
Permutation Graphs and Transitive Graphs

S. EVEN AND A. PNUELI

The Weizmann Institute of Science, Rehovot, Israel

AND

A . L E M P E L

Sperry Rand Research Center, Sudbury, Massachusetts

ABSTRACT. A graph G with vertex set N = {1, 2, .-. , n} is called a permutation graph
there exists a permutation P on N such that for i , j E N, (i - j)[P-'(i) - P-'(j)] < 0 if ar
only if i and j are joined by an edge in G.

A structural relationship is established between permutation graphs and transitive graph
An algorithm for determining whether a given graph is a permutation graph is given. Efficie,
algorithms for finding a maximum size clique and a minimum coloration of transitive grapl
are presented. These algorithms are then shown to be applicable in solving problems in memo]
allocation and circuit layout.

KEY WORDS AND PHRASES: graphs, permutations, permutation graphs, transitive graph
cliques, maximal cliques, chromatic decomposition of graphs, minimal chromatic decompos
tion, memory allocation problems

CR CATEGORIES: 3.73, 4.43, 5.32

1. Introduction

Let P = [P(1) , P (2) , . . . , P (n)] be a p e r m u t a t i o n of the posit ive integers i
2, • - • , ~. Let N = {1, 2, • • • , n} and II be a subset of N X N defined as follow~,

11 = { (i , j) l i < j and P - l (i) > p - i (j) or i > j and P - l (i) < P - ' (j)

where P - l (i) is the element of N which P maps into i. In a more pictorial was
draw the match ing diagram for the pe rmuta t ion . In this ma tch ing d iagram th
l ine connect ing the two i 's intersects the line connect ing the two j ' s if and only !
(i , j) E 1I.

Example 1. Let P = [2, 5, 4, 1, 3]. The match ing d iagram is shown in Figure]
We now define the pe~'mutatio~ graph of P to be G(N~ II) ; t ha t is, G is an undireete,
graph whose vertices are 1, 2, . . . , ~ and its edges are specified by the re la t ion I]
Clearly, G has no loops and no parallel edges. The corresponding graph for P c
Example 1 is shown in Figure 2.

Copyright © 1972, Association for Computing Machinery, Inc.

General permission to republish, but not for profit, all or part of this material is grante
provided that reference is made to this publication, to its date of issue, and to the fact tha
reprinting privileges were granted by permission of the Association for Computing Maehiner3
Authors' present addresses: S. Even and A. Pnueli, The Weizmann Institute of Sciene~
Rehovot, Israel; A. Lempel, l)epartment of Electrical Engineering, Technion--Israel Inst!
tute of Technology, Haifa, Israel.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321707.321710&domain=pdf&date_stamp=1972-07-01

Permutation Graphs and Transitive Graphs 401

FIG. 1. Matchingdiagram for
P = [2, 5, 4, 1,3]

?
FIG. 2. The permutation graph for

Example 1

A directed graph ~ i s called transitive if the existence of edges i --~ .j and j --~ k
in ~implies the existence of an edge i ~ k in

In Sect, ion 2 we establish the structural relationship between permutation graphs
and transitive graphs and describe an algorithm for determining whether a given
graph is a permutation graph. Because of their special structural properties, these
two families of graphs are very helpful in modeling and solving various problems as
described in the remainder of the paper. In Section 3 we derive an efficient algorithm
for finding a maximum size clique of a transitive graph. In Section 4 we present a
problem of memory allocation and show that it reduces to that of finding a maxi-
mum clique of a permutation graph and therefore is easily solved by the technique
of Section 3. In Section 5 we describe an efficient procedure for minimal chro-
matic decomposition of transitive graphs, and show that, it provides a solution to
the minimum plane connection problem described by Liu [3].

In view of the efficiency of these algorithms for transitive and permutation graphs,
it is of interest to have procedures for deciding whether a given finite graph is
transitively orientable and whether a given graph is isomorphic to a permutation
graph. We have solved these two problems in a later paper [4].

