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ABSTRACT. The paper deMs with the problem of how to design a computer so that  the loop-free 
parts of computations performed by it are handled in the most efficient and rapid manner. In 
particular, the question is how to design a unit to carry out loop-free computations and how to 
design the unit-oriented language. Clearly, the sensitive area here is the storing and accessing 
of intermediate results. I t  is assumed that  the unit  reads the appropriate program step-by- 
step, performs successive operations serially and stores the intermediate results in a sequence 
as the computation progresses. Now a problem arises how the unit should extract intermediate 
results from the sequence when needed. I t  is shown that  the optimM solution is addressless 
units (the unit-oriented programs are address-free formulas) which operate in double-ended- 
queue disciplines, i.e. in disciplines where the actually extracted intermediate result is always 
either the first or the last element of the stored sequence. 

The paper follows and extends some ideas given by Z. Pawlak in a number of his papers. 
I t  gives the mathematical background and extentions of Pawlak's results which have been 
formulated originally in a rather descriptive and informM way. The reader is not assumed to 
be familiar with Pawlak's papers. 
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1. Introduction 

The  p rob l em to be cons idered  in  th is  p a p e r  is, genera l ly  speaking ,  t he  fol lowing:  
how to design a compu te r  so t h a t  the  loop-free p a r t s  of p r o g r a m s  pe r fo rmed  by  i t  
(e.g. a r i t hme t i ca l  or  Boolean  express ions)  a re  h a n d l e d  in the  mos t  efficient and  
r ap id  manner .  I t  is a ssumed  t h a t  the  c o m p u t e r  unde r  inves t iga t ion  is equ ipped  wi th  
a special  un i t  and  t h a t  loop-free p a r t s  of p r o g r a m s  are  a lways  t r a n s l a t e d  into  a 
un i t -o r i en t ed  language.  N o w  the  p r o b l e m  is how to des ign such a un i t  and  the  uni t -  
o r ien ted  language.  W e  assume a b o u t  t he  un i t  t h a t  i t  pe r fo rms  opera t ions  ser ia l ly  
and  s tores  t he  i n t e r m e d i a t e  resul ts  in a sequence as  the  c o m p u t a t i o n  progresses .  
Clear ly  we w a n t  the  following cond i t ions  to  be  sat isf ied:  

(1)  p r o g r a m s  (express ions)  of the  un i t -o r i en t ed  language  are  c o m p a c t  and  easy 
to  wri te ,  and  

(2)  the  m e m o r y  used b y  the  un i t  to  s tore  i n t e r m e d i a t e  resul ts  involves  a mini-  
real  a m o u n t  of c o m p u t a t i o n  ( t i m e ) .  
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Many interesting results concerning the solution of this problem have been given 
by Z. Pawlak [3-9]. Since the reader may not be familiar with these results, we sum- 
marize them here. Pawlak's principal ideas are the following: Every loop-free 
commutation has a tree structure where ramifications are labeled with symbols of 
operations and the "leaves" are labeled with initial arguments (data). For example, 
to the arithmetical expression 

((((3 × 3) -- 7) + (2 × 3)) -- (3-- 1) 

corresponds tile labeled tree in Figure 1. Now to perform the computation one should 
fix a succession of operations to be performed, i.e. one should fix an order in the set 
of ramifications of the tree. Clearly, not every order is possible (admissible) since, 
for example, in our case both multiplications, both subtractions and the addition 
must be performed before division, both multiplications and one subtraction must 
be performed before the addition, etc. Clearly, the problem of choosing an admissible 
order between operations is not the only one when designing a unit. The other, 
more difficult and subtle, is how to extract the intermediate result from the store 
the moment it is actually needed. Pawlak's ideas are now presented. 

There is a class of admissible orders--Pawlak calls them addressless orders-- 
that for every order p in this class there exists a simple algorithm ?/p which deter- 
mines tile location of intermediate results, provided the operations have been 
performed and the results have been stored in the succession given by p. The algo- 
rithm ~/p may be then used to design a p-decoder able to extract intermediate results 
from the store. Consider an example. One of Pawlak's addressless orders is called 
w (cf. Example 3 in Section 3). The w-program of the labeled tree in Figure 1 is 

- S S  +SS  - $ 7  )<33  X23 -31.  (1) 

(The symbol S may be understood here as an abbreviation of "store.") The w-finit 
performs this program step by step from the right end to the left end considering 
in every step one subformula (called instruction) of the form 

o~7i31, 

where o~ is a symbol of operation and 71, ~i C N U { S}, where N is the set all nu- 
merals (names of numbers). Now, let Top denote the actually last-stored result 
(top of the store) and let x and y be two variables. Instruction o~3'i8~ causes the 

Journal  of the As~oclatlon for Computing Machinery. Vol. 19, No. I, January  1972 



138 A N D R Z E J  B L I K L E  

following successive execution of operations: 
(1) i fT i  = S, then x := Top and erase Top 

if ~,~ E N, then x := [7~], where [7i] denotes the number named "Yi, 
(2) if ~i = S, then y := Top and erase Top 

if ~. E N, then y := [~], where [~] denotes the number named ~ ,  
(3) perform [oi](x, y), where [ol] denotes the operation named o~, and put the 

result on top of the store. 
In the case of program (1), successive states of the store are as follows" 

content of the store 
scanned instruc- after the instruction has 

tion been performed 

- -31  2 

×23 2, 6 
×33 2, 6, 9 
--$7 2, 6, 2 
÷SS 2, 8 
+SS 4 

Note that  the described w-unit realizes one of the so called double-ended-queue 
(or dequeue) disciplines. Double-ended-queue discipline means that  intermedi- 
ate results are stored in a sequence as the computation progresses and the required 
arguments are always taken in the same way either from the bottom or from the 
top of the stored sequence. For example, if we perform a binary operation x o y and 
the stored sequence is a l ,  . . .  , an, then we pick up the arguments in one of the 
following six ways : (1)  x : = a l ; y : = a 2 ,  (2) x : =  a 2 ; y : =  a l ,  (3) x : = a n - 1 ;  
y : = a , ,  (4) x : = a n ; y : = a n _ i ,  (5) x : = a n ; y : = a l ,  (6) x = a l ; y : = a n .  
The way we pick up the arguments is fixed for the order. For example, the order w 
corresponds to (3). In general, every Pawlak order--or every addressless order as 
defined in this paper--corresponds to one of ( 1 )-  (6). 

The present paper is concerned with the mathematical discussion of Pawlak's 
results. In fact, none of Pawlak's results was proved by him. In particular, he did 
not prove that  the described p-units are well-defined (as, in fact, they are) or that  
the defined orders are the only addressless orders or the only dequeue-orders (as 
in fact, they are not). 

Here I define formally six orders, four of which coincide with Pawlak's orders and 
two of which are new, and I prove them to be the only addressless orders in the 
binary (binary-operation) case. I t  is also proved that  each addressless order cor- 
responds to one dequeue discipline and conversely. The reason I deal in my investiga- 
tions with the binary case is that  the binary case is the most important and the 
simplest, and, on the other hand, it can be easily generalized to the n-ary case. 

