
On the Covering and Reduction Problems for

Context-Free Grammars

JAMES N. GRAY AND MICHAEL A. HARRISON

University of California, Berkeley, California

ABSTRACT. A formal definition of one grammar "covering" another grammar is presented. I t
is argued that this definition has the property that G' covers G when and only when the ability
to parse G' suffices for parsing G. I t is shown that every grammar may be covered by a grammar
in canonical two form. Every A-free grammar is covered by an operator normal form grammar
while there exist grammars which cannot be covered by any grammar in Greibach form. Any
grammar may be covered by an invertible grammar. Each A-free and chain reduced LR(k)
(bounded right context) grammar is covered by a precedence detectable, LR(k) (bounded right
context) reducible grammar.

KEY WORDS AND PHRASES: covers, reductions, parsing, precedence analysis, canonical prece-
dence, context-free grammars

CR CATEGORIES: 4.12, 5.22, 5.23, 5.24

Introduction

There are pars ing me thods which requi re t h a t the g r a m m a r under cons idera t ion be
in some no rma l form or have some special p r o p e r t y [3, 4, 5, 9, 13]. Somet imes , t he
requirement on the g r a m m a r is t h a t i t does no t have a p r o p e r t y such as no t hav ing
left recursion for use wi th t op -down pars ing techniques . A few pars ing me thods are
known which requi re no special form of the g r a m m a r (see, e.g., [2]), b u t th is gen-
erality exacts a pr ice in the complex i ty of t he a lgor i thm.

In the p resen t paper , we consider a re la t ionship be tween g r a m m a r s cal led "cover -
ing." In tu i t ive ly , i t will t u rn ou t t h a t G' " cove r s " G when the ab i l i t y to parse G'
allows one to parse G b y " t a b l e lookup t echn iques . " T h e formal defini t ions will be
more compl ica ted t h a n this because of some prac t i ca l considera t ions , such as the
desire to exclude p roduc t ions which have no semant i c significance. Af t e r jus t i fy ing
our definitions and compar ing t h e m wi th re la ted concepts f rom the l i t e ra ture , we
prove some pos i t ive results . W e show t h a t the canonical two form [1] can cover a n y
grammar and t h a t the ope ra to r no rma l form [4] can cover any A-free g rammar . I t is
also shown t h a t a n y g r a m m a r m a y be covered b y an inve r t ib l e g r a m m a r . A t yp i c a l
negative resul t is t h a t the re a re g r a m m a r s which canno t be covered b y a n y g ram-
mar in Gre ibach form [10].

Copyright O 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of this material is granted
provided that reference is made to this publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
This research was supported in part by NSF Grant GJ 474.
Authors' present addresses: J. N. Gray, IBM Thomas J. Watson Research Center, P.O. Box
218, Yorktown Heights, NY 10598; M. A. Harrison, Department of Computer Science, Uni-
versity of California, Berkeley, CA 94720.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972, pp. 675-698.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321724.321732&domain=pdf&date_stamp=1972-10-01

676 J . N. GRAY AND M. A. H A R R S I O N

Atten t ion is then turned to the class of bo t tom-up parsing methods. Bo t tom-up
parsing m a y be regarded as the i teration of a two-step process: detect ing a phrase
and then reducing it. I t is shown tha t each step m a y be trivialized at the expense of
the other. I t is shown tha t every L R (k) g rammar [13] m a y be covered by a g rammar
which is precedence detectable and L R (k) reducible. A similar result holds when
" L R (k)" is replaced by "bounded r ight context" [5].

The present paper is organized as follows: the remainder of this In t roduc t ion con-
tains most of our formal definitions and notat ional conventions. Section 1 introduces
covers and discusses their connection with other relations between grammars . We
then show tha t each g rammar is covered by a canonical two form grammar . I t is
proven tha t each A-free g rammar is covered by a g rammar in operator form. This
s ta tement becomes false if the A-free hypothesis is omit ted. I t is shown tha t there
is a g r a m m a r which cannot be covered by any g r ammar in Greibach normal form.
Inver t ib i l i ty is in t roduced and it is shown tha t every g r ammar can be covered by an
invertible g r a m m a r by abusing A-rules. The ramifications of this are explored.

I n Section 2, bo t tom-up parsing is dichotomized and it is shown tha t each A-free
and chain reduced L R (k) (bounded r ight context) g r ammar is covered by a prece-
dence detectible, L R (k) (bounded r ight context) reducible g rammar .

Section 3 concludes and summarizes the discussion.
We now begin to list some of the formal definitions which are required.
Definition. A context-free grammar is a 4-tuple G = (V, ~ , P , S) where:

(i) V is a finite n o n e m p t y set (vocabulary),
(ii) ~ c V is a finite n o n e m p t y set (term.i~al symbols),

(iii) N = V - ~ is the set of variables and S E N,
(iv) P is a finite subset ~ of N × V* and we write u --~ v in P instead of (u,v) E P.

P is the set of productions.
I t is convenient to introduce a general notat ion concerning relations.
Definition. Let p be a b inary relation on a set X, i.e. p ~ X X X. Define p0

{ (a,a)] a E X} , and for each 2 i > 0, pi+l i p . pi p+ * _ = pp . Lastly, = U~>0 and = p p.
For a b inary relation p on X, p* is the reflexive-transitive closure of p while p+ is the
transitive closure of p.

Next , we can define the rules for rewrit ing strings.
Definition. Let G = (V, 2~, P , S) be a context-free g rammar and let u, v E V*.

Define u ~ v if there exist words x, y, w E V* and A E N so t h a t u = x A y , v = xwy,
and A ~ w is in P . I f y E ~*, we write u ~ v. Fur thermore , define

= (~) and ~ = (~) * .

A string x E V* is said to be a sentential form if S ~ x and a canonical sentential
form if S ~ x. No t every sentential form is canonical.

R

The set L (G) = {x C ~ *] S ~ x} is the language generated by G.
We now ment ion four similar bu t nota t ional ly different definitions of derivations.

Let X and Y be sets of words. Write X Y = {xy [x E X, y E Y} where xy is the concatenation
of x and y. Define X ° = {A} where A is the null word. For each i >_ 0, define X ~+~ = X~X and
X* = O~>_G X ~. Let X + = X*X and let ~ denote the empty set. Finally, if x is a string, let
lg(x) denote the length of x which is the number of occurrences of symbols in x.
2 The operation is a composition of relations which is defined as follows: if p C_ X X Y and
a C Y X Z, define pa = {(x,z) [(x,y) E p and (y,z) E a for some y E Y}. Observe that pC
c x x z .

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 677

If u0 ~ ul ~ • • • ~ ur then we say tha t the sequence (u0," • • , ur) is a derivation of
ur from Uo. I f u0 ~ ul ~ • • • ~ ur the derivat ion is said to be a canonical derivation.
If for each 0 < i < r, if ui = viAiwi and ui+l = vly~wi and ui+l m a y be obtained from
u~ by using product ion 7ri = A~ --~ y~ at position n~ = lg (v~y~), we say tha t the se-
quence of rule-integer pairs ((~'0 ,no) , . . . , (~'r-1 ,n,_l)) is a derivation of ur from Uo.
In the case where this derivat ion is canonical the n~ are superfluous, so we also let
(m ," • • , ~',-1) denote the canonical derivat ion of Ur from u0. I f u0 is not mentioned,
it is assumed t h a t u0 = S. A n y part icular derivat ion also corresponds to a labeled
directed tree, called the parse tree.

If the sequence (u0 ,- • • ,u~) is a derivat ion of u, f rom u0 then (u, ,. • • , u0) is said
to be a parse of u~ to u0. I f the derivat ion is canonical then the parse is said to be
canonical. I f u0 is not ment ioned then we assume tha t u0 = S.

If (sl ,- • • ,sn) is any sequence, it m a y be denoted b y (si)i~l. I f P is some predi-
cate defined on the st then the subsequence of those s~ satisfying P is denoted by
(si] P ~ . (sl))i=l I f f is a funct ion on the si then the sequence (f (s l) , ' . " , f (s~)) isde-
noted by (f(sl))~=i.

In a part icular der ivat ion of a canonical sentential form x, denoted by a sequence
((~'o , n0) , " " , (~-r ,n,)) , if ~-r = (A ~ y) then the occurrence of the substring y in x
at position n~ is a simple phrase of x, and the pair (~'~ ,nr) is called a reduction of x.
If the derivation is canonical then (~-, ,nr) is called a handle of x.

Let ~ and & be two alphabets and suppose f is a funct ion from Z into A*. f m a y
be extended (uniquely) to a monoid homomorphi,m f rom Z* into A* by the condi-
tions

f (A) = A, f (a , , . . . ,a~) = f (a l) , . . . , f(a~)

foral E ~ for l < i < n. I f L c2~* , de f ine r (L) = {f(x) I x E L/ . I f L i s context-free
(regular) and f is a homomorphism, then f (L) is context-free (regular) [6, 11].

