
Accelerated Algorithms for Labeling and Relabeling of

Trees, with Applications to Distribution Problems

V . SRINIVASAN

The University of Rochester, Rochester, New York

AND

G . L . T H O M P S O N

Carnegie-Mellon University, Pittsburgh, Pennsylvania

ABSTRACT. Adjacent extreme point problems involving a tree basis (e.g. the transportation
problem) require the determination of cycles which are created when edges not belonging to
the basis are added to the basis-tree. This paper offers an improvement over the predecessor-
index method for finding such cycles and involves the use of a distance function defined on
the nodes of the tree, in addition to the predecessor labels. I t is shown that the relabeling
associated with a basis change can be minimized by defining yet another function called the
successor function. The algorithms for labeling and relabeling are then specialized for the
specific case of transportation problems.

KEY WORDS AND PHRASES: graph theory, adjacent extreme point methods, transportation
problems, network problems

CR CATEGORIES: 5.32, 5.41, 8.3

1. Introduction

When solving d is t r ibut ion problems (also known as t r anspor ta t ion or Hi tchcock
problems) using so-called "p r ima l " methods, a sizeable port ion of the computa -
t ional effort is involved in the de te rmina t ion of "cycles" or "s tepping stone tours"

[3-5, 9] which are created when a nonbasic cell is added to an existing basis. Earl ier
approaches for f inding cycles used a tree sea rch technique [5, 9]. A methodology,
which we may call the "crossing out rou t ine" t ha t sys temat ica l ly el iminates rows

and columns of the tab leau no t belonging to the cycle, was formula ted independen t ly

Copyright (~) 1972, Association for Computing Machinery, Inc.

General permission to republish, but not for profit, all or part of this material is granted
provided that reference is made to this publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.

This paper was prepared as part of the activities of the Management Sciences Research Group,
Carnegie-Mellon University, under contract N00014-67-A-0314-0007 NR 047-048 with the U. S.
Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the
U.S. Government.

Authors' addresses: V. Srinivasan, University of Rochester, Graduate School of Management,
Rochester, NY 14627; G. L. Thompson, Carnegie-Mellon University, Graduate School of
Industrial Administration, Schenley Park, Pittsburgh, PA 15213.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972, pp. 712-726.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321724.321734&domain=pdf&date_stamp=1972-10-01

Accelerated Algorithms for Labeling and Relabeling of Trees 713

by Lourie [15], Gaver and Thompson [10], and Barr, Klingman, and Raike [1].
Glover and Kingman [12] recently gave a "predecessor-index method", which was
largely anticipated by Glicksman, Johnson, and Eselson [11], and which appears to
be more efficient than the previous approaches.

The present paper offers several extensions and improvements over the Glover-
Klingman procedure. First, we extend their method to an arbitrary graph, and then
show that by using a distance function in the graph as well as the predecessor func-
tion, the retracing portion of their cycle-finding routine can be eliminated. Second,
we show that by using still another function defined on the graph, the successor func-
tion, it is possible to determine which is the smaller of the two parts into which a
basis tree is split when an edge is removed. Third, we show that when the two parts
of the tree are connected by another edge it is possible to recalculate the predecessor,
distance, and successor functions for just one of the two parts. Clearly, computa-
tional effort is minimized by relabeling the smaller of the two parts. However, the
most valuable use of the successor function appears to be in the applications of the
duality operators for transportation problems that we have derived in a series of
papers [17, 18].

In [19] the authors discuss computational experience with the ideas presented here
for transportation problems. Specifically, we have made benefit-cost studies on some
of the ideas presented in this paper as well as some of the standard methods for solv-
ing transportation problems. We have developed a code that uses the best of these
methods. Actual computation times for solving a variety of kinds of problems are
reported in [19].

There are a variety of other problems for which the methods developed in this
paper should be useful. For instance, the shortest (or longest) spanning tree prob-
lem [6, 14] involves the checking for cycles. Adjacent extreme point problems--as
for instance, certain concave minimization problems--involving a tree basis could
also make use of it. Specific examples of the latter in the transportation framework
are the time transportation problem [13J, the traveling salesman problem [7], and
the fixed charge transportation problem [16].

2. The Predecessor and Distance Functions for Trees

For a general reference on graph theory see Berge [2].
Let V be a set of n elements called vertices or nodes and let E be a set of (some of

the) pairs (u, v) with u,v C V. A pair (u,v) is called an edge between u and v, or also
between v and u (no direction is implied). Then G = (V, E) is called a graph. A
path between u and v in G is a list

u = w0, wl, " " , WR = V (1)

where (w:._x, wi) E E for j = 1, • • • , R, are distinct edges. The length of the path
is R. A path is a cycle if u = v in (1). A graph is acyclic if it has no cycles. A graph
is connected if there is at least one path connecting each pair of distinct nodes. A
tree [2] is a connected acyclic graph. Equivalently, a graph is a tree if and only if
there is a unique path between each pair of distinct nodes [2]. A rooted tree is a tree
T = (V, E) together with a distance function d(v) for v C V, having the following
properties:

(a) For some node r, d (r) is a minimum (= L, say); node r is called the root.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

714 V. SRINIVASAN AND G. L. THOMPSON

(b) I f r is a root, v any other node, and (1) is the unique path between r (= u)
a n d v t h e n d (v) = L + R .

