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ABSTRACT. Adjacent extreme point problems involving a tree basis (e.g. the transportation
problem) require the determination of cycles which are created when edges not belonging to
the basis are added to the basis-tree. This paper offers an improvement over the predecessor-
index method for finding such cycles and involves the use of a distance function defined on
the nodes of the tree, in addition to the predecessor labels. It is shown that the relabeling
associated with a basis change can be minimized by defining yet another function called the
successor function. The algorithms for labeling and relabeling are then specialized for the
specific case of transportation problems.
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1.  Introduction

When solving distribution problems (also known as transportation or Hitcheock
problems) using so-called “primal” methods, a sizeable portion of the computa-
tional effort is involved in the determination of “cycles” or “stepping stone tours”
(3-5, 9} which are created when a nonbasic cell is added to an existing basis. Earlier
approaches for finding cycles used a tree search technique [5, 9]. A methodology,
which we may call the “crossing out routine” that systematically eliminates rows
and columns of the tableau not belonging to the cycle, was formulated independently
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by Lourie [15], Gaver and Thompson {10], and Barr, Klingman, and Raike [1].
Glover and Kingman [12] recently gave a “predecessor-index method”, which was
largely anticipated by Glicksman, Johnson, and Eselson [11], and which appears to
be more efficient than the previous approaches.

The present paper offers several extensions and improvements over the Glover—
Klingman procedure. First, we extend their method to an arbitrary graph, and then
show that by using a distance function in the graph as well as the predecessor func-
tion, the retracing portion of their cycle-finding routine can be eliminated. Second,
we show that by using still another function defined on the graph, the successor func-
tion, it is possible to determine which is the smaller of the two parts into which a
basis tree is split when an edge is removed. Third, we show that when the two parts
of the tree are connected by another edge it is possible to recalculate the predecessor,
distance, and successor functions for just one of the two parts. Clearly, computa-
tional effort is minimized by relabeling the smaller of the two parts. However, the
most valuable use of the successor function appears to be in the applications of the
duality operators for transportation problems that we have derived in a series of
papers [17, 18].

In [19] the authors discuss computational experience with the ideas presented here
for transportation problems. Specifically, we have made benefit-cost studies on some
of the ideas presented in this paper as well as some of the standard methods for solv-
ing transportation problems. We have developed a code that uses the best of these
methods. Actual computation times for solving a variety of kinds of problems are
reported in [19].

There are a variety of other problems for which the methods developed in this
paper should be useful. For instance, the shortest (or longest) spanning tree prob-
lem [6, 14] involves the checking for cycles. Adjacent extreme point problems—as
for instance, certain concave minimization problems—involving a tree basis could
also make use of it. Specific examples of the latter in the transportation framework
are the time transportation problem [13], the traveling salesman problem [7], and
the fixed charge transportation problem [16].

2. The Predecessor and Distance Functions for Trees

For a general reference on graph theory see Berge [2].

Let V bea set of n elements called vertices or nodes and let E be a set of (some of
the) pairs (u,») with u,v € V. A pair (u,v) is called an edge between u and v, or also
between v and u (no direction is implied). Then G = (V, E) is called a graph. A
path between » and v in G is a list

U= Wy, W, ", Wg =70 (1)

where (w,;_1, w;) € Eforj = 1, ---, R, are distinct edges. The length of the path
is R. A path is a cycle if w = vin (1). A graph is acyclic if it has no cycles. A graph
is connected if there is at least one path connecting each pair of distinct nodes. A
tree [2] is a connected acyclic graph. Equivalently, a graph is a tree if and only if
there is a unique path between each pair of distinct nodes [2]. A rooted tree is a tree
T = (V, E) together with a distance function d(v) for v € V, having the following
properties:

(a) For some node 7, d(r) is a minimum (= L, say); node r is called the root.
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(b) If risaroot, v any other node, and (1) is the unique path between r (= %)
and v then d(v) = L + R.