We will be considering a number of special properties of g rammars and we now
list some of these. M a n y of these definitions are in s tandard textbooks on language
theory [6, 11].

Definition. A context-free g r ammar G = (V, ~ , P , S) is said to be
(i) A-free if P E N × V +,

(ii) chain-free ~ if P f'l (N × N) = ~f,
(iii) reduced if

(a) for each A E V, there exist x, y E V* so tha t S ~ xAy, and
(b) for each A ~ S there exists x E Z* so t h a t A ~ x,

(iv) in operator form if P ~ N × (V* - V*N2V*),
(v) in canonical two form if P C N × ({A} 0 V (J N2),

(vi) in Greibachform if P c N × 2~V*.
The following results are well known:
(a) Eve ry context-free language no t containing A has a A-free g rammar .
(b) Eve ry context-free language has a context-free g r ammar which is chain-free.
(c) Eve ry context-free language has a reduced context-free g rammar .
(d) Eve ry context-free language has a g r ammar in operator form [10].
(e) Eve ry context-free language has a g r a m m a r in canonical two form [1].
(f) Eve ry context-free language not containing A has a context-free g rammar in

Greibach form [10].

3 A derivation Z0 ~ . . . ~ Z~ is said to be a chain if r > 0 and Z~ E N for 0 < i < r.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

678 Z. N . GRAY AND M. A. HARRISON

These results may be combined into pairs (i.e. a grammar may be assumed to
satisfy an arbitrary pair of the properties) except that pairs (d,e) and (e,f) are in-
compatible.

1. Basic Results

In the present section we consider a number of alternate definitions of "covering"
and other relations between grammars. We arrive at a definition which turns out to
be quite useful and captures the intuitive notion of "covering" with respect to
parsing. That is, if G' covers G and if one can parse G', then one can parse G.

Our first definition is a familiar and weak concept from language theory.
Definition. Two context-free grammars G and G' are said to be equivalent if

L(G) = L(G').
For our remaining definitions, we need the following framework. Let G = (V,

~, P, S) and G' = (V', ~, P', S') be two context-free grammars over X. Let f be
any map from V' into V which is the identity on Z, i.e. f(a) = a for each a E ~.
Extend f to be a (monoid) homomorphism from (V')* into V by requiring f (xy) =
f (x) f (y) for each x, y 6 (V')*

Notation. For any set P ' of productions, write

f (P ') = {f(A) - -* f (x)]A ~ x is in P ' l .

The following definition offers another relationship between grammars.
Definition. Let G, G', and f be as above. We say that f is a homomorphism from

G' onto G if
(a) f (S ') = s ,
(b) f (P ') = P.

If f is also one-to-one then f is an isomorphism.
The original notion of "covering" was due to John Reynolds (cf. [15]). We shall

also introduce "weak covers."
Definition. Let G, G', and f be as above. G is said to be a weak Reynolds cover of

G' under f if
(a) f (S') = S, and
(b) f (A) ~ f (x) in G if A --~ x is in P ' .
Finally, we eonsider a strengthened version of the previous definition of covering

which is the original one [15].
Definition. Let G, G', and f be as above. G is said to Reynolds cover G' under f if
(a) f (S') = S, and
(b) f (P ') _c P.
These definitions have all been used in the literature [7, 15]. Some of the simple

formal relations among the definitions are as follows:
PROPOSITION. Let G, G', and f be as before.
(a) I f f is an isomorphism of G' onto G then f is a homomorphism of G' onto G.
(b) I f f is a homomorphism from G' onto G then G is a Reynolds cover of G' underf.
(c) I f G is a Reynolds cover of G' under f then G is a weak Reynolds cover of G' under f.
(d) I f f is a homomorphism of G' onto G then G is equivalent to G'.
None of these definitions seems to capture the notion that we think is essential for

programming applications. We would like to say G' covers G if given a parser for
G' one can construct a parser for G. The motivation for this is that parsers typically
handle grammars in some normal form. Presented with an arbitrary grammar G it

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 679

may be possible to transform it into a grammar G' which is in this normal form. In
what cases can a parser for G' be used to produce a parser for G?

For example, simple top-down parsers will not tolerate left recursive rules which
allow A ~ Ax for some nonterminal A and string x. However, given a grammar G
there is a grammar G' equivalent to G which has no such left recursive rules. Can one
construct a parser for G given a parser for G'? We shall prove that the answer is no,
given our definition of covering.

The notion of equivalence of grammars is too weak since it makes no reference at
all to the parses in G' and G. For example G may be ambiguous and G' not. On the
other hand, the notion of isomorphism is too strong. It means that parses in G and
G' differ only by renaming of nonterminals. G' is almost identical to G in this case.
The definitions of covers which are due to Reynolds come considerably closer to an
acceptable definition of "similar." Reynolds shares our desire to characterize the
process of transforming a grammar G into a grammar G' which is easier to parse than
G and which has parses similar to those in G. However Reynolds' emphasis is sig-
nificantly different. He does not even require L (G) = L (G'); he merely requires
L (G) _C L (G'). Reynolds intends to have the semantic routines detect and reject
those strings in L (G') - L (G). For example, every canonical two form grammar G
over terminal alphabet {0, 1} is covered in Reynolds' sense by the grammar

s- sslsj01xlA
Thus the semantic routines will do all the work in this case. Although the canonical
two form of G is weakly Reynolds covered by G, in general no Greibach normal form
or operator normal form of a A-free version of G is (weakly) Reynolds covered by G.

Before presenting our notion of covering, we must generalize the idea of generation
because of the following practical considerations. In most ~ formal treatments of
parsing, the parser must enumerate all the nodes of the parse tree. In programming
practice, certain nodes of the parse tree have no semantic significance and do not need
to be present in a similar grammar. For example, consider the generation tree of
Figure 1 which occurs in EULER [16].

The chain expr- ~ k is typical of what happens in grammars for programming
languages. Chains exist to enforce precedence among operators and to collect several
categories of syntactic types (e.g. in ALGOL (statement) --~ (unconditional state-
ment)] (conditional statement) I (for statement)).

Chain productions rarely have semantic significance. In our running example,
only the following productions have nontrivial semantics:

e x p r - --~ v a r ~-- e x p r -

v a r - ~ X

p r i m a r y - - . v a r

k ---~ A

X--~B

For the purposes of code generation, the "sparse generation tree" of Figure 2 (a) is as
satisfactory as the tree in Figure 1. The tree shown in Figure 2 (b) would not be a

Floyd precedence [4] is a parsing scheme which makes this explicit. Only rules containing
terminal characters are enumerated.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

680 J . N. GRAY AND M. A. HARRISON

e x

v a r

v a r -
I

X
I

A ~-

e x p r o

I
e a t e n a

I
d i s j

I.
e o n j

I
c o n j -

I
n e g a t i o n

I
r e l a t i o n

c h o i c e

c h o i c e o

s u m

FIG. 1.

s u m -

t e r m

t e r m -

f a c t o r

f a c t o r -

p r i m a r y

/ e x p r - ~ .

v a r - p r i m a r y

I I
v a r -

I I
A ~-- X

I
B

(a)

v a r

I

X A ~-- B
I

B (b)

A g e n e r a t i o n f r o m EULER. FIG. 2. (a) A s p a r s e p a r s e of t h e g e n e r a t i o n

in F i g u r e 1; (b) a n o n s p a r s e p a r s e

of F i g u r e 1.

satisfactory replacement for the original tree because some nodes with semantic
significance have been omitted.

Further, nodes of G' may be superfluous because G' has more structure than G.
For example, many rules of the canonical two form of a g rammar exist only to pro-
duce a binary parse tree.

We can formalize these notions by assuming that, independent of context, a
production either does or does not have semantic significance. I f it does not, it may
be omit ted from the parse. In what follows, think of H as the set of those productions
of G with semantic significance and P - H as those productions with no semantic
significance.

Definition. Let G = (V, ~ , P, S) be a g rammar and let H ~ P. Let

D = (A~ ~ x~)~Z:

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 681

be a canonical derivation in G. Then the corresponding H-sparse derivation is

D , = (A~ ~ x~[As --~ x~ is in H) ~ i .

Let CD (G, H) denote the set of all such H-sparse derivations in G.
Note that if H = ~ , DH is the null sequence, and that in general Dx is not a

derivation. I t is simply the subsequence of steps of D involving productions of H.
As usual, by inverting the index i, one obtains parses from derivations. In particular
((At ~ x i , nl) [Ai ~ xi E H)~=,~ will be called the corresponding H-sparse parse
ofx.

For H as described above, the H-sparse generation of Figure 1 is

((e x p r - --~ var ~-- e x p r - , 3) ,

(p r i m a r y --~ var- ,3),

(var- ~ X,3),

(~ ~ B,3),

(v a t - ---+ ~,1),

(× ~ A,~)).