2. Trees and Admissible Orders 

Let A be an arbitrary set and Q an arbitrary relation in A, i.e. Q _c A × A. By 
aQb we denote the fact that  (a, b) E Q. By the first and the second domain of Q 
we mean, respectively, the sets 

DI(Q) = {a1:(3a2 E A )(alQa2)}, 

D2(Q) = {a2:(3al C A)(alQa2)}. 
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Now we define the tree. This is clearly a very simple concept, but  in this particu- 
lar case we need more sophisticated definition, which distinguishes between the 
left and the right predecessor (argument)  of every ramification. To this end by  
tree we mean a system consisting of a finite set A of vertices and of three binary 
relations L, R, and P = L U R in A called respectively the left predecessor, the right 
predecessor and the predecessor. For example, Figure 2 corresponds to the tree with 
A = {a, b, c}, L = {(a, b)}, R = l (a ,  c)}, P -= {(a, b), (a, c)}. H e r e b  and c a r e  
said to be the left and the right predecessor, respectively, of a, and a is said to be 
the successor of both b and c. 

Definition 1: By a tree we mean a system T - (A, L, R, P ) ,  where A is a finite 
set and L, R, and P are binary relations in A with the following properties: 

(1) P = L U R .  
(2) there is exactly one vertex oJ in A with no successor in A; i.e., there exists 

an w with A - Ds (P )  = {c0}. ¢0 is called the root of T. 
(3) for every a in A - {c~} there exists a sequence a l ,  " - '  , an in A (called the 

chain from co to a)  with al = ~, a ,  = a, and a~Pai+l for i = 1, • • • , n - 1. 
(4) (Va E Dl (P)  ) (3al  , a~.)[aLal & aRa2]. 
(5) D~(L) f lD. . (R)  = SJ. 
(6) (Val ,  az, a3)[asPal & a3Pal ~ as = a3]. 
(7) (Val ,  as, a3, a4)[alLas & alRaa & alPa4 ~ a4 = a2 V a4 = a3]. 
Vertices in DI(P)  are called ramifications in T. Conditions (3) and (6) permit  us 

to define in Do.(P) the successor function S with 

S(az) = as iff a2Pal. 

As it has been mentioned in the Introduction,  we shall deal in the sequel with 
orders in sets of ramifications. To define these orders in a way uniform for all trees, 
we introduce now a concept of a universal tree and universal order. 

Let T = = (A =, L ~, R ~, P'~) be a system--f ixed for the sequel of this p a p e r - -  
where A ~ is an infinitely denumerable set and L ~, R ~, and P~ are binary relations 
in A ~ with properties analogous to (1 ) - (7 )  in Definition 1 with the only exception 
that  instead of (4) we have now: 

(Va E A ~ ) ( 3 a l ,  as)[aL'°al & aR'°a2]. 

T *, which is clearly the maximal binary-ramificated infinite tree, will be referred 
to as the universal tree, and w will denote always the root of T *. 

A tree T = (A, L, R, P )  is said to be a subtree of T "~ if 
(1) A C A  ~, L C L  ~, R C R ,  
(2) A -- D2(P) = A "~ - D2(P ~) = {o~}, 

i.e. T is a subtree of T ~ in a normal  sense and the roots of T and T ~ coincide. 
In the sequel the te rm tree will always mean a subtree of T, and set (if not specified 

otherwise) will ahvays mean a finite subset of A ~. 
By a universal order we mean any linear order in A ~, i.e. any binary relation in 

A ~ that  is irreflexive, connected, transitive, and asymmetrical  in A ~. 
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140 A N D R Z E J  B L I K L E  

By [G, p], where G is a set and p a universal order, we mean the sequence (g~, ' • • , 
g,),  where {gl, " " , g , }  = Gandg~pg~+l f o r i  = 1, . . . , n  - 1. The sequence 
(gl,  • • • , g~) is called the p-sequence associated with G. 

Consider now an arbitrary universal order p, an arbitrary set G and an arbitrary 
vertex g in G. By the type o/g in G, in symbols to(g) ,  we mean a two-character 
word over the alphabet {S, d} (S  = store, d = data) defined as follows: 

to (g)  = ~ ,  

where 
-- S (d),  if a gl in G with gL~gl does (does not) exist, 

= S (d),  if a g2 in G with gR~g~ does (does not)  exist. 

By the p-formula of G, in symbols Fp(G), we mean the string of symbols 

Ta(gl) . . .  ra(g , ) ,  

where [G, p] = (gl ,  " '"  , g,).  
Two sets GI and G2 are said to be p-similar if Fp(G1) = Fp(G2). 
By the p-formula of a tree T = (A, L, R, P ) ,  in symbols Fp(T), we mean simply 

thc p-formula of the set DI(P) of ramifications in T, i.e. Fp(T) = Fp(DI(P)). 
By the length of Fp(T) we mean the number of elements in DI(P). 

Two trees T1 and T2 are said to be p-similar, if Fp(TI) = Fp(T2). 
p-formulas of trees, supplemented with symbols of operations, will be used in 

the sequel as programs to be scanned by appropriate units. As mentioned in the 
IntroduCtion, these units read programs step by step from the right end to the left 
end. This implies the following definition of an admissible order. 

Definition 2: A universal order p is called admissible if it is an extension of P,  
i.e. if for any a~, a~ in A ~, a~P~a2 implies awa2. 

In other words admissible orders are these which guarantee that  no a t tempt  is 
made to perform an operation, corresponding to a ramification in the tree, until its 
arguments have been computed. 

I t  is easy to see, tha t  the family of admissible orders is not empty. Examples of 
such orders are given in Section 3 (cf. addressless orders in Example 3). 

TH~.OREM 1. For every admissible order p and any two trees T1 and T2 , if T~ and 
T= are p-similar, then T~ = T2 • 

PROOF. Let  p be an arbitrary admissible order and let T( = (A~, L~, R i ,  P~), 
for i = 1, 2, be two p-similar trees. Moreover, let [DI(P~), p] = (g~, " '"  , g,) and 
IDa(P2), p] = (h~, . . .  , ha). Clearly, Tz = T2 is equivalent to D~(P1) = DI(P2). 
Thus let D~(PI) ~ D~(P~). Therefore, 

neither DI(P1) c DI(P2) nor DI(P2) ~ DI(P1), (2) 

since, by similarity of T~ with T~, D~(P~) and DI(P2) have the same number of 
elements. On the other hand, 

g~ = h~ = ~, (3) 

since p is admissible. Now by (2) and (3) there exists the smallest i with 

g, E D~(P~) -- D~(P~). 

Clearly, i > 1, therefore we can consider S(g~). Let S(g~) = gk. Since p is admissi- 
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ble, we have k < i; thus g, C DI(PI)  N DI(P~). We shall show now the equality 

gk = hk. (4) 

To this end we prove, by induction on j ,  that  gj = h~. f o r j  = 1, • • • , i - 1. 

F o r j  = 1 this is clearly true [see (2)]. Suppose g~ = hj f o r j  = 1, . . .  , m - 1 

where m - 1 < i - 1, and let gm ~ hm. Since g~ E DI(P: ) ,  then there exists an 

s < n with gm = h , .  Clearly, s > m, since in the opposite case g,~ -- h, = g, ,  

which is impossible because (gl,  " • , g,) has no repetitions. Therefore, 

h,~-i p h~ p h, .  

