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1. Introduction 

Christofides [1] describes an algorithm for coloring the vertices of a graph using the 
minimum number of colors so tha t  no two adjacent  vertices are colored the same. His 
algorithm implies the  construction of the  maximum subgraph tree (see Section 3) of a 
graph from its maximal indepdendent sets (Harary  [2]) and finding, by  a breadth-first  
search rule, a shortest pa th  between the root and the terminal  nodes of this subgraph 
tree. The number of branches from each subgraph node in this subgraph tree is equal to 
the total  number of maximal independent sets of the subgraph. This number is usually too 
big to make the algorithm feasible for its implementation on a computer,  even for a 
graph with a small number of vertices. 

This paper  at tacks the same problem. However, we show tha t  the number of branches 
from each subgraph node in the subgraph tree can be reduced by considering only a sub- 
set of all maximal independent sets of the subgraph. Let  p be the number of vertices in a 
graph. For  a certain class of graphs, the number  of terminal  nodes is reduced by  a factor of 
(p /2 )  [, which, we shall see, implies tha t  the required number of steps to compute the 
chromatic number of a graph from its maximal independent sets is reduced by  a factor 
of as much as (p /2 ) !  over Christofides' algorithm. The amount  of storage is similarly 
reduced by a factor of (p/2)! over Christofides' algorithm. By adopting a depth-first  
search rule to find a shortest pa th  in a reduced subgraph tree, the required amount  of 
storage can further be reduced by  a ratio of ~ p2/8 to (p /2)  !. 

At  the end of this paper,  we describe a depth-first  search algori thm which is essentially 
the same as an experimental program we have written. Some results are reported. 

We begin by  proving a theorem which is used to justify our use of a reduced subgraph 
tree in our algorithm. 

2. Definitions and Underlying Theorem 

A set of vertices of a graph, G, is independent if no two of them areadjacent .  An independ- 
ent  set of vertices, M, is maximal if no independent sets properly contain M in G. A 
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coloring of G is an assignment of colors to the vertices of G such that  no two adjacent 
vertices have the same color. The set of vertices with any one color is independent and 
called a color class. An n-coloring of G uses n colors and therefore ipartitions vertices of 
G into n color classes. The minimum number of colors, n, required i to color G is defined 
as the chromatic number of G. A color class in any coloring of G may or may not be a 
maximal independent set of G. The following lemma assures us that  for any vertex of G, 
there exists a chromatic coloring of G such that  the color class containing it is a maximal 
independent set of G. 

LEMMA 1. For every vertex x of G, let C1, C~ , • • • , CA be the maximal independent sets 
of (7 containing x; then there exists a chromatic coloring of G such that one of its color classes 
is Ci for some i, 1 _< i <  k. 

PaooF. Let the chromatic number of G be n and IP1, P2,  " "  , P~} be a chromatic 
coloring of G. Without loss of generality, let x E P1. If  P1 = C~, for some i, 1 < i < k, 
then we are done. Otherwise, there exists an i, 1 _< i < k, such that  Pi  c C~. Let P, ' ,  P3', 
• .. , P , '  be the sets obtained by removing vertices of C~ - Pi from the sets P2, P3,  
• - '  , Pn respectively. Then the partition {C~, P2', P3', • • • , P.'} is the desired chromatic 
coloring of G. Q.E.D. 

For any set S of vertices of G, we use (S) to denote the induced subgraph, i.e. the maxi- 
mal subgraph of G with the vertex set S. Let V be the set of all vertices of G. The follow- 
ing lemma deals with the chromatic number of the induced subgraph, (V -- S), when S 
is an independent set. 

LEMMA 2. If S is an independent set of G, the chromatic number of the induced sub- 
graph, (V - S), is one less than the chromatic number of G i f  and only i f  S is a color class 
of some chromatic coloring of G. 

1PaooF. Immediate from definitions. 
From Lemmas 1 and 2, we have the following useful theorem, which, in fact, makes 

possible the improvements over the Christofides algorithm. 
TH~:OREM. For every vertex, x, of G, let C1, C2, • • • , Ck be the maximal independent 

sets containing x; then the chromatic number of G = 1 + min~<~_~ {chromatic number of 
( v  - o , ) } .  

PRooe. Let the chromatic number of G be n. The chromatic number of (V - C~) is 
greater or equal to n -- 1. Lemma 1 shows there exists one i, 1 _< i < k, such that  
C~ is a color class of a chromatic coloring of G. Lemma 2 shows that  the chromatic num- 
ber of (V - Ci) is n - 1, which proves the theorem• 

We will use the formula implicit in the above theorem to compute recursively the 
chromatic number of G. We now introduce the concept of a subgraph tree used in the 
explanation and comparison of the algorithms. 

