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ABSTRACT. A graph & with vertex set N = {1, 2, --- , »} is called a permutation graph
there exists a permutation 2 on N such that for<, j € N, (i — H[P'{) — P15} < 0if ar
only if 7 and 7 are joined by an edge in G.

A structural relationship is established between permutation graphs and transitive graph
An algorithm for determining whether a given graph is a permutation graph is given. Efficier
algorithms for finding a maximum size clique and & minimum coloration of transitive grapl
are presented. These algorithms are then shown to be applieable in solving problems in memon
alloeation and eireuit layout.
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1. Introduction

TLet P = [P(1}, P(2), -, P(n)] be a permutation of the positive integers .
2, ,n Let N = 11,2 <« a} and II be 4 subset of N X N defined as follows

I={()li<j and PHO) >PNH or ¢>F and P < P

where Pfl(i) is the element of ¥ which P maps into 7. In a more pictorial way
draw the matching dingram for the permutation. In this matching diagram th
line connecting the two ¢’y lntersects the line connecting the two j's if and only :
(z, /) € IL ‘

Ezample 1. Let P = (2,5, 4, 1, 3]. The matching diagram is shown in Figure |
We now define the permutation graph of P to be G{N, II); that is, ¢ is an undirecte
graph whose vertices are 1, 2, -+ -, » and its edges are specified by the relation TI
Clearly, - has no loops and no parallel edges. The corresponding graph for P ¢
Example 1 is shown in Figure 2.
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Frc. 1. Matching diagram for Fic. 2. The permutation graph for
P=10251413] Example 1

A directed graph Tis called transitive if the cxistence of edges i —» jand j — k
in @ implies the existence of an edge i — k in G

In Section 2 we establish the struetural relationship between permutation graphs
and transitive graphs and deseribe an algorithm for determining whether a given
graph is a permutation graph. Because of their special structural propertics, these
two families of graphs are very helpful in modeling and solving various problems as
described in the remainder of the paper. In Section 3 we derive an efficient algorithm
for finding a maximum size elique of a transitive graph. In Section 4 we present a
problem of memory allocation and show that it reduces to that of finding & maxi-
mum clique of a permutation graph and therefore is casily golved by the technigue
of Section 3. In Section 4 we deseribe an efficient procedure for minimal chro-
matic decomposition of transitive graphs, and show that it provides a solution to
the minimum plane connection problem deseribed by Tiu [3].

In view of the efficiency of these algorithms for transitive and permutation graphs,
it is of interest to have procedures for deciding whether a given finite graph is
transitively orientable and whether a given graph is isomorphie to a permutation
graph. We have solved these two problems in a later paper [4].

2. Characterization of Permutation Graphs

Qur first aim is to characterize the graphs G{N, R) which are permutation graphs
of some P, and to devise an algorithm for finding a P if such exists. Notice that
we assume a fixed labeling 1, 2, - .. , n for the graph vertices. We do not eonsider
here the problem of deciding whether there exists a relabeling for which the graph
becomes a permutation graph for some P.

Let us introduce a few additicnal terms. Assume G{N, B) is a given undirected
graph with no loops and no parallel edges; namely, £ is an irreflexive symmetric re-
lation. Define B to be (N X N) — {(4, ©) | i € N} — K. The graph G'(¥, &)
is, therefore, the complementary undirected graph of (N, B). Now define

=10, [i<j and ()€ R}

Thus E'*(N, ) is actually G(N, R), where all its edges are now directed from low
to high. Similarly, define

B o= {Gj)|i>j and (4 ]) € R

Therefore, f’(N, (R_’) 15 actually G’(N, R') where all its cdges are now dirceted
from high to low. Finally, define

®=RUR
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402 §. EVEN, A. PNUELI, AND A. LEMPEL

and *(?(N, 7{’_’) is now the “union” of & and T, It consists of 1l the edges of ¢, di-
rected from low to high, and of all edges missing (rom & (except the loops) now
added and directed from high to low.

TrEOREM 1. G(N, R) is a permutation graph if and only if (r( N, T‘B’) a'nd‘(_}'(N,F)
are lransitive.

Proor. Assume G{N, R) 1s 4 permutation graph. The definitions of a permuta-
tion graph and of Gand @ 1mply that

= {0 e < and PG > PTG
and
T o=1Gj)i>5 and P > P

It is easy to sec that both % and R are transitive.