In a rooted tree there is a unique path from the root r to any other distinct node v;
hence there is a unique predecessor p (v) = u of v such that d(u) = d(¥) — 1 and
(u,v) € E. We define p (r) = & where r is the root and call p the predecessor func-
tion of the rooted tree.

Clearly any tree T = (V, E) having n vertices can be made into a rooted tree in n
different ways by choosing each vertex r € V in turn to be the root and using the
following algorithm for determining the distance and predecessor functions:

AvcoriTHM 1. For defining distance and predecessor functions on a tree 7 = (V, E) given
root r.
0. Set d(r) = L, where L is an integer, p(r) = &, M = {r}, S = .
1. For eachu € M:
(a) Find the set D(u) = {v | (v, u) € E,v € V — §}.
(b) For eachv € D(u) let d(v) = d(u) + 1 and p(v) = u.
2. Replace Sby 8 U M; replace M by U uen D(u).
3. If M = & stop. Otherwise go to step 1.

In thinking of this algorithm it helps to interpret the set M as being the subset of
vertices just “labeled”” and the set S as the vertices “labeled and scanned” (see Ford
and Fulkerson [8]).

We assert that after completing Algorithm 1, all the nodes would have been
labeled. For assume the contrary, that some node, say v, was not labeled. Consider
the path in expression (1) from 7 to v. Clearly, if » = wg was not labeled then
wz_1 was not labeled either, since otherwise we would have labeled » in step 1 of the
algorithm. By repeating this argument we can show that the root r was not labeled,
a contradiction, since we labeled it in step 0 above,

No node » will be labeled more than once, since that would imply G contains a
cycele (s) formed from the two (or more) sequences of labelings that led to .

A rooted tree may be thought of as a directed graph, i.e. a graph with directed
edges called arcs with the direction of each edge being from the vertex of lower dis-
tance to the vertex of higher distance. Given any rooted tree with root r, thereisa
unique backward path between any other node v and r of length B = d{v) — d(r),
which can be found by means of the following algorithm:

AvgoriTeM 2. For finding the backward path between v # r and the root 7 in a rooted tree.
0. LetR = d@) — d(r),j =R, vg = v.

1. Ifj—1>0,replacejbyj— 1and go to step 2; otherwise go to step 3.

2. Find v; = p(v;41). Go to step 1.
3

Let v = r and stop. The backward path is v = vp , vp_1, -+, 00 = 7.

To justify this algorithm we merely use propertv (b) of the distance function and
the definition of the predecessor function in Algorithm 1.

If v is some node on the backward path between » and the root r, we will call the
set {v = vp,vr_1, - - -, »} the backward path between v and v, . Clearly this is a sub-
set of the backward path between v and r.

As mentioned above, there is a unique path between each pair of distinet vertices
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in a tree. Algorithm 2 solves the problem of finding this path when one of the vertices
is the root. If w and v are two distinct vertices in 7 = (V, E), then one way of find-
ing the unique path between u and v is to make one of them, say u, the root, apply
Algorithm 1 to find the resulting distance and predecessor functions, and then apply
Algorithm 2 to find the backward path from » to u. However, if there already are
distance and predecessor functions defined with root r (different from both « and »)
on the tree, the following algorithm will efficiently find the path between u and v.

AvgoriTeM 3. For finding the unique path between vertices v and v in a tree T = (V, E)

with root r.

0. Ifd(w) =d@) =R,setug =u, vpg=v, j = R, R’ = R, and go to step 2. Otherwise rename
the points u and v, if necessary, so that B’ = d(u) > d (») = R, and go to step 1.

1. Use Algorithm 2 to find the unique backward path from u to the unique element uz on
the backward path from u to r such that d(uz) = d(¥) = R. Set vg = v, j = R and go to
step 2.

If v; = u; go to step 5. Otherwise go to step 3.
Find w;o1 = p(uy) and vj_; = p(vy).
Replace j by j — 1 and go to step 2.