In a rooted tree there is a unique path from the root r to any other distinct node v;
hence there is a unique predecessor p (v) = u of v such that d (u) = d (v) - 1 and
(u, v) C E. We define p (r) = ~ where r is the root and call p the predecessor func-
tion of the rooted tree.

Clearly any tree T = (V, E) having n vertices can be made into a rooted tree in n
different ways by choosing each vertex r ~ V in turn to be the root and using the
following algorithm for determining the distance and predecessor functions:

ALGORITHM 1. Fo r defining dis tance and predecessor func t ions on a t ree T = (V, E) given
root r.

0. Set d (r) = L , where L is an integer , p (r) = ~ , M = {r}, S = ~2~.

1. Fo r each u C M:
(a) F ind the s e t D (u) = {v [(v, u) E E , v E V - S } .

(b) Fo r each v C D (u) let d (v) = d (u) + 1 and p (v) = u .

2. Replace S by S U M; replace M by U , E M D (u) .

3. I f M = ~ s top. Otherwise go to s tep 1.

In thinking of this algorithm it helps to interpret the set M as being the subset of
vertices just "labeled" and the set S as the vertices "labeled and scanned" (see Ford
and Fulkerson [8]).

We assert tha t after completing Algorithm 1, all the nodes would have been
labeled. For assume the contrary, tha t some node, say v, was not labeled. Consider
the path in expression (1) from r to v. Clearly, if v = w, was not labeled then
wR-i was not labeled either, since otherwise we would have labeled v in step 1 of the
algorithm. By repeating this argument we can show tha t the root r was not labeled,
a contradiction, since we labeled it in step 0 above.

No node v will be labeled more than once, since tha t would imply G contains a
cycle (s) formed from the two (or more) sequences of labelings tha t led to v.

A rooted tree may be thought of as a directed graph, i.e. a graph with directed
edges called arcs with the direction of each edge being from the vertex of lower dis-
tance to the vertex of higher distance. Given any rooted tree with root r, there is a
unique backward path between any other node v and r of length R = d (v) - d (r),
which can be found by means of the following algorithm:

ALGORITHM 2. For finding the backward p a t h be tween v ~ r and the root r in a roo ted tree.

0. Let R = d (v) - d (r) , j = R , VR = V.

1. I f j -- 1 > 0, r ep l ace j b y j -- 1 and go to s tep 2; o therwise go to s tep 3.

2. F ind vj = p(v j+~) . Go to s tep 1.

3. Let v0 = r and s top. The backward p a t h is v = VR , VR-X , " '" , VO = r.

To justify this algorithm we merely use property (b) of the distance function and
the definition of the predecessor function in Algorithm 1.

I f v~ is some node on the backward path between v and the root r, we will call the
set {v = v , , v , - i , • • • , vk} the backward path between v and vs. Clearly this is a sub-
set of the backward pa th between v and r.

As mentioned above, there is a unique pa th between each pair of distinct vertices

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

Accelerated Algorithms for Labeling and Relabeling of Trees 715

in a tree. Algorithm 2 solves the problem of finding this path when one of the vertices
is the root. If u and v are two distinct vertices in T = (V, E) , then one way of find-
ing the unique path between u and v is to make one of them, say u, the root, apply
Algorithm 1 to find the resulting distance and predecessor functions, and then apply
Algorithm 2 to find the backward path from v to u. However, if there already are
distance and predecessor functions defined with root r (different from both u and v)
on the tree, the following algorithm will efficiently find the path between u and v.

ALGORITHM 3. Fo r finding the un ique p a t h be tween ver t ices u and v in a tree T = (V, E)
with root r.

0. I f d (u) = d (v) = R , set u e = u, ve = v, j = R, R ' = R, and go to s tep 2. Otherwise r ename
the po in t s u and v, if necessary, so t h a t R ' = d (u) > d (v) = R , and go to s tep 1.

1. Use Algor i thm 2 to find the un ique backward p a t h f rom u to the unique e lement UR on
the backward p a t h f rom u to r such t h a t d (u R) = d (v) = R . Set VR = V, j = R and go to
s tep 2.

2. I f v j = u i go to s tep 5. Otherwise go to s tep 3.

3. F ind u j _ i = p (u j) and v j _ l = p (v j) .

4. R e p l a c e j b y j - 1 and go to s tep 2.

5. Stop. The un ique p a t h f rom u to v is

u = U R , , " " , U R , " ' " , U j + ~ , U j = V i , v i + I , " " , V R = V. (2)

The intuitive justification of this procedure is the following: There is a unique back-
ward path from u to r and another from v to r; these two paths will certainly inter-
sect at r, but perhaps also at nodes having positive distance. However, in the back-
ward paths from u to r, uj can equal vj only if these two are at the same dist,unce
from r. Hence step 1 traces back the first part of the backward path from u to ~hat
element UR which is at the same distance from r as v is. Then in step 2 we test to see
whether the two elements on the backward paths from UR and v to the root are equal,
stopping as soon as equality is obtained.

