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ABSTRACT. Adjacent extreme point problems involving a tree basis (e.g. the transportation 
problem) require the determination of cycles which are created when edges not belonging to 
the basis are added to the basis-tree. This paper offers an improvement over the predecessor- 
index method for finding such cycles and involves the use of a distance function defined on 
the nodes of the tree, in addition to the predecessor labels. I t  is shown that the relabeling 
associated with a basis change can be minimized by defining yet another function called the 
successor function. The algorithms for labeling and relabeling are then specialized for the 
specific case of transportation problems. 
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1. Introduction 

When  solving d is t r ibut ion  problems (also known as t r anspor ta t ion  or Hi tchcock 
problems)  using so-called "p r ima l "  methods,  a sizeable port ion of the computa -  
t ional  effort is involved in the de te rmina t ion  of "cycles" or "s tepping stone tours"  

[3-5, 9] which are created when a nonbasic  cell is added to an existing basis. Earl ier  
approaches for f inding cycles used a tree sea rch  technique  [5, 9]. A methodology,  
which we may  call the "crossing out  rou t ine"  t ha t  sys temat ica l ly  el iminates rows 

and  columns of the tab leau  no t  belonging to the cycle, was formula ted  independen t ly  
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Accelerated Algorithms for Labeling and Relabeling of Trees 713 

by Lourie [15], Gaver and Thompson [10], and Barr, Klingman, and Raike [1]. 
Glover and Kingman [12] recently gave a "predecessor-index method",  which was 
largely anticipated by  Glicksman, Johnson, and Eselson [11], and which appears to 
be more efficient than the previous approaches. 

The present paper offers several extensions and improvements over the Glover-  
Klingman procedure. First, we extend their method to an arbitrary graph, and then 
show that  by using a distance function in the graph as well as the predecessor func- 
tion, the retracing portion of their cycle-finding routine can be eliminated. Second, 
we show that  by using still another function defined on the graph, the successor func- 
tion, it is possible to determine which is the smaller of the two parts into which a 
basis tree is split when an edge is removed. Third, we show that  when the two parts 
of the tree are connected by another edge it is possible to recalculate the predecessor, 
distance, and successor functions for just one of the two parts. Clearly, computa- 
tional effort is minimized by relabeling the smaller of the two parts. However, the 
most valuable use of the successor function appears to be in the applications of the 
duality operators for transportation problems that  we have derived in a series of 
papers [17, 18]. 

In [19] the authors discuss computational experience with the ideas presented here 
for transportation problems. Specifically, we have made benefit-cost studies on some 
of the ideas presented in this paper as well as some of the standard methods for solv- 
ing transportation problems. We have developed a code that  uses the best of these 
methods. Actual computation times for solving a variety of kinds of problems are 
reported in [19]. 

There are a variety of other problems for which the methods developed in this 
paper should be useful. For instance, the shortest (or longest) spanning tree prob- 
lem [6, 14] involves the checking for cycles. Adjacent extreme point problems--as 
for instance, certain concave minimization problems--involving a tree basis could 
also make use of it. Specific examples of the latter in the transportation framework 
are the time transportation problem [13J, the traveling salesman problem [7], and 
the fixed charge transportation problem [16]. 

2. The Predecessor and Distance Functions for Trees 

For a general reference on graph theory see Berge [2]. 
Let V be a set of n elements called vertices or nodes and let E be a set of (some of 

the) pairs (u, v) with u,v C V. A pair (u,v) is called an edge between u and v, or also 
between v and u (no direction is implied). Then G = (V, E)  is called a graph. A 
path between u and v in G is a list 

u = w0, wl, " "  , WR = V (1) 

where (w:._x, wi) E E for j = 1, • • • , R, are distinct edges. The length of the path 
is R. A path is a cycle if u = v in (1). A graph is acyclic if it has no cycles. A graph 
is connected if there is at least one path connecting each pair of distinct nodes. A 
tree [2] is a connected acyclic graph. Equivalently, a graph is a tree if and only if 
there is a unique path between each pair of distinct nodes [2]. A rooted tree is a tree 
T = (V, E )  together with a distance function d(v) for v C V, having the following 
properties: 

(a) For some node r, d (r) is a minimum (= L, say);  node r is called the root. 
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(b) I f  r is a root, v any other node, and (1) is the unique path  between r (=  u) 
a n d v t h e n d ( v )  = L + R .  

In a rooted tree there is a unique path  from the root r to any other distinct node v; 
hence there is a unique predecessor p (v) = u of v such that  d (u) = d (v) - 1 and 
(u, v) C E. We define p (r) = ~ where r is the root and call p the predecessor func- 
tion of the rooted tree. 

Clearly any tree T = (V, E)  having n vertices can be made into a rooted tree in n 
different ways by choosing each vertex r ~ V in turn to be the root and using the 
following algorithm for determining the distance and predecessor functions: 

ALGORITHM 1. Fo r  defining dis tance and predecessor  func t ions  on a t ree T = (V, E) given 
root  r. 