;oo wow

Stop. The unique path from u to v is
U = UR , ", UR,y 0y Ujpr, Uj = V5, Vjyr, -, Up = V. (2)

The intuitive justification of this procedure is the following: There is a unique back-
ward path from u to r and another from v to r; these two paths will certainly inter-
sect at , but perhaps also at nodes having positive distance. However, in the back-
ward paths from u to r, w; can equal v; only if these two are at the same distance
from r. Hence step 1 traces back the first part of the backward path from u to That
element ux which is at the same distance from r as v is. Then in step 2 we test to see
whether the two elements on the backward paths from ug and » to the root are equal,
stopping as soon as equality is obtained.

The above algorithm typically requires fewer steps than the Glover-Klingman ap-
proach which required a complete backtracking of at least one of the paths back to
the root r. In [19] we present some computational results which indicate that al-
though each step of Algorithm 3 takes slightly longer than a step of the Glover—
Klingman approach, the savings in steps afforded by Algorithm 3 pay off by reducing
overall computation time.

3. The Successor Function and Relabeling

There are a number of problems that use adjacent extreme point methods (see Sec-
tion 1), including the distribution problem to be discussed in Section 5, in which a
tree I' = (V, ) is first constructed on the nodes in a set V. Then an edge (u,v) ¢ E
is added to the tree. Let E* = E U { (u, v)}. It is easy to see that this procedure
creates a unique cycle in the graph (V, E*) consisting of the unique path in T from
u tov (found by applying Algorithm 3) together with the edge (u, v). Once the
cycle has been determined, some edge (u;, v:) on the cycle is selected (using some
appropriate criterion) to be removed from E* so that the graph 7" = (V, E* —
{ (w1, v1)} ) becomes a tree again. The problem now is how to relabel the new tree (i.e.
how to recompute the functions p and d preserving as much of the old labeling as
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possible, so that the new tree becomes a rooted tree (possibly with a different root.)
We shall develop an efficient algorithm for doing this.

Consider the original tree T = (V, E) with root r. If we remove the directed edge
(ur, 1) (where d(») = d(w1) + 1) from E, then the tree splits into two subtrees
T, and T and the set of nodes V splits into two subsets V; and V, with w; and the
root node r in V; and »; in V, (see Figures 1(a) and 1(b)). Since the addition of
(u, v) creates a tree, u and v lie on different subtrees. Between these two nodes, we
define » to be that node whose backward path (in the original tree) to the root con-
tains both v; and u; . In labeling the new tree we can preserve the labels in V; and
change those in V5 or vice versa. In order to do this using minimum effort we should
select the set with the fewest vertices.

In order to determine which subset has the fewest vertices, we define the successor
function on a rooted tree T = (V, E) as follows: for each v € V let s(v) be the num-
ber of successors of v in T, where u is a successor of v if d{u) > d(v) and v lies on the
unique path from « to the root r. The next algorithm determines the successor fune-
tion.

AvrcoriTaM 4. For finding the successor function in a rooted tree T = (V, E) with root r.

0. Lets(v) = 0forallv € V. Let R be the maximum distance that any node » € V is from the
root r.

1. Let M = {v|d(@®) = R,v € V}.

2. If M = {r} stop. Otherwise go to step 3.

3. Foreachwv € M find u = p(v) and replace s(u) by s(u) + s(@) + 1.
4. Let R = R — 1. Go to step 1.

Notice that this algorithm begins by finding the values of s for the predecessors of
nodes most distant from the root 7, then labeling the predecessors of the nodes at
one less distance, ete. On the last step s(r) is calculated which must be n — 1, since
all nodes except r are successors of r, Obviously the distance and predecessor func-

Subtree T Subtree T

2

Fic. 1(a). Casel: |V, |=8>a=|V,]|

Subtree T New root Subtree Tl

Fic. 1(b). CaseIl: |V | =8<ea=|V;]
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tions can be determined in one forward pass through the tree using Algorithm 1, and
the successor function can then be determined in a backward pass using Algorithm 4.