3. A Reduced Subgraph Tree 

The process of finding the chromatic number of G can be pictured as a search for a 
shortest path in a subgraph tree of G. The subgraph tree which we are about to construct 
is not unique. Even though we require that  the number of branches from each subgraph 
re)de in our subgraph tree to be minimal, we have no guarantee that  the subgraph tree 
has a minimum number of nodes. However, we shall see that  the number of nodes in our 
subgraph tree, which we will call a reduced subgraph tree, is much less than that  in the 
maximum subgraph tree, implied in the Christofides algorithm. 

We construct a reduced subgraph tree of G as follows, assuming as Christofides does 
that  the maximal independent sets of G have been found. The root of the subgraph tree 
is G itself and we say that  the subgraph node, G, is in level 0. We look for a vertex which 
is contained in the least number of maximal independent sets of G. If  more than one such 
vertices exist, we arbitrarily choose one of them as x. Let the maximal independent sets 
containing x be C1, C2, . . .  , CA. The set of induced subgraphs of G, (V - C1), (V  - C2), 
• . . ,  (V - CA), satisfies the condition of our theorem for computing the chromatic 
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number of G. This set of induced subgraphs forms the first level subgraph nodes of a 
reduced subgraph tree. For each first level subgraph node, say G' ~ (V  - C~), where 
1 < i < k, we choose an arbitrary vertex y of G' such that y is contained in the least 
number of maximal independent sets of G'. Let the maximal independent sets of G' 
containing y be D1, D2, • • • , Di ; then the set of induced subgraphs of G', (V - (C~ (J Di)), 
(V - (C~ U D~)), . . .  , (V - (C~ U Di)), again satisfies our theorem for computing 
the chromatic number of G'. This set of induced subgraphs forms the second level sub- 
graph nodes branching from G' in a reduced subgraph tree. We continue this way to con- 
struct higher level nodes from lower level nodes until we reach the terminal nodes of a 
subgraph tree, which are null graphs. 

We have called the subgraph tree of G implied in the Christofides algorithm the maxi- 
mum subgraph tree for the following reason. Each maximal independent set of G creates 
a distinct subgraph node in the first level of the subgraph tree. If G' is a subgraph node in 
this subgraph tree, each maximal independent set of G' results in a distinct subgraph 
node from G'. This subgraph tree is obviously the maximum one which can be constructed 
from the maximal independent sets of a graph. The maximum subgraph tree is unique. 
On the other hand, the set of M1 first level subgraph nodes in a reduced subgraph tree 
is only a subset of the first level nodes in the maximum subgraph tree. A similar situation 
exists at every level for each of the subgraph nodes. Let G' be a subgraph node in the 
maximum subgraph tree. G' may or may not be a subgraph node in a reduced subgraph 
tree. If G' is, then theset of all nodes branching from G' in a reduced subgraph tree is again 
a subset of all nodes branching from G' in the maximum subgraph tree. Hence a reduced 
subgraph tree is a subtree of the maximum subgraph tree. 

A path from the root to a terminal node of a subgraph tree, either the maximum one 
or a reduced one, may be interpreted as a coloring of G; let the path include subgraph 
nodes G = Go, Ga, • • • , Gk where'each G~, for 1 < i < k, is created by one maximal 
independent set of Gi-1 and G~ is the null graph. The length of the path, k, is the number 
of colors used in the coloring. The color classes are those sets of vertices in G - Gx, 
Gi - G2, • • • , G~_i - Gk. It  follows from the way we construct the subgraph trees that a 
shortest path must correspond to a chromatic coloring of G. We have to compare the 
length of all paths from the root to the terminal nodes of a subgraph tree to find a shortest 
path. The number of steps required to compute the chromatic number of G is therefore 
proportional to the total number of paths. Since the maximum subgraph tree contains a 
reduced subgraph tree, the number of steps required by the Christofides algorithm is 
always greater than that required by our algorithm, except in trivial cases. The question 
of how much greater is dealt with in Section 4. 