Hence, h~ is not in G, since the vertex p-next to h~_1 = gm-1 in DI(P~) FI DI(P2) 

is g,~. Consider now S(hm) = hp. Clearly, p < m, since p is admissible, thus hp = gp. 
p~ 

Hence hpP hm and gp h~ where h,~ C DI(P2) DI(P1), and therefore 

r,~(r,)(gp) ~ r,~(p,)(hp) which contradicts the assumption that  T~ and T2 are 

p-similar. Therefore g,~ = h,~ which ends the proof by induction and hence also the 

proof of (4). 
Since (4) is true, we have immediately gkP'~g~ and hkP~g~ ~4th gi C D~(P~) - 

DI(P2) which implies the inequality r~(e~)(gk) ~ r~(~)(hk) .  This contradicts the 

assumption that  T~ and T2 are p-similar. QED 

Theorem 1 has an important  consequence to the effect that  for every admissible 

order p the function F is reversible, i.e. that  for ever), admissible p we can theoreti- 

cally construct a p-decoder (no mat ter  how complicated) able to recognize trees 

when reading p-formulas. This p-decoder can be clearly used to design an appro- 

priate p-unit. In general, such a p-unit is not very efficient, but, as is shown in Sec- 

tion 3, it becomes efficient if p is an addressless order. Let us develop this idea with 

more details. 
Consider an arbitrary set B of objects (e.g. real or complex numbers, vectors, 

etc.) and an arbitrary set O of binary operations defined and with values in B. 

Let now B and 0 denote some sets of names (symbols or words of a certain language) 

of elements in B and O respectively. Moreover for any b in B and o in O, let [b] 

denote the object named b, and [o] denote the operation named o. 

By a labeled tree we mean any triple (T, q, p) where T = (A, L, R, P )  is a tree 

and q and p are total functions with 

q: DI (P)  -.-* O, 

p: A - D~(P) .--. B; 

i.e., q associates with every ramification an operational symbol and p associates 

with every leave a symbol of data. Clearly, labeled trees correspond exactly to 

loop-free computations. An example of a labeled tree is given in Figure 1. 

Now let p be an arbitrary order, let (T, q, p) be an arbitrary labeled tree, and let 

IDa(P), p] = (g~, . .  • , g~). By the p-program of (T, q, p),  in symbols Hp(T, q, p) ,  

we mean the string 
q(g,)t(gl) . . .  q(g,)t(g~), 

= R r where t(g~) ~'i~ and where, if g~Lg z and g~ g,  then 

= IS ,  if gZ E D~(P) (g~ is a ramification), 

p(gl),  if gl ~ D~(P) (gZ is a leave), 
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142 ANDRZEJ BLIKLE 

I S, if g" E D~(P) (g" is a ramification), 

p(g'), if ~ Dx(P) (g" is a leave). 

Every substring of the form q(g~)t(g~) is called an instruction. (1) (in Section 1) 
is an example of a p-program (for p = w) of the tree in Figure 1. 

In order to describe p-units which operate on p-programs we need now an auxiliary 
concept. For  every order p, let ~pL and ~pe be two functions defined as follows: for 
every tree T = (A, L, R, P ) ,  if [DI(P),  p] = (g~, "." , g,), then, for every i < n, 

~p~(T, i) = j iff g~Lgj and gj E DI (P) ,  

~pR(T,i) = k iff g,Rgk and gk E DI(P). 

Consider now an arbitrary admissible order p. Clearly, Fp is reversible, thus 
Hp is reversible too and consequently there exists a function 2;p that  with every 
p-program associates the corresponding unlabeled tree, i.e. tha t  

~AH~i(T, q, p)]) = T. 

Now we can describe the unit. We assume it is equipped with a device able to 
perform every operation in 0 and with a memory, squares numbered with succes- 
sive nonnegative integers O, 1, • • • . Consider now an arbitrary admissible order p, 
an arbi t rary labeled tree (T, q, p), and let 

o" ~ o1~'181 " . .  o .Snp,~  

be the p-program of this tree. The unit reads a, instruction by instruction, from the 
right end to the left end (i.e. from n to 1), interpreting every instruction oi~'i~ 
as follows:perform [o~] (x, y) and put  the result into the square number n - i where 

t content of the square number n - ~pL(Zp(¢), i) if ~ = S, 

x = ~[~'~], if ~'~E B 

t content of the square number n - ~ p R ( Z p ( a ) ,  i )  if ~ = S ,  

Y = {[8~], if ~ E  B. 

Example 1: Consider the labeled tree, say T, in Figure 3 and the following 
program of this tree: 

= + S S  - S 1  X2S -{-43 +63.  

Clearly, this program determines an order, say p, in the set of ramifications of the 

+ 

/ \  
- X / \  / \  

+ 1 2 + , / \  
Fro. 3 
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scanned addresses of arguments 
i sub]ormula L R 

store 

0 1 2' 3 4 .~ 

5 + 63 data data 
4 + 43 data data 
3 X 2S dam 1 
2 -- S1 0 data 
1 + SS 3 2 

2 
2 7 
2 7 14 
2 7 14 1 
2 7 14 1 15 

tree. The functions ~L  and q~pR are now the following: 

~p~(T, 1) = 2 ~p~(T, 1) = 3 

~pL(T, 2) = 5 ~pR(T, 2) = ? 

~ ( T ,  3) = ? ~,~(T, 3) = 4 

~L(T, 4) = ? ~ ( T ,  4) = ? 

~ ( T ,  5) = ? ~ ( T ,  5) = ? 

where the symbol "?" is to be read as "undefined." Successive states of p-unit that  
performs a are shown in Table I. 

3. Addresdess Orders 
Efficiency and applicability of the p-unit described in the preceding section de- 
pends evidently on how the decoding functions 

~bpL(a, i) ---- n -- ~pL(Z~(z), i),  

C R(~, i)  = n - ~ p ~ ( ~ ( ~ ) ,  i)  

arc complicated. Clearly, tlle most undesirable property of ~bp L and ~bp ~ is their 
dependence on the whole program ¢, i.e. the fact that  an appropriate p-decoder 
which realizes ~bp L and ~bp R have to scan at every instant the whole of a, thus it can 
not be applied if ~ is scanned instruction by  instruction and only once. Evidently 
this property of ~bp L and ~bp ~ can make the idea of p-units unrealistic. On the other 
hand, we can ask if all admissible orders have this inconvenient property.  Let us 
formulate this question in a precise way. 

Let a = oi~/151 . . .  o~/~Sn be an arbi t rary p-program (for some p) and for every 
i < n let 

a[~ = o(y~& . . .  o ~ .  

Now we ask whetrher there exists an admissible order p, such that  for every two 
p-programs a~ and a2 of length n and m respectively and for every i ~ min (n, m), 
if ~11~-~ = ~2(,~-~, then 

L 
¢ L(¢I,._,) - ¢ ~  (~.m-,), 

R R 
¢. (¢~,n--,) - - ¢ ~  (¢,.~-,), 

where - holds iff either both sides are undefined or both are defined and equal. 
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Clearly, for any admissible order p with the above property one can design a 
p-decoder able to determine the location of intermediate results, reading ~ step by 
step in parallel with the unit. In other words, the decoder, in order to compute 
#pL(,, i) and ~bpR(¢, i) needs to scan only *l~, and not the whole of ¢ as before. 