Let us return to the two subsets Vi and V, which obtain when the edge (uy, v1)
is removed from the tree 7 = (V, E'). We denote by | X | the number of elements in
set X. Define

i

8(1)1)+1=!V2, (3)
B=n—a=|V| “)

There are two cases:

CaseI.8 > . Here| V1| > | V.| so that we want to retain the root » and relabel
Va. As shown in Figure 1(a), this means we must subtract « from the successor
function along the backward path from u; to the root r, and add « along the backward
path from u to r. As shown in the figure, we need not necessarily go back all the way
to r if these two paths join before r (cf. Algorithm 3).

Case II. 8 < a. Here| V| < |V;| so that we want to make v; the new root of
the tree, and relabel V. As shown in Figure 1(b) this requires that we add 3 to the
successor function along the backward path from v to v;.

From the above analysis we can now state the algorithms for relabeling either V;
orVs,.

AvcoriTeM 5(I). For relabeling V holding the labels in V, fixed. This is Case I above; see
Figure 1(a). The root will remain node r.

0. Find the unique path from u; to u using Algorithm 3; subtract « from the successor function
values of u; and its predecessors that are not predecessors of u; add a to the successor
function values of u and its predecessors that are not predecessors of u;, . Let d(») = d(u)
+1,p0) =u, M ={v},and § = &.

1. Apply Algorithm 1, steps 1-3, but replacing V by V: in the definition of D(u). At the con-
clusion of the algorithm the functions d and p will be updated on the entire tree.

2. Apply Algorithm 4, but replacing V by ¥V, in steps 0 and 1, and replacing {r} by {v} in
step 2. At the conclusion of the algorithm the function s will be updated on the entire tree.

AvcoritaM 5(I1). For relabeling ¥, holding the labels in V, fixed. This is Case II above; see

Figure 1(b). The new root will be v; .

0. Find the unique backward path from » to v, using Algorithm 3 above; add 8 to the successor
function values of all nodes on this path. Let d(u) = d(@@) + 1, pu) = v, p(v)) = F, M =
{u},and 8 = &.

1. Apply Algorithm 1, steps 1-3, but replacing ¥V by V, in the definition of D(u). At the con-
clusion of the algorithm the functions d and p will be updated on the entire tree.

2. Apply Algorithm 4, but replacing V by V; in steps 0 and 1, and replacing {r} by {u} in
step 2. At the conclusion of the algorithm the function s will be updated on the entire tree.

4. An Example

Figure 2 corresponds to a tree T with a set of 10 nodes V = {1,2, 3, - - -, 10} and the
set of edges £ = {(1,4),(2,5),(3,5),(4,5),(4,8),(5,6),(6,7),(6,9),(7,10)}. It may be
verified that 7T is a tree, i.e. it is connected and has no cycles.

We make this tree a rooted tree by arbitrarily choosing a root (say, node 6) and
assigning an arbitrary value for its distance function (say, L = 10). On applying
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(13,4,0) (12,5,0) (12,5,0)

©

(11,6,5)

S

(12,5,2) QR

(10,49,9) 7 (11,6,1)

o @

(13,4,0) (11,6,0) (12,7,0)
F1g. 2. Initial tree 7 and its labels. Node label = (distance, predecessor, successor)

Algorithm 1 first and then Algorithm 4, we obtain the distance, predecessor, and
successor labels of Figure 2.

To find the backward path from node 1 to the root node 6 we apply Algorithm 2.
The reader may verify that path {1, 4, 5, 6} is the result.