We postpone the proof of the “if”” part of the theorem until we develop some
preliminary results.

A directed graph (with no loops) is called complete if for cvery pair of vertices
a, b, either (a, b) is an edge or (b, @) is an edge, but not both; it is called efreutt-
free if there exists no directed circuit in the graph.

Luvya L. A complete dirvected graph is circuit-free if and only if 1t contains no
directed triangles.

Proor. The “only if” part is obvious. Assume now that the graph is not eircuit-
free. Let vy — v — 2y -+ — p; — v, be a dirceted cireuit of minimum length.
If { = 3, Lemma 1 fnllo“a If not, consider the edge between vertex o and ;. If
1 — ¥y, 13 not the minimum length of a dirceted cireuit. If v; — v, the graph
contains a direeted ‘manglr- Q E.D.

Lemva 2. If G(N R) and @ (N, R) are bath transitive, then (‘(AV ‘_') is a
complete cireuit-free directed graph.

Proor. It follows directly from definition that Yo (N, R) is a complete directed
graph. If it contains dirceted circuity, then by Lemma 1 it contains a dirceted
triangle ¢ — b — ¢ — a. Without loss of generality, we may assume that cither
a<b<e or a > b > e In the former case the odgeq (a, b) and (b, ¢) were con-
trlbu‘md by }?, and by the transitivity of Iel N, R) we, also have (a, ¢} both in i)
and T, This contradiets the assumption that (r @) € T In the latter ease a similar
contradiction arises from the transitivity of ‘@ (N, R’ Q.E.D.

W@ now rm‘urn tot the proof of the “if” part of Thmrrm 1. We assume that both
(r(N IP) and & (N, T ) are transitive. By Temma 2, G( N, ) isa complete, circuit-
free directed graph. Thus it must eontain a sink, namely, a vertex which has no
edge emanating from it. {Clearly it eannot have more than one sink; consider the
edge connecting two wprtif_q: bath of w hich are supposed to be sinks.)

Let the unique sml\ of G(N, R) be the vertex 8 € N and let ¥y = N — {8}.
The subgraph G of (:, apfmned by the vertices belonging 1o N1, is also a complete,
circuit-free graph and therefore (7 also contains a unique vertex 526N with no
edges emanating from it. The same is true for the next subgraph (;, spanned by
Ne = Ny — {8y, and =0 on.

Consgider the sequence of successive sinks s1, s, -+ -, s, obtained as described
llbme It 1s clear that R 18 the set of all ordered pairs (s, s;) for which ¢ > J, and
that & is the subset of & for which the additional condition §; << 8; holds, Also,
sinee §; = s; if and only if 7 = j, the mapping Pi7 — s: (¢ € N) i3 a permutation
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on N, with P(¢) = s; and Ps;) = ¢ Thus R iz the set of all unordered pairs
(s;, 8;) for which cither s; < s; and P (s) > P ' s;) ors; > s; und Pl(s) <
P7Y{s,). Henee G(N, ) is a permutation graph with [P(1), P(2), ---, Pin)] =
[81, 8, -+, 8] QI.D.

This proof implics an algorithm for deeiding whether a given graph (N, R)
18 a pern‘w_l)ltmigg graph. The defining permutation is obtained by the sequence of
sinks of G(N, R) when sinks are successively eliminated from the gruphs. In case
one of the resulting graphs does not have a sink, the original graph is not a permu-
tation graph.

Ezample 2. Let us appliy_'_*thc suggested algorithm to the graphs given in Figure
3. Irst we conﬂ‘rruc‘r‘mz\’, R) for the graph given in Figure 3{a). This is shown in
Figure 4, where the solid lines show the ares of " and the dashed lines are those of
/. As is casily observed, this graph does not have any sink, ang_’tl'lerefore the
graph of Figure 3(a) is not a permutation graph. Next, the graph ( for the graph
of Figure 3(b) is shown in Figure 5(a). The sink of thix graph is vertex 3, and
therefore we assign (1) = 3. Now, vertex 3 is eliminated from the graph to vield
the graph shown in Figure 5(b). Vertex 5 is now a sink, thus P(2) = 5. The sue-
cessive steps arc shown in Figure 3(¢) and 5(d). The resulting permutation is
3,5 4,1, 2.