As it turns out, admissible orders with this property exist. We call them addressless 
orders. In the sequel we shall prove the existence of exactly six addressless orders 
(for binary ramificated trees), we shall define all of them explicitly and show how 
the corresponding units can be designed. 

Note now that  in order to study addressless orders we need not consider labeled 
trees and p-programs, we can consider simply trees and p-formulas. To this end let 
us extend ~bp L and ~bp R to p-formulas in the following natural way: 

Let p be an arbitrary admissible order, let T be an arbitrary tree with n ramifica- 
tions, and let 0 be the p-formula of T. Then, for every i < n, 

, / , 2 (0 ,  i )  = n - ~2(f-'(O), O, 
~bpR(O, i )  = n - -  ~ p e ( F - ' ( 0 ) ,  i ) .  

Definition 3: An admissible order p is said to be an addressless order if for any 
two p-formulas 01 and 82 of length n and m, respectively, and, for any i _< min(n, m), 
if 81 [a--i = 82 [~-~, then 

~ b p ~ ( 8 , ,  n - -  i )  - ~bpL(82,  m - -  i ) ,  

~ b p n ( 8 , ,  n - -  i )  - ~bpR(82,  m - -  i ) .  

Clearly, - means the same as previously and 8 ]i is defined analogously as for 
p-programs. I t  is evident that  the new definition of addressless order is equivalent 
to the previous one. On the other hand, it is more applicable in mathematical in- 
vestigations. Now we shall introduce some auxiliary concepts to be used in the se- 
quel. 

Consider an arbitrary order p and an arbitrary set G (we recall that  every set is 
understood as a finite subset of A~). 

The set G is called p-terminal, if it has two following properties: 
(1) if [G,p] = (g,,  . . . , g a ) , t h e n r o ( g ~ )  # ddandro (g~)  = d d f o r i  = 2, 

"'" ,n, 

(2) there exists a tree T = (A, L, R, P) with [D,(P), p] = (h,, ... , h~) and 

(h=_,+~, . . . , h ~ )  = (g~, . - . , g , ) .  
For example X2S +43 + 63 is a subprogram that  corresponds to the p-termi- 

nal set of the tree in Figure 3, where the order p is determined by the program. 
Now with every admissible order p we associate two natural-valuated (i.e. with 

nonnegative integer values) functions fp~ and fpR defined in the family of all p-termi- 
nal sets in the following way: for every p-terminal G if [G, p] = (g~, " "  , ga), then 

l i ,  
LL(G) = 0, 

L " ( G )  = o, 

The functions fpL and fpR 
For explanation consider an 

if giL'°g~ , 

if the left predecessor of g~ is not in G, 

if glRg~ , 

if the right predecessor of g, is not in G. 

are very helpful in designing an appropriate p-unit. 
arbitrary tree T = (A, L, R, P)  with [DI(P), p] = 

Journal of the Association for Computing l~fachinery, Vol. 19, No. 1, January 1972 



Addressless Units for Carrying Out Loop-Free Computations 145 

(gJ, " '"  , g n ) a n d  with 

IIp(T) = o171~1... On~'.~n. 

The unit scans IIp(T) instruction by instruction and, so long as 7~, ~ C B, it does 
not read in the store. Let n o w j  be first, from the right side, (rightmost) with either 
%. ~ B or ~i (~ B. Clearly, the set {gi, • • • , gn} is o-terminal; thus the position of 
the intermediate results corresponding to the j th  step of computation can be given 
by fa t and fp R. In fact, if "Yi = S, then 

d/aL(IIa(T),j) = n + 2 - j -  faL({gs, . . .  ,g,} ), 

and if 8j. = S, then 

~/'aR(Ha(T), j )  = n + 2 - j - faR({g~, . . .  , g.}). 

Let  now gk be next, to the left of g~., with either 3'k (E B or ~k ~ B. Clearly, G = 
{gk, • • • , g.} is not p-terminal, but, on the other hand, if we cancel in G the prede- 
cessors (or predecessor, if there is only one) of gi ,  then the new set, say G', is p- 
terminal. Now we see that fp ' (G')  and fpR(G') determine the location of intermedi- 
ate results required in the kth step of the computation, provided the previously 
implemented results (arguments in the j th  step) have been erased and the store 
has been pushed down. For example, if [G, p] = (gs, go, g~, gs, g9 , glo, gn), where 
the type of all gi except g5 and g7 is dd and gTL~g8 with gTR'~g~o, then G' -- {g5, ge, 
gT, g9, gn} and the store (Sn, S~o, s~, ss, sT, ss) is first modified to ( sn ,  8, s9, ~, 
s7, s6), where ~ means empty square, and then to ( sn ,  s9, s7, s6). 

THEOamt 2. A n  admissible order p is an addressless order i f f  for any two p-termi- 
nal sets G1 and G~ , if G1 is p-similar with G~ , then fa~(G1) = fa'~(G2) and faR(G1) = 
Ln(G.). 

PnooF. (Necessity).  Suppose p is an admissible order, and let there exist two 
trees T1 = (A1,  L~, R1, P~) and T2 = (A2,  L2, R2, P2) with [D~(P1), p] = (g~, 
• "- , g~) and [DI(P2), p] = (hi ,  . . .  , h ,) ,  where G1 = {g,_~, . . .  , g~} and G2 = 
{h,~_~, " '"  , h,.} are p-terminal and p-similar, but  either fa~(G~) # fa~(G2) or 

f~R(G1) # faR(G2). Let to, (Gn_~) = ro~(h,,_~) = Sd (other cases are similar). Then 
there exist l, p < i with l # p 

g~_~L'°g~_~+~ , h,,,_~L'°h,~_~+~ . 

Therefore 

¢ , ~ ( T l , n - i )  = n - i + l  

and 

9 p L ( T 2 , m - -  i) = m - -  i + p .  

Let now Fp(TI) = 01 and Fp(T:) = 02. By assumption 01 In-~ = 02 I,,-i but, on the 
other hand, 

~ b p L ( 0 1 ,  n - -  i )  = n - -  ~ p L ( F p - l ( O l ) ,  n - -  i )  = l - -  i ,  

~ p L ( o 2 ,  m - -  i )  = m - -  9 p L ( F p - l ( 0 2 ) ,  m - -  i )  ---- p - -  i ,  

hence p is not an addressless order. 
(Sufficiency). Let p be an admissible order and let for any two p-terminal and 

p-similar sets G1 and G2, fpL(G1) = fpL(G2) and fpn(Gl) = fpR(G2). We shall prove 
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the following thesis: 
For  a n y  two trees T1 and  T~ wi th  n rami f icat ions  and m ramif icat ions ,  respectively,  

i f  Fp(T1)  -- 01 and F~(T2) = 02, then f o r  every i E min(n,  m ) ,  i f  01 I~-~ = 02 I,~-i , 
then 

~bpL(Ol , n - -  i )  "-- ~bpL(O~, m - -  i )  and  ~bpR(Ol , n - -  i )  --  ¢pR(O2, m --  i ) .  

