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ABSTRACT. A formal definition of one grammar "covering" another grammar is presented. I t  
is argued that  this definition has the property that G' covers G when and only when the ability 
to parse G' suffices for parsing G. I t  is shown that every grammar may be covered by a grammar 
in canonical two form. Every A-free grammar is covered by an operator normal form grammar 
while there exist grammars which cannot be covered by any grammar in Greibach form. Any 
grammar may be covered by an invertible grammar. Each A-free and chain reduced LR(k) 
(bounded right context) grammar is covered by a precedence detectable, LR(k) (bounded right 
context) reducible grammar. 
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Introduction 

There are pars ing  me thods  which requi re  t h a t  the  g r a m m a r  under  cons idera t ion  be  
in some no rma l  form or have  some special  p r o p e r t y  [3, 4, 5, 9, 13]. Somet imes ,  t he  
requirement on the  g r a m m a r  is t h a t  i t  does no t  have  a p r o p e r t y  such as no t  hav ing  
left recursion for use wi th  t op -down  pars ing  techniques .  A few pars ing  me thods  are  
known which requi re  no special  form of the  g r a m m a r  (see, e.g., [2]), b u t  th is  gen- 
erality exacts  a pr ice in the  complex i ty  of t he  a lgor i thm.  

In the  p resen t  paper ,  we consider  a re la t ionship  be tween  g r a m m a r s  cal led "cover -  
ing." In tu i t ive ly ,  i t  will t u rn  ou t  t h a t  G'  " cove r s "  G when the  ab i l i t y  to  parse  G'  
allows one to  parse  G b y  " t a b l e  lookup t echn iques . "  T h e  formal  defini t ions will  be  
more compl ica ted  t h a n  this  because  of some prac t i ca l  considera t ions ,  such as the  
desire to exclude p roduc t ions  which have  no semant i c  significance. Af t e r  jus t i fy ing  
our definitions and  compar ing  t h e m  wi th  re la ted  concepts  f rom the  l i t e ra ture ,  we 
prove some pos i t ive  results .  W e  show t h a t  the  canonical  two form [1] can cover  a n y  
grammar and  t h a t  the  ope ra to r  no rma l  form [4] can cover  any  A-free g rammar .  I t  is 
also shown t h a t  a n y  g r a m m a r  m a y  be  covered  b y  an  inve r t ib l e  g r a m m a r .  A t yp i c a l  
negative resul t  is t h a t  the re  a re  g r a m m a r s  which canno t  be  covered b y  a n y  g ram-  
mar in Gre ibach  form [10]. 
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Atten t ion  is then turned  to the class of bo t tom-up  parsing methods.  Bo t tom-up  
parsing m a y  be regarded as the i teration of a two-step process: detect ing a phrase 
and then reducing it. I t  is shown tha t  each step m a y  be trivialized at the expense of 
the other.  I t  is shown tha t  every L R  (k) g rammar  [13] m a y  be covered by  a g rammar  
which is precedence detectable and L R  (k) reducible. A similar result holds when 
" L R  (k)"  is replaced by  "bounded  r ight  context"  [5]. 

The  present paper  is organized as follows: the remainder  of this In t roduc t ion  con- 
tains most  of our formal definitions and notat ional  conventions.  Section 1 introduces 
covers and discusses their connection with other  relations between grammars .  We 
then show tha t  each g rammar  is covered by  a canonical two form grammar .  I t  is 
proven tha t  each A-free g rammar  is covered by  a g rammar  in operator  form. This 
s ta tement  becomes false if the A-free hypothesis  is omit ted.  I t  is shown tha t  there 
is a g r a m m a r  which cannot  be covered by  any  g r ammar  in Greibach normal  form. 
Inver t ib i l i ty  is in t roduced and it is shown tha t  every g r ammar  can be covered by  an 
invertible g r a m m a r  by  abusing A-rules. The  ramifications of this are explored. 

I n  Section 2, bo t tom-up  parsing is dichotomized and it is shown tha t  each A-free 
and chain reduced L R  (k) (bounded r ight  context )  g r ammar  is covered by  a prece- 
dence detectible, L R  (k) (bounded r ight  context )  reducible g rammar .  

Section 3 concludes and summarizes the discussion. 
We now begin to list some of the formal definitions which are required. 
Definition. A context-free grammar is a 4-tuple G = (V, ~ ,  P ,  S )  where:  

(i) V is a finite n o n e m p t y  set (vocabulary), 
(ii) ~ c V is a finite n o n e m p t y  set (term.i~al symbols), 

(iii) N = V - ~ is the set of variables and  S E N,  
(iv) P is a finite subset ~ of N × V* and we write u --~ v in P instead of (u,v) E P.  

P is the set of productions. 
I t  is convenient  to introduce a general notat ion concerning relations. 
Definition. Let  p be a b inary  relation on a set X, i.e. p ~ X X X. Define p0 

{ (a,a) ] a E X} ,  and for each 2 i > 0, pi+l i p .  pi p+ * _ = pp .  Lastly,  = U~>0 and = p p. 
For  a b inary  relation p on X, p* is the reflexive-transitive closure of p while p+ is the 
transitive closure of p. 

Next ,  we can define the rules for rewrit ing strings. 
Definition. Let  G = (V, 2~, P ,  S )  be a context-free g rammar  and let u, v E V*. 

Define u ~ v if there exist words x, y, w E V* and A E N so t h a t  u = x A y ,  v = xwy, 
and A ~ w is in P .  I f  y E ~*,  we write u ~ v. Fur thermore ,  define 

= ( ~ )  and ~ = ( ~ ) * .  

A string x E V* is said to be a sentential form if S ~ x and a canonical sentential 
form if S ~ x. No t  every sentential  form is canonical. 

R 

The  set L ( G )  = {x C ~ *  ] S ~ x} is the language generated by G. 
We now ment ion four similar bu t  nota t ional ly  different definitions of derivations. 

Let X and Y be sets of words. Write X Y  = {xy [ x E X,  y E Y} where xy is the concatenation 
of x and y. Define X ° = {A} where A is the null word. For each i >_ 0, define X ~+~ = X~X and 
X* = O~>_G X ~. Let X + = X*X and let ~ denote the empty set. Finally, if x is a string, let 
lg(x) denote the length of x which is the number of occurrences of symbols in x. 
2 The operation is a composition of relations which is defined as follows: if p C_ X X Y and 
a C Y X Z, define pa = {(x,z) [ (x,y) E p and (y,z) E a for some y E Y}. Observe that pC 
c x x z .  
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If u0 ~ ul ~ • • • ~ ur then we say tha t  the sequence (u0," • • , ur) is a derivation of 
ur from Uo. I f  u0 ~ ul ~ • • • ~ ur the derivat ion is said to be a canonical derivation. 
If for each 0 < i < r, if ui = viAiwi and ui+l = vly~wi and ui+l m a y  be obtained from 
u~ by using product ion 7ri = A~ --~ y~ at  position n~ = lg (v~y~), we say tha t  the se- 
quence of rule-integer pairs ((~'0 ,no) , . . .  , (~'r-1 ,n,_l))  is a derivation of ur from Uo. 
In the case where this derivat ion is canonical the n~ are superfluous, so we also let 
( m  ," • • , ~',-1) denote the  canonical derivat ion of Ur from u0. I f  u0 is not  mentioned,  
it is assumed t h a t  u0 = S. A n y  part icular  derivat ion also corresponds to a labeled 
directed tree, called the parse tree. 

If the sequence (u0 ,- • • ,u~) is a derivat ion of u,  f rom u0 then (u, ,. • • , u0) is said 
to be a parse of u~ to u0. I f  the derivat ion is canonical then the parse is said to be 
canonical. I f  u0 is not  ment ioned then we assume tha t  u0 = S. 

If (sl ,- • • ,sn) is any  sequence, it m a y  be denoted b y  (si)i~l. I f  P is some predi- 
cate defined on the st then the subsequence of those s~ satisfying P is denoted by  
(si ] P ~ . (sl))i=l I f  f is a funct ion on the si then the sequence ( f (s l ) , ' . "  , f ( s~))  isde-  
noted by  (f(sl))~=i. 

In a part icular  der ivat ion of a canonical sentential  form x, denoted by  a sequence 
((~'o , n0 ) , " "  , (~-r ,n,)) ,  if ~-r = (A ~ y)  then the  occurrence of the substring y in x 
at position n~ is a simple phrase of x, and the pair (~'~ ,nr) is called a reduction of x. 
If the derivation is canonical then (~-, ,nr) is called a handle of x. 

Let ~ and & be two alphabets  and suppose f is a funct ion from Z into A*. f m a y  
be extended (uniquely)  to a monoid homomorphi,m f rom Z* into A* by  the condi- 
tions 

f ( A )  = A, f ( a , , . . .  ,a~) = f ( a l ) , . . .  , f(a~) 

foral E ~ for l < i < n. I f L  c2~* ,  de f ine r (L)  = {f(x) I x E L/ .  I f  L i s  context-free 
(regular) and f is a homomorphism,  then f (L)  is context-free (regular) [6, 11]. 

