# Addressless Units for Carrying Out Loop-Free Computations 

ANDRZEJ BLIKLE<br>Polish Academy of Sciences,* PKiN, Warsaw, Poland

abstract. The paper deals with the problem of how to design a computer so that the loop-free parts of computations performed by it are handled in the most efficient and rapid manner. In particular, the question is how to design a unit to carry out loop-free computations and how to design the unit-oriented language. Clearly, the sensitive area here is the storing and accessing of intermediate results. It is assumed that the unit reads the appropriate program step-bystep, performs successive operations serially and stores the intermediate results in a sequence as the computation progresses. Now a problem arises how the unit should extract intermediate results from the sequence when needed. It is shown that the optimal solution is addressless units (the unit-oriented programs are address-free formulas) which operate in double-endedqueue disciplines, i.e. in disciplines where the actually extracted intermediate result is always either the first or the last element of the stored sequence.

The paper follows and extends some ideas given by Z. Pawlak in a number of his papers. It gives the mathematical background and extentions of Pawlak's results which have been formulated originally in a rather descriptive and informal way. The reader is not assumed to be familiar with Pawlak's papers.

Key words and phrases: iteration-free computation, loop-free computation, binary-ramificated tree, linear order, formal language, Polish notation, parenthesis-free notation, double-ended-queue discipline

Cr categories: 4.10, 4.21, 5.24, 5.32

## 1. Introduction

The problem to be considered in this paper is, generally speaking, the following: how to design a computer so that the loop-free parts of programs performed by it (e.g. arithmetical or Boolean expressions) are handled in the most efficient and rapid manner. It is assumed that the computer under investigation is equipped with a special unit and that loop-free parts of programs are always translated into a unit-oriented language. Now the problem is how to design such a unit and the unitoriented language. We assume about the unit that it performs operations serially and stores the intermediate results in a sequence as the computation progresses. Clearly we want the following conditions to be satisfied:
(1) programs (expressions) of the unit-oriented language are compact and easy to write, and
(2) the memory used by the unit to store intermediate results involves a minimal amount of computation (time).

Copyright (C) 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of this material is granted, provided that reference is made to this publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery. * Computation Centre.


Fig. 1

Many interesting results concerning the solution of this problem have been given by Z. Pawlak [3-9]. Since the reader may not be familiar with these results, we summarize them here. Pawlak's principal ideas are the following: Every loop-free commutation has a tree structure where ramifications are labeled with symbols of operations and the "leaves" are labeled with initial arguments (data). For example, to the arithmetical expression

$$
((((3 \times 3)-7)+(2 \times 3)) \div(3-1)
$$

corresponds the labeled tree in Figure 1. Now to perform the computation one should fix a succession of operations to be performed, i.e. one should fix an order in the set of ramifications of the tree. Clearly, not every order is possible (admissible) since, for example, in our case both multiplications, both subtractions and the addition must be performed before division, both multiplications and one subtraction must be performed before the addition, etc. Clearly, the problem of choosing an admissible order between operations is not the only one when designing a unit. The other, more difficult and subtle, is how to extract the intermediate result from the store the moment it is actually needed. Pawlak's ideas are now presented.

There is a class of admissible orders-Pawlak calls them addressless ordersthat for every order $\rho$ in this class there exists a simple algorithm $\mathfrak{H}_{p}$ which determines the location of intermediate results, provided the operations have been performed and the results have been stored in the succession given by $\rho$. The algorithm $\mathscr{A}_{\rho}$ may be then used to design a $\rho$-decoder able to extract intermediate results from the store. Consider an example. One of Pawlak's addressless orders is called $w$ (cf. Example 3 in Section 3). The $w$-program of the labeled tree in Figure 1 is

$$
\begin{equation*}
\div S S+S S \quad-S 7 \quad \times 33 \quad \times 23 \quad-31 \tag{1}
\end{equation*}
$$

(The symbol $S$ may be understood here as an abbreviation of "store.") The $w$-unit performs this program step by step from the right end to the left end considering in every step one subformula (called instruction) of the form

$$
o_{i} \gamma_{i} \delta_{i}
$$

where $o_{i}$ is a symbol of operation and $\gamma_{i}, \delta_{i} \in N \cup\{S\}$, where $N$ is the set all numerals (names of numbers). Now, let Top denote the actually last-stored result (top of the store) and let $x$ and $y$ be two variables. Instruction $o_{i} \gamma_{i} \delta_{i}$ causes the
following successive execution of operations:
(1) if $\gamma_{i}=S$, then $x:=T o p$ and erase $T o p$
if $\gamma_{i} \in N$, then $x:=\left[\gamma_{i}\right]$, where $\left[\gamma_{i}\right]$ denotes the number named $\gamma_{i}$,
(2) if $\delta_{i}=S$, then $y:=T o p$ and erase $T o p$ if $\delta_{j} \in N$, then $y:=\left[\delta_{i}\right]$, where $\left[\delta_{i}\right]$ denotes the number named $\delta_{i}$,
(3) perform $\left[o_{i}\right](x, y)$, where $\left[o_{i}\right]$ denotes the operation named $o_{i}$, and put the result on top of the store.
In the case of program (1), successive states of the store are as follows:


Note that the described $w$-unit realizes one of the so called double-ended-queue (or dequeue) disciplines. Double-ended-queue discipline means that intermediate results are stored in a sequence as the computation progresses and the required arguments are always taken in the same way either from the bottom or from the top of the stored sequence. For example, if we perform a binary operation $x \circ y$ and the stored sequence is $a_{1}, \cdots, a_{n}$, then we pick up the arguments in one of the following six ways: (1) $x:=a_{1} ; y:=a_{2}$, (2) $x:=a_{2} ; y:=a_{1}$, (3) $x:=a_{n-1}$; $y:=a_{n}$, (4) $x:=a_{n} ; y:=a_{n-1}$, (5) $x:=a_{n} ; y:=a_{1}$, (6) $x=a_{1} ; y:=a_{n}$. The way we pick up the arguments is fixed for the order. For example, the order $w$ corresponds to (3). In general, every Pawlak order-or every addressless order as defined in this paper-corresponds to one of (1)-(6).

The present paper is concerned with the mathematical discussion of Pawlak's results. In fact, none of Pawlak's results was proved by him. In particular, he did not prove that the described $\rho$-units are well-defined (as, in fact, they are) or that the defined orders are the only addressless orders or the only dequeue-orders (as in fact, they are not).

Here I define formally six orders, four of which coincide with Pawlak's orders and two of which are new, and I prove them to be the only addressless orders in the binary (binary-operation) case. It is also proved that each addressless order corresponds to one dequeue discipline and conversely. The reason I deal in my investigations with the binary case is that the binary case is the most important and the simplest, and, on the other hand, it can be easily generalized to the $n$-ary case.

## 2. Trees and Admissible Orders

Let $A$ be an arbitrary set and $Q$ an arbitrary relation in $A$, i.e. $Q \subseteq A \times A$. By $a Q b$ we denote the fact that $(a, b) \in Q$. By the first and the second domain of $Q$ we mean, respectively, the sets

$$
\begin{aligned}
& D_{1}(Q)=\left\{a_{1}:\left(\exists a_{2} \in A\right)\left(a_{1} Q a_{2}\right)\right\}, \\
& D_{2}(Q)=\left\{a_{2}:\left(\exists a_{1} \in A\right)\left(a_{1} Q a_{2}\right)\right\} .
\end{aligned}
$$



Fig. 2
Now we define the tree. This is clearly a very simple concept, but in this particular case we need more sophisticated definition, which distinguishes between the left and the right predecessor (argument) of every ramification. To this end by a tree we mean a system consisting of a finite set $A$ of vertices and of three binary relations $L, R$, and $P=L \cup R$ in $A$ called respectively the left predecessor, the right predecessor and the predecessor. For example, Figure 2 corresponds to the tree with $A=\{a, b, c\}, L=\{(a, b)\}, R=\{(a, c)\}, P=\{(a, b),(a, c)\}$. Here $b$ and $c$ are said to be the left and the right predecessor, respectively, of $a$, and $a$ is said to be the successor of both $b$ and $c$.
Definition 1: By a tree we mean a system $T=(A, L, R, P)$, where $A$ is a finite set and $L, R$, and $P$ are binary relations in $A$ with the following properties:
(1) $P=L \cup R$.
(2) there is exactly one vertex $\omega$ in $A$ with no successor in $A$; i.e., there exists an $\omega$ with $A-D_{2}(P)=\{\omega\} . \omega$ is called the root of $T$.
(3) for every $a$ in $A-\{\omega\}$ there exists a sequence $a_{1}, \cdots, a_{n}$ in $A$ (called the chain from $\omega$ to a) with $a_{1}=\omega, a_{n}=a$, and $a_{i} P a_{i+1}$ for $i=1, \cdots, n-1$.
(4) $\left(\forall a \in D_{1}(P)\right)\left(\exists a_{1}, a_{2}\right)\left[a L a_{1} \& a R a_{2}\right]$.
(5) $D_{2}(L) \cap D_{2}(R)=\varnothing$.
(6) $\left(\forall a_{1}, a_{2}, a_{3}\right)\left[a_{2} P a_{1} \& a_{3} P a_{1} \Rightarrow a_{2}=a_{3}\right]$.
(7) $\left(\forall a_{1}, a_{2}, a_{3}, a_{4}\right)\left[a_{1} L a_{2}\right.$ \& $\left.a_{1} R a_{3} \& a_{1} P a_{4} \Rightarrow a_{4}=a_{2} \vee a_{4}=a_{3}\right]$.

Vertices in $D_{1}(P)$ are called ramifications in $T$. Conditions (3) and (6) permit us to define in $D_{2}(P)$ the successor function $S$ with

$$
S\left(a_{1}\right)=a_{2} \text { iff } a_{2} P a_{1} .
$$

As it has been mentioned in the Introduction, we shall deal in the sequel with orders in sets of ramifications. To define these orders in a way uniform for all trees, we introduce now a concept of a universal tree and universal order.

Let $T^{\infty}=\left(A^{\infty}, L^{\infty}, R^{\infty}, P^{\infty}\right)$ be a system-fixed for the sequel of this paperwhere $A^{\infty}$ is an infinitely denumerable set and $L^{\infty}, R^{\infty}$, and $P^{\infty}$ are binary relations in $A^{\infty}$ with properties analogous to (1)-(7) in Definition 1 with the only exception that instead of (4) we have now:

$$
\left(\forall a \in A^{\infty}\right)\left(\exists a_{1}, a_{2}\right)\left[a L^{\infty} a_{1} \& a R^{\infty} a_{2}\right] .
$$

$T^{\infty}$, which is clearly the maximal binary-ramificated infinite tree, will be referred to as the universal tree, and $\omega$ will denote always the root of $T^{\infty}$.