This thesis ~411be proved by  induction o n n  + m. L e t n  + m -- 2, i.e., n -- m -- 1. 
Then Fp(T1)  --- Ep(T2) = dd and the thesis is evidently true. 

Suppose the thesis is true for any n + m < k and consider two trees T1 = (A1, 
L , ,  R1, P1) and 7'2 = (A~_, L~, R~, P2) with [DI(P~), p] = (g~, . . .  , g,) and 
[DI(P2), p] = (h i ,  " "  , h.~), where n + m = k. Let now i E min(n,  m) and let 

O~ [n-~ = O~ [,~_~. 

I f  G1 = {g , -~ ,  " "  , g,} and G2 = {hm_i, . . .  , h=} are p-terminal, then/pL(G1) = 
fpL(G2) and ]pR(G1) = fpe(G2) and the thesis is clearly satisfied. Thus  let G1 and G2 
be non-p-terminaL Thus there exists k such tha t  Ga = {g~-~+k, " "  , g~} and G4 = 
(h,~_~+k, . . .  , h~l are p-terminal. Let  ro3(g , - i+k)  = ra4(h,~-i+k) = S d  (other cases 
are analogous).  Since Ga and G~ are clearly p-similar, f p ' (G3)  = fpn(G4), i.e. 

g,_~+kL®g,_~, and h,~_i+kL'°h,,,-~, 

for some p with p < k - i. Note  now tha t  

(gl ,  " "  , g , - ~ - i ,  g ,-~+l ,  " ' "  , g,) 

and 

(h i ,  . . .  , h~-~_l ,  h~_~+l, . . .  , h~) 

are p-strings of ramifications of two trees say T~* and T=* with 

F o ( T , * )  I . - , - ,  = Fo(T2*)I : - , -~  • 

Hence, by  the inductive assumption,  

~bJ ' (Fo(TI*) ,  n - -  i - -  I )  ----" ~b~o(Fo(T~*), m -- i --  1) 

and 

~b~e(F~(T,*),  n - -  i - -  1) - ~b,e(F~(T2*),  m - -  i - -  1). 

Therefore we have immediately 

~ ( 0 ~ ,  n - ~)  - ¢ ~ ( 0 ~ ,  m - i )  

and 

~b~e(O~ , n - i )  - ~b~e(O~, m - i )  

which completes the proof of the thesis. Hence p is an addressless order. QED 
Theorem 2 shows that ,  if we design a p-unit with p being an addressless order, 

we can base on fp~ and f,~ instead of ~b~ ~ and ~b~ R. Now we shall show how f ~  and 
f e behave for addressless orders. In  particular,  we show tha t  every addressless order 
corresponds to some dequeue discipline (see Section 1). 

THEOREM 3. A n  admiss ib le  order p is  an addressless order i f f  one of  the fo l lowing 
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six conditions is satisfied: 

(~) for every p-terminal set G, with [G, p] = (g l ,  • • • 
f ~ ( V )  = 2, i f  
f~R(G) = 2, i f  
f~L(G) = 2 and f~R(G) = 3, i f  

(2) for every p-terminal set G, with [G, p] = (g l ,  "" 
fp~(V)  = 2, i f  
fpR(G) = 2, i f  
fpL(G) = 3 and fl(G) = 2, i f  

(s) for every p-terminal set G, with [G, p] = (g l ,  
LL(G) = n, 
f ,R(G)  = n, 
fpn(G) = n and f p ' ( G )  = n -  1, 

(~) for every p-terminal set G, with [G, p] = (g~, 
fpL(G) = n, 
fpR(G) = n, 
fpL(G) = n - -  1 and fpR(G) = n, 

(5) for every p-terminal set G, with [G, p] = (g~, 
fpR(G) = 2, i f  either ra (g l )  = Sd  
fpe(G)  = n, i f  either to(g1) = dS  

(e) for 

PROOF. 

every p-terminal set G, with [G, p] = (g l ,  
fpL(G) = n, i f  either ra (g l )  = Sd  
fpR(G) = 2, i f  either ra(g~) = dS  

,gn) ,  
ro(gl)  = Sd, 
to(g1) = dS,  
ro(g~) = SS; 

• , g . ) ,  

ro(gl)  = Sd, 
to(g1) = dS,  
to(g1) = S S ;  

. . . , g ~ ) ,  
i f  to(g1) = Sd, 
/ f  ro(g~) = dS,  
/ f  ra(gl)  = S S ;  

• . .  ,g~),  

/ f  ra(gl)  = Zd, 
/ f  ra(gl)  = dS,  
/ f  ra(gl)  = S S ;  

• . .  , g . ) ,  

or r~(g~) = SS,  
or ro(gl)  = SS ;  

• . .  , g , ) ,  

or to(g1) = S S ,  
or ra(gz) = S S .  

Sufficiency is obvious  on account  of Theorem 2. Necessi ty will be p roved  
with the help of the  following three  lemmas.  

LE.~L~A 1. Let  p be an arbitrary addressless order and G be a p-terminal set with 
[G, p] = (g~ , • • • , gn). Let G* consist of all elements in G except gl and both--or one, 
i f  there is only one--predecessors of gl • I f  glP~g~ , then 

either gipg for all g in G* or gpg~ for  all g in G*. 

PROOF. Suppose t h a t  this is not  the  case, i.e. t h a t  giP~g~ and there  exist g i ,  gk 
in G with j < i < k. I t  is easy to see now t h a t  the  sets 

G1 = {gl, " '  , g j - l ,  g j+l ,  " ' "  , g.} 

and 

G~ = {gl , " '"  , gk-i , g k + l  , " ' "  , gn}  

are both  p-terminal  and p-similar, but ,  on the  o ther  hand,  if g~L'~g~, then  

fpn(G~) = i -  1 and fpL(G2) = i 

and if g~R=g~, then  

fp'(G~) = i -  1 and  f p n ( G 2 )  = i, 

which contradicts  Theorem 2. Q E D  
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As a consequence of this l e m m a  we immedia te ly  conclude the  following: 
COROLLARY 1. For any addressless order p and any p-terminal set G, with [G, p] -= 

(g~ , . . . ,  g , ) ,  

(1)  i f  g~ is the only predecessor of gl in G, then either i = 2 or i = n, 
(2) i f  gi ,  gk are both predecessor of g~ in G, then either i = 2 and k = 3, or i = 3 

and k = 2, or i = n - -  l and k = n, or i = n and k = n -  1, or i = 2 and k = n, 
o r i - -  n a n d k  = 2. 

L~..~iMA 2. For every addressless order p and for any two p-terminal sets G~ with 
[GI , p] = (g~ , . . .  , g~) and G2 with [G2 , p] = (h~ , . . .  , h,,) i f  g~ and hi are both of 
the same type Sd  or dS  and glP~g~ with h~P"h~ , then 

either i =  2 and j = 2 or i = n  and j = m. 