There are several properties of permutation graphs which we shall mention here.
It follows immediately from our discussion that if G(N, £) is a permutation graph
defined by P = [P(1), P(2), ---, P(n}], then (Y(N, R') is also a permutation
graph and its permutation is P{« 4+ 1 — ¢), namely, [P(n), P{n = 1), - -, P(1)]

{a)
Fic. 3. The graphs of Example 2

0@

(d)
Frc:. 5. The suecessive steps in the testing of the graph of Example 2(b)
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Also, it is not difficult to see that the graph delined by P~ is isomorphic to that of
P, where the image of 7 in the graph defined by P is the vertex P7'(4) of the graph
defined by P

3. Cligues and I'ndependent Sets of Circuit-Free Transitive Divecled Graphs

Let (;{V, E) be any finite directed graph with the following properties: (1) & has
no loops and no parallel edges; (2) G is circuit-free; (3) (7 ig transitive. We ean
find an order of V which will have the property that edges always go from low to
high. This is easily done in the following way: find all the sinks of @ and order
them in any arbitrary way; eliminate them [rom the graph and find all the sinks
of the new graph again ordered arbitrarily—they are next in the order; ete. Onee
this is done we may assume that the vertices are 1, 2, ..., » where n is the number
of vertices of .

Independent seis of vertices are usually defined for undirected graphs in the
following wuy: a set of vertices is called independent if no two vertiees of the set
are connected in the graph by an edge. A marimal independent set is an independent
set to which no vertex can be added without violating this eondition. These defini-
tions are eusily extended 1o directed graphs by simply relerring to their underlying
graph, namely, by ignoring the directions.

A set of vertices of an undirceeted graph s called complete il every two vertices
of the set are connected by an edge in the graph. A cligue i3 a maximal complete
set of vertices. There is an obvious relation between independent sets and complete
sets; the independent sets are complete sels of vertices of the complementary graph,
and the same relation holds between maximal independent sets and cliques.

It is often necessary to find the set of all cliques or maximal independent sets of
a given graph. Also, it is sometimes necessary to find a4 maximum size clique or
maximum size independent set. Several algorithms were published for generating
the lists of all cliques of a given graph, and the best one known to the authors is
that of Paull and Unger [1, Process D). This is still a eumbersome procedure, al-
though we do not believe that a more efficient one can be found for graphs with no
given structural properties, The situation with the problem of finding a maximum
clique is similar. The authors know of no algorithm which solves this problem in
a* steps.

In this section we show that, in the case of directed transitive graphs, the problem
of deteeting the cliques is easier and that of finding a maximum cligue is almost
immediate.

Let GIN, E) be a given directed transitive graph, where N = {1, 2, .-+, n}
and cdges are always dirceted from low to high. Assume 1 < m < » and that 8
is a clique of the seetion graph defined on {1, 2, ---, m}, namely, the subgraph
with vertices 1, 2, - -+, m and the same edges between them as in 6. Let & be the
highest vertex in the clique. It is now obscrved that § U fm + 1} is a elique of
the section graph defined by {1, 2, - -, m, m + 1} if and only if (k, m + 1) is
an cdge of (. Tor, if 8 U {m + 1} is a clique, then (&, m + 1) must be an edge in
G; and if (k, m 4+ 1) is an edge in G, then every other vertex in 8 must also be
conneeted to m + 1. This provides an immediate simplification of the Paull and
Unger proeedure.

A more significant result is provided in view of the above-mentioned ohservation
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Fia. 6. G(N, E) for Example 3

for finding 2 maximum elique. T.et us eonstruet a sequence of n integers c(1),
c(2), -+, e(n), where ¢(4) is the number of vertices in a maximum eclique con-
taining vertex 7 of the seetion graph defined on {1, 2, - -, 2}, Clearly, ¢(1) = 1.
In general, when ¢(1), e(2), -+ -, e{d — 1) are known, we look for those vertices
among 1, 2, .-, ¢ — 1 which are connected by an edge to . If the sect
Jio = {j| (j, ) € I} of these vertices is empty, then (2} = 1; otherwise, ¢(i) =
1 + max,e,, ¢(j). The size of the maximum elique of G(N, E) iz max;zx ¢(J).

After all the (i) have been obtained, a traechack operation iy performed to
group all the nodes belonging te a maximum clique. We locate first a j for which
e(j) 1s maximal. Thig j must participate in a maximum cligile and is, in fact, the
highest vertex in it. After gathering vertices 4 > 4 -« > 7, and ¢(4,) > 1, we
locate the next vertex by searching for ¢ such that (4, ¢.) € F and ¢(d) + 1 =
clin) (L < 1), cte.