A tree $T=(A, L, R, P)$ is said to be a subtree of $T^{\infty}$ if
(1) $A \subseteq A^{\infty}, L \subseteq L^{\infty}, R \subseteq R^{\infty}$,
(2) $A-D_{2}(P)=A^{\infty}-D_{2}\left(P^{\infty}\right)=\{\omega\}$,
i.e. $T$ is a subtrce of $T^{\infty}$ in a normal sense and the roots of $T$ and $T^{\infty}$ coincide.

In the sequel the term tree will always mean a subtree of $T$, and set (if not specified otherwise) will always mean a finite subset of $A^{\infty}$.

By a universal order we mean any linear order in $A^{\infty}$, i.e. any binary relation in $A^{\infty}$ that is irreflexive, connected, transitive, and asymmetrical in $A^{\infty}$.

By $[G, \rho]$, where $G$ is a set and $\rho$ a universal order, we mean the sequence ( $g_{1}, \cdots$, $g_{n}$ ), where $\left\{g_{1}, \cdots, g_{n}\right\}=G$ and $g_{i} \rho g_{i+1}$ for $i=1, \cdots, n-1$. The sequence ( $g_{1}, \cdots, g_{n}$ ) is called the $\rho$-sequence associated with $G$.

Consider now an arbitrary universal order $\rho$, an arbitrary set $G$ and an arbitrary vertex $g$ in $G$. By the type of $g$ in $G$, in symbols $\tau_{\sigma}(g)$, we mean a two-character word over the alphabet $\{S, d\}$ ( $S=$ store, $d=$ data) defined as follows:

$$
\tau_{\bullet}(g)=\alpha \beta,
$$

where

$$
\begin{array}{lll}
\alpha=S & (d), & \text { if a } g_{1} \text { in } G \text { with } g L^{\infty} g_{1} \text { does (does not) exist, } \\
\beta=S & (d), & \text { if a } g_{2} \text { in } G \text { with } g R^{\infty} g_{2} \text { does (does not) exist. }
\end{array}
$$

By the $\rho$-formula of $G$, in symbols $F_{\rho}(G)$, we mean the string of symbols

$$
\tau_{\sigma}\left(g_{1}\right) \cdots \tau_{\theta}\left(g_{n}\right)
$$

where $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$.
Two sets $G_{1}$ and $G_{2}$ are said to be $\rho$-similar if $F_{\rho}\left(G_{1}\right)=F_{\rho}\left(G_{2}\right)$.
By the $\rho$-formula of a tree $T=(A, L, R, P)$, in symbols $F_{\rho}(T)$, we mean simply the $\rho$-formula of the set $D_{1}(P)$ of ramifications in $T$, i.e. $F_{\rho}(T)=F_{\rho}\left(D_{1}(P)\right)$. By the length of $F_{p}(T)$ we mean the number of elements in $D_{1}(P)$.
Two trees $T_{1}$ and $T_{2}$ are said to be $\rho$-similar, if $F_{\rho}\left(T_{1}\right)=F_{\rho}\left(T_{2}\right)$.
$\rho$-formulas of trees, supplemented with symbols of operations, will be used in the sequel as programs to be scanned by appropriate units. As mentioned in the Introduction, these units read programs step by step from the right end to the left end. This implies the following definition of an admissible order.
Definition 2: A universal order $\rho$ is called admissible if it is an extension of $P$, i.e. if for any $a_{1}, a_{2}$ in $A^{\infty}, a_{1} P^{\infty} a_{2}$ implies $a_{1} \rho a_{2}$.

In other words admissible orders are these which guarantee that no attempt is made to perform an operation, corresponding to a ramification in the tree, until its arguments have been computed.

It is easy to see, that the family of admissible orders is not empty. Examples of such orders are given in Section 3 (cf. addressless orders in Example 3).

Theorem 1. For every admissible order $\rho$ and any two trees $T_{1}$ and $T_{2}$, if $T_{1}$ and $T_{2}$ are $\rho$-similar, then $T_{1}=T_{2}$.

Proof. Let $\rho$ be an arbitrary admissible order and let $T_{i}=\left(A_{i}, L_{i}, R_{i}, P_{i}\right)$, for $i=1,2$, be two $\rho$-similar trees. Moreover, let $\left[D_{1}\left(P_{1}\right), \rho\right]=\left(g_{1}, \cdots, g_{n}\right)$ and $\left[D_{1}\left(P_{2}\right), \rho\right]=\left(h_{1}, \cdots, h_{n}\right)$. Clearly, $T_{1}=T_{2}$ is equivalent to $D_{1}\left(P_{1}\right)=D_{1}\left(P_{2}\right)$. Thus let $D_{1}\left(P_{1}\right) \neq D_{1}\left(P_{2}\right)$. Therefore,

$$
\begin{equation*}
\text { neither } \quad D_{1}\left(P_{1}\right) \subseteq D_{1}\left(P_{2}\right) \quad \text { nor } \quad D_{1}\left(P_{2}\right) \subseteq D_{1}\left(P_{1}\right) \tag{2}
\end{equation*}
$$

since, by similarity of $T_{1}$ with $T_{2}, D_{1}\left(P_{1}\right)$ and $D_{1}\left(P_{2}\right)$ have the same number of elements. On the other hand,

$$
\begin{equation*}
g_{1}=h_{1}=\omega, \tag{3}
\end{equation*}
$$

since $\rho$ is admissible. Now by (2) and (3) there exists the smallest $i$ with

$$
g_{i} \in D_{1}\left(P_{1}\right)-D_{1}\left(P_{2}\right) .
$$

Clearly, $i>1$, therefore we can consider $S\left(g_{i}\right)$. Let $S\left(g_{i}\right)=g_{k}$. Since $\rho$ is admissi-
ble, we have $k<i$; thus $g_{k} \in D_{1}\left(P_{1}\right) \cap D_{1}\left(P_{2}\right)$. We shall show now the equality

$$
\begin{equation*}
g_{k}=h_{k} \tag{4}
\end{equation*}
$$

To this end we prove, by induction on $j$, that $g_{i}=h_{j}$ for $j=1, \cdots, i-1$.
For $j=1$ this is clearly true [see (2)]. Suppose $g_{j}=h_{j}$ for $j=1, \cdots, m-1$ where $m-1<i-1$, and let $g_{m} \neq h_{m}$. Since $g_{m} \in D_{1}\left(P_{2}\right)$, then there exists an $s \leq n$ with $g_{m}=h_{s}$. Clearly, $s>m$, since in the opposite case $g_{m}=h_{a}=g_{\mathrm{s}}$, which is impossible because ( $g_{1}, \cdots, g_{n}$ ) has no repetitions. Therefore,

$$
h_{m-1} \rho h_{m} \rho h_{s}
$$

Hence, $h_{m}$ is not in $G$, since the vertex $\rho$-next to $h_{m-1}=g_{m-1}$ in $D_{1}\left(P_{1}\right) \cap D_{1}\left(P_{2}\right)$ is $g_{m}$. Consider now $S\left(h_{m}\right)=h_{p}$. Clearly, $p<m$, since $\rho$ is admissible, thus $h_{p}=g_{p}$. Hence $h_{p} P^{\infty} h_{m}$ and $g_{p} P^{\infty} h_{m}$ where $h_{m} \in D_{1}\left(P_{2}\right)-D_{1}\left(P_{1}\right)$, and therefore $\tau_{D_{1}\left(P_{1}\right)}\left(g_{p}\right) \neq \tau_{D_{1}\left(P_{2}\right)}\left(h_{p}\right)$ which contradicts the assumption that $T_{1}$ and $T_{2}$ are $\rho$-similar. Therefore $g_{m}=h_{m}$ which ends the proof by induction and hence also the proof of (4).

Since (4) is true, we have immediately $g_{k} P^{\infty} g_{i}$ and $h_{k} P^{\infty} g_{i}$ with $g_{i} \in D_{1}\left(P_{1}\right)-$ $D_{1}\left(P_{2}\right)$ which implies the inequality $\tau_{D_{1}\left(P_{1}\right)}\left(g_{k}\right) \neq \tau_{D_{1}\left(P_{2}\right)}\left(h_{k}\right)$. This contradicts the assumption that $T_{1}$ and $T_{2}$ are $\rho$-similar.

QED
Theorem 1 has an important consequence to the effect that for every admissible order $\rho$ the function $F$ is reversible, i.e. that for every admissible $\rho$ we can theoretically construct a $\rho$-decoder (no matter how complicated) able to recognize trees when reading $\rho$-formulas. This $\rho$-decoder can be clearly used to design an appropriate $\rho$-unit. In general, such a $\rho$-unit is not very efficient, but, as is shown in Section 3, it becomes efficient if $\rho$ is an addressless order. Let us develop this idea with more details.

Consider an arbitrary set $\boldsymbol{B}$ of objects (e.g. real or complex numbers, vectors, etc.) and an arbitrary set $\boldsymbol{O}$ of binary operations defined and with values in $\boldsymbol{B}$. Let now $B$ and $O$ denote some sets of names (symbols or words of a certain language) of elements in $\boldsymbol{B}$ and $\boldsymbol{O}$ respectively. Moreover for any $b$ in $B$ and $o$ in $O$, let [ $b$ ] denote the object named $b$, and [ 0$]$ denote the operation named $o$.

By a labeled tree we mean any triple $(T, q, p)$ where $T=(A, L, R, P)$ is a tree and $q$ and $p$ are total functions with

$$
\begin{array}{ll}
q: & D_{1}(P) \rightarrow O \\
p: & A-D_{1}(P) \rightarrow B ;
\end{array}
$$

i.e., $q$ associates with every ramification an operational symbol and $p$ associates with every leave a symbol of data. Clearly, labeled trees correspond exactly to loop-free computations. An example of a labeled tree is given in Figure 1.

