
A Minimum Variance Sampling Technique for 

Simulation Models 

A. J. BAYES 

IBM Systems Development Institute, Canberra, Australia 

ABSTRACT. In a normal simulation run, the states of the model are sampled in proportion to 
their natural frequency of occurrence. For a given sampling effort, this does not in general 
estimate a given statistic of the model with maximum precision. A sampling theory of Markov 
chains is developed which allows some statistics of the Markov state frequencies to be esti- 
mated with minimum variance for a given sampling effort. A technique is presented to allow 
the sampling frequency of the states of the simulation to be independent of their natural fre- 
quency. By representing a simulation model as a Markov chain, the theory is applied to esti- 
mate some statistics of the simulation model with minimum variance; for instance, the fre- 
quency of overload of a teleprocessing computer system. A numerical case is presented in which 
the sampling effort is reduced by a factor of sixty compared to a normal simulation run. 
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1. A Sampling Problem Jbr a Markov Chain 

1.1. THE PROBLEM. Consider  a finite 5 Ia rkov  chain wi th  n states labeled 1, 
2, • • • , n. Let  the mat r ix  P of t r ans i t ion  probabil i t ies  be defined b y  

Pi,i+l = p~, 1 _< i < n, 

Pi+l. i  = 1 - p~+l, 1 < i < n, 

P~.¢ = 0, otherwise, 

where pl = 1, p ,  = 0, 0 < p~ < 1, 1 < i < n. Thus  t rans i t ion  probabil i t ies  are 
zero except be tween ad jacen t  states. Let  t~ be the in terva l  spent  in s ta te  i. The 
expectat ion E ( l i )  and  the var iance  var  (ti) are known.  

We divide the states into two subsets b y  choosing an  integer  s where 1 < s < n. 
The  states 1, 2, . . .  , s - 1 are said to be in the lower set and the states s, s + 1 ,  
• . .  , n in the upper  set. Let  k be the propor t ion  of t ime spent  in the upper  set in 

the s teady-s ta te  solution to the M a r k o v  chain. T h e n  k is a funct ion  of the values p~ 
and  E (tl ). 

I n  the no ta t ion  we represent  matr ices  by  uppercase letters, vectors by  boldface 
lowercase letters,  and  variables  by  lightface lowercase letters. We append  the sub- 
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~cript 1 or 2 to the left to denote  attributes of the upper and lower set, respectively. 
subscript to the right defines an at tr ibute of a state. For example, t is the vector 

i, ~, " ' " ,  g, , ~t is the vector 4 ,  ~+x, " " ", {~, and  2t is the v e c t o r S ,  & , - . . ,  g~-t . 
A sample of a state i is defined to be a sample of the random variable t~ and a 

~mple of the transition out of the state. Suppose that  state i is sampled me times. 
,et m be defined by  

Z m ,  = m. (1) 
i 

,et T~ be the estimate of E (t~) calculated as the mean of the m~ values, i5~ is the 
~timate of p~ calculated as (number of transitions to state i + 1) /ml .  ~ is the 
~timate of h calculated from the steady-state solution of the Markov chain using 
and p~. Then the problem to be solved is as follows: For given s and fixed m, 

hoose m~ satisfying (1) so that  var (~) is as small as possible. 
1.2. THE DURATION IN THE UPPER SET. Let l~, s < i < n, be the remaining 

uration in the upper set when state i is entered. Zi is an estimate of l~, calculated 
~om recurrence relations using [~ and iO~. In this subsection we calculate var (Z~), 
< i < n, or, in different notation, var (11), as a function of ~p, ~t, and ~ .  Since the 

pper set is always entered at state s, the expected duration in the upper set is 
~(l~). The variance of the estimate of the expected duration is var (7~). 

It is easily seen that  the l~ are connected by the following equations: 

l~ = t8 -~ p~l~+~ , i 
k l~ = t~ + p~l~+~ + (1 - p,)l~_~, s < i < n, ( ( 2 )  

1, = t ,  + l , _~ .  

¥e put the terms involving l~ to the left-hand side and rewrite eqs. (2) in matrix 
0rm as 

1/) ~1 = ~t, (3) 

~'here 1D is defined appropriately as a function of the p~. Equation (3) remains true 
~'hen the variables are replaced by their expectations. Thus we can write 

~olving (4), we obtain 

~DE (~l) = E (it). (4) 

E( l l )  = ( ,D)- iE( l t ) .  (5) 

We now consider the effect on E( l l )  of small changes in lp and ~t. The effect of 
mall changes in ~t is immediately obvious from (5). Suppose that  pi is changed by 
ipi, s < i < n. Let ~l' be the variables, corresponding to 11, associated with the 
lew p~. We can write the following equations which are similar to (2) : 

z~' = t, + (p, + ~p~)l'8+l, ) 

l~ t i +  (p~+  6 p i ) ~ + l +  ( 1 - p ~ -  ~p~)l~_~, s < i <  n, (6) 

l . '  = t .  + ln-1. 