The outlined algorithm is extendable to a weighted graph where weight «, is
assigned to vertex 7, and we look for a clique with the maximum weight sum of its
vertices. In this case the maximum elique weights are generated hy:

(i) = w i) S| = 0 (asis always the cuse for ¢ = 1),

e(f) = o + mux;e,, () HiJ, >0

Ezample 3. Lot G(N, &) be the graph shown in Figure 6. First we have e(1) = 1,
and sinee (1, 2) ¢ FE, then ¢(2) = 1. Since 3 is conneeted to 1 (among 1 and 2),
c(3) = e¢(1) + 1 = 2. Similarly, ¢(4) = 2. Vertex 5 is eonnceted to 1, 2, 3, 4.
The maximum value of the corresponding ¢’s is 2; thus ¢(5) = 3. Also, ¢(6) = 3.
Vertex 7 is connected to 2, 4, and 6. Thus «(7) = 4. We now know that a maxi-
mum clique is of size 4 and its highest member is the vertex 7. We search for a lower
vertex connected to it whose ¢ value 1s 3; this iy vertex 6, ete. In this way we trace
a maximum clique {2, 4, 6, 7}.

This is a very efficient dynamic programming solutien to this problem; the num-
ber of elementary operations it requires is of the order »”. A natural question then
arises: are there any interesting problems in which the helpful transitivity is present?
A few problems of this type are discussed in the next two sections.

4. Memory Reallocalion Problem

In this section we bring an applieation of the maximum elique algorithm to the
field of system programming.

In & multipregramming computer system environment, the computer’s memory
holds at one time n programs, whose starting addresses are respectively 1, 22, -+ -,
Tn, with 2 < x; for 4 < .
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After a certain time, some of these programs change their memory space require-
ments, with the new length of the ith program being I;. To satisfy these require-
ments, some of the programs are shifted bodily from one address to another so as
to make new space.

With each program 7 we associate a cost of transplantation w, which ineurs if
the program is shifted but is independent of the distance shifted. We stipulate that
the shifts permitted preserve the order of the programs in memory, and also that
the overall memory requirement {its the available space [2].

The problem is to minimize the reallocation costs. To tackle this problem, we
define an undireeted graph G{N, R) whose vertex 7 corresponds to the #th program.
We draw an edge {7, j) € R if the local memory requirements are such that pro-
grams < and j can hoth start at the same initial addresses @, and z;, respeetively.
This is expressed for 7 < / by

i—1

(?77) C R@ sz S r; — X
k=i

and similarly for ¢ > j.

A maximal clique in the graph ¢ corresponds to a set of programs that can be
left in place simultaneously while the others must be shifted. Thus the cost minimi-
zation problem is equivalent to the problem of inding & maximum clique (with
maximum sum of the w;’s) E 0. ;. — e

We proceed to show that G(N, B) and (7 (N, R') are both transitive. Let ¢ < j <
k. If (4, )) € Rand (j, k) £ R, then by definition

j=1

Dol < 2y — i, I 1 — z.

m=q m=j

=
i

i

Adding these two inequalities, we obtain

i—1

A

m=i

and thus (4, k) € R.
Similarly, by using the oppositely directed incqualities we derive

(6, N ¢ R and (j, k)R = (4, k) CR.

Thus any memory reallocation of the tvpe described gencrates a permutation
graph. In particular, it generates a transitive graph and we may use the maximum
clique procedure of the previous section for finding an optimal reallocation.

To ensure that the programs are not shifted out of memory, we modify our
description by requiring that programs 1 and », which are dummy programs,
never require additional spuce and are not to be moved. This ean be taken care of
either by directly looking for the maximum clique which contains vertices 1 and =,
or indirectly, by assigning them very high shift costs oy and w, .

Ezample 4. In TapLe I we summarize a reallocation problem and its solu-
tion. We assume that programs 1 and 8 are dummy programs and should not be
moved. Also, we assume that all programs have the same cost of transplantation.
Therefore, the problem reduces to that of finding a maximum (in number of vertices
in it) clique among those which eontain both vertex 1 and 8.