2. Cha~'acterizatiw~ of Permutation Graphs

Our first aim is to characterize the graphs G(N, R) which are permutation graphs
of some P, and to devise an algorithm for finding a P if such exists. Notice that
we assume a fixed labeling 1, 2, - . . , ~ for the graph vertices. We do not consider
here the problem of deciding whether there exists a relabeling for which the graph
becomes a permutation graph for some P.

Let us introduce a few additional terms. Assume G(N, R) is a given undirected
graph with no loops and no parallel edges; namely, R is an irreflexive symmetric re-
lation. Define R'to be (N X N) -- {(i, i) l i e N} - R. The graph G'(N, R')
is, therefore, the complementary undirected graph of G(N, R). Now define

~ = {(i,j) l i < j and (i , j) 5 R}.

Thus ~ N , ~) is actually G(N, R), where all its edges are now directed from low
to high. Similarly, define

~ ' = {(i , j) l i > j and (i , j) E R'}.

Therefore, ~ ' (N , ~ ') is actually G'(N, R') where all its edges are now directed
from high to low. Finally, define

ffu "

Journal of the Association for Computing Machinery, VoL 19, No. 3, July 1972

402 s . E V E N , A. P N U E L I , A N D A. L E M P E L

and ~ N , ~) is now the "union" of ~ a n d ~ 7 ' . I t consists of all the edges of G, di-
rected from low to high, and of all edges missing from G (except the loops) now
added and directed from high to low.

THEORESI 1. G(N, R) is a permutation .graph if and only if G-~ N, ~) a~d~Z~'(; (N , ~)
are transitive.

PROOF. Assume G(N, R) is a permutat ion graph. The definitions of a permuta-
tion graph and of G and ~ ' imply tha t

I(i , j) [i < j and P-~(i) > P-~(./)}

and

{(i , j) I t > j and p-l (i) > p-l(.])}.

I t is easy to see that both ~ a n d ~ ' are transitive.
We postpone the proof of the "if" par t of the theorem until we develop some

prel iminary results.
A directed graph (with no loops) is called complete if for ever), pair of vertices

a, b, either (a, b) is an edge or (b, a) is an edge, but not both; it is called circuit-
free if there exists no directed circuit in the graph.

I,ESIalA 1. A complete directed graph, is circuit-free if and ot~ly if it con tait~s no
directed b'iangles.

PROOF. The "only if" par t is obvious. Assume now tha t the graph is not circuit-
free. Let vt ~ v2 -+ v:~ ~ . . . ~ vz ~ v~ be a directed circuit of minimum length.
If l = 3, Lemma 1 follows. If not, consider the edge between vertex Vl and v3 • If
v~ ~ v3, l is not the minimum length of a directed circuit. If v:~ --~ vt, the graph
contains a directed triangle. Q.E.D.

I,EM.~IA 2. I f G(A, R) and ~ (N , ~ ') are both tra,~sitive, the,~ ~ (N , ~) is a
complete circuit-free directed graph.

PHOOF. It follows directly from definition that ~7(N, ~) is a complete directed
graph. If it contains directed circuits, then by Lemma 1 it contains a directed
triangle a --~ b -+ c ~ a. Without loss of generality, we may assume that either
a < b < c or a > b > c. In the former case the edges (a, b) and (b, c) were con-
t r ibuted by ~, and by the t ransi t ivi ty of ~ (N , ~) we also have (a, c) both in
a n d ~ . This contradicts the assumption tha t (c, a) ~ ~ . In the latter case a similar

I..7.7,. .l--
c o n t r a d i c t i o n arises from the transi t ivi ty of G (N, R') Q.E.D.

We now return to the proof of the "if" part of Theorem 1. We assume that both
G-iN, ~) a n d ~ ' (N , ~ ') are transitive. By Lemma 2 , ~ (N , ~) is a complete, circufl-
free directed graph. Thus it nmst contain a sink, namely, a vertex which has no
edge emalmting from it. (Clearly it cannot have more than one sink; consider the
edge connecting two vertices, both of which are supposed to be sinks.)

