed set S produced by the basic numbering algorithm. The LCA reassigns 
indices to nodes in S, to establish a different ordering. The algorithm follows. 

2 In all examples of graphs in the  paper,  arcs enter  only at  the  top of nodes and leave only 
at  the bot tom.  The assigned order is the  order of the nodes from top to bo t tom of the  page. 
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The Loop Cleansing Algorithm 

(1) Set i :=  n(S);  erase all marks. 
(2) Inspect N~ as a possible loop head: for the set of all backward arcs to N~ , denote the cor- 

responding set of latching nodes by L = {Ni I i < j <_ n(S) and .,V# --* N~}. If L is empty 
(i.e., N~ is not a loop headS), go to Step (3). Otherwise, cleanse separately one potential  
loop for each backward arc to N~ as follows. 
(a) Select from L the Nz having the smallest index of any node in L (i.e., Nl C L, and there 

is no Nk C L such that  k < 1). (This causes the potential  loops to be cleansed in order 
from the inner to the outer.) If N~ is marked, go to Step (2f). 

(b) Mark N~ . 
(c) Recursively mark all nodes Nk for which i <( k <_ n(S) and there is an N~ such that  

Nk --~ Nm and N,~ is marked. (That is, mark all immediate predecessors of Nz ,  then 
mark all immediate predecessors of those nodes, etc., except that  no node Nb, b _< i, 
is marked.) 

(d) Set t := the largest index belonging to a marked node. We define N~ to be the loop 
tail. 

(e) Cleanse the potential  loop (N~:Nt) by removing unmarked nodes from it:  Let  M be 
the set of marked nodes and U be the set {X~ I i <( u < t and N ,  not markedl .  Re- 
assign consecutive indices i + 1, i -t- 2, .. • , t to all nodes in M (J U in such a way 
that  the original relative order within M and within U is preserved, but  so tha t  every 
node in M now has a smaller index than any node in U. 

(f) Set L := L - {Nl}. (Remove the latching node from L.) If L is not yet empty,  return 
to Step (2a). Otherwise, proceed. 

(g) Erase all marks. 
(3) Set i := i - 1. If  i _> 1, return to Step (2). 

If  i < 1, the algori thm terminates.  

6. Properties of the Graph after Loop Cleansing 

N o t e  t h a t ,  for  a g i v e n  o rde r  e s t a b l i s h e d  b y  t h e  B N A ,  t h e  o rde r  a f t e r  t h e  L C A  is 

u n i q u e ;  t h e  c o n v e r s e  is in gene ra l  n o t  t rue .  T h a t  is, t h e  L C A  does  n o t  i n t r o d u c e  

any  n e w  n o n u n i q u e n e s s ;  ne i the r  does  i t  necessa r i ly  p r e s e r v e  t h e  n o n u n i q u e n e s s  

c r e a t e d  b y  t h e  B N A .  W e  will  r e fe r  to  t h e  o r d e r  e s t a b l i s h e d  b y  t h e  L C A  as L C A  
order. 

s Except possibly for the trivial loop N~ --* N~. 
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As we will show, LCA order has the important property that  every formal loop 
is a strongly connected region, where formal loop is defined recursively as follows: 

(NI:N~.) is a primitive formal loop if and only if N~ --, N i ,  i < k, and there is no 
N,~--~ Nj such that  i < j < k < m. 

(Nh:Nk) is a formal loop if (Nh:Nk) is a primitive formal loop, or if (N~:Nk) 
is a formal loop and there is some Ni  -* Nh such that  h < i < j < k. 

A more intuitive, less precise definition offor~Tml loop follows: For each backward 
branch N~- -~ Nh,  h < j ,  there is a formal loop R with loop head Nh.  R can be 
constructed as follows: R is initially (Nh:Ni).  If there is a backward arc from out- 
side R to a node in R other than Nh (i.e., Nk --~ N~, h < i < j < k) then extend R 
to include the latching node of that  arc and all nodes between [i.e., R:= (Nh:Nk)]. 
Repeat this e×tension procedure as long as possible--the final set R is then a (not 
necessarily unique) formal loop. I t  is clear that  these two definitions of formal loop 
are equivalent; the first "builds" formal lovps from the bottom up, the second from 
the top down. The second definition reflects the way in which the LCA works: 
Each potential loop cleansed is in fact a formal loop. 