We now use Algorithm 3 to find the unique path between nodes 1 and 2 to be
{1, 4, 5, 2}, i.c. the set of edges { (1, 4), (4, 5), (5, 2)} in that order. This path,
together with the edge (1, 2), constitutes the cycle formed when (1, 2) is added to T'.
If we drop theedge (4, 5) from T, it splits into the two subtrees (see Figure 3)
with node w; = 5 and the root node r = 6 in T, and the node v»; = 4 in T,. Adding
theedge (1, 2) withv = 1lin T, and u = 2in T creates the tree T’ of Figure 3.

Corresponding to the subtrees Ty and Ty, ‘ V2| =a=sU)+1=s@)+1=3
and [ Vll = f =n — a = 7. To obtain the labels for 7" with minimum effort, we
preserve the labels in 7 and relabel T, . This corresponds to Case I (Figure 1(a))
and on applying Algorithm 5(I) we obtain the labels of Figure 3. The reader may
verify that direct application of Algorithms 1 and 4 to the tree 7" (with root r
= 6 and L = 10) would have yielded exactly the same labels.

Figure 4 is an instance of Case II (Figure 1(b)) where the subtree T; gets re-
labeled. Here the tree T” is obtained by removing edge (5, 6) from T and adding
(5,7).| V2| =a=s@)+1=s()+1=6and|Vi|] =8 =n— a=4 Thus
relabeling 7', is easier and the application of Algorithm 5(II) results in the labels of
Figure 4. Node 5 becomes the new root.
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(13,2,2) 4 | (12,5,3) (12,5,0) w
I v
1
[

Vi
(14,1,1) (4 —-—r —————————— (11,6,5)

[ T2 [

@ (11,6,1) |

(11,6,0)

(15,4,0) @ ° (12,7,0)
]

—___J\__ U

Fic. 3. Relabeled tree 7’ after adding edge (1, 2) and removing (4, 5) from the tree 7
of Figure 2

5. Application to Distribution Problems

We now apply the preceding theory to the specific case of the transportation prob-
lem. This problem may be stated as:

Minimize Z CijWij (5)
g

subject to

> wy = a; for7 € I = {1,2, .-+, m}, the set of rows, 6)
ies

> wi; = b forj € J ={1,2, -+, n}, the set of columns, (7)
el

wy > 0 fori € ITandj € J. (8)

A basic solution to this problem consists of a basis set B of m 4+ n — 1 basis cells
which are pairs (7,7) with7 € I andj € J, and variables w,; satisfying (6), (7), and
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(13,4,0) (12,5,0) (12,5,0)

O

L 12.5.2) CJ‘\ NEW ROOT
- ,

/

—- — - N

/s
7
| 7 OLD

Iy ROOT u
6

(13,7,1) (12,5,3)

(13,4,0) @ (14,6,0) (13,7,0)
| L__

Fic. 4. Relabeled tree T” after adding edge (5, 7) and removing (5, 6)
from the tree T of Figure 3

(8) and also satisfying

wy; =0 if (,7) ¢ B. 9)
If the transportation problem is nondegenerate (see [10]) then it can be shown that
wy >0 if (2,5) € B. 10)

A degenerate problem can easily be replaced by an equivalent nondegenerate prob-
lem (see e.g. [10]).

The graph of the basic solution consists of the nodes V = I U J and the edges
E = B. It canbe shown that the graph T = (V, E) = (I U J, B) is a tree; see [3, 4,
10]. The graph T also has other properties. It has two classes of nodes I and J and
every path in the graph alternately makes use of one, then the other, kind of node.
This implies that if an edge is added to the graph 7', the resulting cycle will have an
even number of nodes. The so-called MODI or row-column sum method of trans-
portation problems [3, 4] involves starting with an initial basic solution; checking
to see if it is optimal; if not, adding an edge to the graph (i.e. adding a cell to B);
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finding the unique cycle determined in the graph; selecting an edge on the cycle to
be removed; etc. The choice of a cell to be added involves the solution to the dual
problem. The dual problem to (5)-(8) is given by:

Maximize ) aix; + > by, 11)
1l jeJ

subject to

i+ y: < ¢ij forallz € 1,7 € J, (12)

where the dual variables z; and y; are unrestricted. Because of condition (10) we
also have, using the complementary slackness theorem of linear programming, that

We next explain how to specialize the algorithms of Sections 2 and 3 to the trans-
portation problem. At the same time we will extend them to compute the dual
variables z; and y; from (13) during the same pass through the graph that we make
in computing the distance and predecessor functions. Given a row node ¢ or a column
node j we want to compute the distance d; or ¢;, the predecessor p; or ¢;, the dual
variable z; or y;, and the successor function s; or ¢;. The following algorithm finds
the initial values of each of these quantities.

ALgorrtaM 6. For computing initial values for d; , e;, pi, ¢, i , ¥j, 8i , and ¢; given basis
B. The initial root node in T is arbitrarily chosen to be row 1.
0. Setdy =i =0; ;=2 I'=0I*={1}; J' = . Go to step 1.
1. If I* = & go to step 5. Otherwise set J* = f and go to step 2.
2. For eachi € I'* do (a), (b), and (¢) below, then go to step 3.
(a) Find the set D) = {j € J — J'| (¢, §) € B}.
(b) Foreachj € D@)lete; =d;:+ 1, ¢; =12, y; = cij — Zi -
(c¢) Replace J' by J' {J D(¢) and replace J* by J* U D).
3. If J* = & go to step 5. Otherwise set I* = & and go to step 4.
4. Foreachj € J* carry out (a), (b), and (c) below and then go to step 1.
(a) Find theset E(j) = (i € I — I’ | (,7) € B}.
(b) Foreachi € E(j)letd; = ¢;+ 1,p; = j,and z; = ¢ij — yj -
(¢) Replace I’by I’ U E(j) and replace I* by I* U E(j).
5. Lets; =0foralli € I,and {; = Oforallj € J. Let R be the largest of all the d; (: € I)
and e; (j € J). If there exists an ¢ such that d; = R go to step 6. Otherwise go to step 8.
6. Carry out steps (a) and (b) below and then go to step 7.
(a) Find the set Ip = {¢ € I |d: = R}.
(b) For each: € Irletj = p; and replace ¢; by t; + s; + 1.

7. Replace R by R — 1. If R = 0 stop. Otherwise go to step 8.

8. Carry out steps (a) and (b) below and then go to step 9.
(a) Find theset Jr = {j € J | ¢j = R}.
(b) Foreach j € Jgleti = ¢; and replace s; by s; + ¢; + 1.

9. Replace R by R — 1. If R = 0 stop. Otherwise go to step 6.

This algorithm is a specialization of Algorithms 1 and 4 for graphs. Note that steps
0-4 constitute a “forward pass” through the tree, while steps 5-9 are a “backward
pass.” The reader should keep in mind that all the nodes (rows or columns) at the
same distance from the root node (row 1) will be either all rows or all columns. For

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972
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this reason we label just rows in steps 4 and 8 and just columns in steps 2 and 6.
Examination of the example in the next section will help in understanding the
algorithm.

At the conclusion of this algorithm we will have determined dual variables z; and
y; satisfying (13). The transportation method proceeds by checking to see if (12) is
satisfied. If this inequality is false for at least one cell, then one such cell is selected
to enter the basis. The problem now is to determine the cycle which the new cell
creates when added to basis B.

Let (u, v) be the cell chosen to enter the basis B which is the set of edges in the
tree T = (I UJ, B). Then we can find the cycle in the graph T* = { U J, B U
{ (u, v)}) by Algorithm 7 below, which is a specialization of Algorithm 3.

Avcorrtam 7. For finding the unique path from row u to column » in 7 and the unique cycle
in the graph T*.

0. LetS=d,;R=¢ .1f S > R,set vg = vand go to stép 1; otherwise set ug = u and go
to step 2. .

1. Find the unique backward path from wu,
U = uUs, Ug—1, Us-2, *** , Ur,

where us_1 = Pug, Us—2 = vug_; , ete. (cf. Algorithm 2 with obvious notational changes).
Let j = R and go to step 3.

