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ABSTRACT. A graph G with vertex set N = {1, 2, .-. , n} is called a permutation graph 
there exists a permutation P on N such that for i , j  E N, (i - j)[P-'(i) - P-'(j)]  < 0 if ar 
only if i and j are joined by an edge in G. 

A structural relationship is established between permutation graphs and transitive graph 
An algorithm for determining whether a given graph is a permutation graph is given. Efficie, 
algorithms for finding a maximum size clique and a minimum coloration of transitive grapl 
are presented. These algorithms are then shown to be applicable in solving problems in memo] 
allocation and circuit layout. 
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1. Introduction 

Let P = [P(1) ,  P ( 2 ) ,  . . .  , P ( n ) ]  be a p e r m u t a t i o n  of the posit ive integers  i 
2, • - • , ~. Let N = {1, 2, • • • , n} and II be a subset  of N X N defined as follow~, 

11 = { ( i , j )  l i < j and P - l ( i )  > p - i ( j )  or i > j and  P - l ( i )  < P - ' ( j )  

where P - l ( i )  is the element  of N which P maps into i. In  a more pictorial  was 
draw the match ing  diagram for the pe rmuta t ion .  In  this  ma tch ing  d iagram th 
l ine connect ing  the  two i 's  intersects  the  line connect ing  the two j ' s  if and  only ! 
( i , j )  E 1I. 

Example  1. Let P = [2, 5, 4, 1, 3]. The  match ing  d iagram is shown in Figure  ] 
We now define the pe~'mutatio~ graph of P to be G(N~ II) ; t ha t  is, G is an undireete, 
graph whose vertices are 1, 2, . . .  , ~ and its edges are specified by the re la t ion  I] 
Clearly, G has no loops and no parallel  edges. The  corresponding graph for P c 
Example  1 is shown in Figure  2. 
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FIG. 1. Matchingdiagram for 
P = [2, 5, 4, 1,3] 

? 
FIG. 2. The permutation graph for 

Example 1 

A directed graph ~ i s  called transitive if the existence of edges i --~ .j and j --~ k 
in ~implies  the existence of an edge i ~ k in 

In Sect, ion 2 we establish the structural relationship between permutation graphs 
and transitive graphs and describe an algorithm for determining whether a given 
graph is a permutation graph. Because of their special structural properties, these 
two families of graphs are very helpful in modeling and solving various problems as 
described in the remainder of the paper. In Section 3 we derive an efficient algorithm 
for finding a maximum size clique of a transitive graph. In Section 4 we present a 
problem of memory allocation and show that  it reduces to that  of finding a maxi- 
mum clique of a permutation graph and therefore is easily solved by the technique 
of Section 3. In Section 5 we describe an efficient procedure for minimal chro- 
matic decomposition of transitive graphs, and show that, it provides a solution to 
the minimum plane connection problem described by Liu [3]. 

In view of the efficiency of these algorithms for transitive and permutation graphs, 
it is of interest to have procedures for deciding whether a given finite graph is 
transitively orientable and whether a given graph is isomorphic to a permutation 
graph. We have solved these two problems in a later paper [4]. 

2. Cha~'acterizatiw~ of Permutation Graphs 

Our first aim is to characterize the graphs G(N, R) which are permutation graphs 
of some P, and to devise an algorithm for finding a P if such exists. Notice that  
we assume a fixed labeling 1, 2, - . .  , ~ for the graph vertices. We do not consider 
here the problem of deciding whether there exists a relabeling for which the graph 
becomes a permutation graph for some P. 

Let us introduce a few additional terms. Assume G(N, R) is a given undirected 
graph with no loops and no parallel edges; namely, R is an irreflexive symmetric re- 
lation. Define R'to be (N X N) -- {(i, i) l i e  N} - R. The graph G'(N, R') 
is, therefore, the complementary undirected graph of G(N, R). Now define 

~ =  {(i,j) l i < j and ( i , j )  5 R}. 

Thus ~ N ,  ~ )  is actually G(N, R), where all its edges are now directed from low 
to high. Similarly, define 

~ '  = {( i , j )  l i > j  and ( i , j )  E R'}. 

Therefore, ~ ' ( N ,  ~ ' )  is actually G'(N, R') where all its edges are now directed 
from high to low. Finally, define 

ffu " 
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and ~ N ,  ~ )  is now the "union" of ~ a n d ~ 7 ' .  I t  consists of all the edges of G, di- 
rected from low to high, and of all edges missing from G (except the loops) now 
added and directed from high to low. 