Some examples of formal loops are shown in Figure 2. Note that  the set under a 
backward arc is not necessarily a formal loop, and is not necessarily a strongly 
connected region after application of the LCA. Figure 3 shows the simplest example 
which illustrates this. The example shows a possible LCA order, but one in which 
(N~:N ~) is neither a formal loop nor a strongly connected region (though it is a 
potential loop). Other examples appear in Appendix A. 

The properties of an order which are of interest to us can be summarized in a 
definition, which does not depend on any particular algorithm: Straight order is ~n 
ordering of the nodes of a single entry directed graph such that :  

(1) every formal loop is a strongly connected region, 
(2) there is a forward path from the entry node to every other node, and 
(3) For every backward arc, there is a forward path from the loop head to 

every other node under the backward arc. 

Fro. 2 FIQ. 3 

Journal of the Association for Computing Machinery, Vol. 19, No. I, January 1972 



30 EARNEST, BALKE, AND ANDERSON 

These three properties are independent, in that no one can be derived from the 
other two, as is shown in Figure 4. As was shown in Theorem 4, property (2) en- 
sures that, in a straight order, predominators precede the nodes they predominate. 

It will come as no surprise that an order established by the LCA is a straight 
order (although not vice versa), as we will now show, by demonstrating that the 
LCA preserves properties (2) and (3) from the order established by the BNA 
and in addition establishes every formal loop as a strongly connected region. 

LEMMA 3. The LCA does not destroy any forward paths. That is, if  after the B N A  
there is a forward path from N ~ to N b, the same forward path exists after the LCA.  

PaOOF. If before cleansing a potential loop, O(N a) < O(Nb), then that  same 
relation holds after completion of the cleansing unless N a E" U and N b E M [the 
sets U and M for that cleansing--see Step (2e), LCA]. For this case, however, 
there cannot have been a forward path from N a to N b, for then N ~ would have been 
marked (by definition of the marking procedure) and would be in M, not U. 

• Clearly, forward paths not including some N a E U and some N b E M (i.e. all 
forward paths) axe not affected by the cleansing. QED 

LEMMA 4. The LCA does not change the direction of any arcs. That is, i f  N ~ .-, Nb, - 
the LCA does not change the sign of O( N ~) - O( Nb). 

P~OOF. This follows immediately from Theorem 1 and Lemma 3. If before the 
LCA O ( N  ~) < O(Nb), then there is a forward path from N" to N b, which by Lemma 
3 is not destroyed. If before the LCA O(N ~) > O(Nb), there is by Theorem 1 a 
forward path from N b to N';  by Lemma 3 this is not destroyed. If O ( N  ~) .= O(Nb), 
it is clear that N ~ and N b are the same node, which is of course not split. 

L~..~IA 5. The LCA inspects each node exactly once as a possible loop head in the 
reverse order from that established by the B N A  ; further, the order of nodes not yet 
inspected is that established by the B N A .  

PROOF. At any given time during the LCA, the cursor i divides the set S of 
nodes into the two disjoint sets A = {N k ] O(Nk)  < i} and B = {N~'I O ( N  i) >_ i}. 
Cleansing potential loops with loop head N~ cannot affect the order within or the 
composition of the set A; the setting of i to i - 1  [Step (3), LCA] simply removes 
the node with largest index from set A and adds it to set B for inspection as a 

(1) and (2) only (2) and (3) only (1) and (3) only 

Fro. 4 
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Q 

Before LCA After  LCA 

FIo .  5 

possible loop head. The value of i is never increased, so that  once a node is in B it 
cannot be removed..  QED 