The graph G{N, B) of our example is shown in Figure 7. There is a unique clique
of maximum size which contains both 1 and 8: |1, 2, 5, 8}. Thus programs 2 and 5
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TABLE I
ke I Size of a maximum cligne (conlatning i)
Program number Star! address Length reqeired whose highest veriex 15 1
1 0 0 1
2 0 300 2
3 200 100 0
4 600 600 3
5 1000 200 3
6 1100 100 0
7 1560 300 4
8 1700 Q 4
|
8 2
e
TELT =€
6 - 4
5

Fig. 7. G(N, R) of Example 4

can be left in place while the others must shift. As the reader can estabiish for
himself, there is no need to construet G{N, R), and the last column of the table
can be computed directly.

We eonclude this zection by showing that not only do memory reallocation prob-
lems generate permutation graphs, but alto that any permutation graph mayv be
generated by an uppropriate memory realloeation problem.

Let G(N, R) be & permutation graph. We want to show that we ean alwavs
findz;,7=1, - ,nandl;, 2 =1, --- , 1 = 1 such that for every ¢ < J

i—1
LHER = S b <, — i,
k==t

J-1
(j,7) C B = ;(Z be > 25 — .
This is a4 set of n(n — 1) /2 incqualities in 2n — 1 unknowns. It will be convenient,
if we can find a basic smaller subset of inequalities which, when satisfied, ensure
satisfuction of all the othera.

Consider the ir‘i(;qua‘litiy corresponding to a pair (7, j) denoted by I(4, ;). In the
complete graph G(N, R), the type of constraint satisfied indicates whethor there
18 an arc of E”leading from {to j or an are of & leading from j to 7 (assuming ¢ < J).

Enumerate the sequence of sinks in the order they are sclected for eons’ructing
the permutation corresponding to the graph:

Sl { e - — 8, .

This is 4 Hamiltonian direeted path of‘(}Tleadmg from g, to s; . Note that th2 direc-
tion of all other ares can be deduced by transitivity from this path. This observation
suggests that it may be sufficient to consider the basie inequalities subset
sty 820, Ise, s3), -, Isa, s}
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Suppoese we have a solution of I; (¢ = 1, --- ,n — 1), % (¢ = 1, - -+, n) gatis-
fying this basic set. Construct the memory reallocation problem involving these
{;, r;. It generates u complete graph (. The satisfaction of the basic subset of
inequal;l_t‘_i.es implies the existence of the Hamiltonian patl g1 < s - 8,
also in G. Since all other ares are deducible by transi’fi_\iit.y, ¢ must be identical to
(7, and therefore all the other inequalities implied by G are satisfied as well,

We are now left with the task of solving the basic set. The inequalities of the
basic set are:

ai=l

Z lk S Ls, — x3i+] for 8541 < 8,
I k=s,41
(8" 3 ‘S‘i+1) = siai~1

L E le > To,, — X, for 8; < 8,41 .
k=8

We look for a solution of a particular form. Set &, = I, = - = ], y = L and
z; = (i — 1)-L + &;. The hasie inequalities are then

0y — 8, 2 0 for sip < 54,
Tls.ssin) = {6““ -8, <0 for s: < 41 .

We set therelore §,, = » and

5 ds for s;0 < 84,
i &, — 1 for s; < 3i4 .

It is elear that 1 < 8, < n. If we choose now I 2> nthen z; = (2 — 1)-L + &,
satisfies ; 2> 0 and z; < 2z, a8 nceessary.

5. Minimal Chromatic Decomposttion

A chromalic decomposition of a graph is a deeomposition of its vertex set into dis-
joint independent sets N = 8, U 8, U --. U 8,, where & is the chromatic num-
ber of the decomposition. A minimum decomposition is one of minimum % The
following algorithm is proposed for finding a minimum chromatic decomposition
for a transitive graph ??(N, ﬁ.)

At the kth stage we generate a minimum decomposition for the section graph of
11,2, -+, k. We denote this decomposition by Dy = (85, S, -+, Sf,,,c) where
each 8. is an independent set. Clearly Dy = ({1}).