We will be considering a number  of special properties of g rammars  and we now 
list some of these. M a n y  of these definitions are in s tandard  textbooks on language 
theory [6, 11]. 

Definition. A context-free g r ammar  G = (V, ~ ,  P ,  S )  is said to be 
(i) A-free if P E N  × V +, 

(ii) chain-free ~ if P f'l (N × N )  = ~f,  
(iii) reduced if 

(a) for each A E V, there exist x, y E V* so tha t  S ~ xAy, and 
(b) for each A ~ S there exists x E Z* so t h a t  A ~ x, 

(iv) in operator form if P ~ N × (V* - V*N2V*), 
(v) in canonical two form if P C N × ({A} 0 V (J N2), 

(vi) in Greibachform if P c N × 2~V*. 
The following results are well known:  
(a) Eve ry  context-free language no t  containing A has a A-free g rammar .  
(b) Eve ry  context-free language has a context-free g r ammar  which is chain-free. 
(c) Eve ry  context-free language has a reduced context-free g rammar .  
(d) Eve ry  context-free language has a g r ammar  in operator  form [10]. 
(e) Eve ry  context-free language has a g r a m m a r  in canonical two form [1]. 
(f) Eve ry  context-free language not  containing A has a context-free g rammar  in 

Greibach form [10]. 

3 A derivation Z0 ~ . . .  ~ Z~ is said to be a chain if r > 0 and Z~ E N for 0 < i < r. 
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These results may be combined into pairs (i.e. a grammar may be assumed to 
satisfy an arbitrary pair of the properties) except that  pairs (d,e) and (e,f) are in- 
compatible. 

1. Basic Results 

In the present section we consider a number of alternate definitions of "covering" 
and other relations between grammars. We arrive at a definition which turns out to 
be quite useful and captures the intuitive notion of "covering" with respect to 
parsing. That  is, if G' covers G and if one can parse G', then one can parse G. 

Our first definition is a familiar and weak concept from language theory. 
Definition. Two context-free grammars G and G' are said to be equivalent if 

L(G) = L(G'). 
For our remaining definitions, we need the following framework. Let  G = (V, 

~,  P,  S)  and G' = (V', ~, P', S') be two context-free grammars over X. Let f be 
any map from V' into V which is the identity on Z, i.e. f(a) = a for each a E ~. 
Extend f to be a (monoid) homomorphism from (V')* into V by requiring f (xy) = 
f (x ) f (y )  for each x, y 6 (V')* 

Notation. For any set P '  of productions, write 

f (P ' )  = {f(A) - -* f (x)]A ~ x is in P ' l .  

The following definition offers another relationship between grammars. 
Definition. Let G, G', and f be as above. We say that  f is a homomorphism from 

G' onto G if 
(a) f ( S ' )  = s ,  
(b) f (P ' )  = P. 

If f is also one-to-one then f is an isomorphism. 
The original notion of "covering" was due to John Reynolds (cf. [15]). We shall 

also introduce "weak covers." 
Definition. Let  G, G', and f be as above. G is said to be a weak Reynolds cover of 

G' under f if 
(a) f (S') = S, and 
(b) f ( A )  ~ f ( x )  in G if A --~ x is in P ' .  
Finally, we eonsider a strengthened version of the previous definition of covering 

which is the original one [15]. 
Definition. Let  G, G', and f be as above. G is said to Reynolds cover G' under f if 
(a) f (S') = S, and 
(b) f (P ' )  _c P. 
These definitions have all been used in the literature [7, 15]. Some of the simple 

formal relations among the definitions are as follows: 
PROPOSITION. Let G, G', and f be as before. 
(a) I f  f is an isomorphism of G' onto G then f is a homomorphism of G' onto G. 
(b ) I f  f is a homomorphism from G' onto G then G is a Reynolds cover of G' underf. 
(c ) I f  G is a Reynolds cover of G' under f then G is a weak Reynolds cover of G' under f. 
(d) I f  f is a homomorphism of G' onto G then G is equivalent to G'. 
None of these definitions seems to capture the notion that  we think is essential for 

programming applications. We would like to say G' covers G if given a parser for 
G' one can construct a parser for G. The motivation for this is that  parsers typically 
handle grammars in some normal form. Presented with an arbitrary grammar G it 
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may be possible to transform it into a grammar G' which is in this normal form. In 
what cases can a parser for G' be used to produce a parser for G? 

For example, simple top-down parsers will not tolerate left recursive rules which 
allow A ~ Ax for some nonterminal A and string x. However, given a grammar G 
there is a grammar G' equivalent to G which has no such left recursive rules. Can one 
construct a parser for G given a parser for G'? We shall prove that the answer is no, 
given our definition of covering. 

The notion of equivalence of grammars is too weak since it makes no reference at 
all to the parses in G' and G. For example G may be ambiguous and G' not. On the 
other hand, the notion of isomorphism is too strong. It means that parses in G and 
G' differ only by renaming of nonterminals. G' is almost identical to G in this case. 
The definitions of covers which are due to Reynolds come considerably closer to an 
acceptable definition of "similar." Reynolds shares our desire to characterize the 
process of transforming a grammar G into a grammar G' which is easier to parse than 
G and which has parses similar to those in G. However Reynolds' emphasis is sig- 
nificantly different. He does not even require L (G) = L (G'); he merely requires 
L (G) _C L (G'). Reynolds intends to have the semantic routines detect and reject 
those strings in L (G') - L (G). For example, every canonical two form grammar G 
over terminal alphabet {0, 1} is covered in Reynolds' sense by the grammar 

s- sslsj01xlA 
Thus the semantic routines will do all the work in this case. Although the canonical 
two form of G is weakly Reynolds covered by G, in general no Greibach normal form 
or operator normal form of a A-free version of G is (weakly) Reynolds covered by G. 

Before presenting our notion of covering, we must generalize the idea of generation 
because of the following practical considerations. In most ~ formal treatments of 
parsing, the parser must enumerate all the nodes of the parse tree. In programming 
practice, certain nodes of the parse tree have no semantic significance and do not need 
to be present in a similar grammar. For example, consider the generation tree of 
Figure 1 which occurs in EULER [16]. 

The chain expr- ~ k is typical of what happens in grammars for programming 
languages. Chains exist to enforce precedence among operators and to collect several 
categories of syntactic types (e.g. in ALGOL (statement) --~ (unconditional state- 
ment) ] (conditional statement) I (for statement)). 

Chain productions rarely have semantic significance. In our running example, 
only the following productions have nontrivial semantics: 

e x p r -  --~ v a r  ~-- e x p r -  

v a r -  ~ X 

p r i m a r y  - - .  v a r  

k ---~ A 

X--~B 

For the purposes of code generation, the "sparse generation tree" of Figure 2 (a) is as 
satisfactory as the tree in Figure 1. The tree shown in Figure 2 (b) would not be a 

Floyd precedence [4] is a parsing scheme which makes this explicit. Only rules containing 
terminal characters are enumerated. 
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e x  

v a r  
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e a t e n a  
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e o n j  

I 
c o n j  - 

I 
n e g a t i o n  

I 
r e l a t i o n  

c h o i c e  

c h o i c e  o 

s u m  

FIG. 1. 

s u m -  

t e r m  

t e r m -  

f a c t o r  

f a c t o r -  

p r i m a r y  

/ e x p r - ~ .  

v a r -  p r i m a r y  

I I 
v a r -  

I I 
A ~-- X 

I 
B 

(a) 

v a r  

I 

X A ~-- B 
I 

B (b)  

A g e n e r a t i o n  f r o m  EULER. FIG. 2. (a)  A s p a r s e  p a r s e  of t h e  g e n e r a t i o n  

in  F i g u r e  1; (b) a n o n s p a r s e  p a r s e  

of F i g u r e  1. 

satisfactory replacement for the original tree because some nodes with semantic 
significance have been omitted. 

Further,  nodes of G' may  be superfluous because G' has more structure than G. 
For example, many  rules of the canonical two form of a g rammar  exist only to pro- 
duce a binary parse tree. 

We can formalize these notions by  assuming that,  independent of context, a 
production either does or does not have semantic significance. I f  it does not, it may 
be omit ted from the parse. In  what  follows, think of H as the set of those productions 
of G with semantic significance and P - H as those productions with no semantic 
significance. 

Definition. Let G = (V, ~ ,  P,  S)  be a g rammar  and let H ~ P.  Let  

D = (A~ ~ x~)~Z: 
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be a canonical derivation in G. Then the corresponding H-sparse derivation is 

D ,  = (A~ ~ x~[ As --~ x~ is in H ) ~ i .  

Let CD (G, H )  denote the set of all such H-sparse derivations in G. 
Note that  if H = ~ ,  DH is the null sequence, and that  in general Dx is not a 

derivation. I t  is simply the subsequence of steps of D involving productions of H. 
As usual, by inverting the index i, one obtains parses from derivations. In particular 
((At ~ x i ,  nl) [ Ai  ~ xi E H)~=,~ will be called the corresponding H-sparse parse 
ofx.  