THEORESI 1. G( N, R) is a permutation .graph if and only if G-~ N, ~) a~d~Z~'(; ( N , ~  ) 
are transitive. 

PROOF. Assume G(N, R) is a permutat ion graph. The definitions of a permuta- 
tion graph and of G and ~ '  imply tha t  

I( i , j )  [i < j and P-~(i) > P-~(./)} 

and 

{( i , j )  I t >  j and p-l ( i  ) > p-l(.])}. 

I t  is easy to see that  both ~ a n d  ~ '  are transitive. 
We postpone the proof of the "if"  par t  of the theorem until we develop some 

prel iminary results. 
A directed graph (with no loops) is called complete if for ever), pair of vertices 

a, b, either (a, b) is an edge or (b, a) is an edge, but not both; it is called circuit- 
free if there exists no directed circuit in the graph. 

I,ESIalA 1. A complete directed graph, is circuit-free if and ot~ly if it con tait~s no 
directed b'iangles. 

PROOF. The "only if" par t  is obvious. Assume now tha t  the graph is not circuit- 
free. Let vt ~ v2 -+ v:~ ~ . . .  ~ vz ~ v~ be a directed circuit of minimum length. 
If  l = 3, Lemma 1 follows. If not, consider the edge between vertex Vl and v3 • If 
v~ ~ v3, l is not the minimum length of a directed circuit. If  v:~ --~ vt, the graph 
contains a directed triangle. Q.E.D. 

I,EM.~IA 2. I f  G(A, R) and ~ ( N ,  ~ ' )  are both tra,~sitive, the,~ ~ (N ,  ~ )  is a 
complete circuit-free directed graph. 

PHOOF. It  follows directly from definition that  ~7(N, ~ )  is a complete directed 
graph. If  it contains directed circuits, then by Lemma 1 it contains a directed 
triangle a --~ b -+ c ~ a. Without  loss of generality, we may assume that  either 
a < b < c or a > b > c. In the former case the edges (a, b) and (b, c) were con- 
t r ibuted by ~,  and by the t ransi t ivi ty  of ~ ( N ,  ~ )  we also have (a, c) both in 
a n d ~ .  This contradicts the assumption tha t  (c, a) ~ ~ .  In the latter case a similar 

I..7.7,. .l-- 
c o n t r a d i c t i o n  arises from the transi t ivi ty of G (N, R')  Q.E.D. 

We now return to the proof of the "if"  part  of Theorem 1. We assume that  both 
G-iN, ~)  a n d ~ ' ( N , ~ ' )  are transitive. By Lemma 2 , ~ ( N ,  ~ )  is a complete, circufl- 
free directed graph. Thus it nmst contain a sink, namely, a vertex which has no 
edge emalmting from it. (Clearly it cannot have more than  one sink; consider the 
edge connecting two vertices, both of which are supposed to be sinks.) 

Let the unique sink of (;*-~N, R ~--+) be the vertex st ~ N and let ~¥ t  = N - {st}. 
The subgraph ~ ofF,, spanned by the vertices belonging to N~, is also a complete, 
circuit-free graph and therefore ~ also contains a unique vertex s2 ~ ~ 1  with no 
edges emanating from it. The same is true for the next subgraph ~.~, spanned by 
AT2 = "¥1 - -  1821, and so o n .  

Consider the sequence of successive sinks s~, s2, . . .  , s,, obtained as described 
above. I t  is clear that  ~ i s  the set of all ordered pairs (s~, sj) for which i > j, and 
that  ~ i s  the subset of ~ f o r  which the additional condition s~ < sj holds. Also, 
since s~ = sj if and only if i = j, the mapping P:i  ~ s~ (i ~ N) is a permutat ion 
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on N, with P(i) = si and P-l(si) = i. Thus R is the set of all unordered pairs 
(s,, sj) for which either si < s~ and P-l(si) > P-'(sj) or si > sj and P-l(si) < 
P-'(si). Hence G(N, R) is a permutation graph with [P( I ) ,  P (2) ,  . - .  , P (n) ]  = 
[s,, s~, . . .  , s~,]. Q.E.D. 