4. Quantitative Analysis 

In this section we give a quantitative comparison of the sizes of the maximum subgraph 
tree and a reduced subgraph tree for two special classes of graphs. First, consider a graph 
which consists of m disjoint copies of the complete graph with p/m vertices. Let G be 
such a graph. G obviously has p vertices. We find a typical maximal independent set 
of G by choosing one vertex from each of the m complete subgraphs of G. Hence there are 
(p /m)  ~ maximal independent sets of G. Let G' be an ith-level subgraph node in a sub- 
graph tree of G. G' must be in the form of m disjoint copies of the complete graph with 
(p/r~ - i) vertices. The number of maximal independent sets of G r is, similarly, 
(p/~n - i )" .  The number of subgraph nodes branching from G' in the maximum sub- 
graph tree is therefore (p/~n - i)m. On the other hand, a fixed vertex of G' is contained 
in exactly (p /m - i) "n-1 maximal independent sets of G', which implies that there are 
merely (p /m - i) "~-~ subgr~ph nodes branching from G' in a reduced subgraph tree. All 
paths from the root to the terminal nodes in a subgraph tree are at equal length. The 
number of shortest paths is equal to the number of terminal nodes in a subgraph tree of G. 
There are ((p/~n)!) m terminal nodes in the maximum subgraph tree as opposed to 
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( (p/m)  !),~-x terminal  nodes in a reduced subgraph tree. The number of steps required 
by  .our algorithm is therefore (p/m)! t imes less than  tha t  required by  the Christofides 
algorithm. This improvement  factor is (p /2 ) !  when m ffi 2. 

For  graphs which are connected and can be converted to the graph G above by  deleting 
or adding few edges, we expect roughly the same amount  of improvement  using a reduced 
subgraph tree over the maximum subgraph tree. 

Next,  let  us compare the  number of first level nodes in the  maximum subgraph tree to 
those in a reduced subgraph tree of a random graph. Random graph is defined by  ErdSs 
and R~nyi [3--6]. By a random graph G~q we shall mean a graph on p vertices where each 
of the  p (p - 1) /2  edges occurs with probabil i ty q. Matu la  [7] shows tha t  the expected num- 
ber of cliques of Gpq is ~ - ,  (~)qd(d-x)/2(1 --  q~)p--d. The expected number of first level 
nodes in the maximum subgraph tree of G~q is equal to the expected number of the maxi- 
mal independent sets of G~g, which can be obtained b y  subst i tut ing 1 - q for q in the 
above expression. This expected number is ~ - i  (~')(1 - q)~(~-1)/2(1 - (1 - q)d)~-d 
= E2. The expected number  of first level nodes in a reduced subgraph tree is in general 
less than the expected number  of maximal independent sets containing a fixed point  of 
G~q, which can be shown to be ~.,~-, ($--~)(1 - q)d(~-')/2(1 - (1 - q)d)p-~ = El . 
The expected numbers of the  first level nodes in the maximum subgraph tree and a re- 
duced subgraph tree of Grq for p = 10, 20, 30, 40, 50 and q = .1, .2, • • • , .9 are compared 
using expressions E,  and E~ in Table I. 

5. A Depth-First Search Algorithm 

A shortest pa th  in a reduced subgraph tree can be found by  using one of the two search 
methods, i.e. breadth-first  search and depth-first  search. In  the breadth-first  search, 
the  algorithm scans through all possible paths  in a given level for a terminal  node; if a 
terminal  node is encountered, then a shortest pa th  is found and the algori thm stops; other- 
wise the  algori thm continues to scan all  nodes in the  next level for a terminal  node. On 
the other hand, in a depth-first  search algorithm, we use the  following rule to select 
the  next node for scanning: select a node which is not  ye t  scanned before and is branched 
from a node most recently being scanned. The first pa th  from the root to a terminal  
node scanned by  the algorithm serves as an initial guide line when other paths  are scanned. 
Whenever  a shorter  pa th  is encountered, this shorter pa th  will be used as a guide line 
when the remaining paths  are scanned. The algorithm scans down a pa th  only up to the  
level which is equal to the length of the pa th  used as a guide line. The path,  which is 
last  used as a guide line when all paths  have been scanned, is one of the  shortest paths  of 
a subgraph tree desired. 