The above algorithm typically requires fewer steps than the Glover-Klingman ap-
proach which required a complete backtracking of at least one of the paths back to
the root r. In [19] we present some computational results which indicate that al-
though each step of Algorithm 3 takes slightly longer than a step of the Glover-
Klingman approach, the savings in steps afforded by Algorithm 3 pay off by reducing
overall computation time.

3. The Successor Function and Relabeling

There are a number of problems that use adjacent extreme point methods (see Sec-
tion 1), including the distribution problem to be discussed in Section 5, in which a
tree T = (V, E) is first constructed on the nodes in a set V. Then an edge (u, v) ~ E
is added to the tree. Let E* = E O { (u, v)}. I t is easy to see that this procedure
creates a unique cycle in the graph (V, E*) consisting of the unique path in T from
u to v (found by applying Algorithm 3) together with the edge (u, v). Once tile
cycle has been determined, some edge (ui, v~) on the cycle is selected (using some
appropriate criterion) to be removed from E* so that the graph T' = (V, E* -
{ (Ul, Yl)}) becomes a tree again. The problem now is how to relabel the new tree (i.e.
how to reeompute the functions p and d preserving as much of the old labeling as

Journal of the Association for Computing Machinery, VoL 19, No. 4, October 1972

716 V. SRINIVASAN AND G. L. THOMPSON

possible, so tha t the new tree becomes a rooted tree (possibly with a different root.)
We shall develop an efficient a lgori thm for doing this.

Consider the original tree T = (V, E) with root r. I f we remove the directed edge
(Ul, vl) (where d (vl) = d (ul) + 1) f rom E, then the tree splits into two subtrees
T1 and T~ and the set of nodes V splits into two subsets V1 and V~ with ul and the
root node r in V1 and Vl in V2 (see Figures 1 (a) and 1 (b)) . Since the addit ion of
(u, v) creates a tree, u and v lie on different subtrees. Between these two nodes, we

define v to be tha t node whose backward pa th (in the original t ree) to the root con-
tains bo th v~ and Ul. I n labeling the new tree we can preserve the labels in V~ and
change those in V2 or vice versa. I n order to do this using min imum effort we should
select the set with the fewest vertices.

I n order to determine which subset has the fewest vertices, we define the successor

f u n c t i o n on a rooted tree T = (V, E) as follows: for each v C V let s (v) be the n u m -

ber of successors of v in T, where u is a successor of v if d (u) > d (v) and v lies on the
unique pa th from u to the root r. The next a lgori thm determines the successor func-
tion.

ALGORITHM 4. For finding the successor function in a rooted tree T = (V, E) with root r.

0. Let s (v) = 0 for all v E V. Let R be the maximum distance that any node v E V is from the
root r.

1. Le tM = {rid(v) = R, v E V}.

2. If M = {r} stop. Otherwise go to step 3.

3. For each v E M find u = p(v) and replace s(u) by s(u) + s(v) + 1.

4. Le tR = R - 1, G o t o s t e p l .

Notice tha t this a lgori thm begins by finding the values of s for the predecessors of
nodes mos t dis tant from the root r, then labeling the predecessors of the nodes at
one less distance, etc. On the last step s (r) is calcu'lated which must be n - 1, since
all nodes except r are successors of r. Obviously the distance and predecessor func-

I root

FIG. l (a) . C a s e I : I V~ I = ¢~ >_ ~ = I V2 [

FIG. l (b) . C a s e I I : [V1 [= /~ < a = I V2]

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

Accelerated A lgomthms for Labeling and Relabeling of Trees 717

tions can be de te rmined in one forward pass th rough the tree using Algor i thm 1, and
the successor function can then be de termined in a backward pass using Algor i thm 4.

Let us re tu rn to the two subsets V1 and V2 which obta in when the edge (ul , Vl)
is r emoved f rom the tree T = (V, E) . We denote b y [X I the number of e lements in
set X. Define

a = S(Vl) -{- 1 = IV , I, (3)

1 3 = n - a = IViI. (4)

There are two cases:
Case I. 13 _> a. Here I V1] _>] V21 so t ha t we wan t to retain the root r and relabel

V2. As shown in Figure 1 (a), this means we mus t sub t rac t a f rom the successor
function along the backward pa th f rom ui to the root r, and add a along the backward
pa th f rom u to r. As shown in the figure, we need not necessarily go back all the way
to r if these two pa ths join before r (cf. Algor i thm 3).

Case II. ~ < a . Here I Vi I < I V2 [so t h a t we wan t to make Yl the new root of
the tree, and relabel V1. As shown in Figure 1 (b) this requires t ha t we add/~ to the
successor funct ion along the backward p a t h f rom v to Vl.