This proof implies an algorithm for deciding whether a given graph G(N, R) 
is a permutation graph. The defining permutation is obtained by the sequence of 
sinks of G~-~N, ~ )  when sinks are successively eliminated from the graphs. In case 
one of the resulting graphs does not have a sink, the original graph is not a permu- 
tation graph. 

Example 2. Let us apply the suggested algorithm to the graphs given in Figure 
3. First we construct ~77~(N, ~ )  for the graph given in Figure 3(a).  This is shown in 
Figure 4, where the solid lines show the arcs of 7~and the dashed lines are those of 
~ .  As is easily observed, this graph does not have any sink, and therefore the 
graph of l:igure 3(a) is not a permutation graph. Next, the graph G for the graph 
of lCigure 3(b) is shown in Figure 5(a) .  The sink of this graph is vertex 3, and 
therefore we assign P(1)  = 3. Now, vertex 3 is eliminated from the graph to yield 
the graph shown in Figure 5(b) .  Vertex 5 is now a sink, thus P(2)  = 5. The suc- 
cessive steps are shown in l:igure 5(c) and 5(d).  The resulting permutation is 
[3, 5, 4, 1, 2]. 

There are several properties of permutation graphs which we shall mention here. 
II follows immediately from our discussion that if G(N, R) is a permutation graph 
defined by P = [P(1), P(2) ,  . . .  ~ P(tt)],  then G'(N,  R') is also a permutation 
graph and its permutation is P(~ -q- 1 - i), namely, [P(n) ,  P (~  - 1), . . .  , P(1)]  

to) (b) 

FiG. 3. The graphs of Example 2 

) 
/ 1 / / / / /  

FIG. 4. G for the graph of Example 2(a) 

F I G .  5. 

(a) (b) 

(c) (d) 
The successive steps in the testing of the graph of Example 2(b) 
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Also, it is not difficult to see that  the graph defined by P-~ is isomorphic to tha t  of 
P, where the image of i in the graph defined by P is the vertex P-~(i) of the graph 
defined by P-~. 

3. Cliques and Independe~t Sets of Circuit-Free Transitive Directed Graphs 

Let G(V, E) be any finite directed graph with the following properties: (1) G has 
no loops and no parallel edges; (2) G is circuit-free; (3) G is transitive. We can 
find an order of V which will have the property that  edges ahvays go from low to 
high. This is easily done in the following way: find all the sinks of G and order 
them in any arbi t rary way; eliminate them from the graph and find all the sinks 
of the new graph again ordered a rb i t ra r i ly - - they  are next in the order; etc. Once 
this is done we may assume that  the vertices are 1, '2, • • • , ~ where ~ is the number 
of vertices of G. 

Indepe~tde~l sets of vertices are usually defined for undirected graphs in the 
following way: a set of vertices is called independent if no two vertices of the set 
are connected in the graph by an edge. A maximal i~dependettt set is an independent 
set to which no vertex can be added without violating this condition. These defini- 
tions are easily extended to directed graphs by simply referring to their underlying 
graph, namely, by ignoring the directions. 

A set of vertices of an undirected graph is called complete if every two vertices 
of the set are connected by an edge in the graph. A clique is a maximal complete 
set of vertices. There is an obvious relation between independent sets and complete 
sets; the independent sets are complete sets of vertices of the complementary graph, 
and the same relation holds between maximal independent sets and cliques. 

I t  is often necessary to find the set of all cliques or maximal independent sets of 
a given graph. Also, it is sometimes necessary to lind a maximum size clique or 
maximum size independent set. Several algorithms were published for generating 
the lists of all cliques of a given graph, and the best one known to the authors is 
that  of Paull and Unger [1, Process D]. This is still a cumbersome procedure, al- 
though we do not believe that  a more efficient one can be found for graphs with no 
given structural properties. The situation with the problem of finding a maximum 
clique is similar. The authors know of no algorithm which solves this problem in 
~k steps. 

In this section we show that,  in the case of directed transitive graphs, the problem 
of detecting the cliques is easier and that  of finding a maximum clique is almost 
immediate.  

Let G(N, E) be a given directed transit ive graph, where N ~- {1, 2, . . .  , n} 
and edges are always directed from low to high. Assume 1 < m < ~ and tha t  S 
is a clique of the section graph defined on {1, ,,'~ . . .  , m}, namely, the subgraph 
with vertices 1, 2, . . .  , m. and the same edges between them as in G. Let k be the 
highest, vertex in the clique. It  is now observed that  S U {m + 11 is a clique of 
the section graph defined by {1, 2, . . .  , m, m + 1} if and only if (k, m -t~ 1) is 
an edge of (;. For, if S U {m q- 1} is a clique, then (k, m -t- 1) must be an edge in 
G; and if (k, m + 1) is an edge in G, then every other vertex in S must also be 
connected to m + 1. This provides an immediate simplification of the Paull and 
Unger procedure. 