We now take expectations of (2) and (6) and subtract each equation in (2) from 
.he corresponding equation in (6). We ignore second-order and higher terms in 6p~ 
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and (E (li') - E (li)) ,  since these are small. This yields 

~l. = l~+l~p~ -Jr p~l~+l, ) 

~l~ = ( /~+1 - -  l~-l)~p~ + p,~l~+l + ( 1  - -  p~)~l~-l, ( ( 7 )  

~ l~  = ~ l ~ - l .  

In  eqs. (7) ~li is written as a convenient shorthand for E (li') - E (li). 

s < i < n ,  

u~ = l~+l~p~ , 

u~ = (li+l -- /i-1)~Pl, s < i < n, 

u~ = 0 .  

Equations (7) can be solved for ~ ll in terms of ~ lp giving 

11 = (1D)-1 lU. 

Equations (7) have a very similar structure to (2). We define lU by  the equations 

i (s) 

(9) 
The samples of the it and the transitions are all independent, so the errors are 

independent. Equation (5) expresses E (11) linearly in E (it). Equation (9) expresses 
11 linearly in terms of ~ ip (in lu) .  Hence var  (ll) can be found by  adding the com- 

ponents of variance due to individual errors in 1[ and i~. The variance of the error in 
estimating the ith t e rm of E (it) is var  (tl)/rn~ and the variance of the error of es- 
t imation of p~ is p~ (1 - pl) /m~,  s < i < n. If  the m~ are large, then the estimation 
errors are small and the above equations can be applied. Thus we define ~v by  the 
equations 

v8 = (var (t,) + p~(1 -- p,)E(18+l) ) /ms ,  

v~ = (var (ti) + pi(1 -- pl)(E(l i+l)  - E( l~- l ) )2 ) /mi ,  s < i < n, (10) 

v~ = var  ( t~ ) /m , .  

Then from (5) and (9), 

var  (1[) = (1D) -1 iv. (11) 

This is the result we require. 
A similar result can be obtained for the lower set, using an almost identical 

argument.  
1.3. CHOICE OF m i  TO ~/[INIMIZE VAR ( ~ ) .  We first state a result which we 
require later. Let  x and y be independent random variables whose s.d. is small com- 
pared to E (x ) -t- E (y ). Then the variance of x~ (x + y)  is 

[E(y) 2 var (x) + E(x)* var  ( y ) ] / ( E ( x )  - t - E ( y ) )  4. (12) 

This is merely the expression 

ray ( ~ - ~ ) )  + var  (y) ( ~ y  x 

evaluated at x = E ( x ) ,  y = E ( y ) .  I t  follows tha t  for fixed E ( x )  and E ( y ) ,  the 
variance of x~ (x + y)  minimizes with 

E ( y )  2 var  (x) -b E (x  2) var  (y). (13) 

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972 



A Minimum Variance Sampling Technique for Simulation Models 737 

The value k can be calculated as (expected interval in the upper set)/(expected 
interval in the upper set plus expected interval in the lower set). That  is, 

= E(l~)/(E(ls) + E(l~_~)). (14) 

Here 1~_1 is the expected remaining interval in the lower set on entering state 
s - 1. Using expression (13), var (~) is minimized if 

E(l~) 2 var (i~_~) + E(l~_~) 2 var (i~) (15) 

is minimized. The values in this expression can be calculated from eqs. (5) and (11) 
and corresponding equations for the lower set. 

The expectations in (15) are independent of mi.  The variances involve v, and 
are linear in the reciprocals of m, .  We define fi to be the coefficient of 1/m, in (15). 
Then (15) can be rewritten as 

(f,/m,). (16) 
i 

It is easily shown, using Lagrange's undetermined multipliers, that  the minimum of 
(16) with respect to (1) occurs when 

where 

The minimum value of (16) is 

m, = k x/f , ,  (17) 

k = m / ( ~  v/f,). (18) 
i 

( ~  x/f,)2/m. (19) 
i 

Using (12) and (17) the minimum of var (>.) is 

( ~  ~/(J~))2/((E(Is) + E(l~_i))4m). (20) 
i 

Equations (17) and (18) give the answer to the problem posed at the start of this 
section. 

2. Application to a Problem in Simulation 

The purpose of a simulation model is to answer a question or questions about the 
modeled system. The most natural and frequently used method is to write a pro- 
gram representing the system to be modeled, to choose an initial state for the system, 
to run the program for a period of simulated time from the initial state, to print 
statistics and data from the simulation run, and to answer questions about the 
modeled system from this output. This method is almost always statistically wasteful 
because the states of the modeled system are sampled in proportion to their natural 
frequency. It  is highly unlikely that  this sampling frequency answers a question to a 
given precision with minimum sampling effort. We would expect the sampling fre- 
quency to vary with the question that  is being asked. 