Let the unique sink of (;*-~N, R ~--+) be the vertex st ~ N and let ~¥ t = N - {st}.
The subgraph ~ ofF,, spanned by the vertices belonging to N~, is also a complete,
circuit-free graph and therefore ~ also contains a unique vertex s2 ~ ~ 1 with no
edges emanating from it. The same is true for the next subgraph ~.~, spanned by
AT2 = "¥1 - - 1821, and so o n .

Consider the sequence of successive sinks s~, s2, . . . , s,, obtained as described
above. I t is clear that ~ i s the set of all ordered pairs (s~, sj) for which i > j, and
that ~ i s the subset of ~ f o r which the additional condition s~ < sj holds. Also,
since s~ = sj if and only if i = j, the mapping P:i ~ s~ (i ~ N) is a permutat ion

Journal of the Association for Computing Machinery, Vol. 19. No. 3, July 1972

Permutation Graphs a~d Transitive Graphs 403

on N, with P(i) = si and P-l(si) = i. Thus R is the set of all unordered pairs
(s,, sj) for which either si < s~ and P-l(si) > P-'(sj) or si > sj and P-l(si) <
P-'(si). Hence G(N, R) is a permutation graph with [P(I) , P (2) , . - . , P (n)] =
[s,, s~, . . . , s~,]. Q.E.D.

This proof implies an algorithm for deciding whether a given graph G(N, R)
is a permutation graph. The defining permutation is obtained by the sequence of
sinks of G~-~N, ~) when sinks are successively eliminated from the graphs. In case
one of the resulting graphs does not have a sink, the original graph is not a permu-
tation graph.

Example 2. Let us apply the suggested algorithm to the graphs given in Figure
3. First we construct ~77~(N, ~) for the graph given in Figure 3(a). This is shown in
Figure 4, where the solid lines show the arcs of 7~and the dashed lines are those of
~ . As is easily observed, this graph does not have any sink, and therefore the
graph of l:igure 3(a) is not a permutation graph. Next, the graph G for the graph
of lCigure 3(b) is shown in Figure 5(a) . The sink of this graph is vertex 3, and
therefore we assign P(1) = 3. Now, vertex 3 is eliminated from the graph to yield
the graph shown in Figure 5(b) . Vertex 5 is now a sink, thus P(2) = 5. The suc-
cessive steps are shown in l:igure 5(c) and 5(d). The resulting permutation is
[3, 5, 4, 1, 2].

There are several properties of permutation graphs which we shall mention here.
II follows immediately from our discussion that if G(N, R) is a permutation graph
defined by P = [P(1), P(2) , . . . ~ P(tt)], then G'(N, R') is also a permutation
graph and its permutation is P(~ -q- 1 - i), namely, [P(n) , P (~ - 1), . . . , P(1)]

to) (b)

FiG. 3. The graphs of Example 2

)
/ 1 / / / / /

FIG. 4. G for the graph of Example 2(a)

F I G . 5.

(a) (b)

(c) (d)
The successive steps in the testing of the graph of Example 2(b)

Journal of the Association for Comput ing Machinery, Vol. 19, No. 3, Ju]y 1972

404 s . E V E N , A. P N U E L I , AND A. L E M P E L

Also, it is not difficult to see that the graph defined by P-~ is isomorphic to tha t of
P, where the image of i in the graph defined by P is the vertex P-~(i) of the graph
defined by P-~.

3. Cliques and Independe~t Sets of Circuit-Free Transitive Directed Graphs

Let G(V, E) be any finite directed graph with the following properties: (1) G has
no loops and no parallel edges; (2) G is circuit-free; (3) G is transitive. We can
find an order of V which will have the property that edges ahvays go from low to
high. This is easily done in the following way: find all the sinks of G and order
them in any arbi t rary way; eliminate them from the graph and find all the sinks
of the new graph again ordered a rb i t ra r i ly - - they are next in the order; etc. Once
this is done we may assume that the vertices are 1, '2, • • • , ~ where ~ is the number
of vertices of G.