A more significant result is provided in view of the above-mentioned observation 
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FIG. 6. G(N, E) for Example 3 

for finding a max imum clique. Let  us construct  a sequence of n integers c(1),  
c(2), . . -  , c(~) ,  where c(i)  is the  number  of vertices in a max imum clique con- 
taining vertex i of the section graph defined on {1, 2, . . .  , i}. Clearly, c(1) = 1. 
In general, w h e n c ( 1 ) ,  c ( 2 ) , . . . ,  c ( i  - 1) are known, we look for thosever t iees  
among 1, 2 , . . . ,  i - 1 which are connected by all edge to i. If  the set. 
J~ = {Jl (J, i) ~ El of these vertices is empty,  then c(i)  = 1; otherwise, c(i)  = 
1 + maxjc j, c( j ) .  The size of the nmximum clique of G(N,  E) is maxieN c ( j ) .  

After all the  c(i)  have been obtained, a t raeebaek operat ion is performed to 
group all the  nodes belonging to a max imum clique. We locate first a j for which 
c(j) is maximal. This j must  part icipate in a maximum clique and is, in fact, the  
highest vertex in it. After  gather ing vertices i~ > i~ . . .  > i m  and C(im) > 1, we 
locate the next vertex by searching for i such tha t  (i, ira) 6 E and c(i)  + 1 = 
c(i,,,) (i < i,,,), etc. 

The outlined algori thm is extendable to a weighted graph where weight oo~ is 
assigned to vertex i, and we look for a clique with the maximum weight sum of its 
vertices. In  this ease the max imum clique weights are generated by :  

c(i) = ooi if ] J~]  = 0 (as is always the ease f o r i  = 1), 

c(i) = w, + n m x j c j  c( j )  if I J~] > 0. 

Example 3. Let ( ; (N,  E)  be the graph shown in Figure 6. First we have c(1) = 1, 
and since (1, 2) ~ E, then c(2) = 1. Since 3 is connected to 1 (among  1 and 2), 
c(3) = c(1) + 1 = 2. Similarly, c(4) -- 2. Vertex 5 is connected to 1, 2, 3, 4. 
The maximum value of the  corresponding c's is 2; thus c(5) = 3. Also, c(6) = 3. 
Vertex 7 is connected to 2, 4, and 6. Thus  c(7) = 4. We now know that  a maxi- 
mum clique is of size 4 and its highest member  is the vertex 7. We search for a lower 
vertex connected to it whose c value is 3; this is vertex 6, etc. In  this way we t race 
a maximum clique {2, 4, 6, 7}. 

This is a very  efficient dynamic  p rogramming  solution to  this problem; the  num- 
ber of e lementary  operat ions it requires is of the order t~ 2. A natural  question then 
arises: are there ally interesting problems in which the helpful t ransi t iv i ty  is present? 
A few problems of this t ype  are discussed in the  next two sections. 

4. Memory Reallocatiw~ Problem 

In this section we bring an application of tile maximum clique a lgor i thm to the 
field of sys tem programming.  

In  a mul t ip rogramming  compute r  system environment ,  tire computer ' s  memory  
holds at one t ime n programs,  whose s tar t ing addresses are respectively x , ,  x2, • • • , 
x n , w i t h x ~  < x j f o r i  < j .  
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After a certain time, some of these programs change their memory space require- 
ments, with the new length of the ith program being l~. To satisfy these require- 
ments, some of the programs are shifted bodily from one address to another so as 
to make new space. 

With each program i we associate a cost of transplantation oo, which incurs if 
the program is shifted but is independent of the distance shifted. We stipulate that 
the shifts permitted preserve the order of the programs in memory, and also that 
the overall memory requirement fits the available space [2]. 