F rom the above analysis we can now s ta te the a lgor i thms for relabeling either V1
or W2.

ALGORITHM 5(I). For relabeling V~ holding the labels in V1 fixed. This is Case I above; see
Figure l(a). The root will remain node r.

0. Find the unique pa th from u~ to u using Algorithm 3; subtract a from the successor function
values of u~ and its predecessors tha t are not predecessors of u; add a to the successor
function values of u and its predecessors tha t are not predecessors of u~ . Let d(v) = d (u)
q- 1, p (v) = u, M = {v}, and S = ~ .

1. Apply Algorithm 1, steps 1 3, but replacing V by V2 in the definition of D (u) . At the con-
clusion of the algorithm the functions d and p will be updated on the entire tree.

2. Apply Algorithm 4, but replacing V by V2 in steps 0 and 1, and replacing {r} by {v} in
step 2. At the conclusion of the algorithm the function s will be updated on the entire tree.

ALGORITHM 5(II). For relabeling V1 holding the labels in V2 fixed. This is Case II above; see
Figure l(b) . The new root will be v~ .

Find the unique backward pa th from v to vl using Algorithm 3 above; add ~ to the successor
function values of all nodes on this path. Let d(u) = d(v) q- 1, p (u) = v, p(v~) = 525, M =
{u}, and S = ~ .

Apply Algorithm 1, steps 1-3, but replacing V by V~ in the definition of D (u) . At the con-
clusion of the algorithm the functions d and p will be updated on the entire tree.

Apply Algorithm 4, but replacing V by V~ in steps 0 and 1, and replacing {r} by [u} in
step 2. At the conclusion of the algorithm the function s will be updated on the entire tree.

0.

1.

2.

4. An Example

Figure 2 corresponds to a t ree T with a set of l0 nodes V = [1, 2, 3, • • • , 10} and the
set of edges E = { (1,4), (2,5), (3,5), (4,5), (4,8), (5,6), (6,7), (6,9), (7,10)}. I t m a y be
verified t h a t T is a tree, i.e. it is connected and has no cycles.

We make this t ree a rooted t ree b y arb i t rar i ly choosing a root (say, node 6) and
assigning an a rb i t r a ry value for its dis tance funct ion (say, L = 10). On apply ing

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

718 V. S R I N I V A S A N AND G. L. THOMPSON

(13,4,0)

()

(10,0,9)

(12,5,0) (12,5,0)

() ()
(13,4,0) (11,6,0) (12,7,0)

(11,6,1)

FIG. 2. Initial tree T and its labels. Node label = (distance, predecessor, successor)

Algorithm 1 first and then Algorithm 4, we obtain the distance, predecessor, and
successor labels of Figure 2.

To find the backward path from node 1 to the root node 6 we apply Algorithm 2.
The reader may verify tha t path {1, 4, 5, 6} is the result.

We now use Algorithm 3 to find the unique path between nodes 1 and 2 to be
{1, 4, 5, 2}, i.e. the set of edges { (1, 4), (4, 5), (5, 2)} in tha t order. This path,
together with the edge (1,2), constitutes the cycle formed when (1, 2) is added to T.
If we drop the edge (4, 5) from T, it splits into the two subtrees (see Figure 3)
with node Ul = 5 and the root node r = 6 in T1 and the node vI = 4 in T2. Adding
the edge (1, 2) wittl v = 1 in T2 and u = 2 in Ti creates the tree T ' of Figure 3.

Corresponding to the subtrees T1 and T2, I V21 = a = s (vi) + 1 = s (4) + 1 = 3

and [Vii = ~ = n - c~ = 7. To obtain the labels for T ' with minimum effort, we
preserve the labels in Ti and relabel T2. This corresponds to Case I (Figure 1 (a))
and on applying Algorithm 5 (I) we obtain the labels of Figure 3. The reader may
verify tha t direct application of Algorithms 1 and 4 to the tree T ' (with root r

= 6 and L = 10) would have yielded exactly the same labels.
Figure 4 is an instance of Case I I (Figure 1 (b)) where the subtree T1 gets re-

labeled. Here the tree T" is obtained by removing edge (5, 6) from T and adding

(5 ,7) . [V21 = a = S(Vl) + 1 = s(5) + 1 = 6 a n d [V i i = ~ = n - a = 4. Thus
relabeling T1 is easier and the application of Algorithm 5 (I I) results in the labels of
Figure 4. Node 5 becomes the new root.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

Accelerated Algorithms for Labeling and Relabeling of Trees 719

F

(14,1,1)

T 2

(15,4,0) C

L_
Fm. 3.