THEOREM 5. The LCA terminates, given a finite graph. 4 
PI~OOF. ]33" Lemma 5, the LCA inspects each node as a possible loop head 

exactly once; each such inspection can trigger at  most one cleansing for each back- 
ward branch to the loop head. The number  of nodes is finite; the number  of back- 
ward branches to each node is also finite, and by Lemma 4, no new backward 
branches are inserted during tim LCA. The marking and moving procedure obvi- 
ously terminates each t ime (at  most every node could be marked, and there is a 
finite number  of nodes). QED 

LE.~I.~L~ 6. TM LCA inserts a new node N k into the set (Na :N c) under a backward 
arc N ~ ~ N ~, O(N ~) <__ O(N ~) only during the cleansing of some pole~tial loop with 
loop twad N ~, w]iere before the cleansing, O(N ~) < O(N b) < O(N ~) < O(N~). 

PnOOF. I f  N k is not already in (N~:N ~) before the cleansing, either O(N k) < 
O(N ~) or O(N ~) < O(Nk). Consider first the case in which (before the cleansing) 
O(N k) < O(N°). The LCA can reverse the order of N k and N ~ only if N k ~ U and 
N ~ C M for some cleansing. Note tha t  if N" ff M during a cleansing, then N * E M 
also, bec,~use N ~ --~ N ~ and O(N ~) < O(N°). Thus even if N k ff U for the cleansing, 
the resultant order af ter  moving will be O(N ~) < O(N ~) < O(Nk);  N k will not be 
inserted into the set (N~:N¢). 

The opposite ease: O(N ~) < O ( N k ) , N  ~ C U, a n d N  ~ ff M c a n o c c u r  and can 
result in the order O(N ~) < O(N k) < O(N¢); Figure 5 shows an example. But  if 
this is the resultant order, N" is not in U for the cleansing (else the cleansing would 
reverse the or(h.r of N ~ and Nk). N a also is not in M, nor is N ~ -- N b, for in tha t  
case N c would be in M, as noted earlier. Therefore N ~ ~ (Nb:N~), the potential  
loop beil/g cleansed. Since N ~ ff U c (Nb:N~), and O(N ~) <_ O(N*), we have 
O(N °) < O(N ~) < O(N°). QED 

THEOI~E~r 6. For a graph in LCA or&r, for every backward arc N ~ ~ N ~, O( N ~) <_ 
O(N~), there is a fo~'ward path fl'om the loop head N ~ to every other node N ~ in the set 
under the arc [i.c. for which O(N ~) < O(N k) < O(N*)]. 

This is prove~ because it may not be immediately clear; it is obvious that the BNA termi- 
nates, given a finite graph. 

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972 



32 EARNEST~ BALKE, AND ANDERSON 

PROOF. By Theorem 1, this is true just after the BNA; Lemma 3 shows that  
the forward paths from the loop head to nodes under the arc after BNA cannot be 
destroyed. I t  is therefore sufficient to show that  the LCA does not insert into 
(N~:N ~) nodes to which there is not a forward path from N ". The proof is by re- 
cursive reasoning: we assume that  at the start of any cleansing the theorem is true, 
and show that  the cleansing does not affect its t ruth.  

By Lemma 6, any insertion of a node N k into the set (N~:N ¢) can take place only 
during the cleansing of a potential loop with loop head N b, such that  O(N ~) < 
O(N b) < O(N ~) < 0 (Nk) ;  by assumption, we therefore have a forward path  from 
N ~ to N b [since N ~ --~ N ~, O(N ~) < O(N b) < 0(N~)]. 

I t  is easy to see that  for the cleansing of a potential loop with loop head N b and 
loop tail N t, the marking procedure in the LCA guarantees a path within the set 
M* = M [J {N b} from every marked node N ~ to N b. Each such path must obvi- 
ously include a backward arc N ~ --~ N *, such that  O(N b) ~ O(N ~) <_ O(N "~) ~_ 
O(N~). By the recursion assumption, either N ~ = N ~, or there is a forward path 
from N * to N ~. But  note tha t  N * is itself in M*, so either N ~ = N b, or there is a 
forward path from some loop head N ~, O(N b) <_ O(N ~) < O(N~), to N z, by the 
same reasoning. Clearly, this sequence of loop heads with smaller and smaller 
indices, all greater than or equal to 0 (Nb), ~ill eventually lead to Nb; thus there is a 
forward path from N b to every marked node, including N k. 