We reformulate the parsing problem as follows: given a grammar G and a set
H C P, produce a parser which, for each x C ~*, enumerates all canonical H-sparse
parses with respect to G.

H ' _ P ' In this light, parsing G' will be as good as parsing G if for some C one can
easily construct all canonical H-sparses in H for x from all canonical H'-sparse parses
of x in G'. Schematically

H-sporse parser for G

i I canonical h]1 = canonical ' H - sparse parse H' - sparse H - sparse parse Dictionary
P ~ parser for G of x inG I of xinG

We are finally ready to present our definition of cover.
Definition. Let G = (V, Z, P, S) and G' = (V', Z, P', S ') be context-free gram-

mars. Let H ~ P and H' c P'. Let ~ be a map from H' into H. For anycanonical
derivation D = (Ai --~ xl)i~1 in G' of some x C Z*, define the image of D under
to be ~ (D) = (~(Ai ~ x~) lA i ~ x~ is in H')~_i. ~ (D) is an element of H*.

G' (J , H ') is said to cover (G, H) under ~ iff
(a) L(G) = L (G ') , a n d
(b) for each x E L (G),

(i) if D is an H-sparse derivation of x in G then there is an H'-sparse deriva-
tion D' of x in G' so that ~D' = D, and

(ii) if D' is an H'-sparse generation of x in G' then ~D is an H-sparse genera-
tion of x in G.

G' is said to cover (G, H) if some H ' and ~ exist such that (G', H ') covers (G, H)
under ~. If G' covers (G, P) we say G' completely covers G.

We remark immediately that these relations are reflexive and transitive but not
symmetric in general; thus they are not equivalence relations. Note that our defini-

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

682 J . N . GRAY AND M. A. H A R R I S O N

tion of cover runs in the other direction to Reynolds, i.e. we say G r covers G while
Reynolds says tha t G covers G'. We now summarize some of the simple properties of
covers.

PROPOSITION. (a) G' covers (G, ~) i f and only i f G and G' are equivalent.
(b) I f (G', P ') covers (G, P) then the degree 5 of ambiguity in G t and G on any

string x ~ ~ * is the same.
(c) I f G' is isomorphic to G (under ?) then G ~ covers G (under ?) .
(d) I f (G", H ") covers (G', H') under ~' and (G ~, H ') covers (G, H) under ~,

then (G tt, H ~t) covers (G, H) u n d e r ? t.
Thus covers provide a spectrum of relationships as H and H ' vary.
I t should be noted that we can find grammars G' and G and a map f so that f is a

homomorphism of G onto G' and G' does not cover G (in fact L (G') ~ L (G)).
For example, choose G ~ to have the productions:

G has the productions

S r ~ Tala

T ~ b

S ~ Salaib

and ~ is the function which takes S ' and T onto S and is the identity on {a, b}.
Clearly L (G') ~ L (G).

One might think tha t if G covers G' and if G' covers G then G and G' are very
similar. Consider the following two grammars.

G: G':

S -~ Ab S --~ aB

A --~ a B -+ b

Clearly G covers G' and G' covers G yet G and G' are not isomorphic. Indeed the
trees are quite different. Many other examples of this type exist and when null
rules are used, the trees may differ radically.

Before using covers in a t rea tment of bot tom-up parsing we first explore the rela-
tionship between grammars and their more common normal forms.

THEOREM 1.1. Each context-free grammar G is completely covered by a grammar G'
which is in canonical two form.

PROOF. Let [and] be two new symbols not in the vocabulary of G = (V, ~ , P , S).
Define G' = (V', 2~, P ' , S ') by:

N ' = {[y][A ~ x y i s i n P f o r s o m e x E V * , y E V2V *} U {[ALIA E V},
Pl = { [A] - ~ A 1 A - - ~ A i s i n P } ,
P2 = [[A] -~ [B]IA ~ B is in P, for some A E N, B E V},
P3 = [[A] ~ [B][x]] A -~ Bx is in P for some A, B C V, x E V+},
P4 = {[Ax] --~ [A][x]IA E V and x E V + and [Ax] E N'},
P5 = [[a] ~ a l a E~} ,
P' = P1 UP2 UP3 UP4 U P s ,
S ' = IS].

5 Let G = (V, z, P, S) be a grammar and x E Z*. The degree of ambiguity of x is the number
of canonical derivations of x in G.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 683

Let H' = P1 U P2 0 P3 and define ~o by cases:

~([A] --~ A) = A ~ A for each [A] --~ A in P1,
~([A] --~ [B]) = A --~ B for each [A] ~ [B] in P 2,
~([A] --~ [B][x]) = A ~ Bx for each [A] --~ [B][x] in P3.

Clearly G' = (V', ~ , P' , S ') is a g rammar in canonical two form and ~ is a bijection
from H' onto P.

CLAIM 1. Let (A~ ~ xl)i~l be a canonical derivation, [A] ~ x in G' where x C ~*
• ! n and A E N. Then its image under ~, (~ (A ~ ~ x~) I A i ~ xi is ~n H) ~=i , is a canonical

derivation A ~ x in G.
R

PROOF. Consider the context-sensitive grammar obtained by deleting the
brackets [and] from the productions of G'. P4 and P5 now yield identity transforma-
tions and productions in H' yield the transformations of P. Using this fact it follows
that the image under ~ of each canonical derivation in G' is a canonical derivation in
G since ~ simply discards the brackets on productions in H'.

The converse is less straightforward. First we note:
C L A I M 2. (a) I f A - - - - ~ A i s i n P t h e n [A] - - ~ A i s i n P ' .
(b) I f A --~ a is in P then [A] ~ [a] is in P' .
(c) I r A -~ B is in P then [A] ~ [B] is in P' .
(d) I f A --~ B1. . .B~ is in P for n > 1 where A, B1,. . ., B~ C V then [A] ~ [B1]

n - - 1 • .. [B~] in G' by a derivation (Ci ~ xl) ~=1, where C1 = [A] and Ci = [Bi ' . .B~] for
1 < i < n andx~ = [Bi][Bi+l" .B~]for 1 _< i < n, and in each case the image under~
of the derivation in G' is the derivation in G.

PROOF. Each case may be verified by inspection of P ' . The conclusion is imme-
--~ x~)~=l/s (A--~B1 diate in cases (a), (b), and (c). In case (d) the image of (Ci ~-1

• - • B~) since C1 ~ xl is in P3 and C~ --~ xl is in P4 for 1 < i < n.
CLAIM 3. Let A1 , . . . , Am C V and x C ~*. I f A 1 . . . A m ~ x in G by derivation

D = (C~ ~ x~)i~ then [A1][A2]...[Am] ~ x in G' by a derivation 6
R

D' (C~ ~ m, = X i j) j = l i = 1

such that the image of D' under ~ is D.
PaooF. The argument is an induction on n.
Basis. n = O. In this c a s e A 1 . . . A m ~ x i n G b y D = A. Thus A1. . .Am =

x ~ 2~*. By using rules in Pa, we have

[A~]... [Am] V [A,]. .- [Am_,]Am ~ A i " .Am

in G' by the derivation D ' = ~ A m ([Am_i+~] m--i+l)~=l. But ~ (D') = A and the basis
is established.

Induction Step• Suppose Claim 3 holds for i < n and consider the case i = n.
In particular, suppose A~. . .Am ~ B1- . .B~ in G by (C1 ~ xt). Then by Claim 2,
we know tha t there exists a canonical derivation (C~ --~ m~ xij)j=l for [A,][A:]. • [Am]

[B1]. • • [B~] in G' and tha t its image under ~ is (C1 -~ Xl). By hypothesis, there is a
canonical derivation (C~ ~ x~) ~'E~ ~ f _ ~=~ or [B1]... [B~] @ x i n G'which has (C~----~x~)~:

m i n as its image under ~. Thus (C~ ~ x~i)i=l ~=1 satisfies Claim 3 and the induction is
complete.

If n 0 then D' (C~j '~ = = --~ x~j)~=~ by convention.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, Octbber 1972

684 J . N. GRAY AND M. A. H A R R I S O N

Claim 1 shows that every canonical derivation in G' of x ~ ~* from [S] has a
canonical derivation of x from S in G as its image under ~. Conversely, Claim 3 shows

= G ' that this map is onto all derivations in G. This shows that L (G') L (G) and so
covers G under ~. |

Theorem 1.1 demonstrates the necessity for the concept of sparse derivations.
Although G' and G are very similar, G' is not isomorphic to G nor does G (weakly)

G'. G'. Reynolds cover However G does weakly Reynolds cover The following result
differentiates between covers and weak Reynolds covers. The A-free version, G' of a
grammar G covers G up to A-rules [i.e. P - H = {A --~ A in P}] provided that G and
G' have the same degree of ambiguity; on the other hand G does not weakly Rey-
nolds cover G'.