= = L "o PROOF. Consider  the  case where ra l (g l )  ra2(hl) Sd  and let gl g2 and 
h~L~h,~ (cf. Corol lary  1). Let  moreover  m >__ n. As it is easy to see, the  sets G~ and 
G~* = {h~, h2+~- . ,  • • • , h~} are p - te rmina l  and  p-similar  bu t  

fp"(G1) = 2 and  fpL(G2) = n, 

which cont radic ts  T h e o r e m  2. Q E D  
Let p be an addressless order. I f  for any  p-terminal set G, with [G, p] = LEMMA 3. 

(g~ , . . . ,  g , ) ,  

Jp~(G) = 2 for rG(gl) = Sd  

fp~(G) = 2 for  ra(gl)  = dS,  
and 

then one of the following cases is possible: 

(1)  for every p-terminal G, with [G, p] = (g~ , . . .  , gn) and with ra(gl)  = SS ,  
fpL(G) = 2 and fpR(G) = 3; 

(2)  for every p-terminal G, with [G, p] = (gl , "'" , gn) and with ra(gl) = SS ,  
fpL(G) = 3 and fpR(G) = 2. 

PROOF. Suppose t h a t  this is not  the  case, i.e. there  exists a p- terminal  set  G 
with [G, p] -- (g l ,  " ' "  , gn) and ~ i t h  ro(g~) = S S  where (cf. Corol lary  1) ei ther 
fpL(G) = n andfpR(G) = n - 1 orfpL(G) = n --  1 andfpR(G) = n or fpn(G)  = 2 
and fpR(G) = n orfpL(G) = n andfpR(G)  = 2. Le t  the first be t rue.  T h e n  G~ = 
{g~, - "  , g~-l} is p- terminal  with ral(gl)  = dS  andfpR(G~) = n - 1 which contra-  
dicts the  assumpt ion  t ha t  fpR(GI) = 2. The  o ther  cases are similar.  Q E D  

L e m m a  3 implies (1) and (2) of T h e o r e m  3. I t  is easy to see t h a t  analogous lem- 
m r s  can be p roved  for (3),  (4),  and  (5) .  This  completes  the proof  of Theo rem 3. 

By  T h e o r e m  3 the  class of all addressless orders (if n o n e m p t y )  can be divided 
into six disjoint  classes of orders corresponding to the  six dequeue disciplines. I t  is 
interest ing to know if the six classes are n o n e m p t y  and if t hey  are one-or-more-  
e lement  sets. The  answer  to the  first quest ion is posi t ive and will be p roved  later. 
As to the  second question, we shall show now t h a t  to every dequeue discipline corre- 
sponds a t  mos t  one admissible order. I n  fact,  we p rove  a more  general  theorem:  

THEOREM 4. Let p and ~ be two admissible orders. I f  for every set G which is simul- 
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taneously p-terminal and ~-terminal 

f~'~(G) = f ~ ( G )  and f~a(G) = f~a(G), 

then p = ~. 
:PRooF. Let  p and $ be admissible orders which meet the assumption of the 

theorem. We shall show that  p and ~ coincide in the set of ramifications of every tree. 
We prove this by induction on n, the number  of ramifications in the tree. 

For n = 1 the thesis is evidently true. Suppose it is true for any n < k, and let 
T = (A, L, R, P )  be a tree with 

Now let 

[D~(P), ;] = (g,, ..., g~). 

G = {aJ ,  "." ,gk} 

be p-terminal (i.e. j is the largest number  with 7-~(e)(gj) ~ dd) and let giP~g~. 
Evidently, j <: i (since p is admissible), thus r~,(pi (g~) = dd and therefore 

D = D I ( P )  - g ~  

is also the set of ramifications of some tree. Hence, by the inductive assumption, 

[D, p] = [D, ~1 = (g,,  . . .  , g~-l, g,+l, " "  , gk). 

Consequently, G is G-terminal since g~g~ (~ is admissible) and therefore, by the 
assumption of the theorem 

f~ ' (G) = f~L(G) and f ~ ( G )  = f ~ ( G ) .  
Hence, 

and thus 

[G, ~] = ( g j , . . . ,  g~),  

[DI(P) ,  ~} = (gl ,  " " ,  gk) = [D~(P), p}. Q E D  

By Theorems 3 and 4 there exist at  most six addressless orders - -a t  most one for 
each discipline. Now we shall complete this result by  proving the existence of ex- 
actly six addressless orders, exactly one for each dequeue discipl ine. .~l  the orders 
will be defined explicitly. First some auxiliary notions. 

Let gl and g2 be two vertices in A *. gl is said to be left to g2, in symbols g~g2, if 
there exist go, g3 and g4 in A "~ with the following properties: 

(1) goL~g~ and goI~®g~, 
(2) either g3 = g~ or there exists a chain (see Definition 1) from gs to g~, 
(3) either g4 = g4 or there exists a chain from g4 to g2 • 

gl is said to be right to g2, in symbols glk*g2, if g~kgl. 
g~ is said to be upwards of g2, in symbols gl~g~, if the chain from w (the root of 

the universal tree T ~) to g~ is shorter than the chain from w to g2 • 
g~ is said to be on the level with g2, in symbols glag2, if neither g~g2 nor g2~gl • 
An infinite sequence g~, g2, • • • of vertices is called a left branch if 

(1) gl C D2(R ~) [J {¢~}, 
(2) g~L~gi+1 for i = 1, 2, . . . .  
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Fro. 4 

gl is called the head of the branch, and the left branch with a head g is denoted 
by B(g). 

An infinite sequence gx, g2, "" • of vertices is called a right branch if 
(1) gx E D2(L ®) U {~}, 
(2) g~Rg~+l for i -- 1, 2, . . . .  
gx is called the head of the branch and the right branch with a head g is denoted 

by B*(g). 
As it follows therefore, no vertex except the root ¢0 can be the head of both a 

left and a right branch. 
Let  p be an arbitrary order and let B(gl) and B(g2) be two left branches. By B(gl) p B(g2) we mean that  bl p b~ for any bl in B(gx) and any b~ in B(g~). An- alogously we define the meaning of B*(gx) p B*(g~). Example 2: Consider the tree in Figure 4. The vertices g~, g4, g5, g8, g9, gl0, gl~ are left to g3 • The vertex g3 is upwards of g,-gl~ • The string (gx, g*, g*, gs) is an initial segment of a left branch, but  (g2, g*, gs) is not since g2 E D2(R*) U {w}. The string (g3, g~, g~2) is also an initial segment of a left branch, and (g~, g3, g7, g~5) and (g2, gs, gn) are both initial segments of right branches. The vertices g4-g~ are 

all on the same level. 
• Now we arc ready to define all addressless orders. We denote them by p, w, v, p , , 

are called dual w , and v*, where p, w, and v are called simple, and p*w.W*, and v* orders. I t  should be emphasized here tha t  p, w, p*, have been discovered by 
Pawlak [3-9]. 

Definition ~,: (simple horizontal order p) 

(Vg~, g~)[glpg2 ¢=* g~#g2 V (g~ag2 & g~X*g2)], 
i. e. gxpg2 iff either g~ is upwards of g2 or g~ is on the level with g2 and g~ is right 
to g~. 
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Definition 5: (simple vertical order w) 

(Vgl , g2) [glwg2 ¢:, glXg2 ¥ ("~glXg2 & gl g2 & g~g2). 
,.~ h a 

i. e. glwg2 iff either gl is left to g2 or g, and g2 belong to the same chain and g~ is 

upwards of g2. 