Putt ing these two forward paths together, we have a forward path from N ~ to 
N b to N k. QED 

COROLLARY 2. The LCA does not insert nodes into a previously cleansed potential 
loop [i.e. into the set (N~:Nb), where N ~ was the loop head and N b the loop tail for a 
previous cleansing]. 

PROOF. I t  is clear from the definition of the LCA that  (Na:N b) is a formal 
loop just after it has been cleansed. That  is, at that  time (N~:N b) is a set under a 
backward arc, or the union of two or more sets under interlocked backward arcs. 
For each such backward arc N d --* N °, O(N ~) < O(N c) < O(N ~) <_ O(Nb). By 
Lemma 5, if (Na:N b) has been cleansed, O(N ~) >_. i (the LCA cursor). But  by 
Lemma 6, insertion of a new mode into (NC:N d) can occur only if O(N °) < i, which 
is not the case. 

Note that  the LCA never causes interlocked arcs to become disjoint: tha t  is, for 
N'--~ N p, N ~-*  N q, O(N ~) < O(N q) ~_ O(N')  < O(N ~) at any time after the 
BNA, the LCA will not remove N q from (NP:Nr),  because the proof of Theorem 6 
shows that  there are forward paths from N p to N q and from N q to N' ,  which by 
Lemma 3 are not destroyed by the LCA. Therefore the set (N~:Nb), once it has 
been cleansed, will always consist of a set under a backward arc, or the union of two 
or more such sets, and as we have shown, insertion under any backward arc within 
( N °: N b) is impossible. QED 

This proof, together with Theorem 6, leads immediately to the following: 
COROLLARY 3. For a previously cleansed "set (N°:Nb), there is a forward path 

from N ~ to every N k for which O(N ~) < O(N k) <_ O(Nb). 
LE.~I.~IA 7. The LCA does not remove nodes from previously cleansed potential 

loops. That is, given the previously cleansed set (Na:N °) and any N b such that O ( N ~) < 
O(N b) < 0(N°) ,  the LCA will not reverse the order of N ~ and N b, or of N b and N ~. 

PROOF. "By Corollary 3, there is a forward path from N ~ to Nb; by Lemma 3 
this cannot be destroyed, so the order of N ~ and N b cannot be reversed. 
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By Corollary 2, N b was in (Na :N ~) just after that  set was cleansed (it could not 
have been inserted later).  I t  is clear that  the marking procedure guarantees that ,  
at that time, (Na:N °) also contained at least one immediate successor N k of N b -  
that is, N b -~ N k, N b ~- N k, N k ~ (Na:Nc). I f  O(N b) ~ O(Nk), then removal of 
N b without removal of N k would reverse the direction of the N b ~ N k arc, which 
cannot happen, by Lemma 4. I f  O(N b) > O(Nk), the removal of N b without re- 
moral of N k would cause the insertion of at  least N c into the N b --, N k backward 
arc; since O(N k) >_ O(Na), this cannot happen, by Lemma 6. 

Therefore N b can be removed from (Na:N c) only if every immediate successor 
of N b in (Na:N c) is removed as well. Thus all nodes which are immediate prede- 
cessors of N a cannot be removed; neither can immediate predecessors of these 
nodes, etc. But this is precisely the set M, and M (J IN a} = (Na:N°). QED 

T~EORE~I 7. A graph in LCA order is also in straight order. 
PROOF. Lemma 3 and Theorems 3 and 6 have established that  LCA order has 

properties (2) and (3) of straight order. I t  remains to be shown only tha t  for LCA 
order, every formal loop (Nh :N  t) is a strongly connected region. As noted earlier, 
it is clear that  the marking procedure guarantees the existence of a pa th  within 
M* = M U {N h} from any N k ~ M to the loop head N h of the cleansed potential  
10op. By Corollary 3, there is a forward pa th  from N h to any N j ~ M. M* is there- 
fore a strongly connected region, and thus so is (Nh:N t) just  after it has been 
cleansed [the new (Nh:N t) ~ M*]. 