For H as described above, the H-sparse generation of Figure 1 is 

( ( e x p r -  --~ var  ~-- e x p r - , 3 ) ,  

( p r i m a r y  --~ var- ,3  ), 

(var-  ~ X,3), 

(~ ~ B,3), 

( v a t -  ---+ ~,1 ), 

(× ~ A,~)).  

We reformulate the parsing problem as follows: given a grammar G and a set 
H C P, produce a parser which, for each x C ~*, enumerates all canonical H-sparse 
parses with respect to G. 

H '  _ P '  In this light, parsing G' will be as good as parsing G if for some C one can 
easily construct all canonical H-sparses in H for x from all canonical H'-sparse parses 
of x in G'. Schematically 

H-sporse parser for G 

i I canonical h ]1 = canonical ' H - sparse parse H' - sparse H - sparse parse Dictionary 
P ~ parser for G of x inG I of xinG 

We are finally ready to present our definition of cover. 
Definition. Let G = (V, Z, P, S)  and G' = (V', Z, P', S ' )  be context-free gram- 

mars. Let  H ~ P and H' c P'. Let ~ be a map from H' into H. For anycanonical 
derivation D = (Ai --~ xl)i~1 in G' of some x C Z*, define the image of D under 
to be ~ ( D )  = (~(Ai  ~ x~) lA i  ~ x~ is in H')~_i.  ~ (D)  is an element of H*. 

G' ( J , H ' )  is said to cover (G, H )  under ~ iff 
(a) L(G)  = L ( G ' ) , a n d  
(b) for each x E L (G), 

(i) if D is an H-sparse derivation of x in G then there is an H'-sparse deriva- 
tion D'  of x in G' so that  ~D' = D, and 

(ii) if D'  is an H'-sparse generation of x in G' then ~D is an H-sparse genera- 
tion of x in G. 

G' is said to cover (G, H )  if some H '  and ~ exist such that  (G', H ' )  covers (G, H )  
under ~. If G' covers (G, P )  we say G' completely covers G. 

We remark immediately that  these relations are reflexive and transitive but  not 
symmetric in general; thus they are not equivalence relations. Note that  our defini- 
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tion of cover runs in the other direction to Reynolds, i.e. we say G r covers G while 
Reynolds says tha t  G covers G'. We now summarize some of the simple properties of 
covers. 

PROPOSITION. (a ) G' covers (G, ~ ) i f  and only i f  G and G' are equivalent. 
(b) I f  (G', P ' )  covers (G, P)  then the degree 5 of ambiguity in G t and G on any 

string x ~ ~ * is the same. 
(c) I f  G' is isomorphic to G (under ?)  then G ~ covers G (under ?) .  
(d) I f  (G", H " )  covers (G', H' )  under ~' and (G ~, H ' )  covers (G, H )  under ~, 

then (G tt, H ~t) covers (G, H ) u n d e r  ? t. 
Thus covers provide a spectrum of relationships as H and H '  vary.  
I t  should be noted that  we can find grammars  G' and G and a map f so that  f is a 

homomorphism of G onto G' and G' does not cover G (in fact L (G') ~ L (G)). 
For example, choose G ~ to have the productions: 

G has the productions 

S r ~ Tala 

T ~ b  

S ~ Salaib 

and ~ is the function which takes S '  and T onto S and is the identity on {a, b}. 
Clearly L (G') ~ L (G). 

One might think tha t  if G covers G' and if G' covers G then G and G' are very 
similar. Consider the following two grammars.  

G: G': 

S -~ Ab S --~ aB 

A --~ a B -+ b 

Clearly G covers G' and G' covers G yet  G and G' are not isomorphic. Indeed the 
trees are quite different. Many  other examples of this type exist and when null 
rules are used, the trees may  differ radically. 

Before using covers in a t rea tment  of bot tom-up parsing we first explore the rela- 
tionship between grammars  and their more common normal forms. 

THEOREM 1.1. Each context-free grammar G is completely covered by a grammar G' 
which is in canonical two form. 

PROOF. Let  [ and ] be two new symbols not in the vocabulary of G = (V, ~ ,  P ,  S). 
Define G' = (V', 2~, P ' ,  S ' )  by:  

N '  = {[y][A ~ x y i s i n P f o r s o m e x  E V * , y  E V2V *} U {[ALIA E V}, 
Pl  = { [ A ] - ~ A 1 A - - ~ A i s i n P } ,  
P2 = [[A] -~ [B]IA ~ B is in P,  for some A E N, B E V}, 
P3 = [[A] ~ [B][x] ] A -~ Bx is in P for some A, B C V, x E V+}, 
P4 = {[Ax] --~ [A][x]IA E V and x E V + and [Ax] E N'},  
P5 = [ [ a ] ~ a l a  E~} ,  
P' = P1 UP2 UP3 UP4 U P s ,  
S ' =  IS]. 

5 Let G = (V, z, P, S) be a grammar and x E Z*. The degree of ambiguity of x is the number 
of canonical derivations of x in G. 
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Let  H'  = P1 U P2 0 P3 and define ~o by  cases: 

~([A] --~ A) = A ~ A for each [A] --~ A in P1, 
~([A] --~ [B]) = A --~ B for each [A] ~ [B] in P 2, 
~([A] --~ [B][x]) = A ~ Bx  for each [A] --~ [B][x] in P3.  

Clearly G' = (V', ~ ,  P' ,  S ' )  is a g rammar  in canonical two form and ~ is a bijection 
from H'  onto P. 

CLAIM 1. Let (A~ ~ xl)i~l be a canonical derivation, [A] ~ x in G' where x C ~* 
• ! n and A E N.  Then its image under ~, (~ (A ~ ~ x~ ) I A i ~ xi is ~n H ) ~=i , is a canonical 

derivation A ~ x in G. 
R 

PROOF. Consider the context-sensitive grammar  obtained by  deleting the 
brackets [ and ] from the productions of G'. P4 and P5 now yield identity transforma- 
tions and productions in H'  yield the transformations of P.  Using this fact it follows 
that  the image under ~ of each canonical derivation in G' is a canonical derivation in 
G since ~ simply discards the brackets on productions in H'. 

The converse is less straightforward. First  we note: 
C L A I M  2.  ( a ) I f A - - - - ~ A i s i n P t h e n [ A ] - - ~ A i s i n P ' .  
(b ) I f  A --~ a is in P then [A] ~ [a] is in P' .  
(c) I r A  -~ B is in P then [A] ~ [B] is in P' .  
(d) I f  A --~ B1. . .B~ is in P for n > 1 where A,  B1,. . ., B~ C V then [A] ~ [B1] 

n - - 1  • ..  [B~] in G' by a derivation (Ci ~ xl)  ~=1, where C1 = [A] and Ci = [Bi ' . .B~] for 
1 < i < n andx~ = [Bi][Bi+l" .B~]for 1 _< i < n, and in each case the image under~ 
of the derivation in G' is the derivation in G. 

PROOF. Each case may  be verified by  inspection of P ' .  The conclusion is imme- 
--~ x~)~=l/s (A--~B1 diate in cases (a), (b),  and (c). In  case (d) the image of (Ci ~-1 

• - • B~) since C1 ~ xl is in P3 and C~ --~ xl is in P4 for 1 < i < n. 
CLAIM 3. Let A1 , . . . ,  Am C V and x C ~*. I f  A 1 . . . A m  ~ x in G by derivation 

D = (C~ ~ x~)i~ then [A1][A2]...[Am] ~ x in G' by a derivation 6 
R 

D' (C~ ~ m, = X i j ) j = l  i = 1  

such that the image of D'  under ~ is D. 
PaooF. The argument  is an induction on n. 
Basis. n = O. In  this c a s e A 1 . . . A m ~ x i n G b y D  = A. Thus A1. . .Am = 

x ~ 2~*. By using rules in Pa,  we have 

[A~]... [Am] V [A,]. .-  [Am_,]Am ~ A i "  .Am 

in G' by  the derivation D '  = ~ A m ([Am_i+~] m--i+l)~=l. But  ~ (D') = A and the basis 
is established. 

Induction Step• Suppose Claim 3 holds for i < n and consider the case i = n. 
In particular, suppose A~. . .Am ~ B1- . .B~ in G by  (C1 ~ xt). Then by  Claim 2, 
we know tha t  there exists a canonical derivation (C~ --~ m~ xij)j=l for [A,][A:]. • [Am] 

[B1]. • • [B~] in G' and tha t  its image under ~ is (C1 -~ Xl). By hypothesis, there is a 
canonical derivation (C~ ~ x~) ~'E~ ~ f _ ~=~ or [B1]... [B~] @ x i n  G'which has (C~----~x~)~: 

m i n as its image under ~. Thus (C~ ~ x~i)i=l ~=1 satisfies Claim 3 and the induction is 
complete. 