Now let $\rho$ be an arbitrary order, let $(T, q, p)$ be an arbitrary labeled tree, and let $\left[D_{1}(P), \rho\right]=\left(g_{1}, \cdots, g_{n}\right)$. By the $\rho$-program of $(T, q, p)$, in symbols $\Pi_{\rho}(T, q, p)$, we mean the string

$$
q\left(g_{1}\right) t\left(g_{1}\right) \cdots q\left(g_{n}\right) t\left(g_{n}\right)
$$

where $t\left(g_{i}\right)=\gamma_{i} \delta_{i}$ and where, if $g_{i} L g^{l}$ and $g_{i} R g^{r}$, then

$$
\gamma_{i}= \begin{cases}S, & \text { if } g^{l} \in D_{1}(P) \\ \left(g^{l} \text { is a ramification }\right) \\ p\left(g^{l}\right), & \text { if } g^{l} \notin D_{1}(P) \quad\left(g^{l} \text { is a leave }\right)\end{cases}
$$

$$
\delta_{i}=\left\{\begin{array}{ll}
S, & \text { if } g^{r} \in D_{1}(P)
\end{array} \quad\left(g^{r} \text { is a ramification }\right),\right.
$$

Every substring of the form $q\left(g_{i}\right) t\left(g_{i}\right)$ is called an instruction. (1) (in Section 1) is an example of a $\rho$-program (for $\rho=w$ ) of the tree in Figure 1.
In order to describe $\rho$-units which operate on $\rho$-programs we need now an auxiliary concept. For every order $\rho, \operatorname{let} \varphi_{\rho}{ }^{L}$ and $\varphi_{\rho}{ }^{R}$ be two functions defined as follows: for every tree $T=(A, L, R, P)$, if $\left[D_{1}(P), \rho\right]=\left(g_{1}, \cdots, g_{n}\right)$, then, for every $i \leq n$,

$$
\begin{array}{lllll}
\varphi_{f}^{L}(T, i)=j & \text { iff } & g_{i} L g_{j} & \text { and } & g_{j} \in D_{1}(P), \\
\varphi_{\rho}^{R}(T, i)=k & \text { iff } & g_{i} R g_{k} & \text { and } & g_{k} \in D_{1}(P) .
\end{array}
$$

Consider now an arbitrary admissible order $\rho$. Clearly, $F_{\rho}$ is reversible, thus $\Pi_{\rho}$ is reversible too and consequently there exists a function $\Sigma_{\rho}$ that with every $\rho$-program associates the corresponding unlabeled tree, i.e. that

$$
\Sigma_{\rho}\left(\Pi_{\rho}[(T, q, p)]\right)=T .
$$

Now we can describe the unit. We assume it is equipped with a device able to perform every operation in $\boldsymbol{O}$ and with a memory, squares numbered with successive nonnegative integers $0,1, \cdots$. Consider now an arbitrary admissible order $\rho$, an arbitrary labeled tree ( $T, q, p$ ), and let

$$
\sigma=o_{1} \gamma_{1} \delta_{1} \cdots o_{n} \delta_{n} \rho_{n}
$$

be the $\rho$-program of this tree. The unit reads $\sigma$, instruction by instruction, from the right end to the left end (i.e. from $n$ to 1 ), interpreting every instruction $o_{i} \gamma_{i} \delta_{i}$ as follows: perform $\left[o_{i}\right](x, y)$ and put the result into the square number $n-i$ where

$$
\begin{aligned}
& x= \begin{cases}\text { content of the square number } n-\varphi_{\rho}{ }^{L}\left(\Sigma_{\rho}(\sigma), i\right) & \text { if } \gamma_{i}=S, \\
{\left[\gamma_{i}\right],} & \text { if } \gamma_{i} \in B\end{cases} \\
& y= \begin{cases}\text { content of the square number } n-\varphi_{\rho}^{R}\left(\Sigma_{\rho}(\sigma), i\right) & \text { if } \delta_{i}=S, \\
{\left[\delta_{i}\right],} & \text { if } \delta_{i} \in B .\end{cases}
\end{aligned}
$$

Example 1: Consider the labeled tree, say T, in Figure 3 and the following program of this tree:

$$
\sigma=+S S \quad-S 1 \times 2 S \quad+43 \div 63 .
$$

Clearly, this program determines an order, say $\rho$, in the set of ramifications of the


Fig. 3

TABLE I

| $i$ | scanned subjormuia |  | addresses of arguments |  | store |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $L$ | R | 0 | 1 | 2 | 3 | 4 | 9 |
| 5 | $\div$ | 63 | data | data | 2 |  |  |  |  |  |
| 4 | + |  | data | data | 2 | 7 |  |  |  |  |
| 3 | $\times$ | 2S | data | 1 | 2 | 7 | 14 |  |  |  |
| 2 | - | S1 | 0 | data | 2 | 7 | 14 | 1 |  |  |
| 1 | $+$ | SS | 3 | 2 | 2 | 7 | 14 | 1 | 15 |  |

tree. The functions $\varphi_{\rho}{ }^{L}$ and $\varphi_{\rho}{ }^{R}$ are now the following:

$$
\begin{array}{ll}
\varphi_{\rho}{ }^{L}(T, 1)=2 & \varphi_{\rho}{ }^{R}(T, 1)=3 \\
\varphi_{\rho}{ }^{L}(T, 2)=5 & \varphi_{\rho}{ }^{R}(T, 2)=? \\
\varphi_{\rho}{ }^{L}(T, 3)=? & \varphi_{\rho}{ }^{R}(T, 3)=4 \\
\varphi_{\rho}{ }^{L}(T, 4)=? & \varphi_{\rho}{ }^{R}(T, 4)=? \\
\varphi_{\rho}{ }^{L}(T, 5)=? & \varphi_{\rho}{ }^{R}(T, 5)=?
\end{array}
$$

where the symbol "?" is to be read as "undefined." Successive states of $\rho$-unit that performs $\sigma$ are shown in Table I.

## 3. Addressless Orders

Efficiency and applicability of the $\rho$-unit described in the preceding section depends evidently on how the decoding functions

$$
\begin{aligned}
& \psi_{\rho}^{L}(\sigma, i)=n-\varphi_{\rho}^{L}\left(\Sigma_{\rho}(\sigma), i\right) \\
& \psi_{\rho}^{R}(\sigma, i)=n-\varphi_{\rho}^{R}\left(\Sigma_{\rho}(\sigma), i\right)
\end{aligned}
$$

are complicated. Clearly, the most undesirable property of $\psi_{\rho}{ }^{L}$ and $\psi_{\rho}{ }^{R}$ is their dependence on the whole program $\sigma$, i.e. the fact that an appropriate $\rho$-decoder which realizes $\psi_{\rho}{ }^{L}$ and $\psi_{\rho}{ }^{R}$ have to scan at every instant the whole of $\sigma$, thus it can not be applied if $\sigma$ is scanned instruction by instruction and only once. Evidently this property of $\psi_{\rho}{ }^{L}$ and $\psi_{\rho}{ }^{R}$ can make the idea of $\rho$-units unrealistic. On the other hand, we can ask if all admissible orders have this inconvenient property. Let us formulate this question in a precise way.

Let $\sigma=o_{1} \gamma_{1} \delta_{1} \cdots o_{n} \gamma_{n} \delta_{n}$ be an arbitrary $\rho$-program (for some $\rho$ ) and for every $i \leq n$ let

$$
\left.\sigma\right|_{i}=o_{i} \gamma_{i} \delta_{i} \cdots o_{n} \gamma_{n} \delta_{n}
$$

Now we ask whether there exists an admissible order $\rho$, such that for every two $\rho$-programs $\sigma_{1}$ and $\sigma_{2}$ of length $n$ and $m$ respectively and for every $i \leq \min (n, m)$, if $\left.\sigma_{1}\right|_{n-i}=\left.\sigma_{2}\right|_{m-i}$, then

$$
\begin{aligned}
& \psi_{\rho}^{L}\left(\sigma_{1, n-i}\right) \doteq \psi_{\rho}^{L}\left(\sigma_{2, m-i}\right), \\
& \psi_{\rho}^{R}\left(\sigma_{1, n-i}\right) \doteq \psi_{\rho}^{R}\left(\sigma_{2, m-i}\right),
\end{aligned}
$$

where $\doteq$ holds iff either both sides are undefined or both are defined and equal.

Clearly, for any admissible order $\rho$ with the above property one can design a $\rho$-decoder able to determine the location of intermediate results, reading $\sigma$ step by step in parallel with the unit. In other words, the decoder, in order to compute $\psi_{\rho}{ }^{L}(\sigma, i)$ and $\psi_{\rho}{ }^{R}(\sigma, i)$ needs to scan only $\left.\sigma\right|_{i}$, and not the whole of $\sigma$ as before.

As it turns out, admissible orders with this property exist. We call them addressless orders. In the sequel we shall prove the existence of exactly six addressless orders (for binary ramificated trees), we shall define all of them explicitly and show how the corresponding units can be designed.
Note now that in order to study addressless orders we need not consider labeled trees and $\rho$-programs, we can consider simply trees and $\rho$-formulas. To this end let us extend $\psi_{\rho}{ }^{L}$ and $\psi_{\rho}{ }^{R}$ to $\rho$-formulas in the following natural way:

Let $\rho$ be an arbitrary admissible order, let $T$ be an arbitrary tree with $n$ ramifications, and let $\theta$ be the $\rho$-formula of $T$. Then, for every $i \leq n$,

$$
\begin{aligned}
& \psi_{\rho}^{L}(\theta, i)=n-\varphi_{\rho}^{L}\left(F^{-1}(\theta), i\right) \\
& \psi_{\rho}^{R}(\theta, i)=n-\varphi_{\rho}^{R}\left(F^{-1}(\theta), i\right)
\end{aligned}
$$

Definition 3: An admissible order $\rho$ is said to be an addressless order if for any two $\rho$-formulas $\theta_{1}$ and $\theta_{2}$ of length $n$ and $m$, respectively, and, for any $i \leq \min (n, m)$, if $\left.\theta_{1}\right|_{n-i}=\left.\theta_{2}\right|_{m-i}$, then

$$
\begin{aligned}
& \psi_{\rho}{ }^{L}\left(\theta_{1}, n-i\right) \doteq \psi_{\rho}{ }^{L}\left(\theta_{2}, m-i\right) \\
& \psi_{\rho}{ }^{R}\left(\theta_{1}, n-i\right) \doteq \psi_{\rho}^{R}\left(\theta_{2}, m-i\right)
\end{aligned}
$$

Clearly, $\doteq$ means the same as previously and $\left.\theta\right|_{i}$ is defined analogously as for $\rho$-programs. It is evident that the new definition of addressless order is equivalent to the previous one. On the other hand, it is more applicable in mathematical investigations. Now we shall introduce some auxiliary concepts to be used in the sequel.