TABLE I 

10 20 30 40 50 
/,= 

/~. E, Ex E2 E, E, El 

q= 
.1 3.88 
.2 4.66 
.3 4 .40  
.4 3.83 
• 5 3.22 
.6 2.66 
.7 2.17 
• 8 1.71 
.9 1 .25 

~2 

6.07  
9.26 
0.57 
0.84 
0.61 
0.16 
9.57  
8 .76  
8 .15 

~9.36 
15.96 
,'4.19 
L5.70 
[0.30 
6.87 
4.59 
3.09 
1.89 

78.1~ 
98.4! 
84.2 
66.91 
52.6( 
41.5~ 
32.91 
26.7~ 
19.6~ 

Ex E2 

377.51 890,04 
~09.58 715.24 
)6.68 431.16 
L7.58 264.27 
!5.21 170.00 
[4.11 114.22 
8 .15  78.63 
4 . 6 9  55.63 
2.63 38.22 

El E2 

6.18 ~374.68 
0.85 ~92A.56 
1.48 673. 
9.51 808.52 
2.63 435.90 
5.41 254.09 
3.02 156.73 
5.62 97.38 
3.40 63.51 

21701.58 
3776.08 
861.85 
264.16 
98.78 
42.00 
19.32 
8.95 
4.17 

65856.81 
17527.55 
5379..24 
2092.52 
963.50 
496.74 
277.09 
155.93 
94.83 

Notes. Et = the expected number of maximal independent sets containing a fixed vertex of G~ ; 
E~ = the expected number of maximal independent sets of Go • 
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Since almost all nodes a t  the levels which are smaller than  the length of the  shortest  
paths  have to be scanned in both search methods, the  number  of nodes scanned in the  
depth-first search method is il~ general greater than  tha t  in the  breadth-first  search 
method. However, the  amount  of storage required by  the depth-first  search method is 
much less than  tha t  required by  the breadth-first  search method. When the i th-level  
nodes are scanned, all possible nodes at  levels from 0 to i - 1 must  be kept  in storage 
with the  breadth-first  search method, whereas with the  depth-first search method, the  
nodes at  the j t h  level, for 1 < j < i, required to be kept  in storage are merely all those 
branched from a common node at  ( j  - 1)-st level. For  example, consider again the  graph 
which consists of nz disjoint copies of the complete graph with p/n~ vertices. The maxi- 
mum number of nodes in a reduced subgraph tree which are required to be kept  in 
storage is approximately r..~-o (p/~n - for the  depth-first  search method and 

5-0 ( p / m  - -  for the breadth-first  search method. This ratio is N p2/8 to (p /2)  ! 
when m = 2. We expect from this example t ha t  the  saving in memory space in using the 
depth-first search over the breadth-first  search is substantial  for finding the chromatic 
number of a general graph. 

We have programmed a depth-first  search algorithm in PASCAL [8] and run i t  on a 
CDC 6400. Since the running t ime depends highly on the structure of a graph, an esti- 
mate of the running time is difficult to derive. Table I I  shows the frequency with respect  
to running time for 50 pseudorandom graphs of 20 vertices at  edge densities 0.25, 0.50, 
and 0.75. The running times recorded in Table I I  include the t ime taken by  Bierstone's  
algorithm [9] to generate the maximal independent  sets for each graph. We describe the 
depth-first  search algorithm. 

I t  is assumed here tha t  the maximal independent sets of a given graph G are computed  
before t he  algorithm begins. For  example, one may use Bierstone's algorithm for this  
purpose. The following notat ion is used in the algorithm: 

V the set of vertices of graph G, 
Mr the maximal independent set ( M I S )  of G, where 1 ~ j ~ ~n and m is the to ta l  

number  of MIS 's  of G, 
g the would-be chromatic number of G, 
c~ the would-be j t h  color class of a chromatic coloring of G, 
n the current search level of the subgraph tree of G, 
T the set of vertices of G not  in the  current  subgraph at  level n, 
bn the MIS  of (V --  T) at  level n in processing, 
en the  number of unprocessed MIS 's  of (V - T) at  level n, 
S T A C K  store all unprocessed MIS ' s  of (V - T) at  level 1 up to level n. 

Step 1. Set T = ~ ,  n = 0, b0 = ~2~, and c~ = {i} for i = 1, 2, . . .  , g. (g = I v (G)  I .) 
Step 2. If n > g then set T = T - bn, go to step 6; otherwise continue to step 3. 

Step 3. If V- -  T =  ~ t h e n s e t g =  n , T =  T -  bn,c~ = b~fori = 1,2, . . .  , g and go to step 6; 
otherwise continue to step 4. 