-~ F --- -
(13,2,2) I I (12,5,3) (12,5,0)

.

i i

C ~ (12,7,0)

I

_ X t ;
Relabeled tree T ~ af te r udding edge (1, 2) and removing (4, 5) f rom the tree T

of F igure 2

5. Application to Distribution Problems

We now app ly the preceding theory to the specific case of the t ranspor ta t ion prob-
lem. This p rob lem m a y be s ta ted as:

Minimize ~ clsw~s (5)
iEI
SEJ

subjec t to

~ w ~ s = ai f o r i E I = {1,2, . . . , m l , the set of rows, (6)

w~ = bj f o r j ~ J = { 1, 2, • • • , n}, the set of columns, (7)
iEt

wis>_ 0 f o r i C I a n d j E J . (8)

A basic solution to this p rob lem consists of a basis set B of m + n -- 1 basis cells
which are pairs (i, j) wi th i E I and j C J , and variables w~s satisfying (6), (7), and

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

V. S R I N I V A S A N AND G. L. THOMPSON

i

S
_

(13,4,0)

\
FIG. 4.

f I '

(12,5,0) (12,5,0)

/ vlv, \
I (r--

/
/ OLD

l ul (~ ROOT
(1 3 , 7 , 1)

T 1

(14,6,0) (
I I

u~")(12,5,3)

Relabeled tree T" after adding edge (5, 7) and removing (5, 6)
from the tree T of Figure 3

J
h

I

I
I

L
I

720

(8) and also satisfying

w~j= 0 if (i, j) C B. (9)

If the transportation problem is nondegenerate (see [10]) then it can be shown that

w~s> 0 if (i , j) C B. (10)

A degenerate problem can easily be replaced by an equivalent nondegenerate prob-
lem (see e.g. [10]).

The graph of the basic solution consists of the nodes V = I U J and the edges
E = B. I t canbe shown tha t the graph T = (V, E) = (I U J, B) is a tree; see [3, 4,
10]. The graph T also has other properties. I t has two classes of nodes I and J and
every path in the graph alternately makes use of one, then the other, kind of node.
This implies that if an edge is added to the graph T, the resulting cycle will have an
even number of nodes. The so-called 5[ODI or row-column sum method of trans-
portation problems [3, 4] involves starting with an initial basic solution; checking
to see if it is optimal; if not, adding an edge to the graph (i.e. adding a cell to B);

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

Accelerated Algorithms for Labeling and Relabeling of Trees 721

finding the unique cycle determined in the graph; selecting an edge on the cycle to
be removed; etc. The choice of a cell to be added involves the solution to the dual
problem. The dual problem to (5)- (8) is given by:

Maximize ~ a~x~ + ~ b~yi (11)
l e t iEJ

subject to

x~ + yi _< cli for all i E I, j E J, (12)

where the dual variables x~ and y~ are unrestricted. Because of condition (10) we
also have, using the complementary slackness theorem of linear programming, that

x ~ + y j = c~i if (i , j) E B. (13)

We next explain how to specialize the algorithms of Sections 2 and 3 to the trans-
portation problem. At the same time we will extend them to compute the dual
variables xl and Yi from (13) during the same pass through the graph that we make
in computing the distance and predecessor functions. Given a row node i or a column
node j we want to compute the distance d~ or e~., the predecessor pi or q~, the dual
variable x~ or y~., and the successor function s~ or tj. The following algorithm finds
the initial values of each of these quantities.

ALGORITHM 6. F o r c o m p u t i n g in i t i a l v a l u e s for d i , e i , p i , q i , x i , YJ , s l , and ti g i ven bas i s
B. T h e in i t i a l roo t node in T is a r b i t r a r i l y chosen to be row 1.

0. S e t d l = xl = 0; px = ~ ; I ' = I* = {1}; J ' = ~ . Go to s t ep l .

1. I f I* = ~ go to s t ep 5. O t h e r w i s e se t J* = ~2~ and go to s t ep 2.

2. For e ach i E I* do (a), (b), a n d (c) below, t h e n go to s t ep 3.
(a) F i n d t he se t D(i) = {j E J - J '] (i , j) E B}.
(b) F o r e a c h j E D(i) l e t e i = dl + 1, qi = i, YJ = c~i - x~ .
(c) R ep l ace J ' b y J ' U D(i) and rep lace J* b y J* O D(i) .

3. I f J * = ~ go to s t ep 5. O t h e r w i s e se t I* = ~ a n d go to s t ep 4.

4. For e a c h j E J * c a r r y o u t (a), (b), and (c) below a n d t h e n go to s t ep 1.
(a) F i n d t he se t E (j) = {i E I - I ' I (i , j) E B}.
(b) F o r e a c h i E E (j) le t d~ = e i + 1, p ; = j , a n d xl = clj - Yi •
(c) R ep l ace I ' by I ' U E (j) a n d rep lace I* b y I* O E (j) .

5. L e t s l = 0 for all i E I , a n d tj = 0 for a l l j E J . Le t R be t he l a rges t of all t h e dl (i E I)
a n d ej (j E J) . I f t h e r e ex i s t s an i s u c h t h a t dl = R go to s t ep 6. O the rwi se go to s t ep 8.

