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ABSTRACT. The efficiency of an information storage technique based on binary comparisons is 
analyzed. Generating functions are applied to finding the mean and variance of the number of com- 
parisons needed to retrieve one item from a store of n items. Surprisingly, the variance approaches 
7 -- ~ for large n. 
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Introduction 

We analyze the efficiency of an information storage technique for randomly acquired 
data which is tagged by some natural ly ordered set of labels. The array of stored data  
is enlarged as new items are entered, but  once stored no part  is ever rearranged. A binary 
search tree is an abstraction of this array. 

The storage structure can be visualized as a binary tree in which successive items are 
stored on limbs branching to the left or right according to whether their labels are smaller 
or greater in their linear order. Retrieval involves comparing the wanted label with 
certain of those which have been stored; the number  of these comparisons is a measure 
of the cost of retrieval. 

Windley [3] was the first to systematically s tudy the search trees considered in the 
present paper. He solved a recurrence relation for the average number  of comparisons 
required to retrieve one item from a store of n. This result was also obtained by Mar t in  
and Ness [2], and a parallel result for a slightly different class of search trees was found 
by Hibbard [1]. In  addition, Windley [3] discussed the variance of the number  of com- 
parisons. He found a recurrence relation from which he computed the variance for par- 
ticular values of n, and observed empirically tha t  the variance is small compared to the 
mean. 

In  this article we also calculate the mean number  of comparisons. We have, however, 
expressed our recurrence relation in terms of generating functions. Then, on solving a 
linear differential equation of first order we find the mean number of comparisons to be 
1.386 log2 n - 2.846 + R., where R.  < 1 for n > 5 and lim~_~ R~ = 0. 

The most favorable order of receipt of the data gives an array in which this average is 
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log2 n - 2 W R~', where the remainder R~' asymptotically varies between 0 and 0.1. 
Thus for many applications it may be uneconomical to rearrange the data once it has 
been stored. 

The computation of the variance of the averages is greatly facilitated by the use of 
generating functions. Surprisingly, this variance approaches a constant limit of 7 -- 

2 ~ r  = .420 - • • . Thus it is highly unlikely that  a randomly obtained data storage array 
is significantly different in efficiency from the average. 

1. Data Storage 

The data storage technique which we analyze presumes that  each item of information 
is tagged, and that  the tags have some natural linear order. For instance, if the data 
should be medical or other information about individuals, the tag could be the name 
and date of birth of the person involved. Names are naturally ordered lexicographically 
as in a telephone directory, with ties to be broken by date of birth. 

When an item is stored, say at address A, its tag l; is listed first, then two spaces 
s;, s2 for addresses, and then the rest of the information. Every new item is directed in 
sequence to a series of addresses before it is finally stored. If  the item was labeled/2 
and is directed to the address A, we examine the contents of s; or s2 according to whether 
12 < l; or l; < 12. If the space contains an address, the new item is directed to tha t  ad- 
dress. I f  the space is empty, the new item is stored at some address of opportunity, and 
this address is entered in the previously empty space. 

For example, suppose that  our data consists of a short biography of each of the U.S. 
presidents of the twentieth century to date, stored in the order in which they held office: 
McKinley Roosevelt, T. Taft  Wilson Harding Coolidge Hoover Roosevelt, F. 
Truman Eisenhower Kennedy Johnson Nixon. Suppose further tha t  the name of 
each president is used as the tag for his biography, comparison of names to be lexico- 
graphic. The first item stored would be the ordered quadruple consisting of the name 
McKinley, space s;, space s2, and the biography. At first empty, space sl eventually is 
occupied by the address of Harding's entry. Space s2 is taken by T. Roosevelt's entry. 
The finished configuration is represented as a rooted binary tree in Figure 1, with 
McKinley as the root. To search the tree for the biography of a particular president, the 
president's name is used in a series of comparisons as if it were the tag of a new piece of 
information, until his biography is located. The number of comparisons required before 
the biography is located is just its distance from the root. Note that  in Figure 1 the 
average distance from the root is 30/13. Evidently the least possible average distance 
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for any  tree corresponding to 13 i tems is 28/13, while the worst possible (for a l inear 
tree) is 78/13. 