It has also been shown (Corollary 2 and Lemma 7) that  the LCA neither inserts 
nodes into nor removes nodes from previously cleansed potential  loops. Therefore, 
at the completion of the LCA, every cleansed potential  loop is a strongly connected 
region. I t  remains to be shown that  every formal loop (as defined after completion 
of the LCA) was either a cleansed potential  loop or is a strongly connected region 
in any case. 

Let (N~:N b) be a formal loop after the completion of the LCA. By the definition 
of formal loop, there is a backward arc N ~ --~ N ~, O(N  ~) < O(N ~) _< O(Nb), which 
by Lcmmas 4 and 5, triggered a cleansing unless either (1) N ~ = N ~, or (2) N ~ was 
marked when N ° --~ N ~ was inspected. Case (1) is the trivial loop N ~ ~ N ~, which is 
not affected by the BNA or the LCA. In  case (2), N c could have been marked only 
if it were in (N~:N~), a previously cleansed set with the same loop head. The 
cleansing of (N~:N ~) could have been triggered only by a backward arc N k --~ N ~, 
where O(N ~) < O(N k) ~ O(N~), because of the order in which the LCA processes 
latching nodes. From Theorem 6 and Corollary 3, it is apparent  t h a t  there would 
be a forward path  from N k to N ~. Thus even if all marks were erased and the mark- 
ing procedure begun again with N ~, N k would again be marked, and so at least all 
of (N~:N d) - !N ~} would be marked - - i n  other words, the fact that  N ~ ~ N ~ did not 
trigger a cleansing could not cause a different result than if it had triggered one. 
Thus we can assume that  at  least (N~:N ~) was cleansed. 

By the definition of formal loop, either (N~:N ¢) ~ (N'~:N ~) or there is some 
N ~-~ N j, for which O(N ~) ~ O(N s) _< O(N °) ~ O(N~). If  such an arc exists after 
c0mplction of the LCA, it must  have existed when (Na:N °) was cleansed, because 
by Lemma 7, N ~ could not have been removed since that  cleansing, by Corollary 2, 
N f could not have been inserted, and by Lemma 4, the backward arc N ~ ~ N s 
forces O(N s) ~ O(N ~) at all times during the LCA. But  then the set cleansed 
would have been at least (Na:N~).  This same argument  continues (a finite number  
~f steps) to show tha t  the potential  loop cleansed was at least (Na:Nb).  Since there 
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is no N k ---, N j, O(N a) < O(N i) < O(N b) < O(Nk),  by the definition of formal 
loop, there could have been none when (N~:N b) was cleansed, by Lemmas 4 and 7 
and Corollary 2 (as above).  Thus the potential  loop cleansed was precisely (Na:Nb). 

QED 
Given a graph in straight order, a set of nested strongly connected regions--i.e., 

the formal loops--is easily found. I t  is not so easy to decide which strongly con- 
nected regions will be formal loops in some straight order. I t  is clear that ,  for two 
strongly connected regions R~ and Ri for which R~ fl Ri is not empty, and R~ ~ Ri 
and R# ~ R~, at most one of the two will be a formal loop in a particular straight 
order. If  R: c R i ,  then in some cases both regions will be formal loops, and in some 
cases only R# will be; Figure 6 gives an example. The following exposition is in- 
tended to show that,  for some purposes, it is more convenient to have available the 
set of formal loops for some straight order rather than the set of all strongly con- 
nected regions of the graph. 

We define an innermost formal loop to be a formal loop R ~ = (Na:Nb), such that  
there is no formal loop R i = (N°:N  d) for which (N~:N d) c (N~:Nb). Note that  
an innermost formal loop is a primitive formal loop, but  not necessarily vice versa. 

THEOREM 8. For an innermost formal loop R = (N~:Nb), the only backward arc 
lo a node in R is the arc N b ---, N ~. 