Indepe~tde~l sets of vertices are usually defined for undirected graphs in the
following way: a set of vertices is called independent if no two vertices of the set
are connected in the graph by an edge. A maximal i~dependettt set is an independent
set to which no vertex can be added without violating this condition. These defini-
tions are easily extended to directed graphs by simply referring to their underlying
graph, namely, by ignoring the directions.

A set of vertices of an undirected graph is called complete if every two vertices
of the set are connected by an edge in the graph. A clique is a maximal complete
set of vertices. There is an obvious relation between independent sets and complete
sets; the independent sets are complete sets of vertices of the complementary graph,
and the same relation holds between maximal independent sets and cliques.

I t is often necessary to find the set of all cliques or maximal independent sets of
a given graph. Also, it is sometimes necessary to lind a maximum size clique or
maximum size independent set. Several algorithms were published for generating
the lists of all cliques of a given graph, and the best one known to the authors is
that of Paull and Unger [1, Process D]. This is still a cumbersome procedure, al-
though we do not believe that a more efficient one can be found for graphs with no
given structural properties. The situation with the problem of finding a maximum
clique is similar. The authors know of no algorithm which solves this problem in
~k steps.

In this section we show that, in the case of directed transitive graphs, the problem
of detecting the cliques is easier and that of finding a maximum clique is almost
immediate.

Let G(N, E) be a given directed transit ive graph, where N ~- {1, 2, . . . , n}
and edges are always directed from low to high. Assume 1 < m < ~ and tha t S
is a clique of the section graph defined on {1, ,,'~ . . . , m}, namely, the subgraph
with vertices 1, 2, . . . , m. and the same edges between them as in G. Let k be the
highest, vertex in the clique. It is now observed that S U {m + 11 is a clique of
the section graph defined by {1, 2, . . . , m, m + 1} if and only if (k, m -t~ 1) is
an edge of (;. For, if S U {m q- 1} is a clique, then (k, m -t- 1) must be an edge in
G; and if (k, m + 1) is an edge in G, then every other vertex in S must also be
connected to m + 1. This provides an immediate simplification of the Paull and
Unger procedure.

A more significant result is provided in view of the above-mentioned observation

Journal of the Association for Computing Machinery, Vol. 19, No. 3..July 1972

Permutation Graphs a~d Transitive Graphs 405

FIG. 6. G(N, E) for Example 3

for finding a max imum clique. Let us construct a sequence of n integers c(1),
c(2), . . - , c(~) , where c(i) is the number of vertices in a max imum clique con-
taining vertex i of the section graph defined on {1, 2, . . . , i}. Clearly, c(1) = 1.
In general, w h e n c (1) , c (2) , . . . , c (i - 1) are known, we look for thosever t iees
among 1, 2 , . . . , i - 1 which are connected by all edge to i. If the set.
J~ = {Jl (J, i) ~ El of these vertices is empty, then c(i) = 1; otherwise, c(i) =
1 + maxjc j, c(j) . The size of the nmximum clique of G(N, E) is maxieN c (j) .

After all the c(i) have been obtained, a t raeebaek operat ion is performed to
group all the nodes belonging to a max imum clique. We locate first a j for which
c(j) is maximal. This j must part icipate in a maximum clique and is, in fact, the
highest vertex in it. After gather ing vertices i~ > i~ . . . > i m and C(im) > 1, we
locate the next vertex by searching for i such tha t (i, ira) 6 E and c(i) + 1 =
c(i,,,) (i < i,,,), etc.