']:he rooted b inary  tree associated with this  list of names depenc~s only on the na tura l  
(alphabet ic)  order of the  tags (names) and the order in which they  appear.  Similarly 
any  sequence al, . ' .  , a ,  of n different positive integers has associated with i t  a b inary  
tree which depends on the na tura l  order of the integers and the  order in which they  
appear,  say from left to right, in the sequence. For  example, the  sequence 10, 15, 16, 
20, 3, 1, 5, 13, 17, 2, 8, 7, 11 results in the tree of Figure 2. Since 10 is first in the  se- 
quence, i t  is a t  the  root; 15, appearing next, is greater than  10 and hence takes the  point  
adjacent  to 10 and to the r ight  of 10, etc. 

Note  tha t  many different sequences can result in the  same binary  tree. For  example, 
the  sequence 10, 15, 13, 3, 16, 5, 1, 11, 8, 20, 2, 7, 17 is also associated with the t ree of 
Figure 2. 

2. Mean Number of Comparisons 

Each sequence of n different items has as a measure of the cost of retrieval,  the average 
number  of comparisons required to find one item. Therefore we consider the  random 
va:dable which assigns to each of the  n! equiprobable sequences this  average, which 
can also be interpreted as the mean distance from the root of the points of the correspond- 
ing binary  tree. The next  theorem provides an exact formula for the  mean of the  dis- 
t r ibut ion under consideration, denoted d, /n!n.  

TttEOREM 1. The mean distance from the root of the n !n points in the binary trees de- 
termined by all n! sequences of n different positive integers is 

d~/n!n = 2(1 + 1/n)  ( I / k )  - 4. (1) 

This result  is simplified when expressed in terms of Euler 's  constant  ~ = . 5 7 7 . . . .  
By definition i t  is well known tha t  

( l / k )  = log n + "1 + O(1 /n ) .  (2) 
k--1 

The mean number of comparisons required to retrieve one item from a COLLOLLARY 1. 
store of n is 

d J n ! n  = 1.386 logs n - 2.846 + R~. (3) 

In  Corollary 1, 1.386 . . . .  2 log 2, 2.846 . . . .  2T - 4, and R ,  = O(1 /n ) .  
To prove Theorem 1 we can assume without  loss of generali ty tha t  our sequences in-I 

volve only the  numbers from 1 to n. Now we express d~, the to ta l  distance from the root  
of all n!n points, in terms of dk with k < n: 

d ,  = ~ ( ~ : ~ ) [ ( n  --  p ) !  dp-t + (p - 1)!d~_p + (p - 1 ) ! (n  --  p) ! (n  -- 1)]. (4) 

To see this, we first compute the distances in trees corresponding to sequences al, • • • , a~ 
with at = p, and then sum over p = 1, - . .  , n. For  a fixed sequence with al = p, let 

Fro. 2. A binary tree associated with a sequence of numbers 

r 
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A be the total distance in the tree on p -- 1 points associated with the subsequence of 
numbers less than p. Similarly let B be the corresponding distance contributed by the 
numbers greater than p. Then the sum of the distances in the entire tree is 

A + B +  ( n -  1). (5) 

The term (n - 1) accounts for the extra comparison with al made for as, • • • , am. Now 
the right-hand factor of (4) is the result of summing the expression (5) over all (p - 1) ! 
possible orderings of the subsequence of numbers less than p and independently over 
all (n - p) ! orderings of the numbers greater than p. The result of summing A over 
just the (p - 1) ! orderings is dp-1, while the sum of B over the (n - p) ! orderings is 

(p-0 is the number of ways that  the two subsequences can be d~_~. Finally, the factor .-1 
interlaced. 

A more compact form is obtained by dividing both sides of eq. (4) by (n - 1) ! and 
simplifying with the observation that  after summation, the contributions corresponding 
to A and B are equal: 

n - - I  

n d J n !  = n ( n  - 1) + 2 ~ (dk /k ! ) .  (6) 
k--O 

This equation suggests the use of the exponential generating function d(x )  defined by 

d(x )  = ~ d,~x'~/n!. (7) 
n ~ 2  

Note that  the formal derivative d ' (x )  has the left side of (6) as the coefficient of x ~-1. 
The right side can also be expressed in terms of generating functions. We use the simple 
observation 