Consider an arbitrary order $\rho$ and an arbitrary set $G$ (we recall that every set is understood as a finite subset of $A^{\infty}$ ).

The set $G$ is called $\rho$-terminal, if it has two following properties:
(1) if $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$, then $\tau_{G}\left(g_{1}\right) \neq d d$ and $\tau_{\sigma}\left(g_{i}\right)=d d$ for $i=2$,
(2) there exists a tree $T=(A, L, R, P)$ with $\left[D_{1}(P), \rho\right]=\left(h_{1}, \cdots, h_{m}\right)$ and $\left(h_{m-n+1}, \cdots, h_{m}\right)=\left(g_{1}, \cdots, g_{n}\right)$.

For example $\times 2 S+43 \div 63$ is a subprogram that corresponds to the $\rho$-terminal set of the tree in Figure 3, where the order $\rho$ is determined by the program.

Now with every admissible order $\rho$ we associate two natural-valuated (i.e. with nonnegative integer values) functions $f_{\rho}{ }^{L}$ and $f_{\rho}{ }^{R}$ defined in the family of all $\rho$-terminal sets in the following way: for every $\rho$-terminal $G$ if $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$, then

$$
\begin{aligned}
& f_{\rho}^{L}(G)= \begin{cases}i, & \text { if } g_{1} L^{\infty} g_{i}, \\
0, & \text { if the left predecessor of } g_{1} \text { is not in } G,\end{cases} \\
& f_{\rho}^{R}(G)=\left\{\begin{array}{lll}
i, & \text { if } g_{1} R g_{i}, \\
0, & \text { if the right predecessor of } g_{1} \text { is not in } G .
\end{array}\right.
\end{aligned}
$$

The functions $f_{p}{ }^{L}$ and $f_{\rho}{ }^{R}$ are very helpful in designing an appropriate $\rho$-unit. For explanation consider an arbitrary tree $T=(A, L, R, P)$ with $\left[D_{1}(P), \rho\right]=$
$\left(g_{1}, \cdots, g_{n}\right)$ and with

$$
\Pi_{\rho}(T)=o_{1} \gamma_{1} \delta_{1} \cdots o_{n} \gamma_{n} \delta_{n}
$$

The unit scans $\Pi_{\rho}(T)$ instruction by instruction and, so long as $\gamma_{i}, \delta_{i} \in B$, it does not read in the store. Let now $j$ be first, from the right side, (rightmost) with either $\gamma_{j} \notin B$ or $\delta_{j} \notin B$. Clearly, the set $\left\{g_{j}, \cdots, g_{n}\right\}$ is $\rho$-terminal; thus the position of the intermediate results corresponding to the $j$ th step of computation can be given by $f_{\rho}{ }^{L}$ and $f_{\rho}{ }^{R}$. In fact, if $\gamma_{j}=S$, then

$$
\psi_{\rho}^{L}\left(\Pi_{\rho}(T), j\right)=n+2-j-f_{\rho}^{L}\left(\left\{g_{j}, \cdots, g_{n}\right\}\right),
$$

and if $\delta_{j}=S$, then

$$
\psi_{\rho}^{R}\left(\Pi_{\rho}(T), j\right)=n+2-j-f_{\rho}^{R}\left(\left\{g_{j}, \cdots, g_{n}\right\}\right) .
$$

Let now $g_{k}$ be next, to the left of $g_{j}$, with either $\gamma_{k} \notin B$ or $\delta_{k} \notin B$. Clearly, $G=$ $\left\{g_{k}, \cdots, g_{n}\right\}$ is not $\rho$-terminal, but, on the other hand, if we cancel in $G$ the predecessors (or predecessor, if there is only one) of $g_{j}$, then the new set, say $G^{\prime}$, is $\rho$ terminal. Now we see that $f_{\rho}{ }^{L}\left(G^{\prime}\right)$ and $f_{\rho}{ }^{R}\left(G^{\prime}\right)$ determine the location of intermediate results required in the $k$ th step of the computation, provided the previously implemented results (arguments in the $j$ th step) have been erased and the store has been pushed down. For example, if $[G, \rho]=\left(g_{5}, g_{6}, g_{7}, g_{8}, g_{9}, g_{10}, g_{11}\right)$, where the type of all $g_{i}$ except $g_{5}$ and $g_{7}$ is $d d$ and $g_{7} L^{\infty} g_{8}$ with $g_{7} R^{\infty} g_{10}$, then $G^{\prime}=\left\{g_{5}, g_{6}\right.$, $\left.g_{7}, g_{9}, g_{11}\right\}$ and the store ( $s_{11}, s_{10}, s_{9}, s_{8}, s_{7}, s_{6}$ ) is first modified to ( $s_{11}, \varepsilon, s_{9}, \varepsilon$, $s_{7}, s_{6}$ ), where $\varepsilon$ means empty square, and then to ( $s_{11}, s_{9}, s_{7}, s_{6}$ ).

Theorem 2. An admissible order $\rho$ is an addressless order iff for any two $\rho$-terminal sets $G_{1}$ and $G_{2}$, if $G_{1}$ is $\rho$-similar with $G_{2}$, then $f_{\rho}{ }^{L}\left(G_{1}\right)=f_{\rho}^{L}\left(G_{2}\right)$ and $f_{\rho}^{R}\left(G_{1}\right)=$ $f_{\rho}{ }^{R}\left(G_{2}\right)$.

Proof. (Necessity). Suppose $\rho$ is an admissible order, and let there exist two trees $T_{1}=\left(A_{1}, L_{1}, R_{1}, P_{1}\right)$ and $T_{2}=\left(A_{2}, L_{2}, R_{2}, P_{2}\right)$ with $\left[D_{1}\left(P_{1}\right), \rho\right]=\left(g_{1}\right.$, $\left.\cdots, g_{n}\right)$ and $\left[D_{1}\left(P_{2}\right), \rho\right]=\left(h_{1}, \cdots, h_{n}\right)$, where $G_{1}=\left\{g_{n-i}, \cdots, g_{n}\right\}$ and $G_{2}=$ $\left\{h_{m-i}, \cdots, h_{m}\right\}$ are $\rho$-terminal and $\rho$-similar, but either $f_{\rho}^{L}\left(G_{1}\right) \neq f_{\rho}^{L}\left(G_{2}\right)$ or $f_{\rho}^{R}\left(G_{1}\right) \neq f_{\rho}^{R}\left(G_{2}\right)$. Let $\tau_{g_{1}}\left(G_{n-i}\right)=\tau_{\sigma_{2}}\left(h_{m-i}\right)=S d$ (other cases are similar). Then there exist $l, p<i$ with $l \neq p$

$$
g_{n-i} L^{\infty} g_{n-i+l}, \quad h_{m-i} L^{\infty} h_{m-i+p}
$$

Therefore

$$
\varphi_{\rho}{ }^{L}\left(T_{1}, n-i\right)=n-i+l
$$

and

$$
\varphi_{\rho}^{L}\left(T_{2}, m-i\right)=m-i+p .
$$

Let now $F_{\rho}\left(T_{1}\right)=\theta_{1}$ and $F_{\rho}\left(T_{2}\right)=\theta_{2}$. By assumption $\left.\theta_{1}\right|_{n-i}=\left.\theta_{2}\right|_{m-i}$ but, on the other hand,

$$
\begin{aligned}
\psi_{\rho}{ }^{L}\left(\theta_{1}, n-i\right) & =n-\varphi_{\rho}{ }^{L}\left(F_{\rho}^{-1}\left(\theta_{1}\right), n-i\right)=l-i, \\
\psi_{\rho}{ }^{L}\left(\theta_{2}, m-i\right) & =m-\varphi_{\rho}{ }^{L}\left(F_{\rho}{ }^{-1}\left(\theta_{2}\right), m-i\right)=p-i,
\end{aligned}
$$

hence $\rho$ is not an addressless order.
(Sufficiency). Let $\rho$ be an admissible order and let for any two $\rho$-terminal and $\rho$-similar sets $G_{1}$ and $G_{2}, f_{\rho}{ }^{L}\left(G_{1}\right)=f_{\rho}{ }^{L}\left(G_{2}\right)$ and $f_{\rho}{ }^{R}\left(G_{1}\right)=f_{\rho}{ }^{R}\left(G_{2}\right)$. We shall prove
the following thesis:
For any two trees $T_{1}$ and $T_{2}$ with $n$ ramifications and $m$ ramifications, respectively, if $F_{\rho}\left(T_{1}\right)=\theta_{1}$ and $F_{\rho}\left(T_{2}\right)=\theta_{2}$, then for every $i \leq \min (n, m)$, if $\left.\theta_{1}\right|_{n-i}=\left.\theta_{2}\right|_{m-i}$, then

$$
\psi_{\rho}{ }^{L}\left(\theta_{1}, n-i\right) \doteq \psi_{\rho}{ }^{L}\left(\theta_{2}, m-i\right) \quad \text { and } \quad \psi_{\rho}{ }^{R}\left(\theta_{1}, n-i\right) \doteq \psi_{\rho}{ }^{R}\left(\theta_{2}, m-i\right) .
$$

This thesis will be proved by induction on $n+m$. Let $n+m=2$, i.e., $n=m=1$. Then $F_{\rho}\left(T_{1}\right)=F_{\rho}\left(T_{2}\right)=d d$ and the thesis is evidently true.
Suppose the thesis is true for any $n+m<k$ and consider two trees $T_{1}=\left(A_{1}\right.$, $\left.L_{1}, R_{1}, P_{1}\right)$ and $T_{2}=\left(A_{2}, L_{2}, R_{2}, P_{2}\right)$ with $\left[D_{1}\left(P_{1}\right), \rho\right]=\left(g_{1}, \cdots, g_{n}\right)$ and $\left[D_{1}\left(P_{2}\right), \rho\right]=\left(h_{1}, \cdots, h_{m}\right)$, where $n+m=k$. Let now $i \leq \min (n, m)$ and let

$$
\left.\theta_{1}\right|_{n-i}=\left.\theta_{2}\right|_{m-i} .
$$

If $G_{1}=\left\{g_{n-i}, \cdots, g_{n}\right\}$ and $G_{2}=\left\{h_{m-i}, \cdots, h_{m}\right\}$ are $\rho$-terminal, then $f_{p}^{L}\left(G_{1}\right)=$ $f_{p}{ }^{L}\left(G_{2}\right)$ and $f_{\rho}^{R}\left(G_{1}\right)=f_{\rho}^{R}\left(G_{2}\right)$ and the thesis is clearly satisfied. Thus let $G_{1}$ and $G_{2}$ be non- $\rho$-terminal. Thus there exists $k$ such that $G_{3}=\left\{g_{n-i+k}, \cdots, g_{n}\right\}$ and $G_{4}=$ $\left\{h_{m-i+k}, \cdots, h_{m}\right\}$ are $\rho$-terminal. Let $\tau_{\sigma_{3}}\left(g_{n-i+k}\right)=\tau_{\sigma_{4}}\left(h_{m-i+k}\right)=S d$ (other cases are analogous). Since $G_{3}$ and $G_{4}$ are clearly $\rho$-similar, $f_{\rho}{ }^{L}\left(G_{3}\right)=f_{\rho}^{L}\left(G_{4}\right)$, i.e.