2. Find the unique backward path from v,
Y = VR, VR-1,VR-2, "', Vs,

where vg_1 = Qup , Vg2 = Dor_, , etc., {cf. Algorithm 2 with obvious notational changes).
If j = 8§ go to step 5.

If w; = v, go to step 7. Otherwise go to step 4.

Find w;o1 = qu; and v;_; = g,; . Replace j by 7 — 1.

If u; = v; go to step 7. Otherwise go to step 6.

Find u;_1 = pu; and v;; = p,; . Replace j by j — 1 and go to step 3.

N e ook ®

Stop. The unique path between u and vin T is
US , Ugel, ¢ , Uj = Uj, Vjp1, *** , VR
and the unique cycle in T* determined when (u, v) is added to B is
(us , us_1), (us 2, usa1), (us—z, us-3), -+, Wr-1, vgr)

together with the cell (us , vg) = (u, v).

Once the cycle has been found, a cell (u:, v1) is selected to leave the set B U
{ (4, v)}. As in Section 3, the set B — { (w1, v1)} consists of two subsets V; and V,
(see Figures 1(a) and 1(b).) In the case of the transportation problem, it can be
shown that if u and u; are row indices and » and v, are column indices, then « and
wy will either both belong to V; or both belong to V,, with » and »; both belonging to
the opposite set. This follows from the facts that: (a) every cycle has an even num-
ber of elements; (b) the cell coming in is a “getter” cell while the cell going out is a
“giver” cell; (c) the cells on the cycle are alternately marked “givers” and “getters”
[10]. If €., > d.,, then u and u; are in V; with v and v, in V. In this case formulas
(3) and (4) become @ = ¢,, + 1and 8 = m + n — . However, if e,, < d., then u
and u; arein Vy, withv and v;in V. For thiscase o = s, + land 8 =m + n — o
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In the algorithms that follow we assume the former case. The extensions to the latter
case should be obvious. We can thus relabel whichever subtree is smaller, and we
have the following variants of Algorithm 5(I) and 5(1I).

ArcoriTeM 8(I). For relabeling Vs, holding the labels in V; fixed. This corresponds to Figure
1(a). We assume u; and u are Vi . The root does not change.

0. Find the unique path from u, to « using Algorithm 7; subtract « from the successor function
values of u, and its predecessors that are not predecessors of u; add « to the successor
function values of u and its predecessors that are not predecessors of u; . Let e, = dy +
ly gv = U, yv=cuv—xu,J’=J*= {U},I’=Q‘

1. Apply Algorithm 6, steps 1-4, starting with step 3, but replacing 7 and J by I N V; and
J N Vyinthe definition of D(i) and E (7). At the conclusion of the algorithm the predecessor
and distance functions will be updated on the entire tree.

2. Apply Algorithm 6, steps 5-9, but replacing I and J by I N Vi and J N V,in steps 5, 6,
and 8, and stopping in step 7 when R = ¢, . At the conclusion of the algorithm the successor
function will be updated on the entire tree.

AvrcoriTam 8(II). For relabeling V, holding the labels in V, fixed, corresponding to Figure
1(b). We assume % and u; are in V; . The new root is v, .

0. Find the unique backward path from » to »; using Algorithm 7; add 8 to the successor
function values of all nodes on this path. Let dy = e, + 1, pu = v, @5y = &, Tu = Cu» —
Yoo I' = I* = {u}, J' = &.

1. Apply Algorithm 6, steps 14, starting with step 1, but replacing 7 and J by I N1 V, and
J N V,in the definition of D(Z) and E(j). At the conclusion of the algorithm the predecessor
and distance functions will be updated on the entire tree.