We develop the discussion in terms of a teleprocessing computer system, although 
it also applies to many other simulation subjects. Suppose a teleprocessing system is 
simulated to find the frequency of overload, defined to occur when a queue of 
messages in core exceeds the space which has been allocated for it. Since overloading 
is rare, a long duration must be simulated to obtain an accurate estimate of its 
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frequency. Most of the time the queue is small, and very little information is being 
generated about  conditions of overload. We need a method to force the simulation 
to spend more time investigating the behavior of large queues. One way of doing this 
has been called importance sampling by  J. E. Flanagan. I ts  application to simula- 
tion is discussed by  Bayes [1] and may be illustrated by the following simple ex- 
ample: 

Suppose we wish to estimate the proportion of t ime that  the size q of a queue is 
equal to or greater than 15. Consider the following scheme: 

1. Set variables V1 and V2 to zero. Start  the simulation with some value of q less 
than 10. 

2. Run the simulation until q = 10. Add the elapsed time to V1. Store the vari- 
ables which define the state of the system. 

3. Simulate until q ~ 10. Add ¼ of the elapsed time to V1, and ~ of the time tha t  
q _> 15 to V2. 

4. Restore the state variables which were stored in step 2 and repeat step 3 to a 
total  of four times. Then go to step 2. 

5. At the end of the run, use V2/V1 as the estimate. 
In this example, q = 10 is an importance boundary and 4 is the importance 

factor. An immediate generalization is to construct a number  of importance bound- 
aries, each with its own importance factor. The boundaries must  not intersect. 
Statistics collected in a region influenced by  several boundaries are scaled down by 
the product of the associated importance factors. 

Importance  sampling appears similar to stratified sampling [2]. The difference is 
tha t  in stratified sampling the population is allocated to classes of known relative 
size. Weighted samples of the classes are used to estimate an at t r ibute of the parent 
population. In importance sampling the population is allocated to classes of unknown 
relative size. Weighted samples of the population are used to estimate the relative 
size of the classes. 

To apply the foregoing theory, we approximate the simulation by a Markov 
chain as follows: (1) State i occurs when i messages are held in core; (2) the transi- 
tion probabilities from state i to state i - 1 or i --[- 1 are the same as in the simula- 
tion model; (3) the mean and variance of the interval spent in state i, for each i, 
are the same as in the simulation model. 

I t  seems likely tha t  the statistical properties of a :~[arkov chain thus defined will 
be similar to the statistical properties of the simulation. In any case, we assume that  
opt imum sampling frequencies, calculated from the :~iarkov chain, will be near 
optimal for the simulation and tha t  the "na tura l"  sampling frequencies of the ~.Iar- 
kov chain are close to the natural  sampling frequencies of the simulation. 

To find the importance factors corresponding to the opt imum sampling fre- 
quencies, it is necessary to know the relative frequency with which the states are 
entered in the steady-state solutions of the Markov  chain. I t  is known [4] that,  if G 
is the transition matrix of an irreducible ergodic chain, then l i m , ~  G" exists and 
all the rows are equal. The sum of the elements in any row is unity. The elements in 
a row are the relative frequency of entering the corresponding state. 

The transition matrix P is not ergodic since it is periodic. To pass from a state 
back to itself requires an even number  of transitions. The matrix 

G ~ (P -t- I,~), (21) 

Journal of the Association for Computing Machinery, Vol. 19, No. 4, October 1972 



A Minimum Variance Sampling Technique for Simulation Models 739 

where I~ is the identity matrix, is ergodic and has the required property. Thus if 
we define g as the top row of l i m ~  G ", then g is the natural sampling frequency. 

The ratio of optinmm to natural sampling frequency is thus m~/g~. The importance 
boundaries and factors are chosen so that,  over i, the product of the importance fac- 
tors influencing state i is proportional to mi/g~. 

In a real life simulation the values required for estimating the importance factors 
are not known in advance. I t  might be argued that  this invalidates the method as a 
practical procedure. There are two possible solutions. One possibility is to estimate 
the factors either intuitively or from an analytic solution of a simplified model. If 
the estimates are badly chosen, X will have a somewhat larger variance than the 
minimum for a given sampling effort. However, the result will almost certainly be 
better than using no importance sampling. Another possibility is to perform the 
simulation twice and use the results of the first simulation to guide the choice of 
importance factors in the second sinmlation. This is similar to two-stage sampling 
as used in stratified sampling. 

3. Optimum Sampling for Mean Queue Length 
In this section we generalize the notation established so far by appending to the 

right of a variable a subscript (or another subscript) to define the lower boundary 
of the upper set. For instance, li.j, i > j, is the remaining time, on entering state 
i, in the upper set whose lower boundary is j. 