6. C a r r y o u t s t e p s (a) a n d (b) below and t h e n go to s t ep 7.
(a) F i n d t h e se t IR = {i E I] dl = R}.
(b) F o r e a c h i E I R l e t j = p~ and rep lace t i b y t i + s~ + 1.

7. R ep l ace R b y R - 1. I f R = 0 s top . O t h e r w i s e go to s t ep 8.

8. C a r r y o u t s t e p s (a) and (b) below a n d t h e n go to s t ep 9.
(a) F i n d t he se t JR = {j E J I ei = R}.
(b) F o r each.] E J R le t i = qj and rep lace si by s l + t i + 1.

9. R ep l ace R by R - 1. I f R = 0 s top . O the rwi se go to s t ep 6.

This algorithm is a specialization of Algorithms 1 and 4 for graphs. Note that steps
0-4 constitute a "forward pass" through the tree, while steps 5-9 are a "backward
pass." The reader should keep in mind that all the nodes (rows or columns) at the
same distance from the root node (row 1) will be either all rows or all columns. For

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

722 V. SRINIVASAN AND G. L. THOMPSON

this reason we label just rows in steps 4 and 8 and just columns in steps 2 and 6.
Examination of the example in the next section will help in understanding the
algorithm.

At the conclusion of this algorithm we will have determined dual variables xi and
yj satisfying (13). The transportat ion method proceeds by checking to see if (12) is
satisfied. I f this inequality is false for at least one cell, then one such cell is selected
to enter the basis. The problem now is to determine the cycle which the new cell
creates when added to basis B.

Let (u, v) be the cell chosen to enter the basis B which is the set of edges in the
tree T = (I [J J , B). Then we can find the cycle in the graph T* = (I (J J , B U
{ (u, v) }) by Algorithm 7 below, which is a specialization of Algorithm 3.

ALGORITHM 7. F o r f ind ing t he u n i q u e p a t h f rom row u to c o l u m n v in T and t he u n i q u e cycle
in the g r a p h T*.

0. L e t S = du ; R = e~ . If S > R, se t VR = V a n d go to s t ep 1; o the rw i se se t u s = u a n d go
to s t ep 2.

1. F i n d t he u n i q u e b a c k w a r d p a t h f r o m u,

U ~ U S ~ U S - - I ~ U S - 2 ~ " ' ' ~ U R

where u s _ l = P u s , u s _ o = V ~ s _ l , etc. (cf. A l g o r i t h m 2 w i t h obv ious n o t a t i o n a l changes) .
L e t j = R a n d go to s t ep 3.

2. F i n d t he u n i q u e b a c k w a r d p a t h f r o m v,

p ~ V R , V R - - 1 ~ V R - 2 ~ " ' " ~ V S

where V R -~ = q~R , V R - 2 = P ~ R - - ~ , etc. , (cf. A l g o r i t h m 2 w i t h obv ious n o t a t i o n a l changes) .
I f j = S g o to s t ep 5.

3. I f u j = v , go to s t ep 7. O t h e r w i s e go to s t ep 4.

4. F i n d u j _ ~ = q ~ j and v]_~ = q~y . Rep l ace j by j - 1.

5. I f uy = v i go to s t ep 7. O t h e r w i s e go to s t ep 6.

6. F i n d u j _ ~ = p ~ j a n d vi_~ = p ~ . Rep l ace j b y j - 1 and go to s t ep 3.

7. S top . T h e u n i q u e p a t h b e t w e e n u and v in T is

and t he u n i q u e cycle in T* d e t e r m i n e d w h e n (u, v) is a d d e d to B is

(u s , u s - i) , (u s ~ , u s - s) , (u s - ~ , ~ , - ~) , " " , (VR- i , VR)

t o g e t h e r w i t h the cell (u s , V R) = (u , v) .

Once the cycle has been found, a cell (u~, v~) is selected to leave the set B U
{ (u, v)}. As in Section 3, the set B - { (ul, vi)} consists of two subsets V1 and V2
(see Figures 1 (a) and 1 (b) .) In the case of the t ransportat ion problem, it can be
shown that if u and ui are row indices and v and v~ are column indices, then u and
Ul will either both belong to V~ or both belong to V2, with v and v~ both belonging to
the opposite set. This follows from the facts that : (a) every cycle has an even num-
ber of elements; (b) the cell coming in is a "ge t te r" cell while the cell going out is a
"giver" cell; (c) the cells on the cycle are alternately marked "givers" and "get ters"
[10]. If e~.~ > d ~ , then u and u~ are in Vi with v and Yl in V2. In this case formulas
(3) and (4) become a = t,,~ + 1 and $ = m + n - a. However, if e~ < d~l then u
and Ux are in V2 with v and v~ in V~. For this case a = s~ 1 + 1 and 3 = m + n - a.

Journel of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

Accelerated Algorithms for Labeling and Relabeling of Trees 723

In the algorithms that follow we assume the former case. The extensions to the latter
case should be obvious. We can thus relabel whichever subtree is smaller, and we
have the following variants of Algorithm 5 (I) and 5 (II).