The problem is to minimize the rcallocation costs. To tackle this problem, we 
define an undirected graph G(N, R) whose vertex i corresponds to the ith program. 
We draw an edge (i, j )  E R if the local memory requirements are such that  pro- 
grams i and j can both start at the same initial addresses x, and x i ,  respectively. 
This is expressed for i < j by 

j--1 

( i , j )  C R ~  ~ l k _ <  xi -- x, 
k - - i  

and similarly for i > j. 
A maximal clique in tile graph G corresponds to a set of programs that  can be 

left in place simultaneously while the others must be shifted. Thus the cost minimi- 
zation problem is equivalent to the problem of finding a maximum clique (with 
maximum sum of the ¢0~'s) in G. 

We proceed to show that  ~ (N ,  ~ )  a n d ~ ' ( N , ~ ' )  are both transitive. Let i < j < 
k. If (i, j )  C R and (j, k) C R, then by definition 

j--1 k--i 

Im __< Xj - -  X~, ~ l ~  __< Z~ - -  X j .  
m ~ i  m ~ j  

Adding these two inequalities, we obtain 
k--1 

E l m  __~ Xk - -  Xi 

and thus (i, k) C R. 
Similarly, by using the oppositely directed inequalities we derive 

( i , j )  E R' and ( j , k )  C R ' ~  ( i ,k )  ~ R'. 

Thus any memory reallocation of the type described generates a permutation 
graph. In particular, it generates a transitive graph and we may use the maximum 
clique procedure of the previous section for finding an optimal reallocation. 

To ensure that the programs are not shifted out of memory, we modify our 
description by requiring that programs 1 and 't~, which are dummy programs, 
never require additional space and are not to be moved. This can be taken care of 
either by directly looking for the maximum clique which contains vertices 1 and n, 
or indirectly, by assigning them very high shift costs w~ and w,,. 

Example 4. In TABLE I we summarize a reallocation problem and its solu- 
tion. We assume that  programs 1 and 8 are dummy programs and should not be 
moved. Also, we assume that  all programs have the same cost of transplantation. 
Therefore, "the problem reduces to that  of finding a maximum (in number of vertices 
in it) clique among those which contain both vertex 1 and 8. 

The graph G(N, R) of our example is shown in Figure 7. There is a unique clique 
of maximum size which contains both 1 and 8: { 1, 2, 5, 8}. Thus programs 2 and 5 
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TABLE I 

407 

Program number x i  l i  S ize  of  a max imum clique (confaining 1) 
Start address Length required whose hi~,hest vertex is i 

1 0 0 1 
2 0 300 2 
3 200 100 0 
4 600 600 3 
5 1000 200 3 
6 1100 100 0 
7 1500 300 4 
8 1700 0 4 

FIG. 7. e ( ~ ¥ ,  R) of Example 4 

can be left ill p lace while the  o thers  mus t  shift .  As t i le  r eade r  can es tab; ish  for 
himself, t he re  is no need to  cons t ruc t  G(N ,  R) ,  and  the  last  co lumn of the  t ab le  
can be c o m p u t e d  d i rec t ly .  

We conclude this  sect ion by  showing tha t  not  only  do m e m o r y  rea l loea t ioa  prob-  
lems genera te  p e r m u t a t i o n  graphs ,  bu t  also t h a t  any  p e r m u t a t i o n  g raph  :nay  be 
generated by  an a p p r o p r i a t e  m e m o r y  rea l loca t ion  problem.  

Let G(N, R) be a p e r m u t a t i o n  graph.  We want  to  show t h a t  we can a lways  
find x~, i = 1, . . .  , n and  1~, i = 1, . . .  , n - 1 such t h a t  for eve ry  i < j 

a--1 

( i,,i) ~ ~ ~ ~ l~ _< x ; -  x~, 
k = i  

j - -1  

(.i,i) C X ' = ~ l , > x j - x ; .  
k = i  

This is a set of ~(~l - 1 ) / 2  inequal i t i es  in 2,~ - 1 unknowns .  I t  will be conven ien t  
if we can find a basic  smal le r  subset  of inequal i t ies  which,  when satisfied, ensure 
sat isfact ion of all  t he  o thers .  

Cons ider  t he  inequa l f lv  co r respond ing  to  a pair  (i, ]) de no t e d  bv  I(i, j ) .  In  the  
complete  g raph  (;(N, R), t he  t y p e  of cons t ra in t  sat isf ied indica tes  wheth  w the re  
• ~ . . . .  " , ~ 7 - 7 ,  . . . . . .  is all arc of G leading  t rom z t o y  or an arc of G leading  f rom3 to t ( a s suming  ~ < d). 