The outlined algori thm is extendable to a weighted graph where weight oo~ is
assigned to vertex i, and we look for a clique with the maximum weight sum of its
vertices. In this ease the max imum clique weights are generated by :

c(i) = ooi if] J~] = 0 (as is always the ease f o r i = 1),

c(i) = w, + n m x j c j c(j) if I J~] > 0.

Example 3. Let (; (N, E) be the graph shown in Figure 6. First we have c(1) = 1,
and since (1, 2) ~ E, then c(2) = 1. Since 3 is connected to 1 (among 1 and 2),
c(3) = c(1) + 1 = 2. Similarly, c(4) -- 2. Vertex 5 is connected to 1, 2, 3, 4.
The maximum value of the corresponding c's is 2; thus c(5) = 3. Also, c(6) = 3.
Vertex 7 is connected to 2, 4, and 6. Thus c(7) = 4. We now know that a maxi-
mum clique is of size 4 and its highest member is the vertex 7. We search for a lower
vertex connected to it whose c value is 3; this is vertex 6, etc. In this way we t race
a maximum clique {2, 4, 6, 7}.

This is a very efficient dynamic p rogramming solution to this problem; the num-
ber of e lementary operat ions it requires is of the order t~ 2. A natural question then
arises: are there ally interesting problems in which the helpful t ransi t iv i ty is present?
A few problems of this t ype are discussed in the next two sections.

4. Memory Reallocatiw~ Problem

In this section we bring an application of tile maximum clique a lgor i thm to the
field of sys tem programming.

In a mul t ip rogramming compute r system environment , tire computer ' s memory
holds at one t ime n programs, whose s tar t ing addresses are respectively x , , x2, • • • ,
x n , w i t h x ~ < x j f o r i < j .

Journal of the Association for Comput ing Machinery, Vol. 19, No. 3, Ju ly 1972

406 s . E V E N , A. P N U E L I , A N D A. L E M P E L

After a certain time, some of these programs change their memory space require-
ments, with the new length of the ith program being l~. To satisfy these require-
ments, some of the programs are shifted bodily from one address to another so as
to make new space.

With each program i we associate a cost of transplantation oo, which incurs if
the program is shifted but is independent of the distance shifted. We stipulate that
the shifts permitted preserve the order of the programs in memory, and also that
the overall memory requirement fits the available space [2].

The problem is to minimize the rcallocation costs. To tackle this problem, we
define an undirected graph G(N, R) whose vertex i corresponds to the ith program.
We draw an edge (i, j) E R if the local memory requirements are such that pro-
grams i and j can both start at the same initial addresses x, and x i , respectively.
This is expressed for i < j by

j--1

(i , j) C R ~ ~ l k _ < xi -- x,
k - - i

and similarly for i > j.
A maximal clique in tile graph G corresponds to a set of programs that can be

left in place simultaneously while the others must be shifted. Thus the cost minimi-
zation problem is equivalent to the problem of finding a maximum clique (with
maximum sum of the ¢0~'s) in G.

We proceed to show that ~ (N , ~) a n d ~ ' (N , ~ ') are both transitive. Let i < j <
k. If (i, j) C R and (j, k) C R, then by definition

j--1 k--i

Im __< Xj - - X~, ~ l ~ __< Z~ - - X j .
m ~ i m ~ j

Adding these two inequalities, we obtain
k--1

E l m __~ Xk - - Xi

and thus (i, k) C R.
Similarly, by using the oppositely directed inequalities we derive

(i , j) E R' and (j , k) C R ' ~ (i ,k) ~ R'.

Thus any memory reallocation of the type described generates a permutation
graph. In particular, it generates a transitive graph and we may use the maximum
clique procedure of the previous section for finding an optimal reallocation.

To ensure that the programs are not shifted out of memory, we modify our
description by requiring that programs 1 and 't~, which are dummy programs,
never require additional space and are not to be moved. This can be taken care of
either by directly looking for the maximum clique which contains vertices 1 and n,
or indirectly, by assigning them very high shift costs w~ and w,,.