ALGORITHM 8(I), For re label ing V2 hold ing the labels in V, fixed. This co r responds to F igure
1 (a). We assume u~ and u are V~ . The root does no t change.

0. F ind the un ique p a t h f rom u~ to u us ing Algor i thm 7; s u b t r a c t a f rom the successor f unc t i on
values of u~ and i ts p redecessors t h a t are no t p redecessors of u; add a to the successor
func t ion values of u and i ts p redecessors t h a t are no t p redecessors of u~ . Le t e~ = d~
1, q~ = u , y~ = cu, , - - x ~ , , J ' = J * = {v}, I ' = ~ .

1. App ly Algor i thm 6, s t eps 1-4, s t a r t i ng wi th s t ep 3, b u t rep lac ing I and J by I n v~ and
J n v2 in the def in i t ion of D (i) and E (j) . At the conclusion of the a lgor i thm the predecessor
and d i s t ance func t ions will be u p d a t e d on the en t i re t ree.

2. A p p l y Algor i thm 6, s t eps 5-9, bu t rep lac ing I and J by I n v2 and J n v2 in s t eps 5, 6,
and 8, and s t opp ing in s t ep 7 when R = e~ . At the conclus ion of the a lgor i thm the successor
func t ion will be u p d a t e d on the en t i re t ree.

ALGORITHM 8(I I) . For re label ing V1 ho ld ing the labels in V~ fixed, co r respond ing to F igure
l (b) . We assume u and u, are in V, . The new root is v, .

0. F ind the un ique b a c k w a r d p a t h f rom v to vl us ing Algor i thm 7; add ~ to the successor
func t ion values of all nodes on th is pa th . Le t d~ = e~ + 1, p , = v, q,1 = ~ , x~ = c~, --
y , , I ' = I* = {u}, J ' = ~ .

1. App ly Algor i thm 6, s t eps 1--4, s t a r t i ng wi th s t ep 1, b u t rep lac ing I and J by l n v1 and
J n v1 in the def in i t ion of D (i) and E (j) . A t the conclus ion of the a lgor i thm the p redecessor
and d i s t ance func t ions will be u p d a t e d on the en t i re t ree.

2. App ly Algor i thm 6, s t eps 5-9, b u t rep lac ing I and J by I n v , and J n V, in s t eps 5, 6,
and 8, and s topp ing in s t ep 7 when R = d~ . At the conc lu s ion of the a lgo r i t hm the successor
func t ion will be u p d a t e d on the en t i r e t ree .

6. A Transportation Problem Example

We consider the example given in [12] with the cost entry c24 changed from 6 to 1.
Figure 5 (a) shows the cost entries, the rim conditions (W stands for warehouses and
M for markets), and a basic feasible solution to this problem. A circle in the cell
(i, j) denotes that (i, j) is in basis B and the corresponding w~i is shown over the
circle. Figure 5 (d) shows the tree T corresponding to this basis. We apply Algorithm
6 to obtain the labels shown in Figures 5 (b), (c), and (d).

The basic solution of Figure 5 (a) is not dual feasible, since it violates the condition
(12) for (i, j) = (2, 4). The solution can be improved by bringing (2, 4) into the
basis. To do this, we apply Algorithm 7 and find the unique path between W2 and
M4 as (W2, M2, W3, M4). The application of Glover-Klingman algorithm [12]
would have resulted in the two backward paths { (W2, M3, W1)}, {M4, W3, M2,
W2, M3, W1}, and after eliminating the common backtracking part {(W2, M3,
W1)} it obtains the above result. The unique cycle created by the addition of (2, 4)
is { (2,2), (3,2), (3,4), (2,4)}. (See Figures 5 (a) and 6 (d).) Oi1 this cycle the "giver
cells" [10] are (2, 2) and (3, 4), so that the minimum giver cell (2, 2) should leave
the basis (w22 = 2 < w~4 = 14). When the cell (2, 2) is removed from the tree T,
we get the two subtrees Ti and T2 shown in Figure 6 (d). When (2, 4) is added to
these subgraphs, we obtain the tree T' = T -- { (2, 2)} Jr { (2, 4)}.

Corresponding to the two subtrees T1 and T2, a =] V2 1 = t~, Jr 1 = t2 Jr 1 = 3

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

724 V. SRINIVASAN AND G. L. THOMPSON

M1

W1 QiI

W2 7

W3 9

II

FIG. 5 (a) .

MI M2

ej I 3

q j I-

t . o
J

y j 1

Fro. 5(c).