2. Apply Algorithm 6, steps 5-9, but replacing 7 and J by I N V; and J N V,insteps5,6,
and 8, and stopping in step 7 when R = d, . At the conclusion of the algorithm the successor
function will be updated on the entire tree.

6. A Transportation Problem Example

We consider the example given in [12] with the cost entry c. changed from 6 to 1.
Figure 5 (a) shows the cost entries, the rim conditions (W stands for warehouses and
M for markets), and a basic feasible solution to this problem. A circle in the cell
(4, 7) denotes that (7, 7) is in basis B and the corresponding w;; is shown over the
circle. Figure 5(d ) shows the tree T corresponding to this basis. We apply Algorithm
6 to obtain the labels shown in Figures 5(b), (c), and (d).

The basic solution of Figure 5 (a) is not dual feasible, since it violates the condition
(12) for (z,7) = (2, 4). The solution can be improved by bringing (2, 4) into the
basis. To do this, we apply Algorithm 7 and find the unique path between W2 and
M4 as (W2, M2, W3, M4). The application of Glover-Klingman algorithm [12]
would have resulted in the two backward paths { (W2, M3, W1)i, {M4, W3, M2,
W2, M3, W1}, and after eliminating the common backtracking part { (W2, M3,
W1)} it obtains the above result. The unique cycle created by the addition of (2, 4)
is {(2,2),(3,2),(3,4),(2,4)}. (See Figures 5(a)and 6(d).) On this cycle the “giver
cells” [10] are (2, 2) and (3, 4), so that the minimum giver cell (2, 2) should leave
the basis (we = 2 < wy = 14). When thecell (2, 2) is removed from the tree T,
we get the two subtrees 71 and T, shown in Figure 6 (d). When (2, 4) is added to
these subgraphs, we obtain the tree " = T — {(2, 2)} + { (2, 4)}.

Corresponding to the two subtrees Tiand Ty, o = | Vo| =t,, + 1 =t + 1 =3
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M1 M2 M3 M4 d;  pyosp X
Wl 20 Wl 0 ¢ 6 0
W2 10 W2 2 3 3 -2
W3 25 w3 4 2 1 -1
Fie. 5(a). Transportation tableau Fic. 5(b). Labels for warehouses
M1 M2 M3 M4
e, 1 3 1 5
j
. 1 2 1 3
qJ
t. 0 2 4 0
b
. 1 5 3 5
yJ

Fia. 5(c). Labels for markets

(0,9,6,0)

(1,1,0,1) (1,1,4,3)
w2> (2,3,3,-2)

QZD (3,2,2,5)

Qz) (4,2,1,-1)

M4 (5,3,0,5)

Fic. 5(d). Tree T corresponding to Fig. 5(a). Node label = (distance,
predecessor, successor, dual variable)

andB3=m+n— a =3+ 4 — 3 = 4, Thus relabeling V', is easier and we apply
algorithm 8 (I) to obtain the labels of Figures 6(b), (¢), and (d). The new basis and
the corresponding w.; are shown in Fig. 6 (a). The reader may verify that the labels
of Figures 6(b) and 6 (¢) will be obtained if Algorithm 6 is applied to the tree T” of
Figure 6 (d). The reader may also verify that (12) is satisfied by the basis of Figure
6 (a) so that this solution is, in fact, optimal.
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M1 M2 M4 d, P. s, X,

M3
Wl @11 6 @9 5 20 Wl 0 i) 6 0
w2 | 7 3 @8 @2 10 wl 2 3 3 -2
W3 9 @3 5 @12 25 w3 4 4 1 -1
14

11 13 17
Fic. 6{(a) Modified tableau Fic. 6(b) Modified warehouse labels
ML M2 M3 M4
e, 1 5 1 3
]
v, 1 3 1 2
]
t, 0 0 4 2
J
R 1
yJ 3 3 3

Fic. 6(c) Modified market labels

T

| (1,1,0,1)

j—
-

. ",

Fic. 6(d) Tree G’ corresponding to Figure 6(a)
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