0. Set d ( r )  = L ,  where L is an integer ,  p ( r )  = ~ ,  M = {r}, S = ~2~. 

1. Fo r  each u C M: 
(a) F ind  the s e t D ( u )  = {v [ (v, u )  E E ,  v E V -  S } .  

(b) Fo r  each v C D ( u )  let d ( v )  = d ( u )  + 1 and p ( v )  = u .  

2. Replace S by  S U M; replace M by U , E M  D ( u ) .  

3. I f  M = ~ s top.  Otherwise  go to s tep  1. 

In  thinking of this algorithm it helps to interpret the set M as being the subset of 
vertices just "labeled" and the set S as the vertices "labeled and scanned" (see Ford 
and Fulkerson [8]). 

We assert tha t  after completing Algorithm 1, all the nodes would have been 
labeled. For assume the contrary, tha t  some node, say v, was not labeled. Consider 
the path  in expression (1) from r to v. Clearly, if v = w, was not labeled then 
wR-i was not labeled either, since otherwise we would have labeled v in step 1 of the 
algorithm. By repeating this argument  we can show tha t  the root r was not labeled, 
a contradiction, since we labeled it in step 0 above. 

No node v will be labeled more than once, since tha t  would imply G contains a 
cycle (s) formed from the two (or more)  sequences of labelings tha t  led to v. 

A rooted tree may be thought  of as a directed graph, i.e. a graph with directed 
edges called arcs with the direction of each edge being from the vertex of lower dis- 
tance to the vertex of higher distance. Given any rooted tree with root r, there is a 
unique backward path between any other node v and r of length R = d (v) - d (r), 
which can be found by means of the following algorithm: 

ALGORITHM 2. For  finding the backward  p a t h  be tween  v ~ r and the root  r in a roo ted  tree. 

0. Let  R = d ( v )  - d ( r ) ,  j = R ,  VR = V. 

1. I f j  -- 1 > 0, r ep l ace j  b y j  -- 1 and go to s tep  2; o therwise  go to s tep 3. 

2. F ind  vj  = p(v j+~) .  Go to s tep  1. 

3. Let  v0 = r and s top.  The  backward  p a t h  is v = VR , VR-X , " '" , VO = r. 

To justify this algorithm we merely use property (b) of the distance function and 
the definition of the predecessor function in Algorithm 1. 

I f  v~ is some node on the backward path  between v and the root r, we will call the 
set {v = v , ,  v , - i ,  • • • , vk} the backward path  between v and vs. Clearly this is a sub- 
set of the backward pa th  between v and r. 

As mentioned above, there is a unique pa th  between each pair of distinct vertices 
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in a tree. Algorithm 2 solves the problem of finding this path when one of the vertices 
is the root. If u and v are two distinct vertices in T = (V, E) ,  then one way of find- 
ing the unique path between u and v is to make one of them, say u, the root, apply 
Algorithm 1 to find the resulting distance and predecessor functions, and then apply 
Algorithm 2 to find the backward path from v to u. However, if there already are 
distance and predecessor functions defined with root r (different from both u and v) 
on the tree, the following algorithm will efficiently find the path between u and v. 

ALGORITHM 3. Fo r  finding the un ique  p a t h  be tween  ver t ices  u and v in a tree T = (V, E)  
with root  r. 

0. I f  d ( u )  = d ( v )  = R ,  set u e  = u, ve = v, j = R, R '  = R, and go to s tep  2. Otherwise  r ename  
the po in t s  u and  v, if necessary,  so t h a t  R '  = d ( u )  > d (v )  = R ,  and go to s tep  1. 

1. Use Algor i thm 2 to find the un ique  backward  p a t h  f rom u to the unique  e lement  UR on 
the backward  p a t h  f rom u to r such  t h a t  d ( u R )  = d ( v )  = R .  Set VR = V, j = R and go to 
s tep 2. 

2. I f  v j  = u i go to s tep  5. Otherwise  go to s tep 3. 

3. F ind  u j _ i  = p ( u j )  and v j _ l  = p ( v j ) .  

4. R e p l a c e j  b y j  - 1 and go to s tep  2. 

5. Stop.  The  un ique  p a t h  f rom u to v is 

u = U R , ,  " "  , U R ,  " ' "  , U j + ~ , U j  = V i , v i + I ,  " "  , V R  = V. (2) 

The intuitive justification of this procedure is the following: There is a unique back- 
ward path from u to r and another from v to r; these two paths will certainly inter- 
sect at r, but  perhaps also at nodes having positive distance. However, in the back- 
ward paths from u to r, uj can equal vj only if these two are at the same dist,unce 
from r. Hence step 1 traces back the first part of the backward path from u to ~hat 
element UR which is at the same distance from r as v is. Then in step 2 we test to see 
whether the two elements on the backward paths from UR and v to the root are equal, 
stopping as soon as equality is obtained. 

The above algorithm typically requires fewer steps than the Glover-Klingman ap- 
proach which required a complete backtracking of at least one of the paths back to 
the root r. In [19] we present some computational results which indicate that  al- 
though each step of Algorithm 3 takes slightly longer than a step of the Glover- 
Klingman approach, the savings in steps afforded by Algorithm 3 pay off by reducing 
overall computation time. 