Another commonly encountered normal form is the operator normal form gram-
mar. I t plays an important role in precedence analysis [3, 4, 9]. Greibach [10]
originally showed that every grammar could be transformed to an equivalent gram-
mar in operator normal form. However it is known that this transformation dras-
tically changes the structure of the parse tree. I t was conjectured that the reason
that Floyd's precedence scheme is weaker than the scheme of Wirth and Weber was
that it was impossible to get covering grammars that are in operator normal form.
This conjecture proved to be false as the next result shows. One should consult [9]
for a further discussion of this point.

THEOREM 1.2. Every A-free grammar is completely covered by a grammar in
operator normal form.

PROOF. Let G = (V, Z, P, S) be a context-free grammar. We may assume,
without loss of generality, that G is in canonical two form by using Theorem 1.1
and the transit ivity of covers.

L e t G = (V ' , ~ , P ' , S) whe reV ' = {S} U Z U (N X Z) a n d d e f i n e P ' = P 1 U
P: U P~ U P4 as follows:

P~ = {S ~ (S,a)a la C ~} ,
P2 = { (A,a) - -~A[A C iV, a C ~, A --~ a in P},
Pa = { (A,a) --~ (B , a) I A , B C N ; a ~ ~ , A --~ B in P},
P4 = { (A,a) -* (B , b) b (C , a) l A , B, C C N ; a, b C ~ ; A ~ BC in P}.

Next we define H ' = P2 U P3 U P4, and ~ is defined by cases.

~ ((A , a) -~ A) = A --~ a if (A,a) -* A is in P2,
.~((A,a) -~ (B,a)) = A --~ B if (A,a) ~ (B,a) is in P3,
~ ((A,a) --~ (B,b)b(C,a)) = A ~ BC if (A,a) --~ (B,b)b(C,a) is in P4.

We must show that (G', H ') covers (G, P) under ~. To do this, we establish a
claim.

CLAI~I. For each a C ~ , x C Z*, A ~ N , (A,a) ~ x in G' by a canonical deriva-
l n ! n

tion (~ri)i~1 i f and only i f A ~ xa in G by canonical derivation ~ ((v i) ~ 1) .
PROOF. The argument is an induction on n.
Basis. If n = 1, then x = A and (A,a) --~ A is in P ' . This holds if and only if

A -* a is in P which completes the basis.
Induction Step. Assume the result for 1 <_ n < k and consider the case n = k.

Since n = k > 1, T ' i t ~ P3 U P4. There are two cases ,depending on whether ~'~' C P3
or ~r~' ~ P4. We will give the details only in case ~-~ ~ P~ and leave the (easier)
case of ~r~' ~ P~ to the reader. If ~'~' = (A,a) ~ (B,b)b (C,a) then ~ (~r~') = A ~ BC

Journal of the Association for Computing Machinery, Vol, 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 685

, j
by construction. There is some j so that (Trt)~-2 is a canonical derivation of

G ' * (C,a) ~ x:,and (~-i'~)t=~'+11s" a canonical derivation of (B,b) ~*R Xl where x = xlbx~ .

By the induction hypothesis, these canonical derivations exist if and only if
! ! n ~((~'t)~=2) is a canonical derivation of C ~ * x2a and ~((~-t)t=~+l) is a canonical

R

derivation of B ~ * Xlb. Combining these results,
R

(A,a) ~ (B,D)b(C,a) ~ * xlbz2

if and only if

A ~ BC ~ * xlbx2a.
R

This extends the induction and completes the proof of the claim.
From the claim it follows that for any x C ~*; a E ~;

S ~ (S,a)a ~ xa in G'
? n ! n by derivation (~rl)t=l if and only if S ~ xa in G' by canonical derivation ~ (Tr~)i=1.

This shows that L (G') = L (G) and that ~ is a map from CD (G', H ') onto CD (G, P) .
Therefore G' covers G under ~. |

We note that a slightly more complex construction for G' would yield a A-free
grammar. The strongest result we can state is that every A-free grammar is com-
pletely covered by a A-free operator grammar. Furthermore, this construction
preserves Floyd precedence relations [4, 9].

The statement of the previous theorem immediately suggests the question of
whether the hypothesis of A-freeness can be dropped. We will now show that it
cannot be omitted and this will be our first real result of a negative character.

THEORE~I 1.3. There is a context-free grammar G which is not covered by any
operator normal form grammar.

PaooF. Let G be the grammar whose rules are:

S ~ SSIA

Suppose that G' = (V', E, P', S ') is an operator normal form grammar which covers
G under ~. There is no loss of generality in assuming that G' is reduced.

Let CD (G, P) denote the set of canonical derivations of A in G and let CD (G', P')
be the set of canonical derivations of A in G'.

CLAIM 1. CD (G ' ,P ') is a regular set.
PROOF. Suppose A --* x is in P ' . Since G' is reduced and since L (G') = L (G) =

{A}, x cannot contain any characters of ~. Because G' is in operator normal form,
x cannot contain two adjacent nonterminals, so x C {A} U {N'}. Thus P ' consists
entirely of chain rules and A-rules, i.e. P ' c (N') × ({A} U (N')) . I t follows easily
by induction that

CD (G', P') = { (At ~ xt)t~-lIn >_ 1; A0 = S; x~ = A; At -~ xt is in P ' ,
and xt = Ai+l for 1 < i < n}.

Let

' * A i s i n P ' / 7 R, = ({ S - - ~ x i n P ' } (P) { A ~ - + A i n P ' }) U { S ' - + A] S ' - ~

Define

R2 = P' [J {(A~--~ xi)t'~l C (P ') * l n _> 1, xt = At+ for 1 < i < n}.

7 That is, S' --~ A is in R~ if and only if it is in P'.

J o u r n a l of t h e Assoc ia t ion for C o m p u t i n g M a c h i n e r y , Vol . 19, No . 4, O c t o b e r 1972

686 J . N. GRAY AND M. A. H A R R I S O N

R1 is clearly a regular set and R2 is also regular since it is a special type of regular set.
(It is essentially the set of all R-sequences of a finite set R, i.e. {al . . .a~ I n > 1,
(al, ai+l) E R, 1 _< i < n}. Such sets are well known to be regular [6, 11].) But
CD (G', P ') = R1 n Rz, and so CD (G', P') is regular since R1 and R2 are.

CLAIM 2. CD (G, P) is not regular.
PROOF. By a straightforward induction one can verify that

CD(G, P) = {x E {S ~ SS, S ~ AI*I for every s k,
1 _< k < lg(x), #s~ss((k)x) > #s_,A((k)X); #s-,ss(X) "t- 1 = #s-.A(X)}.

Suppose that CD(G, P) were regular. Then if we let R = {S -~ SS}*{S --~ A}*,
then CD (G, P) n R would be regular. But

CD(G,P) O R = { (S - -~SS)~(S-~ A)'+i[i > 1},

which is clearly not regular. This contradicts the supposition that CD (G, P) is
regular.

To complete the proof, assume that G' covers G under ~. Note that ~ is a homomor-
phism from CD (G', P') onto CD (G, P) since it is a cover. Thus ~ must preserve
regularity. But the domain of q~ is regular by Claim 1 and its range is not regular by
Claim 2. Thus ~ cannot exist. So G' cannot cover G under any choice of ~ and
H' C P'. |

We now embark on the proof of another negative result by exhibiting a grammar
which cannot be covered by any grammar in Greibach form. Thus the elimination of
left recursive changes the structure of a grammar sufficiently that it cannot have a
covering grammar.

THEOREM 1.4. Let G be the following context-free grammar:

-~ S01SI[011

There is no grammar G ~ = (V p, ~P, P~, S') in Greibach normal form such that (G', H ~)
covers (G, P) under ~ for any H ~ c P~ and ~, mapping H' into P.

PROOF. The proof is by contradiction. Suppose there is a grammar

G p = (V', ~', P', S')

in Greibach form such that G' is reduced and there exist H' c P' and ~ so that
(G', H p) covers (G, P) under ~.

CLAIM 1. H ' = P ' ~ (N') X (ZN'*).
PROOF. Suppose x E Z + and S' ~ x in G' with canonical derivation ~- =

R

• 7f ! (~rl," ",nn). The H'-sparse derivation of 7, has the property that ~(~-') is a
P-sparse derivation of x in G. But then ~ (~") is a derivation of x in G. Since each
rule of P contributes exactly one terminal character to x, and since ~ (~") is a deriva-
tion of lg (x) steps, n > lg (x). Since each ~-~ in P ' contributes at least one terminal

' G' character to x, lg(x) > n. Thus n = lg(x) and ~-~ = lrl. Since is reduced it
follows that H' = P' and each ~'~ E P' contains exactly one terminal character. So
since G' is in Greibach normal form P' _C N' X (XNP*).

Since every production in P ' contains exactly one terminal character, the follow-
ing result holds.