If n 0 then D' (C~j '~ = = --~ x~j)~=~ by convention. 
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Claim 1 shows that  every canonical derivation in G' of x ~ ~*  from [S] has a 
canonical derivation of x from S in G as its image under ~. Conversely, Claim 3 shows 

= G '  that  this map is onto all derivations in G. This shows that  L (G') L (G) and so 
covers G under ~. | 

Theorem 1.1 demonstrates the necessity for the concept of sparse derivations. 
Although G' and G are very similar, G' is not isomorphic to G nor does G (weakly) 

G'. G'. Reynolds cover However G does weakly Reynolds cover The following result 
differentiates between covers and weak Reynolds covers. The A-free version, G' of a 
grammar G covers G up to A-rules [i.e. P - H = {A --~ A in P}] provided that  G and 
G' have the same degree of ambiguity; on the other hand G does not weakly Rey- 
nolds cover G'. 

Another commonly encountered normal form is the operator normal form gram- 
mar. I t  plays an important  role in precedence analysis [3, 4, 9]. Greibach [10] 
originally showed that  every grammar could be transformed to an equivalent gram- 
mar in operator normal form. However it is known that  this transformation dras- 
tically changes the structure of the parse tree. I t  was conjectured that  the reason 
that  Floyd's precedence scheme is weaker than the scheme of Wirth and Weber was 
that  it was impossible to get covering grammars that  are in operator normal form. 
This conjecture proved to be false as the next result shows. One should consult [9] 
for a further discussion of this point. 

THEOREM 1.2. Every A-free grammar is completely covered by a grammar in 
operator normal form. 

PROOF. Let  G = (V, Z, P, S)  be a context-free grammar. We may assume, 
without loss of generality, that  G is in canonical two form by using Theorem 1.1 
and the transit ivity of covers. 

L e t G  = ( V ' , ~ , P ' , S )  whe reV '  = {S} U Z  U (N X Z ) a n d d e f i n e P '  = P 1 U  
P: U P~ U P4 as follows: 

P~ = {S ~ (S,a)a la  C ~} ,  
P2 = { (A,a) - -~A[A C iV, a C ~,  A --~ a in P}, 
Pa = { (A,a)  --~ ( B , a ) I A  , B C N ;  a ~ ~ ,  A --~ B in P},  
P4 = { (A,a)  -*  ( B , b ) b ( C , a ) l A  , B, C C N ;  a, b C ~ ;  A ~ BC in P}. 

Next we define H '  = P2 U P3 U P4, and ~ is defined by cases. 

~ ( ( A , a )  -~  A) = A --~ a if (A,a)  -*  A is in P2,  
.~( (A,a)  -~  (B,a) ) = A --~ B if (A,a)  ~ (B,a) is in P3,  
~ (  (A,a)  --~ (B,b)b(C,a)  ) = A ~ BC if (A,a)  --~ (B,b)b(C,a)  is in P4. 

We must show that  (G', H ' )  covers (G, P )  under ~. To do this, we establish a 
claim. 

CLAI~I. For each a C ~ ,  x C Z*,  A ~ N ,  (A,a)  ~ x in G' by a canonical deriva- 
l n ! n 

tion (~ri )i~1 i f  and only i f  A ~ xa in G by canonical derivation ~ ( ( v i ) ~ 1 ) .  
PROOF. The argument is an induction on n. 
Basis. If n = 1, then x = A and (A,a)  --~ A is in P ' .  This holds if and only if 

A -* a is in P which completes the basis. 
Induction Step. Assume the result for 1 <_ n < k and consider the case n = k. 

Since n = k > 1, T ' i  t ~ P3 U P4. There are two cases ,depending on whether ~'~' C P3 
or ~r~' ~ P4. We will give the details only in case ~-~ ~ P~ and leave the (easier) 
case of ~r~' ~ P~ to the reader. If ~'~' = (A,a ) ~ (B,b )b (C,a ) then ~ (~r~') = A ~ BC 

Journal of the Association for Computing Machinery, Vol, 19, No. 4, October 1972 



On the Covering and Reduction Problems for Context-Free Grammars 685 

, j 
by construction. There is some j so that  (Trt)~-2 is a canonical derivation of 

G ' *  (C,a) ~ x:,and (~-i'~)t=~'+11s" a canonical derivation of (B,b) ~*R Xl where x = xlbx~ . 

By the induction hypothesis, these canonical derivations exist if and only if 
! ! n ~((~'t )~=2) is a canonical derivation of C ~ *  x2a and ~((~-t )t=~+l) is a canonical 

R 

derivation of B ~ *  Xlb. Combining these results, 
R 

(A,a) ~ (B,D)b(C,a) ~ *  xlbz2 

if and only if 

A ~ BC ~ *  xlbx2a. 
R 

This extends the induction and completes the proof of the claim. 
From the claim it follows that  for any x C ~*;  a E ~;  

S ~ (S,a)a ~ xa in G' 
? n ! n by derivation (~rl)t=l if and only if S ~ xa in G' by canonical derivation ~ (Tr~)i=1. 

This shows that  L (G') = L (G) and that  ~ is a map from CD (G', H ' )  onto CD (G, P) .  
Therefore G' covers G under ~. | 

We note that  a slightly more complex construction for G' would yield a A-free 
grammar. The strongest result we can state is that  every A-free grammar is com- 
pletely covered by a A-free operator grammar. Furthermore, this construction 
preserves Floyd precedence relations [4, 9]. 

The statement of the previous theorem immediately suggests the question of 
whether the hypothesis of A-freeness can be dropped. We will now show that  it 
cannot be omitted and this will be our first real result of a negative character. 

THEORE~I 1.3. There is a context-free grammar G which is not covered by any 
operator normal form grammar. 

PaooF. Let  G be the grammar whose rules are: 

S ~ SSIA 

Suppose that  G' = (V', E, P', S ' )  is an operator normal form grammar which covers 
G under ~. There is no loss of generality in assuming that  G' is reduced. 

Let CD (G, P ) denote the set of canonical derivations of A in G and let CD (G', P'  ) 
be the set of canonical derivations of A in G'. 

CLAIM 1. CD ( G ' ,P ' )  is a regular set. 
PROOF. Suppose A --* x is in P ' .  Since G' is reduced and since L (G') = L (G) = 

{A}, x cannot contain any characters of ~. Because G' is in operator normal form, 
x cannot contain two adjacent nonterminals, so x C {A} U {N'}. Thus P '  consists 
entirely of chain rules and A-rules, i.e. P '  c (N')  × ({A} U (N') ) .  I t  follows easily 
by induction that  

CD (G', P' )  = { (At ~ xt)t~-lIn >_ 1; A0 = S; x~ = A; At -~ xt is in P ' ,  
and xt = Ai+l for 1 < i < n}. 

Let 

' * A i s i n P ' / 7  R, = ( { S - - ~ x i n P ' } ( P )  { A ~ - + A i n P ' } )  U { S ' - + A ] S ' - ~  

Define 

R2 = P'  [J {(A~--~ xi)t'~l C ( P ' ) * l n  _> 1, xt = At+ for 1 < i < n}. 

7 That is, S' --~ A is in R~ if and only if it is in P'. 
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R1 is clearly a regular set and R2 is also regular since it is a special type of regular set. 
(It is essentially the set of all R-sequences of a finite set R, i.e. {al . . .a~ I n > 1, 
(al, ai+l) E R, 1 _< i < n}. Such sets are well known to be regular [6, 11].) But 
CD (G', P ' )  = R1 n Rz, and so CD (G', P') is regular since R1 and R2 are. 

CLAIM 2. CD (G, P) is not regular. 
PROOF. By a straightforward induction one can verify that  

CD(G, P)  = {x E {S ~ SS, S ~ AI*I for every s k, 
1 _< k < lg(x), #s~ss((k)x) > #s_,A((k)X); #s-,ss(X) "t- 1 = #s-.A(X)}. 

Suppose that  CD(G, P )  were regular. Then if we let R = {S -~ SS}*{S --~ A}*, 
then CD (G, P)  n R would be regular. But  

CD(G,P)  O R  = { (S - -~SS)~(S-~  A)'+i[i > 1}, 

which is clearly not regular. This contradicts the supposition that  CD (G, P) is 
regular. 

To complete the proof, assume that  G' covers G under ~. Note that  ~ is a homomor- 
phism from CD (G', P') onto CD (G, P) since it is a cover. Thus ~ must preserve 
regularity. But  the domain of q~ is regular by Claim 1 and its range is not regular by 
Claim 2. Thus ~ cannot exist. So G' cannot cover G under any choice of ~ and 
H' C P'. | 

We now embark on the proof of another negative result by exhibiting a grammar 
which cannot be covered by any grammar in Greibach form. Thus the elimination of 
left recursive changes the structure of a grammar sufficiently that  it cannot have a 
covering grammar. 

THEOREM 1.4. Let G be the following context-free grammar: 

-~ S01SI[011 

There is no grammar G ~ = (V p, ~P, P~, S') in Greibach normal form such that (G', H ~) 
covers (G, P)  under ~ for any H ~ c P~ and ~, mapping H' into P. 