Example 4. In TABLE I we summarize a reallocation problem and its solu-
tion. We assume that programs 1 and 8 are dummy programs and should not be
moved. Also, we assume that all programs have the same cost of transplantation.
Therefore, "the problem reduces to that of finding a maximum (in number of vertices
in it) clique among those which contain both vertex 1 and 8.

The graph G(N, R) of our example is shown in Figure 7. There is a unique clique
of maximum size which contains both 1 and 8: { 1, 2, 5, 8}. Thus programs 2 and 5

Journal of the Association for Computing Machinery. Vol. 19, No. 3, July 1972

Permutation Graphs and Transitive Graphs

TABLE I

407

Program number x i l i S ize of a max imum clique (confaining 1)
Start address Length required whose hi~,hest vertex is i

1 0 0 1
2 0 300 2
3 200 100 0
4 600 600 3
5 1000 200 3
6 1100 100 0
7 1500 300 4
8 1700 0 4

FIG. 7. e (~ ¥ , R) of Example 4

can be left ill p lace while the o thers mus t shift . As t i le r eade r can es tab; ish for
himself, t he re is no need to cons t ruc t G(N , R) , and the last co lumn of the t ab le
can be c o m p u t e d d i rec t ly .

We conclude this sect ion by showing tha t not only do m e m o r y rea l loea t ioa prob-
lems genera te p e r m u t a t i o n graphs , bu t also t h a t any p e r m u t a t i o n g raph :nay be
generated by an a p p r o p r i a t e m e m o r y rea l loca t ion problem.

Let G(N, R) be a p e r m u t a t i o n graph. We want to show t h a t we can a lways
find x~, i = 1, . . . , n and 1~, i = 1, . . . , n - 1 such t h a t for eve ry i < j

a--1

(i,,i) ~ ~ ~ ~ l~ _< x ; - x~,
k = i

j - -1

(.i,i) C X ' = ~ l , > x j - x ; .
k = i

This is a set of ~(~l - 1) / 2 inequal i t i es in 2,~ - 1 unknowns . I t will be conven ien t
if we can find a basic smal le r subset of inequal i t ies which, when satisfied, ensure
sat isfact ion of all t he o thers .

Cons ider t he inequa l f lv co r respond ing to a pair (i,]) de no t e d bv I(i, j) . In the
complete g raph (;(N, R), t he t y p e of cons t ra in t sat isf ied indica tes wheth w the re
• ~ " , ~ 7 - 7 , is all arc of G leading t rom z t o y or an arc of G leading f rom3 to t (a s suming ~ < d).

E n u m e r a t e t he sequence of s inks in t he order t h e y are selected for eons : ruc t ing
the p e r m u t a t i o n cor respond ing to t he g raph :

81 ~ 82 ¢--- " " " ~ 8n •

This is a H a m i l t o n i a n d i rec ted pa th of G leading from s~ to Sl • No te t h a t t h~ direc-
t ion of all o the r arcs can be deduced by t r a n s i t i v i t y f rom this pa th . This obse rva t ion
suggests t h a t it m a y be sufficient to consider t he basic inequal i t ies subset
{ I (s x , s ~) , I (s 2 , s a) , " " , I (S , _ l , s , ,) } .

Journal of the Association for Comput ing Machinery, Vol. 19, No. 3, Ju ly 1972

408 s . EVENT A. PNUELI~ AND A. LEMPEL

Suppose we have a solution of l~ (i = 1, . . . , n - 1), x~ (i = 1, . . . , n) satis-
fying this basic set. Cons t ruc t the memory realloeation problem involving these
1,, x~. I t generates a complete g raph G. The satisfaetion of the basic subset of
inequalities implies the existence of the H a m i l t o n i a n path 81 ~-- 8~ ~ " ' " ~ S~

also in G. Since all other ares are deducible by t ransi t ivi ty, G must be identical to
~,, and therefore all the other inequalities implied b y ' T a r e satisfied as well.