S L e t G = (V , ~ , P , S) be a n y g r a m m a r a n d l e t a E V a n d x E V*. W e w r i t e # ~ (x) f o r t h e

n u m b e r of o c c u r r e n c e s in a in x. F o r a n y i ~_ 0 a n d a n y x = a l . . . a~ , a~ E Z fo r 1 < i < n ,

if i >_ n t h e n (~)x = x(Q = x. I f i ~ n t h e n (~)x = a l . . . a l a n d x(i) = a,_~+~ . . . a . .

Journal of the Association for Computing Machinery, ¥ol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 687

CLAIM 2. For any A in N', x in (V')*, A ~ x in G' implies 9 #z(x) = n.

CLAIM 3. For each x E (V')*, A E N', and z E Z*; i f S' ~ xAz in G' and

#z (x) = k then there is a yA E ~k SO that

~*{u E ~*[A ~ u} _c ~ {ya}. G~

PROOF. Let S' ~ xAz in G' by canonical derivation (Tr~)~l. Now ~(lr~)~l is a
R

generation in G of Sw for some w E 2~*. First note tha t lg(w) = n since each pro-
duction ~(r~) contributes exactly one character to w. Also note by Claim 2 that
n = #z(xAz) = #z(x) + # z (A) + #z(z) = k + l g (z) .So lg(w) = lg(z) + k.
Now suppose xA ~ u E ~+ in G' by (~r~)~=,+i. Then S' ~ uz in e ' by (7r~)~1 and

q(~-~)i"~l is a derivation S ~ u'w = uz in G. So since 1° lg(w) = lg(z) + k,
R

w = (u (k))z. Thus w uniquely determines u (~). So Claim 3 is established.
Armed with this result we are in a position to complete the proof of the Theorem.
Since L (G') is not finite, there exists an A E N' such that A ~ xAy for some x

R

E V*, y E ~*. Let n = lg(x). Since G' is in Greibach normal form, n > 0. Let z E
2~* be the shortest terminal string generated by A in G', i.e. A ~ z in G' and if z' E
Z* and A ~ z' in G' then lg (z) < lg (z'). z exists because G' is reduced. Let m =

m+l A ~+1 G'. G' lg(z) and observe that A ~ x y in Since is reduced, there exist t,
t' S' tx,~+lAym+lt, . m+l ,~+L, G'. so that ~ tAt' ~ ~ in ~x zy

R R R

By Claim 3 and the fact tha t

#z (tx re+l) _> #~ (x m+~) = n (m + 1),

we conclude that there exists a ya E 2~(~+~)2~* such that

~*{z} C ~*{yA},

which implies tha t

z E 2~*Z~(~+~)2~* ~ 2~*Z ~(~+~).

Thus

lg(z) > n (m + l) _> m + l > m = lg(z).

The contradiction indicates tha t the assumption that G' exists was fallacious. |
We now turn to the study of an important property of grammars used in program-

ming language description.
Deiinition. A context-free grammar G = (V, ~, P, S) is said to be invertible

if A --~ w and B --, w in P implies A = B.
This property is very important in some bottom-up parsing schemes because once

a simple phrase of a sentential form in an invertible grammar has been found, then
the left-hand side of the production is uniquely and simply found.

Our first result says that for any grammar, there is an equivalent invertible
grammar. This theorem was independently discovered by Graham [17, 18].

THEOREM 1.5. For each context-free grammar G = (V, Z, P, S) there is an in-
vertible context-free grammar G' = (V', Z, P', S') so that L (G') = L (G). Moreover, i f
G is A-free then so is G'.

PROOF. Let us assume, without loss of generality, that G = (V, ~, P, S) is

Let #z(x) = ~a~z #a(x) so #z(x) is the number of occurrences of terminals in x.
10 Recall that u (k) is the suffix of u of length k.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

688 J. N. GRAY AND M. A. H A R R I S O N

A-free and chain-free. (If A E L(G) then L1 = L(G) - /A} has a grammar
G' = (V', ~, P', S ') which is A-free and chain-free. If the result has been proven for
G', then take G" = (V' U {S"}, ~, P", S") where P" = P ' U {S" --+ A, S" ~ S'}.
Clearly L (G") = L (G) and G" will be invertible if G' is.)

L e t G ' = (V ' , ~ , P ' , S ') w h e r e N ' = { U C N I U ~ ~} U {S'} and S' is a new
symbol not in V.

Thus the variables of G' (except S') will be nonempty subsets of the variables of G.
P' is defined as follows:
(a) S' --~ A where S E A ~_ N' is in P' .
(b) For each production B ~ xoBlxl" .B,xn in P with B1 , . - . , B, E N and

x0 , . " , x, E 2~*, then for each A1 , ' . . , A, E N' - {S'}, P ' contains

A -~ xoAxxt • • • A , x ,

where

A = {C I C ---~ xoClxl. . .Cnx, is in P for some C1 , ' " , Cn with each Ci E Ai}.

If C ~ yoCly~" • .C,y , with y0 ," • ", y, E 2~*, Ci E N, we call the string yo-yl y,
the stencil of the production (variables replaced by dashes).

Note that P and P ' have the same set of stencils and that G' is invertible. Assume
without loss of generality that G' is reduced.

Before embarking on a proof that L(G') = L(G), we give an example of the
construction.

Example. Consider the following grammar:

S ~ OA]iB

.4 ~ OA]OS]iB

B ~ 110

Applying the construction of the theorem leads to the following grammar.

/BI 110
{A} ~ O{SI[OiS,B}

{A,S] ~ 0{A} [0{A,B} [0{A,S} IO{A,S,B}]I {B}[i{B,A}II{B,A,SII I{B,S}

S'--~ {S}]{A,S}I{B,S}I{A,B,S }

Reducing the grammar leads to:

S' ~ {A,S}

{B} ~ 1[0

{A,S} ~ O{A,S}[I{B}

This is the familiar "subset construction" from automata theory [11].
Now we begin the proof that L (G') = L (G).
CLAIM 1. For each A E N' and each x E Z*, A ~ x in G' implies B ~ x in G for

each B E A.
PROOF. The argument is an induction on l, the length of a derivation in G'.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 689

Basis. Suppose l = 1. Then A ~ x ~ N* in G' and A ~ x is in P ' . By the con-
struction A = {C ~ N I C --~ x is in P}. Clearly this holds if and only if B ~ x is in
P for each B C A.

Induction Step. Suppose 1 > 2 and Claim 1 holds for all derivations of length
less than 1. Then suppose A -~ XoAlXl • • • A ,x~ ~ x in G' by a derivation of length 1.
This implies that for each i, 1 < i < n, A~ ~ yi C N* in G' and xoylxl. • "ynxn = X.

By the construction, for each B ~ A there exist B~ ~ A~ so that B ~ xoB~xl. • .Bnxn

is in P. Moreover, the induction hypothesis implies that Bi ~ y~ in G and therefore

B ~ XoBlXl " " B~x~ ~ xoylXl"''ynx,, = X in G.

Note that Claim 1 implies that L (G') ~ L (G).

To complete the proof, the following result is needed.
CLAI~I2. For each x ~ ~*, let X = {C C N] C ~ x in Gl. I f B ~ x in G then

A ~ x in G' for some A such that B C A ~ X .

PROOF. The argument is an induction on l, the length of a derivation in G.
BAsis. 1 = 1. Suppose B ~ x in G so B --~ x is in P. Then by construction A -~ x

is i n P ' w i t h B C A = {CC N I C - - ~ x i s i n P } .
Induction Step. Suppose B ~ xoBlxl. • • B~xn ~ xoylxl" • • y,x~ = x C ~ * in G is a

derivation of length 1. There are derivations Bi ~ yg, all of which have length less
than I. By the induction hypothesis, there are Ai C N' so that for each i, Ai ~ yi
in G', and B~ C Ai. By the construction A ~ xoAlx i " .Anx . is in P ' with B C A.
Thus A -~ xoAlxl" .A ,x~ ~ xoylxl" . y , x , = x in (7' • . j .

By Claim 2, L (G ') ~_ L (G) and h e n c e L (G ') = L(G) . |

It is easy to see that the invertibility condition is compatible with conditions (a)
through (e) and not compatible with (f) in the Introduction. I t is interesting to
note that for any grammar G, one can find an equivalent grammar G' which is in-
vertible and chain-free. On the other hand, there are grammars G for which there
do not exist equivalent grammars which are invertible, chain-free, and A-free. An
example of such a grammar is:

S ~ A[b

A --~ aA[a

(To prove this, suppose that G' is such a grammar. One can easily show by induction
that for each i ~_ 1, a i C L (G') implies S --~ a i is in P ' . For L (G') to equal L (G)
it must follow that P ' is infinite which is a contradiction.)