1/ (1  - x) = ~ x ~, ( s )  
k--O 

from which it follows by successive differentiation that  

1 / ( l - - x )  2 = ~ k x  k-I (97 

and 

2 / (1  - x) 3 = ~ k(k - 1)x ~-'. (lO) 
k ~ 2  

Now note that  2 ~ dJlk!  is the coefficient of x ~-1 in 2 d ( x ) / ( 1  -- x )  while from 
(10) it follows that  n ( n  - 1) is the coefficient of x "-1 in 2x/(1 - x) 3. Thus we find that  
d(x )  is a solution of the differential equation 

y'  = 2y/(1 --  x )  + 2 x / ( 1  --  x )  a. (117 

'On transferring to the left side those terms involving y and multiplying by the inte- 
grating factor (1 - x) 2, we have 

(1 - -  x ) ~ y  ' - 2 y ( 1  - x )  = 2 x / ( 1  - x ) ,  ( 1 2 )  

o r  

( d / d x ) ( y ( 1  --  x )  2) = 2x/(1 -- x). (13) 

On integrating this equation, the result is 

d. ,{2 ,.'+'/( ,)I C} y(1 -- x) '  --- 2 f j [ x / ( 1  -- x)] dx = 2 = + + • (14)  

The constant term on the left side of (147 is 0, and hence the constant of integration 
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C is also 0. Next  we mult iply  both  sides of (14) by  1/(1  - x)2: 

) y -- [2/(1 --  x ) 2 ] ~  [xk+l/(k + 1)] = 2 kx k- [x~+l/(k + 1)] 
~- l  ( 1 5 )  

= 2 ~ x '~ [ ( n  - k + 1 ) / k l .  
n--2 k--2 

]it is easily verified tha t  this is the only power series about  the origin whose constant  
te rm and coefficient of x are zero and which is a solution of the  differential equation (11). 
Therefore i t  must  be also d(x). Hence we have the following explicit formula for d,/n!: 

d, /n! = 2 ~ [(n - k "k 1)/k].  (16) 
k--2 

On dividing this equation by  n, i ts r ight side can be manipula ted routinely into the  
form of eq. (1).  Note tha t  a consequence of (14) is t ha t  d(x) can also be expressed as 

d(x) = 2 ( -  x - log (1 - x ) ) / ( 1  - x) 2, (17) 

a fact t ha t  will be useful later.  
Now we shall compare the  mean distance over all sequences with the average distances 

in the highly balanced tree of order n = 2 m - 1 which has all of i ts points within a dis- 
tance of m - 1 to the root. Figure 3 displays such a tree with m -- 4. 

The sum s,  of distances from the root to all other points is 

s~ -- ~ k .2  k. (18) 
k ~ l  

On subtract ing 2s~ from s,, we find 

s,  = 2 ÷  ( m -  2)2 ~, (19) 

and therefore the average distance is 

s , /n  = log2 n --  2 + R , ' ,  (20) 

where l im,-~  R , '  = 0. 
For  intermediate  values of n between 2 ~ - 1 and 2 m+~, log2 n - 2 also underest imates 

only sl ightly (by  less t h a n .  1) the  average distance in a best  possible tree. On comparing 
this result with formula (3) of Corollary 1, we see tha t  the  mean for all sequences is 
only about  40 percent  higher than  tha t  of a perfect tree. 

Several methods have been suggested for rearranging the stored da ta  for the  purpose 
of reducing the number  of comparisons required to locate one i tem of information. On 
the basis of the information in this section we can formulate a criterion for deciding when 
such a rearrangement is uneconomical. Suppose f (n)  is the  number  of comparisons re- 
quired to rearrange n i tems so tha t  the  new arrangement has the  most favorable average 
search t ime of log2 n - 2. Then, on the  average, the number of comparisons required to 
iind t i tems i s f ( n )  + t(log2 n - 2). But  from Corollary I we know tha t  without  rearrang- 
ing the  data ,  this same average is t(1.4 loge n - 2.8). Evident ly  the  da ta  should not  be 

Fro .  3. T h e  b a l a n c e d  t ree  of  order  2 4 - 1 
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rearranged if the number t of items to be found satisfies the inequality: 

t < f ( n ) / ( . 4  log2 n - .8). (21) 