TABLE II 

Gso,.sJ Gso,.60 Gso,.~i 

0-5 sec 3* 18 47 
5-10 see 9 17 3 

10-15 sec 9 11 0 
15-20 sec 14 2 0 
20--25 sec 7 1 0 
25-30 sec 3 1 0 
~ 3 0  sec 5 0 0 

* The table should be read that 3 G~0,.2s graphs 
out of 50 samples run to completion during the 
period from 0 to 5 sec. 
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1 
G: 

8 2 

7, ,3 

5 

2,5,8 I 2,4,7 
<(3,6}> <(5, ,,8)> 

3,6 I 5p8 
null <(6} > 
graph I 6 

null 

graph 
Fro. 1. The vertex set V = {1,2,3,4,5,6, 
7,8}. The maximal independent sets  of 
G are {2,5,8}, 11,4,7}, {2,5,7}, {6,8}, {2, 
4,7}, {3,5}, {3,6}, and {1,3}. The chro- 
matic coloring found by the algorithm 

is 1{1,4,7}, {2,5,8}, {3,6}}. 

FIG. 2. A reduced subgraph tree of the 
graph G in Figure 1 

Step 4. Compute the maximal independent sets of (V - T) from M ~  - T ,  M s  - T ,  . . .  , M ~  - T 

and let them be denoted as Sz ,  $2,  . . .  , St • 

Step 5. Choose u E V - T such that  u is contained in the least number of maximal independent sets 
of (V - T). Let them be denoted as S~ t , S ~ ,  . . -  , S~ . Put  S~  on STACK for i = 1, 2, . . .  , r. 
S e t h  = n - l -  1 ,  een = r .  

Step 6. If  n = 0 then stop; otherwise continue to step 7. 

Step 7. If  en = 0 then set n = n - 1 ,  T = T - bn and go to step 6; otherwise continue to step 8. 

Step 8. Move the top item from STACK to b,,. Set en = ~ -- 1, T = T U bn , and go to step 2. 

6. Example 
Consider an 8-vertex graph 1 G shown in Figure 1 and the subgraph tree of G shown in 
Figure 2. A chromatic coloring of G is ({1,4,7}, {2,5,8}, {3,6} ) as indicated in the follow- 
ing trace of the algorithm. 

Step 1. 

Steps 2-4. 

Step 5. u 

Steps 6-8. 

Steps 2-4. 

Stop 5. u 

Steps 6-8. 

Steps 2--4. 

Steps 5-8. 

Steps 2-3. 

Steps 6-7, 6-7, 6-8. 

T = ~ , n = 0 ,  b 0 = . ~ t , e = 8 .  

MIS's  of (V) are 12,5,8}, {1,4,7}, {2,5,7}, 16,81, {2,4,7}, 13,5}, {3,6}, {1,3}. 

= 1, n = 1, et = 2, STACK = ({1,3}, {1,4,7}). 

et = 1, bl = {1,4,71, T = {1,4,71, STACK = ({1,3I). 

MIS's  of ({2,3,5,6,81) are {2,5,8}, {6,8}, {3,51, {3,6}. 

= 2, n = 2, e~ = 1, STACK = (11,3}, 12,5,8}). 

e~ = O, b~ = 12,5,8}, T = 11,2,4,5,7,8}. 

MIS's  of ({3,6}) is {3,6}. 

u = 3, n = 3, e, = 0, b, = {3,6}, T = V, STACK = ({1,3}). 

= 3, T = {1,2,4,5,7,8}, c = ({1,4,7}, {2,5,8}, {3,6}). 

e, = 0, n = 1, b, = {1,3}, T = {1,3}, STACK = ( ) .  

] The reader will find the above graph minus the edge joining 4 and 6 possesses a more interesting 
~mbgraph tree. The trace for this graph is too long to be included here. 
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Steps 2-4. MIS's  of ({2,4,5,6,7,81)are {2,5,8}, {2,5,7}, {6,81, {2,4,7}. 

S tepS.  u = 4 ,  n = 2 ,  e2 = 1, STACK = ({2,4,7}). 

S teps6-8 .  e2 = 0, b, = {2,4,7}, T = {1,2,3,4,7}, STACK = ( ) .  

Steps 2-4. MIS's  of ({5,6,8}> arc {5,8}, {6,8}. 

Step 5. u = 5, n = 3 ,  e, = 1, STACK = ({5,8}). 

Steps 6-8. e3 = 0, b3 = {5,8}, T = {1,2,3,4,5,7,8}, STACK = ( ) .  

Steps 2 , 6 - 7 , 6 - 7 , 6 - 7 , 6 .  Stop. n = 0, T = ~ ,  STACK = ( ) ,  g = 3, c = ({1,4,7}, {2,5,8}, {3,6}). 
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