Having derived Dy, we add vertex & -+ 1 to the decomposition by the following
rule. Locate the first 8% to which vertex k + 1 ean be joined without destroying its
independence (i.e. such a set that none of its members is connected to & + 1).
We then add & 4 1 to that first possible recipient. If none exists, a new mono-
chromatic set is generated, containing vertex & + 1 alone. After the nth step we
have N = 8" U 8" U --. U 85 . Tt is claimed that this decomposition is a
minimum one. I'or, take any element of 87, . The reason that it was not put into
Sm,—1 when it was introduced is that a previous and therefore smaller member in
8,1 is connected to it. Consider now this member of S, _; ; it must be connected
to some member of S, _». We ean thus display a monotone decreasing chain of
connected elements which by transitivity is a elique, and whose size is m, . It is
therefore clear that any chromatie decomposition must have at least m, sets.
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The number of comparisons required by this algorithm is of the order 7. In
case of a permutation graph, the process may be further simplified by observing
that at the kth stage only the last element of each independent set of the decom-
position has to be observed. For, in order to test whether & new element can be
joined to a particular set, it is sufficient to test connectivity with the last element
only. The following example uses this particular simplification for finding minimum
decomposition of a permutation graph.

Example 5. Consider the graph of Figure 7, where all edges should be directed
from low to high. We get:

Dy = (11,

Dy = (11, 42D,

Dy = ([1,3}, {2}),

Dy= (17, 3], 120, 14,

D; = (11, 3}, 12}, {4, 5)),

Ds = (11,3}, 12, 61, 14, 5},

Dr = (11, 31,12, 6], 14, 5}, 17},

DB (41)3}5%2)611{47 5"{77 8})

I

1

Il

For illustration, consider the construction of 1) from IJ; . The vertex 7 is connected
to 3, 6, and 5 (it is alzo connected to 1, 2, and 4, but these we do not have to check
since the last elements of the blocks in D are 3, 6, and 5); thus 7 eannot be added
to any of the blocks of Dy and a bloek {7} has to be constructed. Our conclusion is
that the graph of Figure 7 is 4-chromatic, and Ds desceribes a minimal chromatic
decomposition.

Tn some eases, all we want to know is the ehromatic number and we do not insist
on specifying a minimal decomposition. In these cases it is sufficient to find a maxi-
mum ¢elique, using the technique of the previous section.

Liu in [3] deseribes a problem of realizing a connection board with the least num-
ber of planes. The original connecetion requirements are preseribed by a bipartite
graph. For illustration eonsider the following cxample.

Example 6. Consider the eonnection requirements given in Figure 8. To de-
termine the least number of planes in which these conncctions ean be realized,
without two connections interseeting in one plane, Liu construets a new undirected
graph in which the vertices correspond to the cdges (connections) of the original
problem. Two vertices are connected by an edge if and only if the eorresponding
edges interseet. Tt is then observed that the chromatie number of the resulting
graph iz the same as the required number of planes and that a chromatic decom-

Fi. 8. The eonnections for Example 6 F16. 9. Figure 8 after “trimming’’
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position preseribes an assignment of edges to plancs. This can be further improved
by observing that in essence we have a permutation graph. In our example, simply
“trim” the vertices above and below, to obtain the graph shown in Figure 9, in
which the endpoints of all edges are disjoint and all édge interscetions are pre-
served. The defining permutation is P = [2, 6, 1, 4, 8, 3, 9, 5, 7]. Now, instead of
using any of the conventional algorithms for eoloration, all of which are compara-
tively inefficient, we can use the algorithm deseribed carlier in this seetion:

Dy = ({1h,

D2 = ({l}s {2})7

Dy = ({153}3 {2}):
D4 = ({153}< 52:4}))

DC- = ({1)35 '3}: {2:4}))

DG = (%173.’ 3}’ {2 4}- {6”7

Di’ = (fla 3, ;.’: 7}- {2’ 4}! H)});

Dy = (11,3, 5,71, {2, 4,8}, [6}]),
Dy = (11,3,5,7}, {2, 4, 8, 9}, {6]).

Also, the chromatie number of this graph could be determined directly by the maxi-
mum elique proeedure of Seetion 3.

Finally, we want to mention a slightly different way of linding a minimal chro-
muatic decomposition of a permutation graph:

The bloeks (subsets) are eonstrueted directly from £2. Let us illustrate on Fx-
ample 6. The first bloek contains 2, next is 6 (which is greater than 2 and to its
right in P and thercefore not eonneeted to it), next is 8, and finally 9. Thus the first
bleck i5 12, G, §, 9. It is clear that we always adjoin the first clement whieh can
be adjoined to the present set. The procedure is continued on the remaining se-
quence: [1, 4, 3, 5, 7. We derive the block 11, 4, 5, 7{. The last blocl is {3}.
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