PROOF. The proof is by contradiction. Suppose there is a grammar 

G p = (V', ~', P', S') 

in Greibach form such that  G' is reduced and there exist H' c P' and ~ so that  
(G', H p) covers (G, P )  under ~. 

CLAIM 1. H '  = P '  ~ (N') X (ZN'*). 
PROOF. Suppose x E Z + and S' ~ x in G' with canonical derivation ~- = 

R 

• 7f ! (~rl," ",nn). The H'-sparse derivation of 7, has the property that  ~(~-') is a 
P-sparse derivation of x in G. But then ~ (~") is a derivation of x in G. Since each 
rule of P contributes exactly one terminal character to x, and since ~ (~") is a deriva- 
tion of lg (x) steps, n > lg (x). Since each ~-~ in P '  contributes at least one terminal 

' G' character to x, lg(x) > n. Thus n = lg(x) and ~-~ = lrl. Since is reduced it 
follows that  H' = P' and each ~'~ E P' contains exactly one terminal character. So 
since G' is in Greibach normal form P' _C N' X (XNP*). 

Since every production in P '  contains exactly one terminal character, the follow- 
ing result holds. 

S L e t  G = ( V , ~ , P , S )  be  a n y  g r a m m a r  a n d  l e t  a E V a n d x  E V*. W e  w r i t e # ~ ( x )  f o r  t h e  

n u m b e r  of  o c c u r r e n c e s  in  a in  x. F o r  a n y  i ~_ 0 a n d  a n y  x = a l  . . .  a~ , a~ E Z fo r  1 < i < n ,  

if i >_ n t h e n  (~)x = x(Q = x. I f  i ~ n t h e n  (~)x = a l  . . .  a l  a n d  x( i )  = a,_~+~ . . .  a .  . 
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CLAIM 2. For any A in N',  x in (V')*,  A ~ x in G' implies 9 #z(x)  = n. 

CLAIM 3. For each x E (V')*, A E N', and z E Z*; i f  S'  ~ xAz in G' and 

#z (x) = k then there is a yA E ~k SO that 

~*{u E ~*[A ~ u} _c ~ {ya}. G~ 

PROOF. Let  S' ~ xAz  in G' by canonical derivation (Tr~)~l. Now ~(lr~)~l is a 
R 

generation in G of Sw for some w E 2~*. First note tha t  lg(w) = n since each pro- 
duction ~(r~) contributes exactly one character to w. Also note by Claim 2 that  
n = #z(xAz)  = #z(x)  + # z ( A )  + #z(z)  = k + l g ( z ) .So  lg(w) = lg(z) + k. 
Now suppose xA ~ u E ~+ in G' by  (~r~)~=,+i. Then S' ~ uz in e '  by (7r~)~1 and 

q(~-~)i"~l is a derivation S ~ u'w = uz in G. So since 1° lg(w) = lg(z) + k, 
R 

w = (u (k))z. Thus w uniquely determines u (~). So Claim 3 is established. 
Armed with this result we are in a position to complete the proof of the Theorem. 
Since L (G') is not finite, there exists an A E N'  such that  A ~ xAy for some x 

R 

E V*, y E ~*.  Let  n = lg(x).  Since G' is in Greibach normal form, n > 0. Let z E 
2~* be the shortest terminal string generated by A in G', i.e. A ~ z in G' and if z' E 
Z* and A ~ z' in G' then lg (z) < lg (z'). z exists because G' is reduced. Let m = 

m+l A ~+1 G'. G' lg(z) and observe that  A ~ x y in Since is reduced, there exist t, 
t' S' tx,~+lAym+lt, . m+l ,~+L, G'. so that  ~ tAt' ~ ~ in ~x zy 

R R R 

By Claim 3 and the fact tha t  

#z (tx re+l) _> #~ (x m+~) = n (m + 1), 

we conclude that  there exists a ya E 2~(~+~)2~* such that  

~*{z} C ~*{yA}, 

which implies tha t  

z E 2~*Z~(~+~)2~* ~ 2~*Z ~(~+~). 

Thus 

lg(z) > n ( m + l )  _> m + l  > m = lg(z). 

The contradiction indicates tha t  the assumption that  G' exists was fallacious. | 
We now turn to the study of an important  property of grammars used in program- 

ming language description. 
Deiinition. A context-free grammar G = (V, ~, P,  S)  is said to be invertible 

if A --~ w and B --, w in P implies A = B. 
This property is very important  in some bottom-up parsing schemes because once 

a simple phrase of a sentential form in an invertible grammar has been found, then 
the left-hand side of the production is uniquely and simply found. 

Our first result says that  for any grammar, there is an equivalent invertible 
grammar. This theorem was independently discovered by Graham [17, 18]. 

THEOREM 1.5. For each context-free grammar G = (V, Z, P, S )  there is an in- 
vertible context-free grammar G' = (V', Z, P', S')  so that L (G' ) = L (G ). Moreover, i f  
G is A-free then so is G'. 

PROOF. Let  us assume, without loss of generality, that  G = (V, ~,  P, S) is 

Let #z(x) = ~a~z #a(x) so #z(x) is the number of occurrences of terminals in x. 
10 Recall that u (k) is the suffix of u of length k. 
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A-free and chain-free. (If A E L(G)  then L1 = L(G)  - /A} has a grammar 
G' = (V', ~,  P',  S ' )  which is A-free and chain-free. If the result has been proven for 
G', then take G" = (V' U {S"}, ~, P",  S" )  where P"  = P '  U {S" --+ A, S" ~ S'}. 
Clearly L (G") = L (G) and G" will be invertible if G' is. ) 

L e t G '  = ( V ' , ~ , P ' , S ' ) w h e r e N '  = { U C N  I U ~ ~}  U {S'} and S' is a new 
symbol not in V. 

Thus the variables of G' (except S' ) will be nonempty subsets of the variables of G. 
P'  is defined as follows: 
(a) S' --~ A where S E A ~_ N' is in P' .  
(b) For each production B ~ xoBlxl" .B,xn in P with B1 , . - . ,  B,  E N and 

x0 , . " ,  x, E 2~*, then for each A1 , ' . . ,  A,  E N'  - {S'}, P '  contains 

A -~ xoAxxt • • • A , x ,  

where 

A = {C I C ---~ xoClxl. . .Cnx, is in P for some C1 , ' " ,  Cn with each Ci E Ai}. 

If C ~ yoCly~" • .C,y ,  with y0 ," • ", y, E 2~*, Ci E N, we call the string yo-yl . . . . .  y, 
the stencil of the production (variables replaced by dashes). 

Note that  P and P '  have the same set of stencils and that  G' is invertible. Assume 
without loss of generality that  G' is reduced. 

Before embarking on a proof that  L(G')  = L(G), we give an example of the 
construction. 

Example. Consider the following grammar: 

S ~ OA]iB 

.4 ~ OA]OS]iB 

B ~ 110 

Applying the construction of the theorem leads to the following grammar. 

/BI 110 
{A} ~ O{SI[OiS,B} 

{A,S] ~ 0{A} [0{A,B} [0{A,S} IO{A,S,B}]I {B}[ i{B,A}II{B,A,SII I{B,S}  

S'--~ {S}]{A,S}I{B,S}I{A,B,S } 

Reducing the grammar leads to: 

S' ~ {A,S} 

{B} ~ 1[0 

{A,S} ~ O{A,S}[I{B} 

This is the familiar "subset construction" from automata theory [11]. 
Now we begin the proof that  L (G') = L (G). 
CLAIM 1. For each A E N'  and each x E Z*, A ~ x in G' implies B ~ x in G for 

each B E A.  
PROOF. The argument is an induction on l, the length of a derivation in G'. 
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Basis. Suppose l = 1. Then A ~ x ~ N* in G' and A ~ x is in P ' .  By the con- 
struction A = {C ~ N I C --~ x is in P}. Clearly this holds if and only if B ~ x is in 
P for each B C A. 

Induction Step. Suppose 1 > 2 and Claim 1 holds for all derivations of length 
less than 1. Then suppose A -~ XoAlXl • • • A ,x~ ~ x in G' by a derivation of length 1. 
This implies that  for each i, 1 < i < n, A~ ~ yi C N* in G' and xoylxl. • "ynxn = X. 

By the construction, for each B ~ A there exist B~ ~ A~ so that  B ~ xoB~xl. • .Bnxn 

is in P.  Moreover, the induction hypothesis implies that  Bi ~ y~ in G and therefore 

B ~ XoBlXl " "  B~x~ ~ xoylXl"''ynx,, = X in G. 

Note that  Claim 1 implies that  L (G') ~ L (G). 

To complete the proof, the following result is needed. 
CLAI~I2. For each x ~ ~*,  let X = {C C N] C ~ x in Gl. I f  B ~ x in G then 

A ~ x in G' for some A such that B C A ~ X .  