$$
g_{n-i+k} L^{\infty} g_{n-p} \text { and } h_{m-i+k} L^{\infty} h_{m-p}
$$

for some $p$ with $p<k-i$. Note now that

$$
\left(g_{1}, \cdots, g_{n-p-1}, g_{n-p+1}, \cdots, g_{n}\right)
$$

and

$$
\left(h_{1}, \cdots, h_{m-p-1}, h_{m-p+1}, \cdots, h_{m}\right)
$$

are $\rho$-strings of ramifications of two trees say $T_{1}{ }^{*}$ and $T_{2}{ }^{*}$ with

$$
\left.F_{\rho}\left(T_{1}^{*}\right)\right|_{n-i-1}=\left.F_{\rho}\left(T_{2}^{*}\right)\right|_{m-i-1} .
$$

Hence, by the inductive assumption,

$$
\psi_{\rho}^{L}\left(F_{p}\left(T_{1}^{*}\right), n-i-1\right) \doteq \psi_{\rho}^{L}\left(F_{\rho}\left(T_{2}^{*}\right), m-i-1\right)
$$

and

$$
\psi_{\rho}{ }^{R}\left(F_{\rho}\left(T_{1}{ }^{*}\right), n-i-1\right) \doteq \psi_{\rho}{ }^{R}\left(F_{\rho}\left(T_{2}{ }^{*}\right), m-i-1\right) .
$$

Therefore we have immediately

$$
\psi_{\rho}{ }^{L}\left(\theta_{1}, n-1\right) \doteq \psi_{\rho}{ }^{L}\left(\theta_{2}, m-i\right)
$$

and

$$
\psi_{\rho}{ }^{R}\left(\theta_{1}, n-i\right) \doteq \psi_{\rho}{ }^{R}\left(\theta_{2}, m-i\right)
$$

which completes the proof of the thesis. Hence $\rho$ is an addressless order. QED
Theorem 2 shows that, if we design a $\rho$-unit with $\rho$ being an addressless order, we can base on $f_{\rho}{ }^{L}$ and $f_{\rho}{ }^{R}$ instead of $\psi_{\rho}{ }^{L}$ and $\psi_{\rho}{ }^{R}$. Now we shall show how $f_{\rho}{ }^{L}$ and $f_{\rho}{ }^{R}$ behave for addressless orders. In particular, we show that every addressless order corresponds to some dequeue discipline (see Section 1).

Theorem 3. An admissible order $\rho$ is an addressless order iff one of the following
six conditions is satisfied:
(1) for every $\rho$-terminal set $G$, with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$,

$$
\begin{array}{ll}
f_{\rho}^{L}(G)=2, & \text { if } \tau_{G}\left(g_{1}\right)=S d, \\
f_{\rho}^{R}(G)=2, & \text { if } \tau_{G}\left(g_{1}\right)=d S, \\
f_{\rho}^{L}(G)=2 \text { and } f_{\rho}^{R}(G)=3, & \text { if } \tau_{G}\left(g_{1}\right)=S S
\end{array}
$$

(2) for every $\rho$-terminal set $G$, with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$,

$$
\begin{array}{ll}
f_{\rho}^{L}(G)=2, & \text { if } \tau_{G}\left(g_{1}\right)=S d, \\
f_{\rho}^{R}(G)=2, & \text { if } \tau_{G}\left(g_{1}\right)=d S, \\
f_{\rho}^{L}(G)=3 \text { and } f^{R}(G)=2, & \text { if } \tau_{G}\left(g_{1}\right)=S S ;
\end{array}
$$

(3) for every $\rho$-terminal set $G$, with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$,

$$
\begin{array}{ll}
f_{\rho}^{L}(G)=n, & \text { if } \tau_{\sigma}\left(g_{1}\right)=S d, \\
f_{\rho}^{R}(G)=n, & \text { if } \tau_{\sigma}\left(g_{1}\right)=d S, \\
f_{\rho}^{L}(G)=n \text { and } f_{\rho}{ }^{R}(G)=n-1, & \text { if } \tau_{\sigma}\left(g_{1}\right)=S S ;
\end{array}
$$

(4) for every $\rho$-terminal set $G$, with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$,
(5) for every $\rho$-terminal set $G$, with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$,

$$
f_{O_{R}}^{R}(G)=2, \quad \text { if either } \quad \tau_{\sigma}\left(g_{1}\right)=S d \text { or } \tau_{\sigma}\left(g_{1}\right)=S S \text {, }
$$

$$
f_{\rho}^{R}(G)=n, \quad \text { if either } \quad \tau_{\sigma}\left(g_{1}\right)=d S \text { or } \quad \tau_{\theta}\left(g_{1}\right)=S S
$$

(6) for every $\rho$-terminal set $G$, with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$,

$$
\begin{array}{llll}
f_{\rho}^{L}(G)=n, & \text { if either } & \tau_{\sigma}\left(g_{1}\right)=S d & \text { or } \\
\tau_{\sigma}\left(g_{1}\right)=S S, \\
f_{\rho}^{R}(G)=2, & \text { if either } & \tau_{\sigma}\left(g_{1}\right)=d S & \text { or } \\
\tau_{\sigma}\left(g_{1}\right)=S S
\end{array}
$$

Proof. Sufficiency is obvious on account of Theorem 2. Necessity will be proved with the help of the following three lemmas.

Lemina 1. Let $\rho$ be an arbitrary addressless order and $G$ be a $\rho$-terminal set with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$. Let $G^{*}$ consist of all elements in $G$ except $g_{1}$ and both-or one, if there is only one-predecessors of $g_{1}$. If $g_{1} P^{\infty} g_{i}$, then

$$
\text { either } \quad g_{i} \rho g \text { for all } g \text { in } G^{*} \quad \text { or } \quad g \rho g_{i} \text { for all } g \text { in } G^{*} \text {. }
$$

Proof. Suppose that this is not the case, i.e. that $g_{1} P^{\infty} g_{i}$ and there exist $g_{j}, g_{k}$ in $G$ with $j<i<k$. It is easy to see now that the sets

$$
G_{1}=\left\{g_{1}, \cdots, g_{j-1}, g_{j+1}, \cdots, g_{n}\right\}
$$

and

$$
G_{2}=\left\{g_{1}, \cdots, g_{k-1}, g_{k+1}, \cdots, g_{n}\right\}
$$

are both $\rho$-terminal and $\rho$-similar, but, on the other hand, if $g_{1} L^{\infty} g_{i}$, then

$$
f_{\rho}^{L}\left(G_{1}\right)=i-1 \quad \text { and } \quad f_{p}^{L}\left(G_{2}\right)=i
$$

and if $g_{1} R^{\infty} g_{i}$, then

$$
f_{\rho}^{R}\left(G_{1}\right)=i-1 \quad \text { and } \quad f_{\rho}^{R}\left(G_{2}\right)=i
$$

which contradicts Theorem 2.
QED

$$
\begin{aligned}
& f_{\rho}^{L}(G)=n, \\
& \text { if } \tau_{\boldsymbol{\sigma}}\left(g_{1}\right)=S d \text {, } \\
& f_{\rho}^{R}(G)=n, \\
& \text { if } \tau_{g}\left(g_{1}\right)=d S \text {, } \\
& f_{\rho}^{L}(G)=n-1 \text { and } f_{p}^{R}(G)=n, \\
& \text { if } \tau_{\theta}\left(g_{1}\right)=S S ;
\end{aligned}
$$

As a consequence of this lemma we immediately conclude the following:
Corollary 1. For any addressless order $\rho$ and any $\rho$-terminal set $G$, with $[G, \rho]=$ $\left(g_{1}, \cdots, g_{n}\right)$,
(1) if $g_{i}$ is the only predecessor of $g_{1}$ in $G$, then either $i=2$ or $i=n$,
(2) if $g_{i}, g_{k}$ are both predecessor of $g_{1}$ in $G$, then either $i=2$ and $k=3$, or $i=3$ and $k=2$, or $i=n-1$ and $k=n$, or $i=n$ and $k=n-1$, or $i=2$ and $k=n$, or $i=n$ and $k=2$.

Lemma 2. For every addressless order $\rho$ and for any two $\rho$-terminal sets $G_{1}$ with $\left[G_{1}, \rho\right]=\left(g_{1}, \cdots, g_{n}\right)$ and $G_{2}$ with $\left[G_{2}, \rho\right]=\left(h_{1}, \cdots, h_{m}\right)$ if $g_{1}$ and $h_{1}$ are both of the same type $S d$ or $d S$ and $g_{1} P^{\infty} g_{i}$ with $h_{1} P^{\infty} h_{j}$, then

$$
\text { either } \quad i=2 \text { and } j=2 \quad \text { or } \quad i=n \quad \text { and } j=m
$$

Proof. Consider the case where $\tau_{G_{1}}\left(g_{1}\right)=\tau_{G_{2}}\left(h_{1}\right)=S d$ and let $g_{1} L^{\infty} g_{2}$ and $h_{1} L^{\infty} h_{m}$ (cf. Corollary 1). Let moreover $m \geq n$. As it is easy to see, the sets $G_{1}$ and $G_{2}{ }^{*}=\left\{h_{1}, h_{2+m-n}, \cdots, h_{m}\right\}$ are $\rho$-terminal and $\rho$-similar but

$$
f_{\rho}^{L}\left(G_{1}\right)=2 \quad \text { and } \quad f_{\rho}^{L}\left(G_{2}\right)=n
$$

which contradicts Theorem 2.
QED
Lemma 3. Let $\rho$ be an addressless order. If for any $\rho$-terminal set $G$, with $[G, \rho]=$ $\left(g_{1}, \cdots, g_{n}\right)$,

$$
f_{\rho}^{L}(G)=2 \quad \text { for } \quad \tau_{\sigma}\left(g_{1}\right)=S d
$$

and

$$
f_{p}^{R}(G)=2 \quad \text { for } \quad \tau_{G}\left(g_{1}\right)=d S
$$

then one of the following cases is possible:
(1) for every $\rho$-terminal $G$, with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$ and with $\tau_{G}\left(g_{1}\right)=S S$,

$$
f_{\rho}^{L}(G)=2 \quad \text { and } \quad f_{\rho}^{R}(G)=3
$$

(2) for every $\rho$-terminal $G$, with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$ and with $\tau_{G}\left(g_{1}\right)=S S$, $f_{\rho}^{L}(G)=3 \quad$ and $\quad f_{\rho}{ }^{R}(G)=2$.