3. Variance of the Mean Number of Comparisons 

We continue to consider the random variable which assigns to each sequence the mean 
distance of the points from the root in its associated binary tree. To determine the 
variance of this distribution we require o',, the sum over all sequences al, • • • , a ,  of the 
square of the sum of the distances to the root of the points in the tree associated with 

a l ,  • • • ~ an.  
THEOREM 2. The variance of the means of all n! sequences of n different integers is 

n 

~r,/n!n 2 -- (d , /n !n)  2 = 7 -- 4(1 + 1 / n ) 2 ~  (1/k ~) 
k k l  

A- 13/n -- 2(n  + 1) /n  2 ~ ( l / k ) .  (22) 
b--I 

This expression for the variance can be simplified by using the fact that  

(1/k 2) = ~-2/6 + O 0 / n ) .  (23) 
k ~ l  

ConoLLAnY 2. The variance of the mean number of comparisons is 

(r,/ n !n 2 - ( dn/ n !n ) 2 = .4202637 . . .  + R," ,  (24) 

where .4202637 . . . .  7 - 2w2/3, I R~" I < ½ for all n, and R .  't ,~  ( - 2  log n ) / n .  
PROOF OF THE THeOReM. I t  is elementary that  the variance of a distribution is the 

mean of the squares minus the square of the mean. The mean of the tree means is the 
number d J n  in, determined in Theorem 1. The mean of the squares of these tree means 
is o 'Jn!n  2. 

To find the right-hand side of (22) we start  with a recurrence relation for o',~. As in 
the proof of Theorem 1, the contributions to (rn due to sequences a~, • . . ,  a ,  with ax = p 
are computed first, and the result is then summed over p = 1, • • • , n. For any sequence 
the total distance in the corresponding tree is given by (5), so the square of this distance 
i sA  ~ + B ~ + 2AB + 2(n - 1)A A- 2(n - 1)B A- (n  - 1) 2. This leads to the relation 

~r, = ~ (~--~) [(n - p)!ap_~ + (p - 1)!~r,_p A- 2d~_~d,_p 

-b 2(n  -- 1 ) (n  - p ) ! d v _ , +  2(n  - 1)(p - 1)! d~v  
"4- (n - 1)2(p - 1 ) ! (n  - p)!], (25) 

since the sum of A 2 over all (p - 1)! possible orderings of the first subsequence is av-1, 
the sum of A is just dr_i, and similarly for B 2 and B. The factor (~,-=~) is again the number 
of ways of interlacing the subsequence of numbers less than p with the others. 

Dividing both sides of (25) by (n  -- 1) ! and simplifying gives 

ncr,/n! = ~ [ ~ - l / ( p  - 1)! + a,_~/ (n  - p)! + 2dp_l d , _ J ( p  - 1)! (n  - p)!  

+ 2(n  - 1)(d~_~/(p - 1)! + d~_~/(n - p) ! )  + (n  -- 1)2]. (26) 

This again suggests the use of exponential generating functions, so let 

~(z) = ~ ~.x"/n!. (27) 
n ~ 2  

Now by multiplying both sides of (26) by x "-~ and summing over n -- 2, 3, . . .  we 
obtain 

tr'(x) = 2a (x ) / (1  -- x) + 2d(x) 2 4- 4x[d(x) / (1  -- x)y 4- (2x A- 4x2)/(1 - x)*. (28) 
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A more convenient form of (28) is found by substituting the closed form (17) for d(x) ,  
giving 

a' (x)  .-  2a ( x ) / ( 1  -- x) = (1 -- x)-412x -- 4x 2 
- - 8 x l o g ( 1  - - x )  + 8 l o g  2(1 -- x)]. (29) 

As before, this equation can be solved by multiplying by the integrating factor (1 - x) 2 
and integrating the right side by parts. The result is 

o'(x) = ( l - - x ) - 3 1 2 x T 4 x  ~ + 2 ( l + 3 x )  log ( l  - x) W 4(l + x) log ~(I  -- x)]. (30) 

To determine a, /n!  from this equation, we need the next two equations which are 
routinely derived: 

(1 -- x)-3(2x "-k 4x 2) -- ~ (3n 2 -- n)x  '~, (31) 
n ~ l  

2(1 - x) -3 log (1 -- x) 