E n u m e r a t e  t he  sequence of s inks in t he  order  t h e y  are  selected for eons : ruc t ing  
the p e r m u t a t i o n  cor respond ing  to t he  g raph :  

81 ~ 82 ¢--- " " " ~ 8n • 

This is a H a m i l t o n i a n  d i rec ted  pa th  of G leading  from s~ to  Sl • No te  t h a t  t h~ direc- 
t ion of all o the r  arcs can be deduced  by  t r a n s i t i v i t y  f rom this  pa th .  This  obse rva t ion  
suggests t h a t  it  m a y  be  sufficient to  consider  t he  basic  inequal i t ies  subset  
{ I ( s x  , s ~ ) ,  I ( s 2  , s a ) ,  " "  , I ( S , _ l  , s , , ) } .  
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Suppose we have a solution of l~ (i  = 1, . . .  , n - 1), x~ (i  = 1, . . .  , n) satis- 
fying this basic set. Cons t ruc t  the  memory  realloeation problem involving these 
1,, x~. I t  generates a complete g raph  G. The  satisfaetion of the  basic subset of 
inequalities implies the  existence of the  H a m i l t o n i a n  path  81 ~--  8~ ~ " ' "  ~ S~ 

also in G. Since all other  ares are deducible by  t ransi t ivi ty,  G must  be identical to 
~,, and therefore all the  other  inequalities implied b y ' T a r e  satisfied as well. 

We are now left with the task of solving the  basic set. The  inequalities of the 
basie set are: 

I s f i  1 l k < x . ~ , - -  for < s g  
~ k~s i+l  - -  Xsi+ 1 8i+1 

I(sl, S i + l  ) / S t + l _  1 

,E lk > X,~i+ 1 - -  X8 i for 8i < 81+1. L i 

We look for a solut ion of a part icular  form. Set l~ = 12 . . . . .  l._~ = L and 
x~ = (i  - l)  .L + ~ .  T he  basic inequalities are then 

I ~ 8  i - -  ~81_kl ~__ 0 for si+l < s i ,  
I ( s , , s i+ l )  = 6.~+1 -- 6.~i < 0 fors~ < si+i.  

We set therefore ~., = n and 

{~"i f o r  S i+  1 < 8 i ,  

6~+~ = 6~ - 1 fo r s i  < s~+i. 

I t  is clear tha t  1 < 6~ _< n. If  we choose h o w L  _> n t h e n x ~  = ( i - -  1 ) - L  + 6~ 
satisfies x~ _> 0 and x~ _< x~+i as necessary. 

5. Minimal  Chromatic Decomposition 

A chromatic decompositior~ of a graph is a decomposi t ion of its vertex set into dis- 
joint independent  sets N = $1 U $2 U - - .  U Sk, where k is the  chromat ic  num- 
ber of the decomposit ion.  A min imum decomposi t ion is one of min imum k. The  
following a lgor i thm is proposed for finding a min imum chromat ic  decomposi t ion 
for a t ransi t ive  g raph  G~N, ~ ) .  

At the  kth stage we generate a min imum decomposi t ion for the section graph of 
{1,2, . . .  , k}. We denote  this decomposi t ion by Dk = ($1 k, $2 k , . . .  , S~ k) where 
each S~ k is an independent  set. Clearly D1 = ({11). 

Hav ing  derived Dk,  we add vertex k + 1 to the  decomposi t ion by  the  following 
rule. Locate  the first S~ k to  which vertex k + 1 can be joined wi thout  des t roying its 
independence (i.e. such a set tha t  none  of its members  is connected to k + 1). 
We then add k -+ 1 to tha t  first possible recipient. I f  none exists, a new mono- 
chromat ic  set is generated,  containing vertex k --~ 1 alone. After  the  n th  step we 
have N = $1 ~ U $2 ~ U - . .  U S ~ .  I t  is claimed tha t  this decomposi t ion is a 
min imum one. For, t ake  any  element of S,~ n . The  reason tha t  it was not put  into 
Sm,,_~ when it was introduced is t ha t  a previous and therefore smaller member  in 
Sin,--1 is connected to it. Consider now this member  of S,,,_~ ; it must  be connected 
to some member  of S ~ - 2  • We can thus display a monotone  decreasing chain of 
connected elements which by  t rans i t iv i ty  is a clique, and whose size is m~.  I t  is 
therefore clear tha t  any chromat ic  decomposi t ion must  have at least mn sets. 
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The number of comparisons required by this algorithm is of the order n 2. In 
ease of a permutation graph, the process may be further simplified by observing 
that at the kth stage only the last element of each independent set of the decom- 
position has to be observed. For, in order to test whether a new element can be 
joined to a particular set, it is sufficient to test connectivity with the last element 
only. The following example uses this particular simplification for finding minimum 
decomposition of a permutation graph. 