Proof. Suppose that this is not the case, i.e. there exists a $\rho$-terminal set $G$ with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$ and with $\tau_{G}\left(g_{1}\right)=S S$ where (cf. Corollary 1) either $f_{\rho}{ }^{L}(G)=n$ and $f_{\rho}{ }^{R}(G)=n-1$ or $f_{\rho}{ }^{L}(G)=n-1$ and $f_{\rho}{ }^{R}(G)=n$ or $f_{\rho}{ }^{L}(G)=2$ and $f_{\rho}^{R}(G)=n$ or $f_{\rho}^{L}(G)=n$ and $f_{\rho}^{R}(G)=2$. Let the first be true. Then $G_{1}=$ $\left\{g_{1}, \cdots, g_{n-1}\right\}$ is $\rho$-terminal with $\tau_{G_{1}}\left(g_{1}\right)=d S$ and $f_{\rho}{ }^{R}\left(G_{1}\right)=n-1$ which contradicts the assumption that $f_{p}^{R}\left(G_{1}\right)=2$. The other cases are similar. QED

Lemma 3 implies (1) and (2) of Theorem 3. It is easy to see that analogous lemmas can be proved for (3), (4), and (5). This completes the proof of Theorem 3.

By Theorem 3 the class of all addressless orders (if nonempty) can be divided into six disjoint classes of orders corresponding to the six dequeue disciplines. It is interesting to know if the six classes are nonempty and if they are one-or-moreelement sets. The answer to the first question is positive and will be proved later. As to the second question, we shall show now that to every dequeue discipline corresponds at most one admissible order. In fact, we prove a more general theorem:

Theorem 4. Let $\rho$ and $\xi$ be two admissible orders. If for every set $G$ which is simul-
taneously $\rho$-terminal and $\xi$-terminal

$$
f_{\rho}^{L}(G)=f_{\xi}^{L}(G) \quad \text { and } \quad f_{\rho}^{R}(G)=f_{\xi}^{R}(G),
$$

then $\rho=\xi$.
Proof. Let $\rho$ and $\xi$ be admissible orders which meet the assumption of the theorem. We shall show that $\rho$ and $\xi$ coincide in the set of ramifications of every tree. We prove this by induction on $n$, the number of ramifications in the tree.

For $n=1$ the thesis is evidently true. Suppose it is true for any $n<k$, and let $T=(A, L, R, P)$ be a tree with

$$
\left[D_{1}(P), \rho\right]=\left(g_{1}, \cdots, g_{k}\right) .
$$

Now let

$$
G=\left\{g_{j}, \cdots, g_{k}\right\}
$$

be $\rho$-terminal (i.e. $j$ is the largest number with $\tau_{D_{1}(P)}\left(g_{j}\right) \neq d d$ ) and let $g_{j} P^{\infty} g_{i}$. Evidently, $j<i$ (since $\rho$ is admissible), thus $\tau_{D_{1}(P)}\left(g_{i}\right)=d d$ and therefore

$$
D=D_{1}(P)-g_{i}
$$

is also the set of ramifications of some tree. Hence, by the inductive assumption,

$$
[D, \rho]=[D, \xi]=\left(g_{1}, \cdots, g_{i-1}, g_{i+1}, \cdots, g_{k}\right) .
$$

Consequently, $G$ is $\xi$-terminal since $g_{j} \xi g_{i}$ ( $\xi$ is admissible) and therefore, by the assumption of the theorem

$$
f_{\rho}^{L}(G)=f_{t}^{L}(G) \quad \text { and } \quad f_{p}^{R}(G)=f_{\xi}^{R}(G) .
$$

Hence,

$$
[G, \xi]=\left(g_{j}, \cdots, g_{k}\right),
$$

and thus

$$
\left[D_{1}(P), \xi\right]=\left(g_{1}, \cdots, g_{k}\right)=\left[D_{1}(P), \rho\right] .
$$

QED
By Theorems 3 and 4 there exist at most six addressless orders-at most one for each discipline. Now we shall complete this result by proving the existence of exactly six addressless orders, exactly one for each dequeue discipline. All the orders will be defined explicitly. First some auxiliary notions.

Let $g_{1}$ and $g_{2}$ be two vertices in $A^{\infty}$. $g_{1}$ is said to be left to $g_{2}$, in symbols $g_{1} \lambda g_{2}$, if there exist $g_{0}, g_{3}$ and $g_{4}$ in $A^{\infty}$ with the following properties:
(1) $g_{0} L^{\infty} g_{3}$ and $g_{0} R^{\infty} g_{4}$,
(2) either $g_{3}=g_{1}$ or there exists a chain (see Definition 1) from $g_{3}$ to $g_{1}$,
(3) either $g_{4}=g_{4}$ or there exists a chain from $g_{4}$ to $g_{2}$.
$g_{1}$ is said to be right to $g_{2}$, in symbols $g_{1} \lambda^{*} g_{2}$, if $g_{2} \lambda g_{1}$.
$g_{1}$ is said to be upwards of $g_{2}$, in symbols $g_{1} \beta g_{2}$, if the chain from $\omega$ (the root of the universal tree $T^{\infty}$ ) to $g_{1}$ is shorter than the chain from $\omega$ to $g_{2}$.
$g_{1}$ is said to be on the level with $g_{2}$, in symbols $g_{1} \alpha g_{2}$, if neither $g_{1} \beta g_{2}$ nor $g_{2} \beta g_{1}$.
An infinite sequence $g_{1}, g_{2}, \cdots$ of vertices is called a left branch if
(1) $g_{1} \in D_{2}\left(R^{\infty}\right) \cup\{\omega\}$,
(2) $g_{i} L^{\infty} g_{i+1}$ for $i=1,2, \cdots$.

$g_{1}$ is called the head of the branch, and the left branch with a head $g$ is denoted by $B(g)$.

An infinite sequence $g_{1}, g_{2}, \cdots$ of vertices is called a right branch if
(1) $g_{1} \in D_{2}\left(L^{\infty}\right) \cup\{\omega\}$,
(2) $g_{i} R g_{i+1}$ for $i=1,2, \cdots$.
$g_{1}$ is called the head of the branch and the right branch with a head $g$ is denoted by $B^{*}(g)$.
As it follows therefore, no vertex except the root $\omega$ can be the head of both a left and a right branch.
Let $\rho$ be an arbitrary order and let $B\left(g_{1}\right)$ and $B\left(g_{2}\right)$ be two left branches. By $B\left(g_{1}\right) \rho B\left(g_{2}\right)$ we mean that $b_{1} \rho b_{2}$ for any $b_{1}$ in $B\left(g_{1}\right)$ and any $b_{2}$ in $B\left(g_{2}\right)$. Analogously we define the meaning of $B^{*}\left(g_{1}\right) \rho B^{*}\left(g_{2}\right)$.
Example 2: Consider the tree in Figure 4. The vertices $g_{2}, g_{4}, g_{5}, g_{8}, g_{9}, g_{10}$, $g_{11}$ are left to $g_{3}$. The vertex $g_{3}$ is upwards of $g_{4}-g_{15}$. The string ( $\left.g_{1}, g_{2}, g_{4}, g_{8}\right)$ is an initial segment of a left branch, but $\left(g_{2}, g_{4}, g_{8}\right)$ is not since $g_{2} \notin D_{2}\left(R^{\infty}\right) \cup\{\omega\}$. The string ( $g_{3}, g_{6}, g_{12}$ ) is also an initial segment of a left branch, and ( $g_{1}, g_{3}, g_{7}, g_{15}$ ) and $\left(g_{2}, g_{5}, g_{11}\right)$ are both initial segments of right branches. The vertices $g_{4}-g_{7}$ are all on the same level.
Now we are ready to define all addressless orders. We denote them by $p, w, v, p^{*}$, $w^{*}$, and $v^{*}$, where $p, w$, and $v$ are called simple, and $p^{*}, w^{*}$, and $v^{*}$ are called dual orders. It should be emphasized here that $p, w, p^{*}, w^{*}$ have been discovered by Pawlak [3-9].
Definition 4: (simple horizontal order p)

$$
\left(\forall g_{1}, g_{2}\right)\left[g_{1} p g_{2} \Leftrightarrow g_{1} \beta g_{2} \vee\left(g_{1} \alpha g_{2} \& g_{\lambda} \lambda^{*} g_{2}\right)\right],
$$

i. e. $g_{1} p g_{2}$ iff either $g_{1}$ is upwards of $g_{2}$ or $g_{1}$ is on the level with $g_{2}$ and $g_{1}$ is right to $g_{2}$.


Fig. 5

Definition 5: (simple vertical order $w$ )

$$
\left(\forall g_{1}, g_{2}\right)\left[g_{1} w g_{2} \Leftrightarrow g_{1} \lambda g_{2} \vee\left(\sim g_{1} \lambda g_{2} \& \sim g_{1} \lambda^{*} g_{2} \& g_{1} \beta g_{2}\right)\right.
$$

i. e. $g_{1} w g_{2}$ iff either $g_{1}$ is left to $g_{2}$ or $g_{1}$ and $g_{2}$ belong to the same chain and $g_{1}$ is upwards of $g_{2}$.
Definition 6: (simple branch-along order v) By $v$ we mean the smallest binary relation in $A^{\infty}$ (i.e. the smallest subset of $A^{\infty} \times A^{\infty}$ ) with the following three properties:
(1) $\left(\forall g_{1}, g_{2}\right)\left[g_{1} L^{\infty} g_{2} \Rightarrow g_{1} v g_{2}\right]$,
(2) $\left(\forall g \in D_{2}\left(R^{\infty}\right)\right)[B(\omega) v B(g)]$,
(3) $\left(\forall g_{1}, g_{2} \in D_{2}\left(R^{\infty}\right)\right)\left[B\left(g_{1}\right) v B\left(g_{2}\right) \Leftrightarrow S\left(g_{1}\right) v S\left(g_{2}\right)\right]$.