= -- x"{(n  + 1)(n + 2) (1/D -- n(3n + 57/2}. (327 
n--1  

On squaring log (1 - x) we find 

k--1 ¢~ k--1 

log 2(1 -- x) = ~ x k ~ ( 1 / i ( k  -- i ) )  = ~ ( x 4 / k )  ~ ( 1 / i - k  1 ~ ( k - - i ) )  
k ~ 2  i - - I  k ~ 2  i ~ l  

oo 4--1 

= 2 ~ (x~/k) ~ (1/i) .  (33) 
4--2 i ~ l  

On multiplying this series by (1 -- x) -3 as given in (10), we have 
co n - -2  n - - m ~ l  

( 1 - - x ) - 3 1 o g 2 ( 1 - - x )  = ~ x n { ~ o ( m + l ) ( m +  2 ) / ( n - - m )  ~ ( 1 / i ) ~ .  (347 

On substitution in the right side of (34) with the identity 

('m--k 1)(rn + 2 ) / ( n - - m )  = (n -k  1)(n-Jr 2 ) / ( n - - m )  -- (n -k  a - b i n ) ,  (35) 

we Obtain 

(1 -- x) -slog s(1 -- x) = ~2x  n ( n +  1) (n-+  2) 4ffi2(1/k),-i ~ ( 1 / i )  
n ~ 2  n - - m - - I  n - - 2  n - -m- -1  

-- (n-t- 3) 2 2 (1/i)  -- ~ r n  2 (1/ i )~ .  (367 
t a r o  ) 

The next two identities are easily derived by changing the order of summation: 

~ (1/i)  = n (1 /k  - n (37) 
m--O i l l  

~ m  ~ (1/i)  = ( ; )  ( l /k )  --{- 3n(1 -- n) /4 .  (38) 

On substituting these values in eq. (36) above and simplifying, the result is 

(1 -- x) -3log 2(1 -- x) = ~ x "  ( n +  1 ) ( n +  2) k_2 (1/k),~_i (1/i)  

-t- (Tn ~ + 9n) /5  -- [(3n ~ -b 5n)/2] ~ (1/k)~ . (39) 
k ~ l  ) 

The three equations (31), (32), and (39) can now be used with (30) to determine 
the following formula for a,,/n!: 

a , /n]  -- 23n 2 + l a n  -- 2(n + 1)(8n -b 1) ~ ( l /k )  
k--1 

-b 8(n -+ 1) 2 ~ ( l /k)  E (1/i) .  (40) 
k - - 2  i - -1  
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Finally, we divide the right side of (40) by n 2, subtract  ( d J n ! n )  2, and substitute 
using the equation 

£ ( l / k )  £ (1 / i )  = 2  ~ ( l / k )  ~ (1 / i )  --~ ~ (1 /k ' ) ,  (41) 

to obtain formula (22) of Theorem 2. 

4. Variance of the Distance of a Random Point to the Root 

Let v, be the sum of the squares of the distances to the root of each of the n points in 
each of the rooted binary trees determined by  the n! sequences a~, - . -  , a, .  

THEOaEM 3. The variance of the distance from the root of the n!n points in the binary 
trees determined by all n! sequences al, • • • , a,  of n different integers is 

v J n ! n  -- (d . /n !n)  2 = 2(1 "1- 5In)  £ ( l / k )  
k ~ l  

± ): -t- 4 -- 4(1 "-b l / n )  (1 /k  s) -- 4 (1 /n  + 1 /n  2) ( l / k )  (42) 
k ~ l  

PaooF. Since the proof follows the same lines as the proof of Theorem 2, we shall 
confine it to a sketch of the main points. The analogue of (25) is the recurrence relation 

v. = £ (~--~) [(n -- p) !  vv_, --~ (p -- 1)! vn_v + 2(n -- p ) !  dp-i 
p ~ l  

+ 2(p -- 1 ) l d . _ v +  ( n - -  1 ) ( p - -  1 ) ! ( n - - p ) ! ] .  (43) 
This can be rewritten as 

nv~/n! = ~ [vp-1/(p - 1)! + v~_~/(n - p) !  