Example 5. Consider the graph of Figure 7, where all edges should be directed 
from low to high. We get: 

D1 = ({1}), 

D2 = ({1}, {2}), 

D3 = ({1,3}, {2}), 

D~ = ({1, 3}, {2}, {4}), 

D~ = ({1, 3}, {2}, {4, 5}), 

O6 = ({1, 3}, {2, 6}, 14, 5}), 

07 = ({1, 3}, {2, 6}, {4, 5}, {7}), 

Ds = ({1, 3}, {2, 6}, {4, 5}, {7, 8}). 

For illustration, consider the construction of D7 from D6. The vertex 7 is connected 
to 3, 6, and 5 (it is also connected to 1, 2, and 4, but  these we do not have to check 
since the last elements of the blocks in D6 are 3, 6, and 5) ; thus 7 cannot be added 
to any of the blocks of D6 and a block {7} has to be constructed. Our conclusion is 
that the graph of Figure 7 is 4-chromatic, and Ds describes a minimal chromatic 
decomposition. 

In some cases, all we want to know is the chromatic number and we do not insist 
on specifying a minimal decomposition. In these cases it is sufficient to find a maxi- 
mum clique, using the technique of the previous section. 

Liu in [3] describes a problem of realizing a connection board with the least num- 
ber of planes. The original connection requirements are prescribed by a bipartite 
graph. For illustration consider the following example. 

Example 6. Consider the connection requirements given in Figure 8. To de- 
termine the least number of planes in which these connections can be realized, 
without two connections intersecting in one plane, Liu constructs a new undirected 
graph in which the vertices correspond to the edges (connections) of the original 
problem. Two vertices are connected by an edge if and only if the corresponding 
edges intersect. I t  is then observed that  the chromatic number of the resulting 
graph is the same as the required number of planes and that  a chromatic decom- 

FIG. 8. T h e  c o n n e c t i o n s  for  E x a m p l e  FIG. 9. F igu re  8 a f t e r  " t r i m m i n g "  

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972 



410 s. EVEN, A. PNUELI, AND A. LEMPEL 

position prescribes an assignment of edges to planes. This can be further improved 
by observing that  in essence we have a permutation graph. In our example, simply 
" t r im" the vertices above and below, to obtain the graph shown in Figure 9, in 
which the endpoints of all edges are disjoint and all edge intersections are pre- 
served. The defining permutation is P = [2, 6, 1, 4, S, 3, 9, 5, 7]. Now, instead of 
using any of the conventional algorithms for coloration, all of which are compara- 
tively inet[ieient, we can use the algorithmn described earlier in this section: 

D1 = ({1}), 
D2 = ({1}, {2}), 
D3 = ({1, 3}, {2}), 
D4 = ({1, 3}, {2, 4}), 
D~ = ({1, 3, 5}, {2, 4}), 
D6 = ({1, 3, 5}, {2, 4}, {6}), 
D7 = ( l l ,  3, 5, 7}, {2, 4}, {6}), 
D8 = ( /1 ,  3, 5, 7}, {2, 4, S}, {6}), 
D~ = ({ 1, 3, 5, 7}, {2, 4, 8, 9}, {6}). 

Also, the chromatic number of this graph could be determined directly by the maxi- 
mum clique procedure of Section 3. 

Finally, we want to mention a slightly different way of finding a minimal chro- 
matic dee()nlposition of a pernmtation graph: 

The blocks (subsets) are constructed directly from P. Let us illustrate on Ex- 
ample 6. The first block contains 2, next is 6 (which is greater than 2 and to its 
right in P and therefore not connected to it), next is 8, and finally 9. Thus the first 
block is {2, 6, S, 91. It is clear that we always adjoin the first element which can 
be adjoined to the present set. The procedure is continued on the remaining se- 
quence: [1, 4, 3, 5, 7]. We derive the block {1, 4, 5, 7}. The last block is {31. 
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