3. The Successor Function and Relabeling 

There are a number of problems that  use adjacent extreme point methods (see Sec- 
tion 1 ), including the distribution problem to be discussed in Section 5, in which a 
tree T = (V, E )  is first constructed on the nodes in a set V. Then an edge (u, v) ~ E 
is added to the tree. Let E* = E O { (u, v)}. I t  is easy to see that  this procedure 
creates a unique cycle in the graph (V, E*)  consisting of the unique path in T from 
u to v (found by applying Algorithm 3) together with the edge (u, v). Once tile 
cycle has been determined, some edge (ui, v~) on the cycle is selected (using some 
appropriate criterion) to be removed from E* so that the graph T' = (V, E* - 
{ (Ul, Yl )} ) becomes a tree again. The problem now is how to relabel the new tree (i.e. 
how to reeompute the functions p and d preserving as much of the old labeling as 
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possible, so tha t  the new tree becomes a rooted tree (possibly with a different root. ) 
We shall develop an efficient a lgori thm for doing this. 

Consider the original tree T = (V, E )  with root  r. I f  we remove the directed edge 
(Ul, vl) (where d (vl) = d (ul) + 1 ) f rom E, then the tree splits into two subtrees 
T1 and T~ and the set of nodes V splits into two subsets V1 and V~ with ul and the 
root  node r in V1 and Vl in V2 (see Figures 1 (a) and 1 (b)) .  Since the addit ion of 
(u, v) creates a tree, u and v lie on different subtrees. Between these two nodes, we 

define v to be tha t  node whose backward  pa th  (in the original t ree)  to the root  con- 
tains bo th  v~ and Ul. I n  labeling the new tree we can preserve the labels in V~ and 
change those in V2 or vice versa. I n  order to do this using min imum effort we should 
select the set with the  fewest vertices. 

I n  order to determine which subset has the fewest vertices, we define the successor 

f u n c t i o n  on a rooted tree T = (V, E )  as follows: for each v C V let s ( v )  be the n u m -  

ber of successors of v in T, where u is a successor of v if d (u) > d (v) and v lies on the 
unique pa th  from u to the root  r. The  next a lgori thm determines the successor func- 
tion. 

ALGORITHM 4. For finding the successor function in a rooted tree T = (V, E) with root r. 

0. Let s (v) = 0 for all v E V. Let R be the maximum distance that any node v E V is from the 
root r. 

1. Le tM = {rid(v) = R, v E V}. 

2. If M = {r} stop. Otherwise go to step 3. 

3. For each v E M find u = p(v) and replace s(u) by s(u) + s(v) + 1. 

4. Le tR  = R -  1, G o t o s t e p l .  

Notice tha t  this a lgori thm begins by  finding the values of s for the predecessors of 
nodes mos t  dis tant  from the root  r, then labeling the predecessors of the nodes at  
one less distance, etc. On the last step s (r) is calcu'lated which must  be n - 1, since 
all nodes except r are successors of r. Obviously the distance and predecessor func- 

I root 

FIG.  l ( a ) .  C a s e I :  I V~ I = ¢~ >_ ~ = I V2 [ 

FIG. l ( b ) .  C a s e  I I :  [ V1 [ = /~ < a = I V2 ] 
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tions can be de te rmined  in one forward pass th rough  the  tree using Algor i thm 1, and 
the successor function can then be de termined in a backward  pass using Algor i thm 4. 

Let  us re tu rn  to the  two subsets  V1 and V2 which obta in  when the edge (ul ,  Vl) 
is r emoved  f rom the tree T = (V, E ) .  We denote  b y  [ X I the number  of e lements  in 
set X.  Define 

a = S(Vl) -{- 1 = IV ,  I, (3)  

1 3 = n - a =  IViI. (4) 

There are two cases: 
Case I. 13 _> a. Here  I V1 ] _> ] V21 so t ha t  we wan t  to retain the root  r and relabel 

V2. As shown in Figure 1 (a),  this means  we mus t  sub t rac t  a f rom the successor 
function along the  backward  pa th  f rom ui to the root  r, and add a along the backward  
pa th  f rom u to r. As shown in the figure, we need not  necessarily go back  all the way  
to r if these two pa ths  join before r (cf. Algor i thm 3). 

Case II. ~ < a .  Here  I Vi I < I V2 [ so t h a t  we wan t  to make  Yl the  new root  of 
the tree, and relabel V1. As shown in Figure 1 (b)  this requires t ha t  we add/~ to the  
successor funct ion along the  backward  p a t h  f rom v to Vl. 

F rom the above  analysis we can now s ta te  the a lgor i thms for relabeling either V1 
or W2. 

ALGORITHM 5(I). For  relabeling V~ holding the labels in V1 fixed. This is Case I above; see 
Figure l(a).  The root will remain node r. 

0. Find the unique pa th  from u~ to u using Algorithm 3; subtract  a from the successor function 
values of u~ and its predecessors tha t  are not predecessors of u; add a to the successor 
function values of u and its predecessors tha t  are not predecessors of u~ . Let d(v)  = d ( u )  
q- 1, p (v )  = u, M = {v}, and S = ~ .  

1. Apply Algorithm 1, steps 1 3, but replacing V by V2 in the definition of D ( u ) .  At the con- 
clusion of the algorithm the functions d and p will be updated on the entire tree. 