Consider the sampling variance of 

o~iXi, (22) 

where the o~ are arbitrary constants. From (12), (14), (15), and (16) we can write 

var (i=~ a~ , i )  = ~ (ai ~ [fj,i/(E(li,i) + E(li-l.~) )4mj]), 

= ~ m71 ( ~  [c~ifj.i/(E(li.i)-t- E(li-1,;))~]). (23) 
1 \ i= l  / 

Thus the sampling variance of (22) is a linear function of 1/m~ and can be minimized 
by a suitable choice of m~ by using the method described in Section 2. 

This result has an application to the teleprocessing simulation discussed earlier. 
For instance, if we set ai = 1, 1 < i < n, then (22) is the mean queue length. As 
another example, if ai = 2 . i  - 1, 1 < i < n, then (22) is the second moment of the 
queue length. Other values of c~ might be of interest in particular circumstances. 

4. A Numerical Example 
We consider a simple queue with a service utilization of ~ and with negative ex- 
ponential distributions for the service time and interarrival time. The maximum 
permitted size of the queue is 20, and any arrivals when the queue size is 20 are lost. 
We wish to estimate the proportion of the time that  the queue size is 16 or more. 

The model is represented accurately by a Markov chain with the following param- 
eters: 

Pl  ~ 1, 
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P2O = O, 

pi = 0.4, 1 < i < 20, 
E(tl) = v a r  ( t l )  = 2.5, 
E(t2o) = var (t2o) = 1.666667, 
E( t i )  = var (tl) = 1, 1 < i < 20, 
s = 16. 

Table I shows some statistics for the states in the Markov chain. Column (1) is 
the state number i. Column (2) is the "natura l"  sampling frequency g~. Column (3) 
is the optimum sampling frequency derived from eq. (18) and normalized by setting 
m = 1. Column (4) is the ratio of column (3) to column (2), scaled to set the first 
value to unity. This column is used to guide the choice of importance factors. Column 
(5) is a set of importance factors chosen by hand so that  the product of the factors 
up to state i, shown in column (6), is an approximation to column (4). 

The s.d.of the estimate of Y~, based on m = 1, is, for "natura l"  sampling, 0.161; 
for optimized sampling using column (3), 0.0193; using weights from column (6), 
0.020. The use of importance sampling has reduced the standard deviation of the 
estimate by a factor of about 8 or for fixed precision of the estimate, has reduced the 
sample size by a factor of about 60. Numerical studies show that ,  in general, the 
rarer the event being estimated, the more worthwhile is importance sampling. 

The peak in the optimized frequency occurs at the boundary between the upper 
and the lower set. This has been observed in many numerical examples and is 
intuitively reasonable. 

Although column (6) appears to be a poor approximation to column (4), the 
effect of the approximation on the precision of the estimate is negligible. 

The optimized frequencies in column (3) provide data for a crude sensitivity 

T A B L E  I. STATISTICS FOR NUMERICAL EXAMPLE 

(1) (Z) (3) (4) (5) (6) 
"Natural" Optimized Importance 

State number frequency frequency Col. 3 : Col. 2 factors Weights using (5) 

1 0.1760 0.0013 1 1 
2 0.2779 0.0046 2 2 2 
3 0.1852 0.0076 5 3 6 
4 0.1235 0.0109 12 2 12 
5 0.0823 0.0147 24 2 24 
6 0.0549 0.0191 46 2 48 
7 0.0366 0.0244 88 2 96 
8 0.0242 0.0306 165 96 
9 0.0163 0.0381 308 3 288 

10 0.0108 0.0472 572 2 576 
11 0.0072 0.0582 1058 2 1152 
12 0.0048 0.0716 1952 1152 
13 0.0032 0.0880 3598 3 3456 
14 0.0021 0.1080 6624 2 6912 
15 0.0014 0.1324 12185 6912 
16 0.0010 0.1286 17745 3 20736 
17 0.0006 0.0953 19719 20736 
18 0.0004 0.0660 20487 20736 
19 0.0003 0.0398 18540 20736 
20 0.0001 0.0136 15796 20736 
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analysis on the raw data for the Markov chain. Let r~ be the number of samples of 
ith state. The s.d. of the sampling estimates of the data for state i is of the order of 
r~ -t. The reduction in the s.d. due to one extra sample is the differential of this, tha t  
is r7 ~. If the states have been sampled optimally, it is a mat ter  of indifference which 
state is sampled next. Thus the relative importance of small errors of equal size in 
the data for state i and state j is of the order of (ri/r~) ~ . 

Sensitivity analyses are important  in sinmlation, since frequently a greater ac- 
curacy in the data can be obtained, although at a greater cost. The figures presented 
can be used to help minimize the cost of data collection for a given accuracy of 
simulated answer. Future work is planned in this area. 
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