PROOF. Since an innermost formal loop is a primitive formal loop, we have 
N b --* N a. There can be no included backward arc N ~ --~ N' ,  where either O(N ~) <_ 
O(N ~) ~ O(N  d) < O(N  b) or O(N)  a < O(N ~) < O(N d) <_ O(Nb), because then 
(N~:Nd), not (N~:Nb), would be an innermost formal loop. There can be no back- 
ward arc N d ~ N °, where O(N ~) < O(N  °) ~ O(N b) < O(Nd),  for then R would 
not be a formal loop. QED 

We now define a reduced graph to be the graph produced by  performing the fol- 
lowing alterations on any graph in straight order which contains a formal loop: 

Choose any innermost formal loop R = ( N  ~:Nb). 
Remove all nodes in R from the graph and replace them ~-ith a single new node 

N R, such that :  

(1) O(N R) = O(N°), 
(2) N s ---* N R iff N j ~ R and there was some N k E R for which N i --* N k [note 

tha t  O(N  j) < O(Na), because R is a formal loop], 
(3) N R --* N ~ iff N ~ ~ R and there was some N" E R for which N" --* N ~. 

An example of such a graph reduction is shown in Figure 7. 

SCR's and formal loops SCR's 
(N., N b) (N., N c) 
(N s, N b, N c) (N a, .~b, No) 

I Formal loops 
(N~, •b, N c) 

FIG. 6 
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Graph in straight order 

Fro. 7 

) 

Reduced graph 

35 

THEOREM 9. Every reduced graph is in straight order. 
PROOF. I t  is clear that  all paths not within R which existed before reduction 

continue to exist thcreafter,  except that  wherever a path included a sequence of 
one or more nodes in R, it includes after reduction the single node N R. Further,  all 
new arcs are forward or backward accordingly as the arcs they effectively replace 
were forward or backward. Thus the reduction preserves the three properties of 
straight order. QED 

(I t  is also possible to prove that  if the reduction process is performed on a graph 
in LCA order, the result is a graph in LCA order, which is a bit stronger. As the 
proof is tedious, and the result not useful unless other useful properties of LCA 
order are discovered, it is omitted.) 

THEORE~f 10. For a graph in any given order, every strongly connected region in the 
graph is a subset of, and includes the loop head of, some formal loop. 

PROOF. Assume there is a strongly connected region R = {N ~, N ~2, . - . ,  Nak}, 
with O(N al) < O(N ~2) < • • • < O(N ak) in the given order. By definition, there is 
a path within R from N a~ to N "'. Clearly such a path includes a backward arc to 
N °~ (a forward arc to N ~ would perforce be from a node not in the region). I t  is 
easy to see from the definition of formal loop that  N "1 is thus the loop head of one 
or more formal loops; of these, choose the one having the most nodes--call it F. 
Assume that  there is a node N" in R but  not in F. Since the nodes in F are contiguous, 
and N ~ E F, and O(N ~) > O(N~'), then O(N ~) > O(N:) for any N:  C F. By 
definition of strongly connected region, there is a path from N ~ to N ~, which must 
clearly include a backward arc from a node not in F to a node in F. But then there is 
a formal loop with loop head N "~ which contains more nodes than F, which is a 
contradict ion-- thus every node in/~ is in F. QED 

THEOREM 11. I f  N ~ is a serial predecessor of N b, then when the graph is in straight 
order, O(N ~) < O(Nb). 

PaOOF. The result is immediate if N ~ predominates N b, by Theorem 4. 
If  not, let N "D be the immediate predominator of {N ~, Nbl; we will use the fact 

throughout the proof that  N ~, N b, and N B~ are three distinct nodes. By the defini- 
tion of serial predecessor, there is a path not including N "~ from N" to Nb; if O(N ~) > 
O(N b) that  path must include a backward arc N a --~ N ", where O(N BD) < O(N ~) < 
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) 
) 

Fro. 8 

O(N b) < O(N ~) <_ O(N~). Figure 8 shows an example. Note that  O(N B~) < 
O(N ~) : Every path from N1 to N a must include N ~', by definition of predominator. 
By definition, there is a forward path from N~ to N ~ (and to every other node) ; thus 
if O(N ~) < O(NB~), every path from N ° to N ~ would have to include N Bu, which 
is not the case. 