2. Apply Algorithm 4, but  replacing V by V2 in steps 0 and 1, and replacing {r} by {v} in 
step 2. At the conclusion of the algorithm the function s will be updated on the entire tree. 

ALGORITHM 5(II).  For relabeling V1 holding the labels in V2 fixed. This is Case II  above; see 
Figure l(b) .  The new root will be v~ . 

Find the unique backward pa th  from v to vl using Algorithm 3 above; add ~ to the successor 
function values of all nodes on this path.  Let d(u)  = d(v)  q- 1, p ( u )  = v, p(v~) = 525, M = 
{u}, and S = ~ .  

Apply Algorithm 1, steps 1-3, but  replacing V by V~ in the definition of D ( u ) .  At the con- 
clusion of the algorithm the functions d and p will be updated on the entire tree. 

Apply Algorithm 4, but  replacing V by V~ in steps 0 and 1, and replacing {r} by [u} in 
step 2. At the conclusion of the algorithm the function s will be updated on the entire tree. 

0. 

1. 

2. 

4. An Example 

Figure 2 corresponds to a t ree T with  a set of l0 nodes V = [ 1, 2, 3, • • • , 10} and  the 
set of edges E = { (1,4), (2,5), (3,5), (4,5), (4,8), (5,6), (6,7), (6,9), (7,10)}. I t  m a y  be 
verified t h a t  T is a tree, i.e. it is connected and  has no cycles. 

We make  this t ree a rooted t ree b y  arb i t rar i ly  choosing a root  (say, node 6) and  
assigning an a rb i t r a ry  value for its dis tance funct ion (say, L = 10). On apply ing  
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(13,4,0) 

() 

(10,0,9) 

(12,5,0) (12,5,0) 

() () 
(13,4,0) (11,6,0) (12,7,0) 

(11,6,1) 

FIG. 2. Initial tree T and its labels. Node label = (distance, predecessor, successor) 

Algorithm 1 first and then Algorithm 4, we obtain the distance, predecessor, and 
successor labels of Figure 2. 

To find the backward path  from node 1 to the root node 6 we apply Algorithm 2. 
The reader may  verify tha t  path  {1, 4, 5, 6} is the result. 

We now use Algorithm 3 to find the unique path  between nodes 1 and 2 to be 
{1, 4, 5, 2}, i.e. the set of edges { (1, 4), (4, 5), (5, 2)} in tha t  order. This path, 
together with the edge (1,2), constitutes the cycle formed when (1, 2) is added to T. 
If  we drop the edge (4, 5) from T, it splits into the two subtrees (see Figure 3) 
with node Ul = 5 and the root node r = 6 in T1 and the node vI = 4 in T2. Adding 
the edge (1, 2) wittl v = 1 in T2 and u = 2 in Ti creates the tree T '  of Figure 3. 

Corresponding to the subtrees T1 and T2, I V21 = a = s (vi) + 1 = s (4) + 1 = 3 

and [ Vii = ~ = n - c~ = 7. To obtain the labels for T '  with minimum effort, we 
preserve the labels in Ti and relabel T2. This corresponds to Case I (Figure 1 (a))  
and on applying Algorithm 5 (I)  we obtain the labels of Figure 3. The reader may  
verify tha t  direct application of Algorithms 1 and 4 to the tree T '  (with root r 

= 6 and L = 10) would have yielded exactly the same labels. 
Figure 4 is an instance of Case I I  (Figure 1 (b ) )  where the subtree T1 gets re- 

labeled. Here the tree T" is obtained by removing edge (5, 6) from T and adding 

(5 ,7) . [V21 = a = S(Vl) + 1 = s(5)  + 1 = 6 a n d [ V i i  = ~ = n -  a = 4. Thus 
relabeling T1 is easier and the application of Algorithm 5 ( I I )  results in the labels of 
Figure 4. Node 5 becomes the new root. 
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F 

(14,1,1) 

T 2 

(15,4,0) C 

L_ 
Fm. 3. 

-~ F --- - 
(13,2,2) I I (12,5,3) (12,5,0) 

. . . . . .  

i i 

C ~ (12,7,0) 

I 

_ X t .  . . . . . . . .  ; 
Relabeled tree T ~ af te r  udding edge (1, 2) and removing  (4, 5) f rom the tree T 

of F igure  2 

5. Application to Distribution Problems 

We now app ly  the  preceding theory  to the  specific case of the  t ranspor ta t ion  prob-  
lem. This  p rob lem m a y  be s ta ted  as: 

Minimize ~ clsw~s (5) 
iEI  
SEJ 

subjec t  to 

~ w ~ s  = ai f o r i  E I = {1,2,  . . . , m l ,  the  set  of rows, (6) 

w~ = bj f o r j  ~ J = { 1, 2, • • • , n}, the  set of columns, (7) 
iEt  

wis>_ 0 f o r i C  I a n d j  E J .  (8) 

A basic solution to this p rob lem consists of a basis set B of m + n -- 1 basis cells 
which are pairs (i, j )  wi th  i E I and  j C J ,  and  variables  w~s satisfying (6), (7), and  
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Relabeled tree T" after adding edge (5, 7) and removing (5, 6) 
from the tree T of Figure 3 
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(8) and also satisfying 

w~j= 0 if (i, j )  C B. (9) 

If the transportation problem is nondegenerate (see [10] ) then it can be shown that  

w~s> 0 if ( i , j )  C B. (10) 

A degenerate problem can easily be replaced by an equivalent nondegenerate prob- 
lem (see e.g. [10]). 