PROOF. The argument is an induction on l, the length of a derivation in G. 
BAsis. 1 = 1. Suppose B ~ x in G so B --~ x is in P.  Then by construction A -~ x 

is i n P ' w i t h B C  A = {CC N I C - - ~ x i s i n P } .  
Induction Step. Suppose B ~ xoBlxl. • • B~xn ~ xoylxl" • • y,x~ = x C ~ * in G is a 

derivation of length 1. There are derivations Bi ~ yg, all of which have length less 
than I. By the induction hypothesis, there are Ai C N' so that  for each i, Ai ~ yi 
in G', and B~ C Ai.  By the construction A ~ xoAlx i "  .Anx .  is in P '  with B C A. 
Thus A -~ xoAlxl" .A ,x~ ~ xoylxl" . y , x ,  = x in (7' • . j . 

By Claim 2, L (G ' )  ~_ L ( G )  and h e n c e L ( G ' )  = L(G) .  | 

It  is easy to see that  the invertibility condition is compatible with conditions (a) 
through (e) and not compatible with (f) in the Introduction. I t  is interesting to 
note that  for any grammar G, one can find an equivalent grammar G' which is in- 
vertible and chain-free. On the other hand, there are grammars G for which there 
do not exist equivalent grammars which are invertible, chain-free, and A-free. An 
example of such a grammar is: 

S ~ A[b 

A --~ aA[a 

(To prove this, suppose that  G' is such a grammar. One can easily show by induction 
that for each i ~_ 1, a i C L (G') implies S --~ a i is in P ' .  For L (G') to equal L (G) 
it must follow that  P '  is infinite which is a contradiction. ) 

The grammar G' of Theorem 1.5 does not necessarily cover G. For example, if G 
is the grammar: 

S ~ A I B  

A ~ a  

then G' is: 

B - - - )  a 

{S}---~{A,B} 

{A,B!  -~  a 
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which cannot cover G since ~ must  be a function. However the grammar:  

S--~ AIB 

A -~ a 

B --) aL 

L - - ~ A  

does completely cover G. Generalizing this result we obtain the following theorem. 
THEOREM 1.6. Let G = (V, ~,  P, S)  be a A-free context-free grammar. Then G is 

completely covered by an invertible grammar G'. 
PnooF. We simply present the construction. Index the elements of N by the 

integers 11 1 ,2 , . . . , IN  I. Let the index of A ~ N be denoted I (A). Let L be a new 
symbol and construct G' = (V', ~,  P', S)  as follows: 

N ' =  N U { L }  

P' = {A--~xLilA---~x E P a n d I ( A )  = i} U {L--~A/ 

Then (G', H )  covers (G, P )  under ~ where H = P' -- { L ~ A} and where ~: H -~ P 
i s d e f i n e d b y ~ ( A - - ~ x L  ~) = ( A - * x )  fo r eachA C N, i = I ( A ) ,  (A--~xL ~) C H. | 

I t  is easy to see that  the grammar:  

S -* AIB 

A --~ a 

B - ~  a 

cannot be completely covered by  any invertible g rammar  which is A-free. 
These results indicate theoretical applications of covers. I t  should be noted that  

Theorem 1.5 is a generalization of a result by  MeNaughton [14] on parenthesis 
grammars.  The difference between Theorems 1.5 and 1.6 is quite illuminating. 
Theorem 1.6 does give a covering while Theorem 1.5 does not. On the other hand, 
the construction of Theorem 1.6 leads to a resulting grammar  G' which has A-rules 
even when G does not. 

Although the construction given in Theorem 1.2 uses A-rules in a similar way, null 
rules can be eliminated by  a more complex construction; ef. the remarks following 
Theorem 1.2. 

Theorems 1.2 and 1.4 are quite surprising in a number  of ways. First it is surprising 
to be able to prove that  the Greibaeh normal form (elimination of left reeursion) al- 
ters parse trees so significantly tha t  no covering grammar  can exist. (This is as much 
of a consequence of our definition of covering as it is of the normal form.) In light 
of Theorem 1.4, Theorem 1.2 is even more surprising. The previous operator normal 
form construction [10] had first constructed the Greibaeh normal form of the grammar  
and then gone to an operator form. Theorem 1.4 shows tha t  such transformations 
can never be expected to lead to a covering, but  we have seen tha t  a simple direct 
construction will work for A-free grammars.  

2. Bottom- Up Parsing 

Bottom-up parsing methods are usually described as algorithms which scan an input 
s t ream while computing with a pushdown store and a bounded amount  of additional 

n Fo r  a n y  se t  X,  the  c a r d i n a l i t y  of X is d e n o t e d  by  IX I • 
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FiG. 3. Flowchart of a bottom-up parser. 

memory. At each stage, the algorithm performs one of the following actions: 
(1) reads an input symbol onto the stack; this continues until a complete phrase 

resides in the stack; or 
(2) replaces the phrase in the stack by a nonterminal which generated it. 
The first action is called phrase detection while the second operation is called phrase 

reduction. The entire algorithm can be represented by the flowchart shown in 
Figure 3. 

For example, Wirth and Weber [16] present a bottom-up parsing scheme for in- 
vertible simple precedence grammars. TM They do reduction using dictionary lookup 
and they detect phrases using simple precedence relations. Based on the model of 
Figure 3, this type of parser can be represented by the following diagram: 

I simple precedence I 
invertible 

where the upper box indicates the detection method while the lower box represents 
the reduction scheme. I t  is known [3] that  the above class (simple precedence detec- 
tion and invertible reduction) is not powerful enough to parse all context-free lan- 
guages. In our more general framework, it is natural to inquire about the potency of 
simple precedence detection and of invertible reduction for particular grammars. 

Is invertible reduction powerful enough to parse every context-free grammar? The 
answer to this question depends on one's notion of adequate. If one requires that  
every grammar be equivalent to an invertible grammar then the answer is yes by 
virtue of Theorem 1.5. In the previous section, we argued that  adequacy is essen- 
tially the ability to cover, i.e. parsing G' is as good as parsing G if and only if G' 
covers G. If our definition of adequacy is that  every grammar be completely covered 
by an invertible grammar then we must examine Theorem 1.6. We know that  we 
can completely cover a A-free grammar G by an invertible grammar G'. But  the 
proof of Theorem 1.6 reveals that  although G is A-free, G' has null rules (and is 
more complicated to parse than G in that  respect at least). We have already seen 
(of. remarks after Theorem 1.6) that  there are (A-free) grammars which cannot be 
completely covered by an invertible A-free grammar. In light of this, the answer to 
our original question can be taken to be no. 

In some sense this means that  the reduction phase of a general parser must be 

In this introduction, we will discuss a number of special types of grammars such as simple 
precedence grammars. Formal definitions occur in this paper before the mathematical use of 
each concept. Definitions for concepts which are discussed but are not used in theorems may 
be found in [8, 9]. 
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nontrivial. Surprising enough we shall now show tha t  all the "work"  in bot tom-up 
parsing can be done by  the reduction phase. 

What  does it mean to shift all the work in parsing to the reduction phase? Since 
simple precedence is the simplest form of phrase detection, we ask whether every 
grammar  may be completely covered by  a simple precedence grammar.  The (sur- 
prising (?))  answer is yes. In  fact, we can say much more; we can cover grammars 
of type X by  simple precedence grammars  and reduce them by  techniques appro- 
priate for type X grammars.  In  particular, some of the results tha t  we can prove are 
as follows: 

simple precedence LR(k) I 
completely covers 13 

I LR(k) LR(k) 

simple precedence 
completely covers 

bounded 14 
right context 

i 
bounded right context I 

I bounded right context 

simple precedence unambiguous 
completely covers 

unambiguous unambiguous 

simple precedence nondeterministic 
completely covers 

nondeterministic nondeterministic 

Each of the above results is in [8]. 
Lest the reader t ry  to formulate the theorem "for all X, every grammar  of type X 

can be covered by  a g rammar  which is precedence detectable and X reducible" we 
point out tha t  not every invertible g rammar  is covered by  a precedence detectable 
invertible grammar.  To see this observe tha t  precedence detection plus invertibility 
cannot handle all bounded right context languages [3, 13]. On the other hand 
Theorem 1.6 shows tha t  every context-free language has an invertible grammar. 

In  order to prove our main results, we need some additional concepts. 
Definition. A context-free g rammar  G = (V, ~ ,  P,  S)  is said to be chain reduced 

if G is reduced and if for any A C N it is not the case that  A ~ A. 
I f  a g rammar  is not chain reduced then it is ambiguous. One can easily decide 

whether a g rammar  is chain reduced and if it is not, one can remove the "cycles" 
by  a straightforward construction and then reduce it. Note tha t  a chain reduced 
g rammar  may  have chains but  they are of bounded length. 

Before we can state the next result, we must  recall the formalism for LR(k)  
grammars  [8] and assume tha t  none of our grammars  contain the rule S -~ S. 

Definition. Let k be any positive integer. The grammar  G = (V, ~,  P, S) is 
y '  A ' z' 2~* called L R ( k )  detectable if for any x, y, C V*; A, C N; z, C if S ~ xyz 

has handle (A -~ y, lg (xy)) and S ~ xyz' has handle (A' ~ y', j) and (~)z = (k)z' 

t h e n j  = lg(xy) and y '  = y. 