We are now left with the task of solving the basic set. The inequalities of the
basie set are:

I s f i 1 l k < x . ~ , - - for < s g
~ k~s i+l - - Xsi+ 1 8i+1

I(sl, S i + l) / S t + l _ 1

,E lk > X,~i+ 1 - - X8 i for 8i < 81+1. L i

We look for a solut ion of a part icular form. Set l~ = 12 l._~ = L and
x~ = (i - l) .L + ~ . T he basic inequalities are then

I ~ 8 i - - ~81_kl ~__ 0 for si+l < s i ,
I (s , , s i+ l) = 6.~+1 -- 6.~i < 0 fors~ < si+i.

We set therefore ~., = n and

{~"i f o r S i+ 1 < 8 i ,

6~+~ = 6~ - 1 fo r s i < s~+i.

I t is clear tha t 1 < 6~ _< n. If we choose h o w L _> n t h e n x ~ = (i - - 1) - L + 6~
satisfies x~ _> 0 and x~ _< x~+i as necessary.

5. Minimal Chromatic Decomposition

A chromatic decompositior~ of a graph is a decomposi t ion of its vertex set into dis-
joint independent sets N = $1 U $2 U - - . U Sk, where k is the chromat ic num-
ber of the decomposit ion. A min imum decomposi t ion is one of min imum k. The
following a lgor i thm is proposed for finding a min imum chromat ic decomposi t ion
for a t ransi t ive g raph G~N, ~) .

At the kth stage we generate a min imum decomposi t ion for the section graph of
{1,2, . . . , k}. We denote this decomposi t ion by Dk = ($1 k, $2 k , . . . , S~ k) where
each S~ k is an independent set. Clearly D1 = ({11).

Hav ing derived Dk, we add vertex k + 1 to the decomposi t ion by the following
rule. Locate the first S~ k to which vertex k + 1 can be joined wi thout des t roying its
independence (i.e. such a set tha t none of its members is connected to k + 1).
We then add k -+ 1 to tha t first possible recipient. I f none exists, a new mono-
chromat ic set is generated, containing vertex k --~ 1 alone. After the n th step we
have N = $1 ~ U $2 ~ U - . . U S ~ . I t is claimed tha t this decomposi t ion is a
min imum one. For, t ake any element of S,~ n . The reason tha t it was not put into
Sm,,_~ when it was introduced is t ha t a previous and therefore smaller member in
Sin,--1 is connected to it. Consider now this member of S,,,_~ ; it must be connected
to some member of S ~ - 2 • We can thus display a monotone decreasing chain of
connected elements which by t rans i t iv i ty is a clique, and whose size is m~. I t is
therefore clear tha t any chromat ic decomposi t ion must have at least mn sets.

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Permutation Graphs a~d Transitive Graphs 409

The number of comparisons required by this algorithm is of the order n 2. In
ease of a permutation graph, the process may be further simplified by observing
that at the kth stage only the last element of each independent set of the decom-
position has to be observed. For, in order to test whether a new element can be
joined to a particular set, it is sufficient to test connectivity with the last element
only. The following example uses this particular simplification for finding minimum
decomposition of a permutation graph.

Example 5. Consider the graph of Figure 7, where all edges should be directed
from low to high. We get:

D1 = ({1}),

D2 = ({1}, {2}),

D3 = ({1,3}, {2}),

D~ = ({1, 3}, {2}, {4}),

D~ = ({1, 3}, {2}, {4, 5}),

O6 = ({1, 3}, {2, 6}, 14, 5}),

07 = ({1, 3}, {2, 6}, {4, 5}, {7}),

Ds = ({1, 3}, {2, 6}, {4, 5}, {7, 8}).

For illustration, consider the construction of D7 from D6. The vertex 7 is connected
to 3, 6, and 5 (it is also connected to 1, 2, and 4, but these we do not have to check
since the last elements of the blocks in D6 are 3, 6, and 5) ; thus 7 cannot be added
to any of the blocks of D6 and a block {7} has to be constructed. Our conclusion is
that the graph of Figure 7 is 4-chromatic, and Ds describes a minimal chromatic
decomposition.