We have defined here simple orders. To define the dual orders $p^{*}, w^{*}$, and $v^{*}$ one needs to replace in Definitions 4,5 , and 6 , respectively, all symbols $\lambda$ by $\lambda^{*}$ and conversely, all symbols $L^{\infty}$ by $R^{\infty}$ and conversely, and all symbols $B$ by $B .^{*}$
Example 3: Consider the tree in Figure 4. The succession of indices corresponds to $p^{*}$, i.e. $\left(g_{1}, \cdots, g_{15}\right)$ is a $p^{*}$-string. The external enumeration corresponds to $w$. The way we run over the vertices of a tree when enumerating them in $w$ is shown in Figure 5. An example of $v$ is given in Figure 6. The way we run over the vertices of a tree enumerating them in $v$ is shown in Figure 7. Note that in this running over, only "right edges" can be cut short. Moreover, every edge may be cut only once and only if we meet it for the first time. Note that for better explanation we have numbered all vertices of trees. Clearly for program-writing purposes we number only ramifications.

We shall prove now that $p, w, v, p^{*}, w^{*}$, and $v^{*}$ are addressless orders.
Theorem 5.
(1) $w$ satisfies (1) of Theorem 3,
(2) $w^{*}$ satisfies (2) of Theorem 3,
(3) $p$ satisfies (3) of Theorem 3,
(4) $p^{*}$ satisfies (4) of Theorem 3,
(5) $v$ satisfies (5) of Theorem 3,
(6) $v^{*}$ satisfies (6) of Theorem 3.

Proof. We shall consider only simple orders. The proofs for dual orders are similar.


Fig. 6
ad (1): Let $G$ be a $w$-terminal set with $[G, \rho]=\left(g_{1}, \cdots, g_{n}\right)$. By Definition 4, for any $g_{1}$ and $g_{2}$ in $A^{\infty}$, if $g_{1} L^{\infty} g_{2}$, then $g_{1} w g_{2}$ and there is no $g_{3}$ with $g_{1} w g_{3} w g_{2}$. Hence, if $\tau_{G}\left(g_{1}\right)=S d$ or $\tau_{\theta}\left(g_{1}\right)=S S$, then $f_{w}{ }^{L}(G)=2$. Let now $g_{1} R^{\infty} g_{i}$ for some $g_{i}$ in $G$. Since $G$ is $w$-terminal, there is no vertex in $G-\left\{g_{1}\right\}$ that is simultaneously upwards of, and on the same chain with $g_{i}$, and there is no vertex left to $g_{i}$ except eventually $g_{2}$, if $g_{1} L^{\infty} g_{2}$. Hence, if $\tau_{G}\left(g_{1}\right)=d S$, then $f_{w}{ }^{R}(G)=2$; and if $\tau_{G}\left(g_{1}\right)=S S$, then $f_{w}{ }^{R}(G)=3$.
$a d(3): \quad$ Note first that, for any $a_{1}$ and $a_{2}$ in $A^{\infty}$, if $S\left(a_{1}\right) \neq S\left(a_{2}\right)$, then

$$
a_{1} p a_{2} \quad \text { iff } \quad S\left(a_{1}\right) p S\left(a_{2}\right)
$$

Consider now a $p$-terminal set $G$ with $[G, p]=\left(g_{1}, \cdots, g_{n}\right)$ and let $g_{1} L^{\infty} g_{i}$ with $i<n$. Clearly, $g_{1} R^{\infty} g_{n}$ does not hold, since in the converse case $g_{n} p g_{i}$ which is not true. Therefore, $S\left(g_{i}\right) p S\left(g_{n}\right)$, i.e.

$$
\begin{equation*}
g_{1} p S\left(g_{n}\right) \tag{5}
\end{equation*}
$$

Now let $T=(A, L, R, P)$ be a tree with $\left[D_{1}(P), p\right]=\left(h_{1}, \cdots, h_{m}\right)$, where $\left(h_{m-n+1}\right.$, $\left.\cdots, h_{m}\right)=\left(g_{1}, \cdots, g_{n}\right)$. Clearly, $S\left(g_{n}\right) \in D_{1}(P)$; thus-by $(5)-S\left(g_{n}\right) \in G$ and $S\left(g_{n}\right) \neq g_{1}$, which is clearly impossible since $G$ is $p$-terminal. Hence $i=n$.

In the same way we prove other equalities of (3) in Theorem 3.
$a d(5)$ : Let $G$ be a $v$-terminal set with $[G, v]=\left(g_{1}, \cdots, g_{n}\right)$. If $f_{v}{ }^{L}(G) \neq 0$, then the equality $f_{v}{ }^{L}(G)=2$ can be proved in the same way as for $w$. Note now that, for any $a_{1}$, and $a_{2}$ in $D_{2}\left(R^{\infty}\right)$,

$$
a_{1} v a_{2} \quad \text { iff } \quad S\left(a_{1}\right) v S\left(a_{2}\right)
$$

In consequence, if $f_{v}{ }^{R}(G) \neq 0$, then the equality $f_{v}^{R}(G)=n$ can be proved in the same way as for $p$.

QED


Fig. 7

## 4. Units with Addressless Orders

In Section 2 we have described a $\rho$-oriented unit which operates on $\rho$-programs of labeled trees and in Section 3 we have shown how the functions $f_{\rho}{ }^{L}$ and $f_{\rho}{ }^{R}$ can be interpreted and applied in designing an appropriate unit. In fact, if read is interpreted as read and erase and erase is always followed by push down the store (in order to make the stored sequence compact and starting at the square number 0 ), then $f_{\rho}{ }^{L}$ and $f_{\rho}{ }^{R}$ describe at every moment the location of required intermediate results. Now Theorems 3 and $\overline{5}$ can be applied in designing units which correspond to addressless orders. We shall consider only simple orders since dual are similar.
Let the unit under investigation be equipped with:
(1) device able to perform all operations of a set of operations (cf. Section 2),
(2) store for intermediate results where cells are numbered with successive nonnegative integers, and
(3) two registers $x$ and $y$ for storing actual arguments.

Now, let Bot denote the content of the cell number 0 (bottom of the store) and let Top denote the content of the rightmost nonempty cell on the store (top of the store). Suppose now a particular $\rho$-unit is scanning a $\rho$-program

$$
\sigma=o_{1} \gamma_{1} \delta_{1} \cdots o_{n} \gamma_{n} \delta_{n} .
$$

Accordingly $\rho$ is either $w$ or $p$ or $v$ every instruction $o_{i} \gamma_{i} \delta_{i}$ effects the following succession of operations: For the simple vertical order $w$ :
(1) if $\gamma_{i}=S$, then $x:=$ Top and erase Top, if $\gamma_{i} \neq S$, then $x:=\left[\gamma_{i}\right]$;
(2) if $\delta_{i}=S$, then $y:=T_{o p}$ and erase Top, if $\delta_{i} \neq S$, then $y:=\left[\delta_{i}\right]$;
(3) perform $\left[o_{i}\right](x, y)$ and put the result on the top of the store.

For the simple horizontal order $p$ :
(1) if $\gamma_{i}=S$, then $x:=B o t$, erase Bot, and push down the store, if $\gamma_{i} \neq S$, then $x:=\left[\gamma_{i}\right]$;
(2) if $\delta_{i}=S$, then $y:=$ Bot, erase Bot and push down the store, if $\delta_{i} \neq S$, then $y:=\left[\delta_{i}\right] ;$
(3) perform $\left[o_{i}\right](x, y)$ and put the result on the top of the store.


Fig. 8

TABLE II

| $\boldsymbol{o}_{\boldsymbol{i}} \boldsymbol{\gamma}_{\boldsymbol{i}} \boldsymbol{\delta}_{\boldsymbol{i}}$ | store |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | 0 | 1 | 2 | 3 | 4 | 5 |
| $\times 12$ | 1 | 2 | 2 |  |  |  |  |  |
| $+31$ | 3 | 1 | 2 | 4 |  |  |  |  |
| + 21 | 2 | 1 | 2 | 4 | 3 |  |  |  |
| $-4 \mathrm{~S}$ | 4 | 3 | 2 | 4 | 1 |  |  |  |
| $+21$ | 2 | 1 | 2 | 4 | 1 | 3 |  |  |
| $\times 43$ | 4 | 3 | 2 | 4 | 1 | 3 | 12 |  |
| + SS | 12 | 3 | 2 | 4 | 1 | 4 |  |  |
| $\times$ SS | 4 | 1 | 2 | 4 | 4 |  |  |  |
| - SS | 4 | 4 | 2 | 0 |  |  |  |  |
| + SS | 0 | 2 | 2 |  |  |  |  |  |

For the simple branch-along order $v$ :
(1) if $\gamma_{i}=S$, then $x:=T o p$ and erase $T o p$, if $\gamma_{i} \neq S$, then $x:=\left[\gamma_{i}\right]$;
(2) if $\delta_{i}=S$, then $y:=B o t$ erase Bot and push down store, if $\delta_{i} \neq S$, then $y:=\left[\delta_{i}\right]$
(3) perform $\left[o_{i}\right](x, y)$ and put the result on the top of the store.

Example 4: Consider the labeled tree in Figure 8. The $w$-program of this tree is following:

$$
+S S \quad-S S \times S S \div S S \times 43+21-4 S \quad+21+31 \times 12 .
$$

Successive states of $w$-unit which performs this program are shown in Table II.

## 5. Syntax of $\rho$-Programs and $\rho$-Formulas

Let $\mathfrak{I}$ denote the set of all labeled trees and let, for every admissible order $\rho$,

$$
\mathscr{P}_{\rho}=\Pi_{\rho}(\mathfrak{I})
$$

i.e. $\mathscr{P}_{\rho}$ is the set of all possible $\rho$-programs. The problem arises if the $\mathcal{P}_{\rho}$ are mutually disjoint for different $\rho$ 's; i.e. supposing John has written $\sigma$ in $\mathscr{P}_{\rho}$, can Tom recognize $\rho$ by studying the syntax (and only the syntax) of $\sigma$. The answer is negative, sinceas we shall prove in this section- $\mathcal{P}_{\rho}=\mathcal{P}_{\xi}$ for any two admissible orders $\rho$ and $\xi$.

To simplify the investigations we shall deal with formulas and trees instead of programs and labeled trees.