The graph of the basic solution consists of the nodes V = I U J and the edges 
E = B. I t  canbe shown tha t the  graph T = (V, E)  = (I U J,  B) is a tree; see [3, 4, 
10]. The graph T also has other properties. I t  has two classes of nodes I and J and 
every path in the graph alternately makes use of one, then the other, kind of node. 
This implies that  if an edge is added to the graph T, the resulting cycle will have an 
even number of nodes. The so-called 5[ODI or row-column sum method of trans- 
portation problems [3, 4] involves starting with an initial basic solution; checking 
to see if it is optimal; if not, adding an edge to the graph (i.e. adding a cell to B);  
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finding the unique cycle determined in the graph; selecting an edge on the cycle to 
be removed; etc. The choice of a cell to be added involves the solution to the dual 
problem. The dual problem to (5)-  (8) is given by: 

Maximize ~ a~x~ + ~ b~yi (11) 
l e t  iEJ 

subject to 

x~ + yi _< cli for all i E I, j E J, (12) 

where the dual variables x~ and y~ are unrestricted. Because of condition (10) we 
also have, using the complementary slackness theorem of linear programming, that  

x ~ + y j =  c~i if ( i , j )  E B. (13) 

We next explain how to specialize the algorithms of Sections 2 and 3 to the trans- 
portation problem. At the same time we will extend them to compute the dual 
variables xl and Yi from (13) during the same pass through the graph that  we make 
in computing the distance and predecessor functions. Given a row node i or a column 
node j we want to compute the distance d~ or e~., the predecessor pi or q~, the dual 
variable x~ or y~., and the successor function s~ or tj. The following algorithm finds 
the initial values of each of these quantities. 

ALGORITHM 6. F o r  c o m p u t i n g  in i t i a l  v a l u e s  for  d i ,  e i ,  p i  , q i ,  x i  , YJ ,  s l ,  and  ti g i ven  bas i s  
B. T h e  in i t i a l  roo t  node  in  T is a r b i t r a r i l y  chosen  to be row 1. 

0. S e t d l  = xl = 0; px = ~ ;  I '  = I* = {1}; J '  = ~ .  Go to s t ep  l .  

1. I f  I* = ~ go to s t ep  5. O t h e r w i s e  se t  J*  = ~2~ and  go to s t ep  2. 

2. For  e ach  i E I* do (a),  (b), a n d  (c) below, t h e n  go to s t ep  3. 
(a) F i n d  t he  se t  D(i )  = {j E J -  J ' ]  ( i , j )  E B}.  
(b) F o r  e a c h j  E D(i )  l e t  e i = dl + 1, qi = i,  YJ = c~i - x~ . 
(c) R ep l ace  J '  b y  J '  U D(i)  and  rep lace  J*  b y  J* O D(i ) .  

3. I f  J *  = ~ go to s t ep  5. O t h e r w i s e  se t  I* = ~ a n d  go to s t ep  4. 

4. For  e a c h j  E J *  c a r r y  o u t  (a), (b), and  (c) below a n d  t h e n  go to s t ep  1. 
(a) F i n d  t he  se t  E ( j )  = {i E I -  I '  I ( i , j )  E B}.  
(b) F o r  e a c h i  E E ( j )  le t  d~ = e i + 1, p ;  = j ,  a n d  xl  = clj  - Yi • 
(c) R ep l ace  I '  by  I '  U E ( j )  a n d  rep lace  I* b y  I* O E ( j ) .  

5. L e t  s l  = 0 for  all i E I ,  a n d  tj = 0 for a l l j  E J .  Le t  R be t he  l a rges t  of all t h e  dl (i E I) 
a n d  ej ( j  E J ) .  I f  t h e r e  ex i s t s  an  i s u c h  t h a t  dl = R go to s t ep  6. O the rwi se  go to s t ep  8. 

6. C a r r y  o u t  s t e p s  (a) a n d  (b) below and  t h e n  go to s t ep  7. 
(a) F i n d  t h e  se t  IR = {i E I ] dl  = R}.  
(b) F o r  e a c h i  E I R l e t j  = p~ and  rep lace  t i b y  t i + s~ + 1. 

7. R ep l ace  R b y  R - 1. I f  R = 0 s top .  O t h e r w i s e  go to s t ep  8. 

8. C a r r y  o u t  s t e p s  (a) and  (b) below a n d  t h e n  go to s t ep  9. 
(a) F i n d  t he  se t  JR  = {j E J I ei = R}. 
(b) F o r  each. ]  E J R  le t  i = qj and  rep lace  si  by  s l  + t i + 1. 