The grammar G' of Theorem 1.5 does not necessarily cover G. For example, if G
is the grammar:

S ~ A I B

A ~ a

then G' is:

B - - -) a

{S}---~{A,B}

{A,B! -~ a

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

6 90 J. N. GRAY AND M. A. HARRISON

which cannot cover G since ~ must be a function. However the grammar:

S--~ AIB

A -~ a

B --) aL

L - - ~ A

does completely cover G. Generalizing this result we obtain the following theorem.
THEOREM 1.6. Let G = (V, ~, P, S) be a A-free context-free grammar. Then G is

completely covered by an invertible grammar G'.
PnooF. We simply present the construction. Index the elements of N by the

integers 11 1 ,2 , . . . , IN I. Let the index of A ~ N be denoted I (A). Let L be a new
symbol and construct G' = (V', ~, P', S) as follows:

N ' = N U { L }

P' = {A--~xLilA---~x E P a n d I (A) = i} U {L--~A/

Then (G', H) covers (G, P) under ~ where H = P' -- { L ~ A} and where ~: H -~ P
i s d e f i n e d b y ~ (A - - ~ x L ~) = (A - * x) fo r eachA C N, i = I (A) , (A--~xL ~) C H. |

I t is easy to see that the grammar:

S -* AIB

A --~ a

B - ~ a

cannot be completely covered by any invertible g rammar which is A-free.
These results indicate theoretical applications of covers. I t should be noted that

Theorem 1.5 is a generalization of a result by MeNaughton [14] on parenthesis
grammars. The difference between Theorems 1.5 and 1.6 is quite illuminating.
Theorem 1.6 does give a covering while Theorem 1.5 does not. On the other hand,
the construction of Theorem 1.6 leads to a resulting grammar G' which has A-rules
even when G does not.

Although the construction given in Theorem 1.2 uses A-rules in a similar way, null
rules can be eliminated by a more complex construction; ef. the remarks following
Theorem 1.2.

Theorems 1.2 and 1.4 are quite surprising in a number of ways. First it is surprising
to be able to prove that the Greibaeh normal form (elimination of left reeursion) al-
ters parse trees so significantly tha t no covering grammar can exist. (This is as much
of a consequence of our definition of covering as it is of the normal form.) In light
of Theorem 1.4, Theorem 1.2 is even more surprising. The previous operator normal
form construction [10] had first constructed the Greibaeh normal form of the grammar
and then gone to an operator form. Theorem 1.4 shows tha t such transformations
can never be expected to lead to a covering, but we have seen tha t a simple direct
construction will work for A-free grammars.

2. Bottom- Up Parsing

Bottom-up parsing methods are usually described as algorithms which scan an input
s t ream while computing with a pushdown store and a bounded amount of additional

n Fo r a n y se t X, the c a r d i n a l i t y of X is d e n o t e d by IX I •

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 691

FiG. 3. Flowchart of a bottom-up parser.

memory. At each stage, the algorithm performs one of the following actions:
(1) reads an input symbol onto the stack; this continues until a complete phrase

resides in the stack; or
(2) replaces the phrase in the stack by a nonterminal which generated it.
The first action is called phrase detection while the second operation is called phrase

reduction. The entire algorithm can be represented by the flowchart shown in
Figure 3.

For example, Wirth and Weber [16] present a bottom-up parsing scheme for in-
vertible simple precedence grammars. TM They do reduction using dictionary lookup
and they detect phrases using simple precedence relations. Based on the model of
Figure 3, this type of parser can be represented by the following diagram:

I simple precedence I
invertible

where the upper box indicates the detection method while the lower box represents
the reduction scheme. I t is known [3] that the above class (simple precedence detec-
tion and invertible reduction) is not powerful enough to parse all context-free lan-
guages. In our more general framework, it is natural to inquire about the potency of
simple precedence detection and of invertible reduction for particular grammars.

Is invertible reduction powerful enough to parse every context-free grammar? The
answer to this question depends on one's notion of adequate. If one requires that
every grammar be equivalent to an invertible grammar then the answer is yes by
virtue of Theorem 1.5. In the previous section, we argued that adequacy is essen-
tially the ability to cover, i.e. parsing G' is as good as parsing G if and only if G'
covers G. If our definition of adequacy is that every grammar be completely covered
by an invertible grammar then we must examine Theorem 1.6. We know that we
can completely cover a A-free grammar G by an invertible grammar G'. But the
proof of Theorem 1.6 reveals that although G is A-free, G' has null rules (and is
more complicated to parse than G in that respect at least). We have already seen
(of. remarks after Theorem 1.6) that there are (A-free) grammars which cannot be
completely covered by an invertible A-free grammar. In light of this, the answer to
our original question can be taken to be no.

In some sense this means that the reduction phase of a general parser must be

In this introduction, we will discuss a number of special types of grammars such as simple
precedence grammars. Formal definitions occur in this paper before the mathematical use of
each concept. Definitions for concepts which are discussed but are not used in theorems may
be found in [8, 9].

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

692 J. N. GRAY AND M. A. HARRISON

nontrivial. Surprising enough we shall now show tha t all the "work" in bot tom-up
parsing can be done by the reduction phase.

What does it mean to shift all the work in parsing to the reduction phase? Since
simple precedence is the simplest form of phrase detection, we ask whether every
grammar may be completely covered by a simple precedence grammar. The (sur-
prising (?)) answer is yes. In fact, we can say much more; we can cover grammars
of type X by simple precedence grammars and reduce them by techniques appro-
priate for type X grammars. In particular, some of the results tha t we can prove are
as follows:

simple precedence LR(k) I
completely covers 13

I LR(k) LR(k)

simple precedence
completely covers

bounded 14
right context

i
bounded right context I

I bounded right context

simple precedence unambiguous
completely covers

unambiguous unambiguous

simple precedence nondeterministic
completely covers

nondeterministic nondeterministic

Each of the above results is in [8].
Lest the reader t ry to formulate the theorem "for all X, every grammar of type X

can be covered by a g rammar which is precedence detectable and X reducible" we
point out tha t not every invertible g rammar is covered by a precedence detectable
invertible grammar. To see this observe tha t precedence detection plus invertibility
cannot handle all bounded right context languages [3, 13]. On the other hand
Theorem 1.6 shows tha t every context-free language has an invertible grammar.

In order to prove our main results, we need some additional concepts.
Definition. A context-free g rammar G = (V, ~ , P, S) is said to be chain reduced

if G is reduced and if for any A C N it is not the case that A ~ A.
I f a g rammar is not chain reduced then it is ambiguous. One can easily decide

whether a g rammar is chain reduced and if it is not, one can remove the "cycles"
by a straightforward construction and then reduce it. Note tha t a chain reduced
g rammar may have chains but they are of bounded length.

Before we can state the next result, we must recall the formalism for LR(k)
grammars [8] and assume tha t none of our grammars contain the rule S -~ S.

Definition. Let k be any positive integer. The grammar G = (V, ~, P, S) is
y ' A ' z' 2~* called L R (k) detectable if for any x, y, C V*; A, C N; z, C if S ~ xyz

has handle (A -~ y, lg (xy)) and S ~ xyz' has handle (A' ~ y', j) and (~)z = (k)z'

t h e n j = lg(xy) and y ' = y.

13 T h i s n o t a t i o n is an i n f o r m a l w a y to s t a t e t h e t h e o r e m t h a t e v e r y b o u n d e d r igh t context
g r a m m a r G is cove red by a g r a m m a r G' w h i c h is s imple p recedence d e t e c t a b l e and bounded

r i g h t c o n t e x t reduc ib le .
14 See F o o t n o t e 13; see [8].

Journal ol the Association for Computing Machinery, Vol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 693

Note tha t A' = A is not necessarily true.
Definition. G is said to be LR (k) reducible if (under the same quantification as

above) whenever S ~ xyz has handle (A ~ y, lg (xy)) and S ~ xyz' has handle

(A' --~ y, lg (xy)) , then A = A'.
G is said to be LR (k) if it is LR (k) detectable and LR (k) reducible, i.e. if S T xyz

has handle (A--~ y, l g (x y)) a n d S ~ x y z has handle (A' --~ y , j) and (k)z = (k)z'

then (A ~ y, lg (xy)) = (A' --~ y', j) .
Our next result, while interesting in its own right, is intended as a device to help

prove Theorem 2.2.
THEOREM 2.1. Every L R (k) grammar G can be completely covered by an LR(k)

canonical two form grammar G'. I f G is chain reduced and A-free so is G'.
PROOF. We will invoke the construction of Theorem 1.1 to define G'. By

Theorem 2.1 G' covers G. Inspection of P' shows tha t if G is chain reduced and
A-free then so is G'. I t remains to be seen tha t G' is LR (k) if G is.

Assume tha t G is LR (k).
LEMMA 1. Let xyz be a canonical sentential form of G' with handle (A -~ y, lg (xy)).

• 15 Let the canonical sentent~al form ~(xyz) have handle (B ~ v, m) in G. Then
(a) xyz E (N')'2~*,
(b) if A --~ y is in P1 O P2 U P3 then m = lg (~ (xy)) and lg (~ (y)) = lg (v),
(c) if A ~ y is in P4 then m = lg (~ (xy)) and lg (~ (y)) < lg (v),
(d) if A ~ y is in P6 then m > lg (~ (xy)).
PROOF. We induct on the minimal n such tha t [S] ~ xAz ~ xyz in G'.