Let $\boldsymbol{T}$ denote the set of all trees and let for every admissible order

$$
L_{\rho}=F_{\rho}(T) ;
$$

i.e. $L_{\rho}$ is the set of all possible $\rho$-formulas. Let $V=\{d S, S d, S S, d d\}$ and let $V^{+}$ denote the set of all finite nonempty strings over $V$. In $V^{+}$we define the following integer-valuated function $H$ :

$$
\begin{aligned}
H(d S) & =H(S d)=0 \\
H(S S) & =-1 \\
H(d d) & =1 \\
H\left(\alpha_{1} \beta_{1} \cdots \alpha_{n} \beta_{n}\right) & =\sum_{i=1}^{n} H\left(\alpha_{i} \beta_{i}\right) .
\end{aligned}
$$

The intuitive interpretation of $H$ is very simple. Let $\sigma$ be a $\rho$-program (or a part of it) and $\theta$ a corresponding $\rho$-formula. $H(\theta)$ is simply the number of intermediate results stored actually by the unit after $\theta$ has been scanned, provided the unit erases when reads.

Let now $L$ be the set of all $\theta$ in $V^{+}$with the following properties:
(1) $H(\theta)=1$,
(2) if $\theta=\alpha_{1} \beta_{1} \cdots \alpha_{n} \beta_{n}$, then $H\left(\alpha_{i} \beta_{i} \cdots \alpha_{n} \beta_{n}\right) \geq 1$ for $i=1, \cdots, n$. Theorem 6. For every admissible order $\rho, L_{\rho}=L$.
Proof. Consider an arbitrary admissible order $\rho$ and an arbitrary tree $T=$ $(A, L, R, P)$. Let $\left[D_{1}(P), \rho\right]=\left(g_{1}, \cdots, g_{n}\right)$ and $F_{\rho}(T)=\theta$. We shall show that $\theta \in L$. The proof is by induction on $n$.

For $n=1, \theta=d d$; thus $\theta \in L$.
Let the thesis be true for every $n<k$ and consider $T$ with $\left[D_{1}(P), \rho\right]=\left(g_{1}, \cdots\right.$, $g_{k}$ ). Since $\rho$ is admissible, $\tau_{D_{1}(P)}\left(g_{k}\right)=d d$ and hence $D_{1}(P)-\left\{g_{k}\right\}$ is also the set of all ramifications of some tree. Therefore, by the inductive assumption, $F_{\rho}\left(D_{1}(P)\right.$
$\left.-\left\{g_{k}\right\}\right) \in L$. Let now

$$
\begin{aligned}
F_{\rho}\left(D_{1}(P)-\left\{g_{k}\right\}\right) & =\alpha_{1} \beta_{1} \cdots \alpha_{k-1} \beta_{k-1} \\
F_{\rho}(T) & =\alpha_{1}^{*}{\beta_{1}}^{*} \cdots \alpha_{k}^{*} \beta_{k}^{*}
\end{aligned}
$$

and let $S\left(g_{k}\right)=g_{i}$. Clearly,

$$
H\left(\alpha_{j}^{*} \beta_{j}^{*} \cdots \alpha_{k}^{*} \beta_{k}^{*}\right)=H\left(\alpha_{j} \beta_{j} \cdots \alpha_{k-1} \beta_{k-1}\right)+1
$$

for every $j>i$, and

$$
H\left(\alpha_{i}^{*} \beta_{i}^{*}\right)=H\left(\alpha_{i} \beta_{i}\right)-1
$$

Therefore,

$$
H\left(\alpha_{p}^{*} \beta_{p}^{*} \cdots \alpha_{k}^{*} \beta_{k}^{*}\right)=H\left(\alpha_{p} \beta_{p} \cdots \alpha_{k-1} \beta_{k-1}\right)
$$

for every $p \geq i$. Hence $\alpha_{1}{ }^{*} \beta_{1}{ }^{*} \cdots \alpha_{k}{ }^{*} \beta_{k}{ }^{*} \in L$. In this way the inclusion $L_{\rho} \subseteq L$ is proved.

Now let $\rho$ be an arbitrary admissible order and let $\theta=\alpha_{1} \beta_{1} \cdots \alpha_{n} \beta_{n} \in L$. We shall show the existence of a tree $T$ with $F_{\rho}(T)=\theta$. The proof is by induction on $n$.

For $n=1, \theta=d d$; hence $\theta=F_{\rho}(\{\omega\})$.
Let the thesis be true for every $n<k$ and consider $\theta=\alpha_{1} \beta_{1} \cdots \alpha_{k} \beta_{k}$ in $L$. Since $\theta$ is in $L$, there exists an $i<k$ with $\alpha_{i} \beta_{i} \neq d d$ and $\alpha_{j} \beta_{j}=d d$ for $j=i+1, \cdots, k$.

Consider now the formula

$$
\theta^{*}=\alpha_{1} \beta_{1} \cdots \alpha_{i-1} \beta_{i-1} \alpha_{i}^{*} \beta_{i}^{*} \alpha_{i+1} \beta_{i+1} \cdots \alpha_{k-1} \beta_{k-1},
$$

where

$$
\alpha_{i}^{*} \beta_{i}^{*}= \begin{cases}d d, & \text { if } \alpha_{i} \beta_{i}=d S \text { or } \alpha_{i} \beta_{i}=S d \\ d S, & \text { if } \alpha_{i} \beta_{i}=S S .\end{cases}
$$

It is easy to see that $\theta^{*} \in L$, thus-by the inductive assumption-there exists a tree $T=(A, L, R, P)$ with $F_{\rho}(T)=\theta^{*}$. Let $\left[D_{1}(P), \rho\right]=\left(g_{1}, \cdots, g_{k-1}\right)$ and consider $g$ in $A^{\infty}$ with $g_{i} L^{\infty} g$. Clearly, $D_{1}(P) \cup\{g\}$ is also the set of ramifications of a tree and, since, $g_{i} \rho g$ ( $\rho$ is admissible), we have immediately

$$
F_{p}\left(D_{1}(P) \cup\{g\}\right)=\theta .
$$

Hence, $\theta \in L$.
QED
We can add here that $L$ is a context-free language (cf. [2]) with the following grammar:

$$
\begin{array}{lll}
A \rightarrow B A, & A \rightarrow d d, & B \rightarrow d S, \\
A \rightarrow C A A, & B \rightarrow S d, & C \rightarrow S S,
\end{array}
$$

where $A$ is the initial symbol. This thesis is proved in [1].

## 6. Final Remarks

Let us summarize the principal results of this paper.
(1) Addressless orders are the only orders that permit a step by step performance of addressless programs (Definition 3) and that guarantee a uniform accessing of intermediate results (Theorem 2).
(2) Addressless orders are the only orders that correspond to dequeue (double-ended-queue) disciplines; moreover, to each dequeue discipline corresponds exactly one addressless order (Theorems 3, 4, and 5).
(3) Two different addressless orders cannot be distinguished by studying the syntax of corresponding programs (Theorem 6).
All these results have been proved for the binary case, i.e. for the case where all trees are binary-ramificated. This restriction has been assumed to simplify mathematical investigations, however it can be rejected now without harming the truth of (1), (2), and (3). In order to generalize the results for arbitrary $n$-ary case we proceed as follows: First $n$-ary ramificated trees are defined which is clearly simple and needs no comments. Then the pair of functions $\psi_{\rho}{ }^{L}$ and $\psi_{\rho}{ }^{R}$ is replaced by an $n$-tuple $\psi_{\rho}{ }^{1}, \cdots, \psi_{\rho}{ }^{n}$ of analogous functions. This allows us to define $n$-ary addressless orders. In the next step the functions $f_{\rho}{ }^{L}$ and $f_{\rho}{ }^{R}$ are replaced by analogous $f_{\rho}{ }^{1}, \cdots$,
$f_{\rho}{ }^{n}$ and an $n$-ary analogue of Theorem 3 is proved. The proof is based on the fact that Lemma 1 remains true for the $n$-ary case without any reformulation. The rest of the proof is similar. Also the proof of Theorem 4 needs only minor modifications. In effect we have a corollary to the effect that every $n$-ary addressless order corresponds to some $n$-ary dequeue discipline and vice versa, and that this correspondence is one-to-one. Since there are exactly $(n+1)!n$-ary dequeue disciplines, we claim therefore immediately that there exist exactly $(n+1)!n$-ary addressless orders. The generalization of Theorem 6 clearly needs an appropriate generalization of function $H$. This can be done as follows.

For every $n$-string $\alpha_{1} \cdots \alpha_{n}$ (which generalizes the concept of the type $\alpha \beta$ of a vertex) with $\alpha_{i} \in\{d, S\}$ for $i=1, \cdots, n$ :

$$
h\left(\alpha_{1} \cdots \alpha_{n}\right)=1-m,
$$

where $m=\operatorname{Card}\left\{i: \alpha_{i}=S\right\}$.
acknowledgaents. I wish to thank Professor Z. Pawlak for help and encouragement during this work. I am indebted to Doctors A. Ehrenfeucht and A. Reedziejowski for many valuable suggestions concerning the thesis of this paper. I also thank the referees of the Journal of the ACM for their constructive criticism of the earlier exposition of my results.

## REFERENCES

1. Blikle, A. Formalization of parenthesis-free languages. Zeitschr. Math. Logik Grundl. Math. 12 (1966), 177-186.
2. Ginsburg, S. The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966.
3. Pawlak, Z. Organization of the address-free digital computer for calculating simple arithmetical expressions. Bull. Acad. Polonaise Sci., Ser. Sci. Tech. 8 (1960), 193-197.
4. Pawlak, Z. New method of parenthesis-free notation of formulae. Bull. Acad. Polonaise Sci., Ser. Sci. Tech. 8 (1960), 197-199.
5. Pawlak, Z. On realization of recursive schemas in the address-free computer. Bull. Acad Polonaise Sci., Ser. Sci. Tech. 8 (1960), 685-690.
6. Pawlak, Z. Organization of address-free computer B-100. Bull. Acad. Palonaise Sci., Ser. Sci. Tech. 9 (1961), 229-238.
7. Pawlak, Z. Some remarks on automatic programming of arithmetical formulae. Bull. Acad. Polonaise Sci., Ser. Sci. Tech. 9 (1961), 317-321.
8. Pawlak, Z. Realization of memory of partial results in certain parenthesis-free formalisms. Bull. Acad. Polonaise Sci., Ser. Sci. Tech. 9 (1961), 487-491.
9. Pawlak, Z. Organizacja Maszyn Bezadresowych (in Polish). Polish Scientific Publishers, Warsaw, 1965.
received october 1969; revised aphil 1971