In some cases, all we want to know is the chromatic number and we do not insist
on specifying a minimal decomposition. In these cases it is sufficient to find a maxi-
mum clique, using the technique of the previous section.

Liu in [3] describes a problem of realizing a connection board with the least num-
ber of planes. The original connection requirements are prescribed by a bipartite
graph. For illustration consider the following example.

Example 6. Consider the connection requirements given in Figure 8. To de-
termine the least number of planes in which these connections can be realized,
without two connections intersecting in one plane, Liu constructs a new undirected
graph in which the vertices correspond to the edges (connections) of the original
problem. Two vertices are connected by an edge if and only if the corresponding
edges intersect. I t is then observed that the chromatic number of the resulting
graph is the same as the required number of planes and that a chromatic decom-

FIG. 8. T h e c o n n e c t i o n s for E x a m p l e FIG. 9. F igu re 8 a f t e r " t r i m m i n g "

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

410 s. EVEN, A. PNUELI, AND A. LEMPEL

position prescribes an assignment of edges to planes. This can be further improved
by observing that in essence we have a permutation graph. In our example, simply
" t r im" the vertices above and below, to obtain the graph shown in Figure 9, in
which the endpoints of all edges are disjoint and all edge intersections are pre-
served. The defining permutation is P = [2, 6, 1, 4, S, 3, 9, 5, 7]. Now, instead of
using any of the conventional algorithms for coloration, all of which are compara-
tively inet[ieient, we can use the algorithmn described earlier in this section:

D1 = ({1}),
D2 = ({1}, {2}),
D3 = ({1, 3}, {2}),
D4 = ({1, 3}, {2, 4}),
D~ = ({1, 3, 5}, {2, 4}),
D6 = ({1, 3, 5}, {2, 4}, {6}),
D7 = (l l , 3, 5, 7}, {2, 4}, {6}),
D8 = (/1 , 3, 5, 7}, {2, 4, S}, {6}),
D~ = ({ 1, 3, 5, 7}, {2, 4, 8, 9}, {6}).

Also, the chromatic number of this graph could be determined directly by the maxi-
mum clique procedure of Section 3.

Finally, we want to mention a slightly different way of finding a minimal chro-
matic dee()nlposition of a pernmtation graph:

The blocks (subsets) are constructed directly from P. Let us illustrate on Ex-
ample 6. The first block contains 2, next is 6 (which is greater than 2 and to its
right in P and therefore not connected to it), next is 8, and finally 9. Thus the first
block is {2, 6, S, 91. It is clear that we always adjoin the first element which can
be adjoined to the present set. The procedure is continued on the remaining se-
quence: [1, 4, 3, 5, 7]. We derive the block {1, 4, 5, 7}. The last block is {31.

R E F E R E N C E S

1. PAULL, M. C., AND UN(~ER, S. It. Minimizing the immber of s ta tes in incompletely speei-
fled sequential switching functions. I R E Trans. on Electronic Computers EC-8, 3 (Sept.
1959), 360.

2. KNUTH, D. E. The Arl of Compuler Programming, Volume 1: Fu~'~damenlal Algorithms.
Addison-Wesley, Reading, Mass., 1968, See. 2.2.2.

3. LIu, C. L. Introduction to Combinatorial Malhemalics. McGraw-Hill, New York, 1968,
Ch. 9, Ex. 9-5.

4. PNUELI, A., LEMPEL, A., AND EVEN, S. Transi t ive orientat ion of graphs and identifica-
tion of permutat ion graphs. Canad. J. Malh. 23 (1971), 160 175.

RECEIVED MARCH 1970; REVISED SEPTEMBER 1971

Journal of the Association for Computing Machinery, Vol. 19, No. 3. July 1972