R R

Basis. n = 1 implies A = [S] and inspection of P ' shows tha t A --~ y is in
P~ U P2 UP3. Since ~ is a cover, ~(xyz) has handle (S ~ ~(y) , l g (~ (x y))) and so
(a) and (b) are established while (c) and (d) hold vacuously.

Induction Step. We proceed by cases. If A --~ y is in P~ U P~ U P3 the above logic
is still valid. I f A ~ y is in P4, then by inspection of P 4 , A -- [Az" • "Aq] for some
q >_ 2, A1 , ' . " , Aq C V, and y = [A~][A2...Aq]. By hypothesis ~(xAz) has handle
(B --~ v, lg (~ (xA))), and lg (v) > lg (~p (A)). So since ~ (A) = ~ (y), lg (v) >
lg (~p (A)) = lg (y) and (c) holds. But m = lg (~ (xA)) = lg (~p (xy)) because ~ (A) =

(y). Thus (a) and (c) hold and (b) and (d) are vacuous. Lastly if A ~ y is in
Ps, then by the induction hypothesis m _> lg (~ (xA)) and by inspection of Ps ,
lg (~ (A)) = lg (~p (y)) . Thus m > lg (~ (xy)) . Thus (a) and (d) follow and (b) and
(c) are vacuously satisfied and the lemma follows by induction.

Now we must prove tha t G' is LR(k) . Suppose that for any x, y, y ' C (V')*;
Z t z, C 2~*; xyz is a canonical sentential form of G' with handle (A ~ y, j) where j

= lg(xy), and xyz' is a canonical sentential form of G' with handle (A' ~ y', j ') ,
f

and (~/z = (k)z'. Then we must show that (A ~ y, j) = (A' ~ y , j ') .
The proof now breaks into cases. We first, deal with the case in which A --~ y is in

Ps. In that case, we will show that the handles are equal. Then, under the assump-
tion that A -~ y is not in P~, we must consider subcases as to which P~ the production
A ~ y belongs. In each subcase, we show the handles are equal.

Case 1. A ~ y is in Ps . Inspection of P6 shows y C ~. Suppose A' -+ y' is not in
Ps. Then by Lemma 1 (i')(xyz') ~ N'*. Hence j ' < lg(xy). Note tha t u'+~)(xyz)
= (:'+~)(xyz') since (~)z = (~)z'. Let ~(xyz) have handle (B ~ v, m) in G and let

~ We also write ~,(x) for x ~ (V')* although e was initially defined on productions. It is actually
a homomorphic extension of the function ~(a) = a for a ~ Z and ~([A]) = A for [A] in N'.

Journal of the Association for Comput ing Machinery, Vol. 19, No. 4, October 1972

694 J . N . G R A Y A N D M. A . H A R R I S O N

7,(xyz') have handle (B' ~ v', m') in G By Lemma 1, m > lg(7,(xy)) and m' =
lg(7,((J') (xyz '))) . Since (~,÷k)(xyz) = (j,+k) (xyz') it follows tha t (m,+k)(7,(xyz)) =
(m'+k)(7,(xyz')). Invoking the hypothesis t ha t G is L R (k) yields (B ~ v, m) =
(B' -* v', m ') is the handle of bo th 7,(xyz) and 7,(xyz'). In part icular m' = m.
However , it was established above tha t j ' < lg(xy) so m' = lg(7,((3")(xyz'))) <
lg (7, (x)) < lg (7, (xy)) < m. So m' < m. This contradict ion shows A' ~ y' is in Ps.
A symmetr ic argument shows tha t A --~ y is in P5 if A ' --~ y' is. So we conclude that
A --~ y is in P6 if and only if A' --~y is.

Next observe tha t in this case y, y C ~ . In part icular y and y' ' are the leftmost
terminal characters of xyz and xyz' respectively. So y = y', j = j ' and by inspection

t .t .
of Ps , A = A ' = [y]. This establishes t ha t (A ~ y, j) = (A' ~ y , 3) if A --~ y is in
P s .

Case 2. A --~ y is not in Ps . In the above case we concluded A ~ y is in P~ if
and only if A ' --~ y' is in Ps . So we observe tha t A' ~ y' is not in P5 in this case. Now
by (b) and (c) of Lemma 1, if 7' (xyz) has handle (B ~ v, m) in G then m = lg (7, (xy)).
So since (k)z = (k)Z' = ¢k)7, (Z) = (k)7, (Z') and since G is LR (k) we conclude that
7,(xyz') has handle (B --~ v, m) in G. By (b) and (c) of L emma 1, this means that
m = lg(7,((j') (xyz '))) . So 7,(o")(xyz')) = 7,(xy). This means j ' = lg (xy) s o j ' = j.

To summarize the assumptions and conclusions of the above paragraph:
(i) xyz has handle (A ~ y, lg (xy)) in G' and A ~ y is not in Ps ,

(ii) xyz' has handle (A' ~ y', lg (xy)) in G' and A ' --~ y' is not in Ps ,
(iii) (k) (z) = ¢k) (z'),
(iv) 7, (xyz) and 7, (xyz') bo th have handle (B ~ v, lg (7, (xy))) in G.
Now the a rgumen t divides into subcases.
Case 2.1. A ~ y is in P i U P~ U P3. If A'--~ y' is in P1 tJ P2 I.J P3 then since 7, is

a cover (B ~ v) = 7,(A ~ y) = 7,(A' --~ y ') . Inspect ion of P~ U P2 (J P8 and
shows tha t in this case (A --~ y) = (At ----, y,). If A' ~ y' is in P4 then by Lemma 1 (c)
lg (v) > lg (7, (y ')) . But lg (7, (y ')) _> lg (7, (y)) and since 7, (A --~ y) = (B --~ v)
it follows tha t lg (v) > lg (7, (y ')) > lg (7, (y)) = lg (v). This contradict ion shows that
A' ~ y' is not in P4. Hence it is in P1 U P2 (J P3 and therefore (A ~ y) = (A' ~ y').

Case 2.2. A --~ y is in P4 • By symmet ry the above arguments require tha t A ~ y
is not in P4 if A ' ~ y is not in P~. So A ' y' ' --~ is in P~ Inspect ion of P4 shows that
(A -~ y) = (A' --~ y ') in this case.

The above arguments have shown tha t in any case (A --~ y, j) = (A' ~ y', j ') .
So it follows tha t G' is LR (k). |

Before stat ing our main result, we need the following concepts about precedence
analysis. The reader is referred to [9] which presents our theory in greater detail and
generali ty.

Definition. Let G = (V, Z, P, _l_S_l_) be a context-free g rammar with delimi-
t e r J ~ Define the following b inary relations on V:

= { (A,B) [A ~ By is in P for some y C V*I,

p = { (A , B) [B ~ x A i s i n P f o r s o m e x C V*/,

a = { (A ,B) [C ~ x A B z is in P for some x, z E V*} U { (_L,S),(S,.I_)}.

~6 A t t h i s p o i n t , w e u s e c o n t e x t - f r e e g r a m m a r s w i t h d e l i m i t e r s . F o r m a l l y , t h e c o n v e n t i o n s a r e

that .J_ E Z, _I_S.L is the start string, a n d P C (V - Z) X (V - {_l_})*. All of the previous
theorems are true with minor modifications for grammars with delimiters (cf. [8]).

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 695

Finally, define

= o~X +,

• > = (p+aX*) N (V X Z).

The reader who is familiar with the general theory of canonical precedence will
note that this is the special case where T = V so tha t G is A-free, o~ = % ~ = ~, and
p- - - -w.

Now we can give the following definition.
Definition. A context-free grammar G = (V, ~ , P, kS_l_) is said to be a prece-

dence detectable grammar if
(a) G is A-free, and
(b) the relations < , ~ , and .> are pairwise disjoint.
We can now state and prove the main result of this section.
THEOREM 2.2. I f G is a A-free chain reduced LR (k) grammar in canonical two

form, then G is completely covered by a simple precedence detectable, LR (k) reducible
grammar G'.

PROOf. Let G = (V, ~ , P, kS_l_) be a chain reduced A-free L R (k) canonical
two form grammar. For e a c h A E N def inep(A) = max {m I A 0 , . . . , A m E N;
A = A0 ~ A1 ~ • • • ~ Am}. Since G is chain reduced, p (A) exists and is bounded
by 0 _< p (A) _< I N l- Further if A ~ B then p (A) > p (B). Define p = maxA EN P (A)
for G. Now define G' = (V', 2~, P', kS_l_) where

V' = /[A,i]I 0 < i < p + 2, A E NI U {SI U~.
Let

P~ = {S ~ [S,p+2]},
P,. = {[A,p+2] ~ [A,p][A E AT},
P3 = {[A,p+l] ~ [A,p][A E N},
P4 = {[A, i] - -~[A, i -1]IA E N ; 0 < i < p},
P5 = {[A,O]--->alA E V - ~ , a E ~ ; A - - - ~ a i n P] ,
P6 = {[A,p(A)] ~ [B,p(B)]IA, B E N; A ~ B in P}, and
P~ = {[A,0] ~ [B,p+2][C,p+i]tA , B, C E N; A -~ BC in P}.