Thus there is a formal loop (N~:Ng), where O(N g) >_ 0(N~),  which is by defini- 
tion a strongly connected region. Thus there is a path within (N~:N g) from N b to 
N ~, not includingN B~. But this is not the case by the definition of serial predecessor. 
Therefore, O(N ~) < 0(Nb), since O(N ~) > O(N b) leads to a contradiction. QED 

7. Summary 

We have presented a graph analysis algorithm in two parts--called basic numbering 
and loop cleansing--which establishes a straight order for the nodes of a directed 
graph. In general, for a given graph, there is more than one possible straight order. 
The most important or useful properties of straight order are summarized infor- 
mally here: 

(1) For ever), backward arc, there is a contiguously ordered set of nodes which 
is a strongly connected region. The first node in the set is the loop head of the back- 
ward arc; the last node in the set is the latching node of the latest backward arc 
which interlocks, directly or indirectly, with the first one (cf., the definition of 
formal loop). The set of ranges so defined is thus a set of nested strongly connected 
regions. 

(2) The set of formal loops is convenient in that  an innermost formal loop is the 
set under a single backward arc, and if an innermost formal loop is replaced by a 
single node, the resultant reduced graph is again in straight order. Thus the set of 
formal loops can be used to direct a straightforward "inside-out" processing of the 
entire graph, if desired: an innermost formal loop, which is topologically very simple, 
is first inspected, then reduced to a single node (with which is presumably associated 
the pertinent information about the former formal loop). This procedure is simply 
repeated until the entire graph has been processed. 

(3) Straight order is compatible with serial predecessor order, so that  if the 
graph is inspected in straight order, all the immediate predecessors of a node are in- 
spected before the node itself, unless the node is a loop head. Straight order also en- 
sures that  predominators precede the nodes they predominate. 
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(4) There is a forward path to every node, both from the entry node and from 
the loop heads of any enclosing backward arcs. This of course means that  every po- 
tential loop can be entered through the loop head. 

8. A Conjecture 

For some purposes, single entry strongly connected regions are more convenient to 
deal with--a strongly connected region is single entry if every branch from a node 
not in the same region to one in the region is to the same node. This partly explains 
the rationale behind building formal loops from the bottom up: for interlocked back- 

Single entry SCR's M~dtiple 
and formal loops entry SCR 
(N b, N ~) (N", N b) 
(N", N b, N °) 

Fro. 9 

{ 
Formal loops 
(N b, N°) 
(N b, N c, N d) . 

Single entry SCR's 
(:~b Nd) 

FIG. 10 

) 
FIG. II 

Journal of the Association for Computing Machinery, Vol. 19, No. I, January 1972 



38 EARNEST~ BALKE~ AND ANDERSON 

w a r d  arcs,  t h e  set  under  t he  first  is never  single en t ry ,  while t he  set  under  t he  las t  

m a y  be,  as is shown in F igure  9, for example .  
I t  is in  genera l  no t  t rue  t h a t  for a g r a p h  in s t r a igh t  order ,  eve ry  single en t ry  

s t rong ly  connec t ed  region R~ is a fo rma l  loop,  except  t h a t  where  the re  is ano the r  

Possible BNA orders Straight order 

FXG. 12 

BNA order 
Nested NR --* N% 
Nested Ng --* N~, 
Interlocked N d --~ N b, 
Disjoint N d --* N b, 

FIG. 13 

() 

Straight order 
N ~ --. N ~ Disjoint 
N a --. N b Interlocked 
N e --* N ° Nested 
N~ --* N e Nested 
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single entry strongly connected region Rj such tha t  R~ n R1 is not empty,  and 
R~ ~ Ri and Rj ~ R~ then at  most one of R i ,  Rs is a formal loop. This is shown by 
the counterexample in Figure 10. 