9. R ep l ace  R by  R - 1. I f  R = 0 s top .  O the rwi se  go to s t ep  6. 

This algorithm is a specialization of Algorithms 1 and 4 for graphs. Note that  steps 
0-4 constitute a "forward pass" through the tree, while steps 5-9 are a "backward 
pass." The reader should keep in mind that  all the nodes (rows or columns) at the 
same distance from the root node (row 1 ) will be either all rows or all columns. For 
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this reason we label just rows in steps 4 and 8 and just columns in steps 2 and 6. 
Examination of the example in the next section will help in understanding the 
algorithm. 

At the conclusion of this algorithm we will have determined dual variables xi and 
yj satisfying (13). The transportat ion method proceeds by  checking to see if (12) is 
satisfied. I f  this inequality is false for at least one cell, then one such cell is selected 
to enter the basis. The problem now is to determine the cycle which the new cell 
creates when added to basis B. 

Let (u, v) be the cell chosen to enter the basis B which is the set of edges in the 
tree T = ( I  [ J J ,  B ). Then we can find the cycle in the graph T* = ( I  ( J J ,  B U 
{ (u, v ) } ) by Algorithm 7 below, which is a specialization of Algorithm 3. 

ALGORITHM 7. F o r  f ind ing  t he  u n i q u e  p a t h  f rom row u to c o l u m n  v in T and  t he  u n i q u e  cycle 
in the  g r a p h  T*. 

0. L e t  S = du ; R = e~ . If  S > R, se t  VR = V a n d  go to s t ep  1; o the rw i se  se t  u s  = u a n d  go 
to s t ep  2. 

1. F i n d  t he  u n i q u e  b a c k w a r d  p a t h  f r o m  u, 

U ~ U S  ~ U S - - I  ~ U S - 2  ~ " ' '  ~ U R  

where  u s _ l  = P u s ,  u s _ o  = V ~ s _ l  , etc.  (cf. A l g o r i t h m  2 w i t h  obv ious  n o t a t i o n a l  changes ) .  
L e t  j = R a n d  go to s t ep  3. 

2. F i n d  t he  u n i q u e  b a c k w a r d  p a t h  f r o m  v, 

p ~ V R , V R - - 1  ~ V R - 2  ~ " ' "  ~ V S  

where  V R -~  = q~R , V R - 2  = P ~ R - - ~  , etc. ,  (cf. A l g o r i t h m  2 w i t h  obv ious  n o t a t i o n a l  changes ) .  
I f j  = S g o  to s t ep  5. 

3. I f  u j  = v ,  go to s t ep  7. O t h e r w i s e  go to s t ep  4. 

4. F i n d  u j _ ~  = q ~ j  and  v]_~ = q~y . Rep l ace  j by  j - 1. 

5. I f  uy = v i  go to s t ep  7. O t h e r w i s e  go to s t ep  6. 

6. F i n d  u j _ ~  = p ~ j  a n d  vi_~ = p ~  . Rep l ace  j b y j  - 1 and  go to s t ep  3. 

7. S top .  T h e  u n i q u e  p a t h  b e t w e e n  u and  v in T is 

and  t he  u n i q u e  cycle  in T* d e t e r m i n e d  w h e n  (u, v) is a d d e d  to B is 

( u s  , u s - i ) ,  ( u s  ~ , u s - s ) ,  ( u s - ~  , ~ , - ~ ) ,  " "  , (VR- i  , VR) 

t o g e t h e r  w i t h  the  cell ( u s  , V R )  = ( u ,  v ) .  

Once the cycle has been found, a cell (u~, v~) is selected to leave the set B U 
{ (u, v)}. As in Section 3, the set B - { (ul, vi)} consists of two subsets V1 and V2 
(see Figures 1 (a) and 1 (b) . )  In the case of the t ransportat ion problem, it can be 
shown that  if u and ui are row indices and v and v~ are column indices, then u and 
Ul will either both  belong to V~ or both  belong to V2, with v and v~ both belonging to 
the opposite set. This follows from the facts that :  (a) every cycle has an even num- 
ber of elements; (b) the cell coming in is a "ge t te r"  cell while the cell going out is a 
"giver"  cell; (c) the cells on the cycle are alternately marked "givers" and "get ters"  
[10]. If  e~.~ > d ~ ,  then u and u~ are in Vi with v and Yl in V2. In this case formulas 
(3) and (4) become a = t,,~ + 1 and $ = m + n - a.  However, if e~ < d~l then u 
and Ux are in V2 with v and v~ in V~. For this case a = s~ 1 + 1 and 3 = m + n - a. 
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In the algorithms that  follow we assume the former case. The extensions to the latter 
case should be obvious. We can thus relabel whichever subtree is smaller, and we 
have the following variants of Algorithm 5 (I) and 5 (II). 

ALGORITHM 8(I), For  re label ing  V2 hold ing  the  labels  in V, fixed. This  co r responds  to F igure  
1 (a). We assume u~ and  u are V~ . The  root  does no t  change.  

0. F ind  the  un ique  p a t h  f rom u~ to u us ing Algor i thm 7; s u b t r a c t  a f rom the  successor  f unc t i on  
values  of u~ and  i ts  p redecessors  t h a t  are no t  p redecessors  of u; add a to the  successor  
func t ion  values  of u and i ts  p redecessors  t h a t  are no t  p redecessors  of u~ . Le t  e~ = d~ 
1,  q~ = u ,  y~  = cu, ,  - -  x ~ , ,  J '  = J *  = {v}, I '  = ~ .  