Definition 6: (simple branch-along order v) By v we mean the smallest binary 

relation in A ~ (i.e. the smallest subset ofA ~ X A "°) with the following three prop- 

erties: 

(1) (Vgl , g2) [glL'~g~ ::::¢glvg2], 

(2) (Vg E 2(R )) [B(~) v B(g)], D 

(3) (Vg, g2 E 2(R ) )  [B(g,)vB(g2) ¢=> S(gl)yZ(g2)]. 
, D 

We have defined here simple orders. To define the dual orders p*, w*, and v* 

one needs to replace in Definitions 4, 5, and 6, respectively, all symbols k by h* 

and conversely, all symbols L 0° by R ~ and conversely, and all symbols B by B.* 

Example 3: Consider the tree in Figure 4. The succession of indices corresponds 
* 

to p*, i.e. (gl, . . -  , g1~) is a p -string. The external enumeration corresponds to 

w. The way we run over the vertices of a tree when enumerating them in w is shown 

in Figure 5. An example of v is given in Figure 6. The way we run over the vertices 

of a tree enumerating them in v is shown in Figure 7. Note that in this running over, 

only "right edges" can be cut short, h'Ioreover, every edge may be cut only once and 

only if we meet it for the first time. Note that for better explanation we have 

numbered all vertices of trees. Clearly for program-writing purposes we number only 

ramifications. 

We shall prove now that p, w, v, p*, w*, and v* are addressless orders. 

T H E O R E M  5.  

(1) w 
(2) w* 
(3) p 
(4) p* 
(5) v 

(6) v* 
PaOOF. 

similar. 

satisfies (1) of Theorem 3, 

satisfies (2) of Theorem 3, 

satisfies (3) of Theorem 3, 

satisfies (4) of Theorem 3, 

satisfies (5) of Theorem 3, 

satisfies (6) of Theorem 3. 

We shall consider only simple orders. The proofs for dual orders are 
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~ 5  

Fro. 6 

ad (1): Let  G be a w- te rmina l  set  wi th  [G, p] = (g l ,  • "" , g~). B y  Definit ion 4, 
• oo • L ~ for any  gl and  g2 in A , if gl g2, then  g~wg2 and there  is no g3 with  glwg~wg2. Hence,  if ra (g l )  -- Sd or ro(gl)  = SS, thenfwn(G) = 2. Let  now glR®g~ for some g~ in G. Since G is w-terminal ,  there  is no ver tex  in G - {gl} t h a t  is s imul taneous ly  upwards  of, and  on the  same chain wi th  g~, and  there  is no ver tex  left  to g~ except  eventua l ly  g2, if g~L~g~. Hence,  if ra (g l )  = dS, t hen  fwR(G) = 2; and  if ra(g~) = SS, t hen  

f~R(G) = 3. 
ad (3): Note  first tha t ,  for any  al and  as in A ~, if S(al) ~ S(a2), t hen  

alpa~ iff S(al)pS(a2). 
Consider  now a p- te rmina l  set G x~th  [G, p] = (g~, " ' "  , g~) and  let glL~g~ with 

R ~ 
i < n. Clearly,  g~ g~ does not  hold, since in the  converse  case g,pg~ which is not  
true.  Therefore ,  S(g~)pS(g~), i.e. 

g,pS(g~). (5) 
Now let T = (A, L, R, P )  be  a t ree wi th  [DI (P ) ,  P] = (h i ,  "" • , h,~), where  (hm-~+l,  • . - ,  h~) = (g l ,  " " ,  g-) .  Clearly,  S(g~) C D I ( P ) ;  t h u s - - b y  ( 5 ) - - S ( g , )  E G and S(g~) ~ gl, which is clearly impossible  since G is p - t e rminah  Hence  i = n. 

I n  the  same way  we prove  o ther  equali t ies of (3) in T h e o r e m  3. ad (5): Let  G be a v- terminal  set  wi th  [G, v] = (g l ,  " ' "  , g~). I f f  ~ ( G )  ~ 0, then  the  equal i ty  f~L(G) = 2 can be p roved  in the  same way  as for w. No te  now 
R ~ tha t ,  for any  a l ,  and  a2 in D2( ), 

alva2 iff S(al)vS(a2). 
I n  consequence,  if f~R(G) ~ O, t hen  the  equal i ty  f~R(G) = n can be p roved  in the 

Q E D  same way  as for p. 
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• 
5 T 0 1 0  

Fie. 7 

~4. Units with Addressless Orders 

In Section 2 we have described a p-oriented unit which operates on p-programs of 

labeled trees and in Section 3 we have shown how the functions f,~ and fpR can be 

interpreted and applied in designing an appropriate unit. In fact, if read is inter- 

preted as read and erase and erase is always followed by push down the store (in 

order to make the stored sequence compact and starting at the square number 0), 

then fpL and fpR describe at every moment the location of required intermediate 

results. Now Theorems 3 and 5 can be applied in designing units which correspond 

to addressless orders. We shall consider only simple orders since dual are similar. 

Let the unit under investigation be equipped ~,4th: 

(1) device able to perform all operations of a set of operations (cf. Section 2), 

(2) store for intermediate results where cells are numbered with successive 

nonncgative integers, and 

(3) two registers x and y for storing actual arguments. 

Now, let Bot denote the content of the cell number 0 (bottom of the store) 

and let Top denote the content of the rightmost nonempty cell on the store (top of 

the store). Suppose now a particular p-unit is scanning a p-program 

Accordingly p is either w or p or v every instruction o~,~8~ effects the following suc- 

cession of operations: For the simple vertical order w: 

(1) if 7i = S, then x := Top and erase Top, 

if 3 ' ~  S, then x := [~/~]; 

(2) if ~ = S, then y := Top and erase Top, 

if ~ S, then y := [~;]; 

(3) perform [o~](x, y) and put the result on the top of the store. 

For the simple horizontal order p: 

(1) if ~.~ = S, then x := Bot, eraseBot, and push down the store, 

if ~ ' ; ~  S, then x := [~'i]; 

(2) if ~ = S, then y := Bot, erase Bot and push down the store, 

if ~ S, then y : =  [~]; 

(3) perform [o~](x, y) and put  the result on the top of the store. 
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, /  
/ 

X \ 
3 

/ \  / 
× + 1 

/\ / \  
*" ~" 3 1 \ / \  

+ 4 + 

/ \  /\  
2 1 2 1 

Fio. 8 

TABLE II  

X 

\ 
2 

ot "Yi ~i 
store 

x y 0 1 2 3 4 $ 

X 12 1 2 2 
• "b 31 3 1 2 4 
+ 21 2 1 2 4 
- -  4S 4 3 2 4 
-b 21 2 1 2 4 
X 43 4 3 2 4 
-t- SS 12 3 2 4 
X SS 4 1 2 4 
- -  SS 4 4 2 0 
+ SS 0 2 2 

3 
1 
1 3 
1 3 
1 4 
4 

12 

For the simple branch-along order v: 
(1) if 7i = S, then x := Top and erase Top, 

if 7 ~  S, then x - =  [7,]; 
(2) if 8~ = S, then y := Bog erase Bog and  push down store, 

if ~ , ~  S, then y : =  [8,] 
(3) perform [o~](x, y) and put  the result on the top of the store. 
Example 4: Consider the labeled tree in Figure 8. The  w-program of this tree 

is following: 

+ S S  - S S  X S S  - S S  × 4 3  + 2 1  - 4 S  +21  +31  ×12.  