M2 M3 M4 d i

: 20 W1 0

i0 W2 2

QiI 5 0 1 4 25 W3 4

13 17 14

T r a n s p o r t a t i o n tab l eau

M3 M4

1 5

2 1 3

2 4 0

5 3 5

Labe l s for m a r k e t s

,6,0)

Pi si x.
i

6 o

3 3 -2

2 1 -i

FIG. 5(b). Labels for warehouses

(i,I,4,3)

~_~ (2,3,3,-2)

~) (5,3,0,5)

FIG. 5(d) . Tree T corresponding to Fig . 5(a) . N o d e label = (d i s tance ,
predecessor , successor , dual var iable)

and ~ = m + n - a = 3 + 4 - 3 = 4. Thus relabeling V2 is easier and we apply
algorithm 8 (I) to obtain the labels of Figures 6 (b), (c), and (d). The new basis and
the corresponding wij are shown in Fig. 6 (a). The reader may verify that the labels
of Figures 6 (b) and 6 (c) will be obtained if Algorithm 6 is applied to the tree T' of
Figure 6 (d). The reader may also verify that (12) is satisfied by the basis of Figure
6 (a) so that this solution is, in fact, optimal.

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

Accelerated Algorithms for Labeling and Relabeling of Trees 725

M1

Wi Q11

W2 7

W3 9

I 11

M1

ej i

vj i

t. 0
J

yj 1

Fie. 6(e)

M2 M3 M4

6 Q9 5] 20 WI

3 @8 ~ i0 W2

~3 5 012 25 W3

13 17 14

FiG. 6(a)

M2 M3

5 1

3 1

0 4

3 3

M o d i f i e d tableau

M4

3

2

2

3

Modified market labels

FIG. 6(b)

di Pi si xi

o ¢ 6 o

2 3 3 -2

4 4 1 -i

Modified warehouse labels

(r---
I

\

(1,1,o,1)

,0)

(i,I,4,3)

T 1 u=u I

T 2

~,~ (2,3,3,-2)

~ 2~ (5,3,0,3)

X. f ~ (4,4,1,1)

X. f ~ (3,2,2,3)

FiG. 6(d) Tree G' c o r r e s p o n d i n g to F i g u r e 6 (a)

_ J

)

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

726 V. S R I N I V A S A N AND G. L. THOMPSON

REFERENCES

I. BARR, R. S., KLINGMAN, D., AND RAIKE, W.M. Computational simplifications through
topological structure in network and distribution models. Series in Appl. Math. for
Management, Pub. No. AMM-13, Grad. School of Business, U. of Texas, Austin, Texas,
1968.

2. BERGE, C. The Theory of Graphs and Its Applications. Wiley, New York, 1962.
3. CHARNES, A., AND COOPER, W.W. Management Models and Industrial Applications of

Linear Programming, Vols. I and II. Wiley, New York, 1961.
4. DANTZlG, G. B. Linear Programming and Extensions. Princeton U. Press, Princeton,

N. J., 1963.
5. DENNIS, J. B. A high-speed computer technique for the transportation problem. J.

ACM 5, 2 (Apr. 1958), 132-153.
6. DIJKSTRA, E .W. A note on two problems in connection with graphs. Numer. Math. i

(1959), 269-271.
7. EASTMAN, W. L . Linear programming with pattern constraints. Ph.D. DiNs., Harvard

U., Cambridge, Mass. 1958.
8. FORD, L. R., AND FULKERSON, D.R. Flows in Networks. Princeton U. Press, Princeton,

N. J., 1962.
9. FORTRAN Transportation Code, Contributed Program Library, 360D-15.2.010. IBM,

New York, 1968.
10. GAVER, D. P., AND THOMPSON, G. L. Mathematical Models--Programming and Prob-

ability. Brooks/Cole Pub. Co., Belmont, Calif. (to be published, 1973).
11. GLICKSMAN, S., JOHNSON, L., AND ESELSON, L. Coding the transportation problem.

Naval Res. Logist. Quart. 7 (1960), 169-183.
12. GLOVER, F., AND KLINGMAN, D. Locating stepping-stone paths in distribution problems

via the predecessor index method. Transportation Sci. 4 (1970), 220-225.
13. HAMMER, P .L . Time-minimizing transportation problems. Naval Res. Logist Quart. 16

(1969), 345-357.
14. KRUSKAL, J. On the shortest spanning subtree of a graph and the travelling salesman

problem. Proc. Amer. Math. Soc. 7 (1956), 48-50.
15. LOURiE, J. R. Topology and computation of the generalized transportation problem.

Management Sci. 11 (1964), 177-187.
16. MURTY, K.G. Solving the fixed charge problem by ranking the extremepoints. Operations

Res. 16 (1968), 268-279.
17. SBINIVASAN V., AND THOMPSON, G.L. An operator theory of parametric programming

for the transportation problem, I. Naval Res. Logist. Quart. 19 (to appear).
18. SRINIVASAN, V., AND THOMPSON, G.L. An operator theory of parametric programming

for the transportation problem, II. Naval Res. Logist. Quart. 19 (to appear).
19. SRINIVASAN, V., AND THOMPSON, G.L. Benefit-cost analysis of coding techniques for the

primal transportation algorithm. Management Sci. Res. Rep. No. 229, Grad. School of
Ind. Admin., Carnegie-Mellon U., Pittsburgh, Pa.; to appear in J. ACM.

RECEIVED FEBRUARY 1971; REVISED NOVEMBER 1971

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972