1. App ly  Algor i thm 6, s t eps  1-4, s t a r t i ng  wi th  s t ep  3, b u t  rep lac ing  I and  J by  I n v~ and 
J n v2 in the  def in i t ion of D (i) and  E (j) .  At  the  conclusion of the  a lgor i thm the  predecessor  
and d i s t ance  func t ions  will be u p d a t e d  on the  en t i re  t ree.  

2. A p p l y  Algor i thm 6, s t eps  5-9, bu t  rep lac ing  I and J by  I n v2 and J n v2 in s t eps  5, 6, 
and  8, and s t opp ing  in s t ep  7 when  R = e~ . At  the  conclus ion  of the  a lgor i thm the  successor  
func t ion  will be u p d a t e d  on the  en t i re  t ree.  

ALGORITHM 8(I I ) .  For  re label ing  V1 ho ld ing  the  labels  in V~ fixed, co r respond ing  to F igure  
l (b) .  We assume u and u, are in V, . The  new root  is v, . 

0. F ind  the  un ique  b a c k w a r d  p a t h  f rom v to vl us ing Algor i thm 7; add ~ to the  successor  
func t ion  values  of all nodes  on th is  pa th .  Le t  d~ = e~ + 1, p ,  = v, q,1 = ~ ,  x~ = c~, -- 
y , ,  I '  = I* = {u}, J '  = ~ .  

1. App ly  Algor i thm 6, s t eps  1--4, s t a r t i ng  wi th  s t ep  1, b u t  rep lac ing  I and J by  l n v1 and 
J n v1 in the  def in i t ion of D (i) and E (j) .  A t  the  conclus ion  of the  a lgor i thm the  p redecessor  
and  d i s t ance  func t ions  will be u p d a t e d  on the  en t i re  t ree.  

2. App ly  Algor i thm 6, s t eps  5-9, b u t  rep lac ing  I and J by  I n v ,  and J n V, in s t eps  5, 6, 
and 8, and s topp ing  in s t ep  7 when  R = d~ .  At  the  conc lu s ion  of the  a lgo r i t hm the  successor  
func t ion  will be u p d a t e d  on the  en t i r e  t ree .  

6. A Transportation Problem Example 

We consider the example given in [12] with the cost entry c24 changed from 6 to 1. 
Figure 5 (a) shows the cost entries, the rim conditions (W stands for warehouses and 
M for markets), and a basic feasible solution to this problem. A circle in the cell 
(i, j) denotes that  (i, j )  is in basis B and the corresponding w~i is shown over the 
circle. Figure 5 (d) shows the tree T corresponding to this basis. We apply Algorithm 
6 to obtain the labels shown in Figures 5 (b), (c), and (d). 

The basic solution of Figure 5 (a) is not dual feasible, since it violates the condition 
(12) for (i, j )  = (2, 4). The solution can be improved by bringing (2, 4) into the 
basis. To do this, we apply Algorithm 7 and find the unique path between W2 and 
M4 as (W2, M2, W3, M4). The application of Glover-Klingman algorithm [12] 
would have resulted in the two backward paths { (W2, M3, W1)}, {M4, W3, M2, 
W2, M3, W1}, and after eliminating the common backtracking part {(W2, M3, 
W1 )} it obtains the above result. The unique cycle created by the addition of (2, 4) 
is { (2,2), (3,2), (3,4), (2,4)}. (See Figures 5 (a) and 6 (d).) Oi1 this cycle the "giver 
cells" [10] are (2, 2) and (3, 4), so that  the minimum giver cell (2, 2) should leave 
the basis (w22 = 2 < w~4 = 14). When the cell (2, 2) is removed from the tree T, 
we get the two subtrees Ti and T2 shown in Figure 6 (d). When (2, 4) is added to 
these subgraphs, we obtain the tree T' = T -- { (2, 2)} Jr { (2, 4)}. 

Corresponding to the two subtrees T1 and T2, a = ] V2 1 = t~, Jr 1 = t2 Jr 1 = 3 
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M1 

W1 QiI 

W2 7 

W3 9 

II 

FIG. 5 ( a ) .  

MI M2 

ej I 3 

q j  I- 

t .  o 
J 

y j  1 

Fro. 5(c). 

M2 M3 M4 d i 

: 20 W1 0 

i0 W2 2 

QiI 5 0 1 4  25 W3 4 

13 17 14 

T r a n s p o r t a t i o n  tab l eau  

M3 M4 

1 5 

2 1 3 

2 4 0 

5 3 5 

Labe l s  for m a r k e t s  

,6,0) 

Pi si x. 
i 

6 o 

3 3 -2 

2 1 -i 

FIG. 5(b). Labels for warehouses 

(i,I,4,3) 

~_~ (2,3,3,-2) 

~ )  (5,3,0,5) 

FIG. 5(d) .  Tree  T corresponding  to Fig .  5(a) .  N o d e  label  = (d i s tance ,  
predecessor ,  successor ,  dual  var iable)  

and ~ = m + n - a = 3 + 4 - 3 = 4. Thus relabeling V2 is easier and we apply 
algorithm 8 (I) to obtain the labels of Figures 6 (b), (c), and (d). The new basis and 
the corresponding wij are shown in Fig. 6 (a). The reader may verify that the labels 
of Figures 6 (b) and 6 (c) will be obtained if Algorithm 6 is applied to the tree T' of 
Figure 6 (d). The reader may  also verify that (12) is satisfied by the basis of Figure 
6 (a) so that this solution is, in fact, optimal. 