Successive states of w-unit which performs this program are shown in Table I I .  

5. Syntax of p-Programs and p-Formulas 

Let ~: denote the set of all labeled trees and let, for every admissible order p, 
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i.e. (P~ is the set of all possible p-programs. The problem arises if the (Pp are mutually 
disjoint for different p's; i.e. supposing John has written ~ in (Pp, can Tom recognize 
p by  studying the syntax (and only the syntax) of ~. The answer is negative, s ince--  
as we shall prove in this section--(P~ = 6)~ for any two admissible orders p and ~. 

To simplify the investigations we shall deal with formulas and trees instead of 
programs and labeled trees. 

Let  T denote the set of all trees and let for every admissible order 

Lp = Fp(T) ;  

i.e. Lp is the set of all possible p-formulas. Let  V -- {dS, Sd, SS,  dd} and let V + 
denote the set of all finite nonempty strings over V. In V + we define the following 
integer-valuated function H :  

H(d8)  = H ( S d )  = O, 

H(SS)  = - Z ,  

H(dd) = 1, 

S(alf3, . . .  a.~,,) = t H(a~fl~). 
i = l  

The intuitive interpretation of H is very simple. Let a be a p-program (or a par t  
of i t)  and 0 a corresponding p-formula. H(0)  is simply the number of intermediate 
results stored actually by the unit after 0 has been scanned, provided the unit erases 
when reads. 

Let  now L be the set of all 0 in V + with the following properties: 
(1) H(O) = 1, 
(2) if 0 = a l ~ l . . . a n f ~ ,  then H(o t ,# , . . . ~ , / 3 , )  >_ 1 for i =  1 , . . . , n .  
TnzortEM 6. For every admissible order p, L~ = L. 
PnOOF. Consider an arbitrary admissible order p and an arbi t rary tree T = 

(A, L, R, P ) .  Let [D~(P), p] = (gz, " '"  , g~) and F~(T) = 0. We shall show that  
0 E L. The proof is by induction on n. 

F o r n  = 1, 0 = dd; thusOE L. 
Let  the thesis be true for every n < k and consider T with IDa(P), p] = (gz, "" • , 

gk). Since p is admissible, r~(p)(gk) = d d  and hence Dl(P)  -- {gk} is also the set 
of all ramifications of some tree. Therefore, by the inductive assumption, Fp (DI (P )  
- {gk}) E L. Let now 

F,(D~(P) - {g~}) = mOz " '"  ak-g~k-,, 

F , ( T )  = m*f~,* " '"  ~k*/~k*, 

and let S(g~) = g~. Clearly, 

- . .  = + 1 

for every j > i, and 

H (oti*~i*) = H (otd3~) -- 1. 

Therefore, 

= . . .  
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for every p >__ i. Hence al*~* . . .  ak*flk* E L. In this way the inclusion Lp ~ L 
is proved. 

Now let p be an arbitrary admissible order and let 0 = a l ~  . . .  anf~n C L. We 
shall show the existence of a tree T with Fp(T)  = 8. The proof is by induction on n. 

For n = 1, 0 = dd; hence 0 = Fp({~}). 
Let the thesis be true for every n < k and consider 0 = o l ~  •. • akflk in L. Since 

0 is in L, there exists an i < k with aif~ ~ dd and a j~ j  = dd fo r j  = i ~- 1, • •. , k. 
Consider now the formula 

8 " = a 1 ~ 1 " "  * * • ~ _ ~ , _ ~  ~ ~ + ~ + ,  . . .  ~ _ ~ _ , ,  

where 

t dd, if o ~  = dS  or o~fl~ = Sd, 

a * f l *  = {dS ,  if a , ~ , =  S S .  

I t  is easy to see that  8* E L, thus- -by  the inductive assumption--there exists a 
tree T = ( A , L , R , P )  w i thFp(T)  = fl*. Let [Dx(P),p] = (gl,  " ' ' , g k - 1 )  and 
consider g in A * with giL*g. Clearly, D I ( P )  U {g} is also the set of ramifications 
of a tree and, since, g~pg (p is admissible), we have immediately 

F # ( D , ( P )  U {g}) = 8. 

Hence, 0 E L. QED 
We can add here that  L is a context-free language (cf. [2]) with the following 

grammar: 

A ---* B A ,  A ---* dd, B ---* dS,  

A ---, C A A ,  B ---* Sd, C ~ S S ,  

where A is the initial symbol. This thesis is proved in [1]. 

6. Final  Remarks  

Let us summarize the principal results of this paper. 
(1) Addressless orders are the only orders that  permit a step by step perform- 

ance of addressless programs (Definition 3) and that  guarantee a uniform accessing 
of intermediate results (Theorem 2). 

(2) Addressless orders are the only orders that  correspond to dequeue (double- 
ended-queue) disciplines; moreover, to each dequeue discipline corresponds exactly 
one addressless order (Theorems 3, 4, and 5). 

(3) Two different addressless orders cannot be distinguished by studying the 
syntax of corresponding programs (Theorem 6). 

All these results have been proved for the binary case, i.e. for the case where all 
trees are binary-ramificated. This restriction has been assumed to simplify mathe- 
matical investigations, however it can be rejected now without harming the truth of 
(1), (2), and (3). In order to generalize the results for arbitrary n-ary case we pro- 
ceed as follows: First n-ary ramificated trees are defined which is clearly simple and 
needs no comments. Then the pair of functions ~bp L and ~bp R is replaced by an n-tuple 
~bp 1 , . . .  , ~bp" of analogous functions. This allows us to define n-ary addressless 
orders. In the next step the functions fpr and fpe are replaced by analogous fpl, . . .  , 
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fp" and an n-ary analogue of Theorem 3 is proved. The proof is based on the fact 

that  Lemma 1 remains true for the n-ary case without any reformulation. The rest 

of the proof is similar. Also the proof of Theorem 4 needs only minor modifications. 

In effect we have a corollary to the effect that  every n-ary addressless order cor- 

responds to some n-ary dequeue discipline and vice versa, and that  this corre- 

spondence is one-to-one. Since there are exactly (n T 1) ! n-ary dequeue disciplines, 

we claim therefore immediately that  there exist exactly (n -[- 1) ! n-ary I addressless 

orders. The generalization of Theorem 6 clearly needs an appropriate generalization 

of function H. This can be done as follows. 

For every n-string q~ . . .  ~,  (which generalizes the concept of the type aft of a 

vertex) with c~i E {d, S} for i -- 1, . . .  , n:  

h ( ~  . . .  ~ n )  = 1 - -  m ,  

where m = Card { i : ~  = S]. 
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