Let P ' = U~=~ P~. Let H ' = U~=5 P~. Now define ~ : V' --~ V by

~o(a) = a for e a c h a E ~,

~([A,i]) = A for e achA E N, 0 < i < p + 2,

extend ~o to a homomorphism of (V')* onto V*, and define ~ on H by

(A ~ x) = ¢ (A) ~ (x) f o r e a c h A ~ x i n H .

This construction is rather complex. The reader should note tha t if p = 0 this is
essentially the construction of Fischer [3]. The need for p stems from the necessity of
~overing chain productions and hence a need to bracket each nonterminal by
~nd .> at most p times. To establish the theorem one must show

(a) (G', H ') covers G under (p,
(b) G' is LR (k),
(c) G' is simple precedence detectable.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

696 J . N. GRAY AND M. A. HARRISON

The techniques for the proof of (a) are presented in Theorem 1.1; the technique
for the proof of (b) is presented in Theorem 2.1. For the sake of brevity we omit
these proofs and prove only (c).

CLAIM. G' is a simple precedence grammar.
PROOF. It suffices to show that < v, =" v, and -> v are pairwise disjoint. Inspec-

tion of P' shows the following:

o~ ~ { (-L,S),(S,-L)} U ({[A,BW2]IA E N} × {[A,p+I]IA E NI)

k +.~_ ({S} X (V ' - - {-L,S})) U ({[A,i]IA E N ; 0 < i < p + 2}
× ({[A,i]IA E N ; 0 < i < p + 2, i # p + 1} O (2~ - {,L}))

p+ ~ ((V ' - {.L,S!) X {S})U (({[A,i]IA E V - Z , O < i < p W 2 , i ~ p + 2 }
U (~ - {_l_l)) X {[A,i][A E N,O < i < p + 2})

SO

~ = aN + C ({_L} X (V ' - {_L,S}) O ({[A,p+2]IA E N}
X ({[A,i]]A E X,O < i < p + 2, i # p + 1} O (Z -- {_L}))

> = p+~x* N (v ' x ~) c ((v ' - {_L,S}) X {-L f)
U (({[A,i]IA E N , O < i < p + 2 , i # p + 2 } U (2- - {,L})) X (~ - {_L}))

So the relations are disjoint. We display this result by the table:

l ~ - { . J _ } [A , p + 2 l [A , p + l] [A,il S

±

- {±1
[A,p+2]
[A,p+l]
[A ,i]
S

< < < <
.>

.>

Combining these results leads immediately to our main theorem.
THEOREM 2.3. Every A-free chain reduced LR (k) grammar is completely covered

by a precedence detectable, LR (k) reducible grammar.
PROOF. The result follows immediately from Theorem 2.1, Theorem 2.2, and

the transitivity of covers. |
By analogous techniques, one can show the following result.
THEOREM 2.4. Every A-free chain reduced BRC (n, m) grammar is completely

covered by a precedence detectable, BRC (n + r, m) reducible grammar for some integer r.
Graham [17, 18] has independently proved that for any A-free LR(k) grammar

(respectively BRC(n, m)) there is an equivalent LR(/c) grammar (respectively
BRC(n', m)) grammar with pairwise disjoint simple precedence relations.

3. Summary and Conclusions

Past work in the areas of normal forms and of classes of parsers has focussed pri-
marily on the existence of a certain normal form for a grammar or the existence of a
recognizer for a language. Often the proof is by a construction which mutilates the
structure of the original grammar or produces an impractically large grammar. In

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

On the Covering and Reduction Problems for Context-Free Grammars 697

an attempt to define and examine these properties one is led to the concept of gram-
matical covering. The definition of covering, although intuitively quite simple, is
formally complex and gives rise to rather lengthy proofs. However, the definition
yields some interesting results.

It shows, as expected, that the canonical two form is universal and that any con-
ceivable Greibach normal form construction significantly changes the shape of the
parse trees of some grammars. Surprisingly there exist constructions for the operator
normal form which do not significantly change the shape and labeling of the parse
trees. Similarly there exist constructions for the invertible form of a grammar which
4o not significantly change the shape of the parse trees.

Perhaps a word of caution is appropriate here. The constructions presented work
~s claimed. However, the resulting grammars are typically considerably larger than
:he original (Theorem 1.1 yields a EULER [16] grammar two times larger, Theorem
[.2 yields a grammar 1600 times larger, Theorem 1.5 yields a grammar 24o times
arger, and Theorem 2.2 yields a grammar 16 times larger). The theorems present
:ertain tricks which apply uniformly to the entire grammar. However, in practical
ituations, they should be used incrementally and with discretion to repair local
~nomalies in a grammar. The substance of any particular theorem is that there is
]s not) hope of going from grammar G to a covering normal form grammar. Beyond
hat, one is left pretty much to his own devices.

For example, Ichbiah and Morse [12] present a compact and fast parser which
ses a precedence detection scheme and LR (k) reduction. Theorem 2.2 indicates
hat their technique can handle all I R (k) grammars. By employing the construc-
ons of Theorem 1.1 and Theorem 2.1 it is possible to convert any A-free and chain-
'ee LR (k) grammar G to a grammar G' which is precedence detectable and LR (k)
~ducible. Further, this new grammar completely covers the original grammar.
'hus employing Figure 1.1 one can build a parser for G which uses precedence de-
;ction and LR (k) reduction on G' and translates G" parses to G parses by dictionary
,okup at each step of the parse.

EFERENCES

CROMSKY, N. Formal properties of grammars. In Handbook of Mathematical Psychology,
Vol. 2, R. R. Bush, E. H. Galanter, and R. D. Luce (Eds.), Wiley, New York, 1962, pp.
323--418.
EARLEY, J. "An efficient context free parsing algorithm," Comm. ACM 13, 2 (Feb. 1970),
94-102.
FISCHER, M. J. Some properties of precedence languages. Prac. Syrup. on Theory of
Computing, May 1969, pp. 181-190.
FLOYD, R.W. Syntactic analysis and operator precedence. J. ACM 10, 3 (July 1963),
316-333.
FLOYD, R.W. Bounded context syntactic analysis. Comm. ACM 7, 2 (Feb. 1964), 62-67.
GINSBURG, S. The Mathematical Theory of Context Free Languages. McGraw-Hill, New
York, 1966.
GINSBURG, S., AND HARRISON, M. A. Bracketed context free languages. J. Computer
and System Sci. 1 (1967), 1-23.
GRAY, J. N. Precedence parsers for programming languages. Ph.D. Th., Dep. of Com-
puter Sci., U. of California, Berkeley, Calif., Sept. 1969.
GRAY, J. N., AND HARRISON, M.A. Canonical precedence schemes. J. ACM (to appear).
GREIBACH, S.A. A new normal form theorem for context free phrase structure grammars.
J. ACM 12, 1 (Jan. 1965), 42-52.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

698 J . N . GRAY A N D M. A . HARRISON

11. HOPCROFT, J. E., AND ULLMAN, J. D. Formal Languages and Their Relation to Automata.
Addison Wesley, Reading, Mass., 1969.

12. ICHBIAH, J. D., AND MORSE, S . P . A technique for generating almost optimal Floyd-
Evans productions for precedence grammars. Comm. ACM, 13, 8 (Aug. 1970), 501-508.

13. KNUTt-I,D. E. On the translation of languages from left to right. Information and Con-
trol 8 (1965), 607-639.

14. McNAUGHTON, R. Parenthesis grammars. J. ACM, 14, 3 (July 1967), 490-500.
15. REYNOLDS, J. C., AND HASKELL, R. Grammatical coverings. (unpublished manuscript,

1970).
16. WIRTH, N., AND WI,]BER, H. E U L E R : A Generalization of ALGOL and its Formal defi-

nition, Parts I, II . Comm. ACM 9, 1, 2 (Jan., Feb. 1966), 11-23, 89-99.
17. GRAHAM, S .L. Extended precedence, bounded right context languages, and determinis-

tic languages (extended abstract). Proc. Symp. on Switching and Automata Theory, Oct.
1970, pp. 175-180.

18. GRAHAM, S .L. Precedence languages and bounded right context languages. Ph.D. The-
sis, Dept. of Computer Sci., Stanford U., Stanford, Calif., July 1971.

RECEIVED JULY 1971; REVISED DECEMBER 1971

Journal of the A.ssociation for Computing Machinery, Vol. 19. No. 4, October 1972