13 T h i s  n o t a t i o n  is an  i n f o r m a l  w a y  to s t a t e  t h e  t h e o r e m  t h a t  e v e r y  b o u n d e d  r igh t  context  
g r a m m a r  G is cove red  by  a g r a m m a r  G'  w h i c h  is s imple  p recedence  d e t e c t a b l e  and  bounded  

r i g h t  c o n t e x t  reduc ib le .  
14 See F o o t n o t e  13; see [8]. 
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Note tha t  A'  = A is not necessarily true. 
Definition. G is said to be LR (k) reducible if (under the same quantification as 

above) whenever S ~ xyz has handle (A ~ y, lg (xy))  and S ~ xyz' has handle 

(A' --~ y, lg (xy)) ,  then A = A'.  
G is said to be LR (k) if it is LR (k) detectable and LR (k) reducible, i.e. if S T xyz 

has handle (A--~ y, l g ( x y ) ) a n d  S ~ x y z  has handle (A' --~ y ,  j )  and (k)z = (k)z' 

then (A ~ y, lg (xy))  = (A' --~ y', j ) .  
Our next result, while interesting in its own right, is intended as a device to help 

prove Theorem 2.2. 
THEOREM 2.1. Every L R ( k )  grammar G can be completely covered by an LR(k )  

canonical two form grammar G'. I f  G is chain reduced and A-free so is G'. 
PROOF. We will invoke the construction of Theorem 1.1 to define G'. By 

Theorem 2.1 G' covers G. Inspection of P' shows tha t  if G is chain reduced and 
A-free then so is G'. I t  remains to be seen tha t  G' is LR (k) if G is. 

Assume tha t  G is LR (k). 
LEMMA 1. Let xyz be a canonical sentential form of G' with handle (A -~ y, lg (xy ) ). 

• 15 Let the canonical sentent~al form ~(xyz) have handle (B ~ v, m)  in G. Then 
(a) xyz E (N')'2~*, 
(b) if A --~ y is in P1 O P2 U P3 then m = lg (~ (xy ) ) and lg (~ (y ) ) = lg (v ), 
(c) if A ~ y is in P4 then m = lg (~ (xy) ) and lg (~ (y) ) < lg (v), 
(d) if A ~ y is in P6 then m > lg (~ (xy) ). 
PROOF. We induct on the minimal n such tha t  [S] ~ xAz ~ xyz in G'. 

R R 

Basis. n = 1 implies A = [S] and inspection of P '  shows tha t  A --~ y is in 
P~ U P2 UP3. Since ~ is a cover, ~(xyz)  has handle (S ~ ~(y) ,  l g ( ~ ( x y ) ) )  and so 
(a) and (b) are established while (c) and (d) hold vacuously. 

Induction Step. We proceed by  cases. If  A --~ y is in P~ U P~ U P3 the above logic 
is still valid. I f  A ~ y is in P4, then by inspection of P 4 ,  A -- [Az" • "Aq] for some 
q >_ 2, A1 , ' . "  , Aq C V, and y = [A~][A2...Aq]. By hypothesis ~(xAz )  has handle 
(B --~ v, lg (~ (xA)  )), and lg (v) > lg (~p (A) ). So since ~ (A) = ~ (y), lg (v) > 
lg (~p (A) ) = lg (y) and (c) holds. But  m = lg (~ (xA)  ) = lg (~p (xy))  because ~ (A) = 

(y). Thus (a) and (c) hold and (b) and (d) are vacuous. Lastly if A ~ y is in 
Ps, then by  the induction hypothesis m _> lg (~ ( xA) )  and by  inspection of Ps ,  
lg (~ (A) ) = lg (~p (y)) .  Thus m > lg (~ (xy)) .  Thus (a) and (d) follow and (b) and 
(c) are vacuously satisfied and the lemma follows by  induction. 

Now we must  prove tha t  G' is LR(k) .  Suppose that  for any x, y, y '  C (V')*; 
Z t z, C 2~*; xyz is a canonical sentential form of G' with handle (A ~ y, j )  where j  

= lg(xy), and xyz' is a canonical sentential form of G' with handle (A' ~ y', j ' ) ,  
f 

and (~/z = (k)z'. Then we must  show that  (A ~ y, j )  = (A' ~ y ,  j ' ) .  
The proof now breaks into cases. We first, deal with the case in which A --~ y is in 

Ps. In that  case, we will show that  the handles are equal. Then, under the assump- 
tion that  A -~ y is not in P~, we must consider subcases as to which P~ the production 
A ~ y belongs. In  each subcase, we show the handles are equal. 

Case 1. A ~ y is in Ps .  Inspection of P6 shows y C ~.  Suppose A'  -+ y' is not in 
Ps. Then by Lemma 1 (i')(xyz') ~ N'*. Hence j '  < lg(xy).  Note tha t  u'+~)(xyz) 
= (:'+~)(xyz') since (~)z = (~)z'. Let ~(xyz)  have handle (B ~ v, m) in G and let 

~ We also write ~,(x) for x ~ (V')* although e was initially defined on productions. It is actually 
a homomorphic extension of the function ~(a) = a for a ~ Z and ~([A]) = A for [A] in N'. 
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7,(xyz') have handle (B' ~ v', m' )  in G By  Lemma  1, m > lg(7,(xy))  and m' = 
lg(7,((J') (xyz ' ) ) ) .  Since (~,÷k)(xyz) = (j,+k) (xyz') it follows tha t  (m,+k)(7,(xyz)) = 
(m'+k)(7,(xyz')). Invoking the hypothesis  t ha t  G is L R ( k )  yields (B ~ v, m)  = 
(B' -*  v', m ' )  is the handle of bo th  7,(xyz) and 7,(xyz'). In part icular  m' = m. 
However ,  it was established above tha t  j '  < lg(xy)  so m' = lg(7,((3")(xyz'))) < 
lg (7, (x))  < lg (7, (xy))  < m. So m' < m. This contradict ion shows A'  ~ y' is in Ps.  
A symmetr ic  argument  shows tha t  A --~ y is in P5 if A '  --~ y'  is. So we conclude that  
A --~ y is in P6 if and only if A'  --~y is. 

Next  observe tha t  in this case y, y C ~ .  In part icular  y and  y' ' are the leftmost 
terminal  characters  of xyz and xyz' respectively.  So y = y', j = j '  and by  inspection 

t .t . 
of Ps ,  A = A '  = [y]. This establishes t ha t  (A ~ y, j )  = (A' ~ y ,  3 ) if A --~ y is in 
P s .  

Case 2. A --~ y is not  in Ps .  In the above case we concluded A ~ y is in P~ if 
and only if A '  --~ y' is in Ps .  So we observe tha t  A'  ~ y' is not  in P5 in this case. Now 
by  (b) and (c) of Lemma 1, if 7' (xyz) has handle (B ~ v, m ) in G then m = lg (7, (xy)).  
So since (k)z = (k)Z' = ¢k)7, (Z) = (k)7, (Z') and since G is LR  (k) we conclude that  
7,(xyz') has handle (B --~ v, m)  in G. By  (b) and (c) of L emma  1, this means that  
m = lg(7,((j') (xyz ' ) ) ) .  So 7,(o")(xyz'))  = 7,(xy). This means j '  = lg (xy)  s o j '  = j. 

To  summarize the assumptions and conclusions of the above paragraph:  
(i) xyz has handle (A ~ y, lg (xy) )  in G' and A ~ y is not  in Ps ,  

(ii) xyz' has handle (A' ~ y', lg (xy) )  in G' and A '  --~ y' is not  in Ps ,  
(iii) (k) (z) = ¢k) (z'), 
(iv) 7, (xyz) and 7, (xyz') bo th  have handle (B ~ v, lg (7, (xy) )  ) in G. 
Now the a rgumen t  divides into subcases. 
Case 2.1. A ~ y is in P i  U P~ U P3.  If A'--~ y' is in P1 tJ P2 I.J P3 then  since 7, is 

a cover (B ~ v) = 7,(A ~ y)  = 7,(A' --~ y ' ) .  Inspect ion of P~ U P2 (J P8 and 
shows tha t  in this case (A --~ y)  = (At ----, y, ). If  A'  ~ y' is in P4 then  by  Lemma  1 (c) 
lg (v) > lg (7, (y ' ) ) .  But  lg (7, (y ' ) )  _> lg (7, (y) ) and since 7, (A --~ y)  = (B --~ v) 
it follows tha t  lg (v) > lg (7, (y ' ) )  > lg (7, (y) )  = lg (v). This contradict ion shows that  
A'  ~ y' is not  in P4.  Hence it is in P1 U P2 (J P3 and therefore  (A ~ y) = (A' ~ y').  

Case 2.2. A --~ y is in P4 • By  symmet ry  the above arguments  require tha t  A ~ y 
is not  in P4 if A '  ~ y is not  in P~. So A '  y'  ' --~ is in P~ Inspect ion of P4 shows that  
(A -~  y)  = (A' --~ y ' )  in this case. 