Journal of the Association for Computing Machinery, Vol. 19, No.  4, October  1972 



Accelerated Algorithms for Labeling and Relabeling of Trees 725 

M1 

Wi Q11 

W2 7 

W3 9 

I 11 

M1 

ej i 

vj i 

t. 0 
J 

yj  1 

Fie. 6(e) 

M2 M3 M4 

6 Q9 5 ] 20 WI 

3 @8 ~ i0 W2 

~3 5 012 25 W3 

13 17 14 

FiG. 6(a) 

M2 M3 

5 1 

3 1 

0 4 

3 3 

M o d i f i e d  tableau 

M4 

3 

2 

2 

3 

Modified market labels 

FIG. 6(b) 

di Pi si xi 

o ¢ 6 o 

2 3 3 -2 

4 4 1 -i 

Modified warehouse labels 

(r--- 
I 

\ 

(1,1,o,1) 

,0) 

(i,I,4,3) 

T 1 u=u I 

T 2 

~,~ (2,3,3,-2) 

~ 2~ (5,3,0,3) 

X. f ~ (4,4,1,1) 

X. f ~ (3,2,2,3) 

FiG.  6(d) Tree G' c o r r e s p o n d i n g  to  F i g u r e  6 (a )  

_ J  

) 

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972 



726 V. S R I N I V A S A N  AND G. L. THOMPSON 

REFERENCES 

I. BARR, R. S., KLINGMAN, D., AND RAIKE, W.M. Computational simplifications through 
topological structure in network and distribution models. Series in Appl. Math. for 
Management, Pub. No. AMM-13, Grad. School of Business, U. of Texas, Austin, Texas, 
1968. 

2. BERGE, C. The Theory of Graphs and Its Applications. Wiley, New York, 1962. 
3. CHARNES, A., AND COOPER, W.W. Management Models and Industrial Applications of 

Linear Programming, Vols. I and II. Wiley, New York, 1961. 
4. DANTZlG, G. B. Linear Programming and Extensions. Princeton U. Press, Princeton, 

N. J., 1963. 
5. DENNIS, J. B. A high-speed computer technique for the transportation problem. J. 

ACM 5, 2 (Apr. 1958), 132-153. 
6. DIJKSTRA, E .W.  A note on two problems in connection with graphs. Numer. Math. i 

(1959), 269-271. 
7. EASTMAN, W. L .  Linear programming with pattern constraints. Ph.D. DiNs., Harvard 

U., Cambridge, Mass. 1958. 
8. FORD, L. R., AND FULKERSON, D.R.  Flows in Networks. Princeton U. Press, Princeton, 

N. J., 1962. 
9. FORTRAN Transportation Code, Contributed Program Library, 360D-15.2.010. IBM, 

New York, 1968. 
10. GAVER, D. P., AND THOMPSON, G. L. Mathematical Models--Programming and Prob- 

ability. Brooks/Cole Pub. Co., Belmont, Calif. (to be published, 1973). 
11. GLICKSMAN, S., JOHNSON, L., AND ESELSON, L. Coding the transportation problem. 

Naval Res. Logist. Quart. 7 (1960), 169-183. 
12. GLOVER, F., AND KLINGMAN, D. Locating stepping-stone paths in distribution problems 

via the predecessor index method. Transportation Sci. 4 (1970), 220-225. 
13. HAMMER, P .L .  Time-minimizing transportation problems. Naval Res. Logist Quart. 16 

(1969), 345-357. 
14. KRUSKAL, J. On the shortest spanning subtree of a graph and the travelling salesman 

problem. Proc. Amer. Math. Soc. 7 (1956), 48-50. 
15. LOURiE, J. R. Topology and computation of the generalized transportation problem. 

Management Sci. 11 (1964), 177-187. 
16. MURTY, K.G. Solving the fixed charge problem by ranking the extremepoints. Operations 

Res. 16 (1968), 268-279. 
17. SBINIVASAN V., AND THOMPSON, G.L.  An operator theory of parametric programming 

for the transportation problem, I. Naval Res. Logist. Quart. 19 (to appear). 
18. SRINIVASAN, V., AND THOMPSON, G.L.  An operator theory of parametric programming 

for the transportation problem, II. Naval Res. Logist. Quart. 19 (to appear). 
19. SRINIVASAN, V., AND THOMPSON, G.L. Benefit-cost analysis of coding techniques for the 

primal transportation algorithm. Management Sci. Res. Rep. No. 229, Grad. School of 
Ind. Admin., Carnegie-Mellon U., Pittsburgh, Pa.; to appear in J. ACM. 

RECEIVED FEBRUARY 1971; REVISED NOVEMBER 1971 

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972 