+ 2dv_~/(p - 1 ) 1 +  2d,_p/(n - p) !  + (n - 1)]. (44) 

In  terms of the exponential generating function d(x)  and 

= v~x I n . ,  (45) 
n~2 

eq. (44) takes the form 

v '(x)  = 2 v ( x ) / ( 1  -- x)  -b 4d (x ) / (1  - x) + 2x/(1 -- x) 3. (46) 

This differential equation is solved in the same fashion as (11) with the following 
result: 

v(x)  = {6x + 6 log  (1 - x) "-b 4 log  2 (1 - x)}/(1 - x) ~, (47) 

or what  is the same, 

v(z)  = --3d(x)  + 4 log s (1 -- x ) / ( 1  -- x) 2. (48) 

To determine v J n !  from (48), we multiply the fight side of (33) by  (1 - x) -~ as 
expressed in (97 and we have 

n --1 n ~ m ~ l  

(1 -- x) -2log 2(1 -- x) = 2 £ x ' ~  [(m -k 1)/(n -- m)] ~ (1/i).  (49) 
n- -2  m~O i - - I  

Since (m + 1 ) / ( n  - m) = (n + 1 ) / ( n  - m) - 1, this equation can be writ ten 

( l - x )  -~log ~(1 - x )  = 2 x" ( n +  1 ) { ~ 0 1 / ( n - m )  ~-iZ (1/i) 
n--2 n--m--1 

- ._o2 ~ ( l / i ) J  

= 2 ~ x n (n + 11 (1/k) ~ (1/i1 
n--2 [_ k--1 i ~ l  

n-- |  1 - ~2 [(n - k)/k] 
k- - I  
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.._ ® [ (  ) {,-~2 '-,-~l 1 ( 1 / )  } = 2 ~ x  ~ n -b  1 ( l /k )  i 

~--1 1"  : + (n -- 1) -- n ~ ( l /k )  (50) 

Therefore from this equation and (48) we have 
k--1 

v J n ! n  = -3d~ /n !n  A- S(1 -b i / n )  ~ ( l /k)  ~ ~ -t- S -- 8 ~ ( i /k) .  (51) 
k--2 i--1 k--1 

The variance given in (42) can now be calculated using formula (1) of Theorem 
1 for d~ and the identity (41). The terms in (42) which go to zero can be collected by 
referring to (2) and (23), with the result 

v J n ! n  - (d , /n!n)  2 -- 1.386 logs n - 1.425 -b 0(log ~ n /n ) .  (52) 

Here 1.386 . . . .  2 log 2 and 1.425 . . . .  4(7r2/6 - 1) - 25'. Note the similarity of 
(52) to (3). 

5. Summary 

The results of Sections 2, 3, and 4 provide a first-order description of the distribution 
of comparison times in binary search trees. Each tree determines its own mean and 
variance of comparison times; call these the tree-mean and the tree-variance. Then the 
mean of the tree-means over all binary search trees of order n is just the average d~/n!n 
determined in Theorem 1 to be asymptotic to 2 log n. The variance of these tree-means 
was found in Theorem 2 to approach a small constant as a limit. Intuitively, this implies 
that the chance of picking at random a search tree of order n with a significantly different 
tree-mean from the average becomes small as n increases. More precisely, a tree of 
order n with mean/J would be said to differ from the average by a factor of e just if 
[ ~ ~ d J n ! n  [ ~ ,d , /n !n .  I t  follows from Theorems 1 and 2 that for any ~ > 0 theproba- 
bility of picking at random a binary search tree of order n with tree-mean differing from 
the average by a factor of e approaches zero more quickly than 1/log 2 n. 

Information on the rate of growth of the mean of the tree-variances, over all trees of 
order n, is implicit in Theorems 2 and 3. For the overall variance of the distance of a 
random point to the root of a random tree of order n (computed in Theorem 3) equals 
the sum of the variance of the tree-means (computed in Theorem 2) and the mean of 
the tree-variances. Thus the mean of the tree-variances is asymptotic to 2 log n, and 
thus accounts for most of the variance computed in Theorem 3. 

There is little doubt that higher moments of the comparison time distributions can 
be calculated by the methods already presented. In the light of recent developments, 
however, such computations appear to be of minor significance. 

Briefly, the new results consider a different premise about the nature of the binary 
comparisons by which the search trees are constructed. Instead of a linear order we start 
$4th a random binary relation. This leads to a substantial reduction in the average 
number of comparisons required to retrieve an item from a search tree. These results 
will be the subject of a separate paper. 
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