The  above arguments  have shown tha t  in any  case (A --~ y, j )  = (A' ~ y', j ' ) .  
So it follows tha t  G' is LR  (k). | 

Before stat ing our main result,  we need the following concepts about  precedence 
analysis. The  reader  is referred to [9] which presents  our  theory  in greater  detail and 
generali ty.  

Definition. Let  G = (V, Z,  P,  _l_S_l_ ) be a context-free g rammar  with delimi- 
t e r J  ~ Define the following b inary  relations on V: 

= { (A,B) [ A ~ By is in P for some y C V*I, 

p = { ( A , B ) [ B ~ x A i s i n P f o r s o m e x  C V*/, 

a = { (A ,B)  [ C ~ x A B z  is in P for some x, z E V*} U { (_L,S),(S,.I_)}. 

~6 A t  t h i s  p o i n t ,  w e  u s e  c o n t e x t - f r e e  g r a m m a r s  w i t h  d e l i m i t e r s .  F o r m a l l y ,  t h e  c o n v e n t i o n s  a r e  

that .J_ E Z, _I_S.L is the start string, a n d P  C (V - Z) X (V - {_l_})*. All of the previous 
theorems are true with minor modifications for grammars with delimiters (cf. [8]). 
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Finally, define 

= o~X +, 

• > = (p+aX*) N (V X Z). 

The reader who is familiar with the general theory of canonical precedence will 
note that  this is the special case where T = V so tha t  G is A-free, o~ = % ~ = ~, and 
p- - - -w.  

Now we can give the following definition. 
Definition. A context-free grammar  G = (V, ~ ,  P, kS_l_ ) is said to be a prece- 

dence detectable grammar if 
(a) G is A-free, and 
(b) the relations < ,  ~ ,  and .> are pairwise disjoint. 
We can now state and prove the main result of this section. 
THEOREM 2.2. I f  G is a A-free chain reduced LR (k ) grammar in canonical two 

form, then G is completely covered by a simple precedence detectable, LR (k) reducible 
grammar G'. 

PROOf. Let G = (V, ~ ,  P,  kS_l_ ) be a chain reduced A-free L R ( k )  canonical 
two form grammar.  For e a c h A  E N def inep(A)  = max {m I A 0 , . . . , A m  E N; 
A = A0 ~ A1 ~ • • • ~ Am}. Since G is chain reduced, p (A) exists and is bounded 
by 0 _< p (A) _< I N l- Further  if A ~ B then p (A) > p (B). Define p = maxA EN P (A) 
for G. Now define G' = (V', 2~, P', kS_l_ ) where 

V' = /[A,i]I 0 < i < p + 2, A E NI U {SI U~. 
Let 

P~ = {S ~ [S,p+2]}, 
P,. = {[A,p+2] ~ [A,p][A E AT}, 
P3 = {[A,p+l ]  ~ [A,p][A E N}, 
P4 = {[A, i ] - -~[A, i -1]IA E N ; 0  < i < p}, 
P5 = {[A,O]--->alA E V - ~ , a  E ~ ; A - - - ~ a i n P ] ,  
P6 = {[A,p(A)] ~ [B,p(B)]IA,  B E N; A ~ B in P}, and 
P~ = {[A,0] ~ [B,p+2][C,p+i]tA , B, C E N; A -~ BC in P}. 

Let P '  = U~=~ P~. Let H '  = U~=5 P~. Now define ~ : V' --~ V by  

~o(a) = a for e a c h a  E ~,  

~([A,i])  = A for e achA E N, 0 < i <  p +  2, 

extend ~o to a homomorphism of (V')*  onto V*, and define ~ on H by  

( A ~ x )  = ¢ ( A ) ~ ( x ) f o r e a c h A ~ x i n H .  

This construction is rather  complex. The reader should note tha t  if p = 0 this is 
essentially the construction of Fischer [3]. The need for p stems from the necessity of 
~overing chain productions and hence a need to bracket  each nonterminal by  
~nd .> at  most p times. To establish the theorem one must  show 

(a) (G', H '  ) covers G under (p, 
(b) G' is LR (k), 
(c) G' is simple precedence detectable. 
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The techniques for the proof of (a) are presented in Theorem 1.1; the technique 
for the proof of (b) is presented in Theorem 2.1. For the sake of brevity we omit 
these proofs and prove only (c). 

CLAIM. G' is a simple precedence grammar. 
PROOF. It suffices to show that < v, =" v, and -> v are pairwise disjoint. Inspec- 

tion of P' shows the following: 

o~ ~ { (-L,S),(S,-L)} U ({[A,BW2]IA E N} × {[A,p+I]IA E NI)  

k +.~_ ({S} X (V ' - -  {-L,S})) U ({[A,i]IA E N ; 0  < i < p + 2} 
× ({[A,i]IA E N ; 0  < i < p + 2, i # p + 1} O (2~ - {,L})) 

p+ ~ ( ( V ' -  {.L,S!) X {S})U (({[A,i]IA E V - Z , O < i < p W 2 ,  i ~ p + 2 }  
U (~ - {_l_l)) X {[A,i][A E N,O < i < p + 2}) 

SO 

~ = aN + C ({_L} X ( V ' -  {_L,S}) O ({[A,p+2]IA E N} 
X ({[A,i]]A E X,O < i < p + 2, i # p + 1} O (Z -- {_L})) 

> = p+~x* N (v '  x ~ )  c ( ( v '  - {_L,S}) X {-L f) 
U (({[A,i]IA E N , O < i < p + 2 ,  i # p + 2 }  U (2- -  {,L})) X ( ~ -  {_L})) 

So the relations are disjoint. We display this result by the table: 

_l_ ~ -  { . J _ }  [ A , p + 2 l  [ A , p + l ]  [A,il S 

± 

- {±1 
[A,p+2] 
[A,p+l] 
[A ,i] 
S 

< < < < 
.> 

.> 

Combining these results leads immediately to our main theorem. 
THEOREM 2.3. Every A-free chain reduced LR (k) grammar is completely covered 

by a precedence detectable, LR (k) reducible grammar. 
PROOF. The result follows immediately from Theorem 2.1, Theorem 2.2, and 

the transitivity of covers. | 
By analogous techniques, one can show the following result. 
THEOREM 2.4. Every A-free chain reduced BRC (n, m) grammar is completely 

covered by a precedence detectable, BRC (n + r, m) reducible grammar for some integer r. 
Graham [17, 18] has independently proved that for any A-free LR(k) grammar 

(respectively BRC(n, m)) there is an equivalent LR(/c) grammar (respectively 
BRC(n', m)) grammar with pairwise disjoint simple precedence relations. 

3. Summary and Conclusions 

Past work in the areas of normal forms and of classes of parsers has focussed pri- 
marily on the existence of a certain normal form for a grammar or the existence of a 
recognizer for a language. Often the proof is by a construction which mutilates the 
structure of the original grammar or produces an impractically large grammar. In 
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an attempt to define and examine these properties one is led to the concept of gram- 
matical covering. The definition of covering, although intuitively quite simple, is 
formally complex and gives rise to rather lengthy proofs. However, the definition 
yields some interesting results. 

It  shows, as expected, that  the canonical two form is universal and that  any con- 
ceivable Greibach normal form construction significantly changes the shape of the 
parse trees of some grammars. Surprisingly there exist constructions for the operator 
normal form which do not significantly change the shape and labeling of the parse 
trees. Similarly there exist constructions for the invertible form of a grammar which 
4o not significantly change the shape of the parse trees. 

Perhaps a word of caution is appropriate here. The constructions presented work 
~s claimed. However, the resulting grammars are typically considerably larger than 
:he original (Theorem 1.1 yields a EULER [16] grammar two times larger, Theorem 
[.2 yields a grammar 1600 times larger, Theorem 1.5 yields a grammar 24o times 
arger, and Theorem 2.2 yields a grammar 16 times larger). The theorems present 
:ertain tricks which apply uniformly to the entire grammar. However, in practical 
ituations, they should be used incrementally and with discretion to repair local 
~nomalies in a grammar. The substance of any particular theorem is that  there is 
]s not) hope of going from grammar G to a covering normal form grammar. Beyond 
hat, one is left pretty much to his own devices. 

For example, Ichbiah and Morse [12] present a compact and fast parser which 
ses a precedence detection scheme and LR (k) reduction. Theorem 2.2 indicates 
hat their technique can handle all I R  (k) grammars. By employing the construc- 
ons of Theorem 1.1 and Theorem 2.1 it is possible to convert any A-free and chain- 
'ee LR (k) grammar G to a grammar G' which is precedence detectable and LR (k) 
~ducible. Further, this new grammar completely covers the original grammar. 
'hus employing Figure 1.1 one can build a parser for G which uses precedence de- 
;ction and LR (k) reduction on G' and translates G" parses to G parses by dictionary 
,okup at  each step of the parse. 
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