I t  is conjectured tha t  if the following changes are made to the loop cleansing 
algorithm, the order which it then establishes is a straight  order for which the above 
statement is true. The changes enable the LCA to re-order latching nodes from 
which there is an arc to the same loop head. The  changes: 

(1) Associate with each node Nj  a loop entry count, denoted b y E ( N ~ ) ,  initially 

zero. 
(2) Reverse the order of Steps (2f) and (2g). This causes all marks  to be 

erased after each backward arc is processed, ra ther  than  waiting until all for a 
given loop head have been processed. 

\ 

/ 

Valid straight order; (N~:N d) is not a 
strongly connected region. Other orders are 
possible, but in none of them are both the 
conditions true 

FIG. 

Q 

) 
Every set under a backward arc is strongly 
connected, but there is not a forward path 
from N1 to N b 

14 

G 

Possible BNA order (N d is a serial prede- 
ccssor of N c) 

Q 

Valid straight order 

FIG. 15 

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972 



40 EARNEST, BALKE, AND ANDERSON~ 

(3) Insert the following steps between Steps (2e) and (2d): 

(2cl) Set E(NI) :=  1. For  each marked node Nk for which there is at least one Nj such that 
N1 --* Nk and j < i, set E(N,) := E(Nz) -b 1 (that is, count the entries to the potential 
loop, and keep the count with the latching node). 

(2c2) Mark all nodes Np for which 0 < E(Np) <_ E(N~). If any additional nodes are thereby 
marked, repeat  Step (2c); otherwise, proceed. (Informally: mark all nodes belonging 
to potential  loops having the same loop head as, and no more entries than, the cur- 
rent potential  loop.) 

(4) Add Step (2h), following Step (2g): 

(2h) Set E(ND := 0 for all k. 

Appendix 

A number of graphs which for some reason are interesting follow: 
(1) Figure 11 shows two possible straight orders for the same graph, one hav- 

ing more backward arcs than the other. Neither order seems preferable to the 
other. 

(2) It is not true that for every graph, one of the possible orders producible by 
basic numbering only is a valid straight order; see Figure 12. 

(3) The LCA sometimes changes nested backward arcs to interlocked ones, 
and vice versa, and disjoint backward arcs to nested ones, and vice versa. 
Figure 13 gives an example. 

(4) It is not true that every graph can be ordered so that (1) every set under a 
backward arc is a strongly connected region and (2) there is a forward path from 
N1 to every loop head. Figure 14 illustrates this. 

(5) In general, the BNA order is not compatible with serial predecessor order, 
as is shown in Figure 15. 

(6) Even where the BNA order is compatible with serial predecessor order, 
loop cleansing may be necessary to produce a valid straight order, as Figure 16 
shows. 

(7) It  is not true in general that if N a is not a serial predecessor of N b, and N b is 
not a serial predecessor of N ~, then there is a straight order in which O(N a) < 
O(Nb), and a straight order in which O(N ~) > O(Nb). This is shown by Figure 16: 

Possible BNA order 

(D 
Straight order 

Fro. 16 

Journal of the Association for Computing Machinery, Vol. 19, No. 1, January 1972 



Analysis of Graphs by Ordering of Nodes 41 

Neither N b nor N ~ is a serial predecessor of the other, but  the only straight order 
has O(N ~) < O(Nb). I t  is not clear how to simply define a relation < .  between 
nodes which has the property tha t  N = < • N b implies tha t  O(N °) < O(N b) in a 
straight order, and 3o that  - I ( ( N  a < .  N b) Y (N b < .  N") )  implies that  both 
O(N") < O(N ~) and O(N ~) > O(N b) are possible in different straight orders. 

In an)' case, straight order cannot be defined by a pairwise relation between nodes 
(although of course a straight order can be). In  Figure 17, three possible straight 
orders are shown, illustrating tha t  for each of the six possible pairs of nodes (N b, N c, 
N ~, NO), either member of the pair may precede the other. Another possible non- 
straight order is shown for the graph. 

Q 

) 
P o s s i b l e  s t r a i g h t  o rde r s  

Q 

( 

N o n s t r a i g h t  o rde r  

FIG. 17 
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