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ABSTRACT:' Quite often explicit information about the behavior of a queue over a fairly short period 
is wanted. This requires solving the nonequilibrium solution of the queue-length distribution, which 
is usually quite difficult mathematically. The first half of Part II  shows how the diffusion process ap- 
proximation can be used to answer this question. A transient solution is obtained for a cyclic queue- 
ing model using the technique of eigenfunetion expansion. The second half of Part I I  applies the 
earlier results of Part I to modeling and performance problems of a typical multiprogranmled com- 
puter system. Such performance measures as utilization, throughput, response time and its distribu- 
tion, etc., are discussed in some detail. 
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1. Transient Behavior of Queue Distributions 

In  Pa r t  I [5], we were concerned solely with limiting, or equilibrium, probabi l i ty  distribu- 
tions of queue sizes in a network of queues. These equilibrium queue distributions provide 
information about  the properties of the queueing network averaged over a long t ime 
period. Equally impor tant  to practical  applications, however, is the ra te  of convergence 
to the equilibrium. The workload of a computer system, for example, is rarely s ta t ionary 
over a long period of time, and therefore we need explicit information about  the behavior 
over a fairly short  interval. In  measuring operational systems or simulation models, some 
estimate of the transient  t ime is required in determining a priori the length of sufficient 
observation period and /o r  appropriate  sampling rate,  since the  uncertain l imits of stat ist i-  
cal est imates are usually given in terms of independent samples. Cox and Smith  [2] 
discuss some other examples where nonequilibrium theory is needed. 

The nonequilibrium theory of queues is usually much more difficult mathematical ly  
than the equilibrium theory. Consider, for example, an M / M / 1  system, i.e. a single-server 
queue with Poisson alTivals and exponential service times. The t ransient  solution to this 
simplest queueing system is given in terms of infinite series of the  hyperbolic Bessel func- 
tions (see [2, p. 64] ) and is far from convenient. Difficulty in obtaining solutions to more 
complicated cases is quite apparent ,  and thus we shall have to content  ourselves with ap- 
proximate solution. The diffusion process approximation can be useful in this regard, as 
we will demonstrate  in the rest of this section. 

Copyright © 1974, Association for Computing Machinery, Inc. General permission to republish, 
but not for profit, all or part  of this material is granted provided tha t  ACM's copyright notice is 
given and that  reference is made to the publication, to its date of issue, and to the fact tha t  reprinting 
privileges were granted by permission of the Association for Computing Machinery. 
An earlier version of this paper was presented at the Seventh Annual Princeton Conference on In- 
formation Sciences and Systems, Princeton University, Princeton, N. J., March 22-23, 1973 [4]. 
Author's address: IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598. 

Journal of the Assoc/atlon for Computing Machinery, Vol. 21, No. 3, July 1974, pp. 459-469. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321832.321844&domain=pdf&date_stamp=1974-07-01


460 HISASHI KOBAYASHI 

1.1. A SINGLE-SERVER QUEtTE. Recall that  x( t )  defined in [5] represents the diffusion 
process which approximates the length of a single-server queue for which the mean value 
and squared coefficient of variation of interarrival time are u, and :ca, respectively, and 
those of service time, u,  and Co. Then the probability density function of x (t) given that  
x(0) = x0 is given by [5, eq. (2.4)]: 

p(xo,  x;  t )  = (O/Ox) {@((x --  Xo --  B t ) /  ( a t ) i )  
-- exp(2ax /a )O(- - (x  Jr xo + 18t ) / (a t )~)} ,  (1.1) 

w h e r e . ( x )  = f~_~ (2r)  - t  exp { -½z 2} dz, a = c . / ~ .  + c./t~,, andfl  = 1/#o - 1/#,. In  
order to obtain a coordinate-free solution, let us apply the following scaling transforma- 
tion [9] to queue-length variable x and time t: 

y = x / I  a / ~  l, r = t / ( a / l ~ ) .  (1.2) 

Then for/9 < 0 (or equivalently p = #,/u,  

p(yo,  y;  r )  = (O/Oy) {,I,((y - y0 + 7 ) / r  ~) 

Similarly, for B > 0 (i.e. p > 1 ) we have 

p(yo,  y;  r )  = (d/dy) {,.p((y -- Y0 -- r) /r~) 

< 1), eq. (1.1) becomes 

- -  e-2V~ ( - (y + Yo --  ~ . ) /~4)} ,  y > 0 .  (1.3) 

--  e2U'I~( - (y --F yo + z) /~'½)l ,  Y > 0. (1 .4 )  

The curves of Figure 1 are plots of (1.3) for values of time parameter r, where the dashed 
curves are obtained for the initial value y0 = 0, and the solid curves are for yo = 2. We 
can see that  the equilibrium state is reached approximately by r = 5 for both cases. 
Clearly for the initial value y0 greater than 2, the transient interval c a n n o t  be shorter 
than 5. 

When # > 0, the queue is oversaturated and no equilibrium solution exists. Not  only 
the mean queue size increases as time elapses, but  also the variance increases; thus the 
density function becomes broader and broader. Figure 2 shows the distribution function 
(i.e. integration of (1.4)), when the initial queue size is y0 = 0 and y0 = 2. The results 
tel] us how fast the queue will build up in an overloaded system. 

Before we proceed further let us examine the scaling factor of transformation (1.2): 

~ / ~  = u.(c. + cap)~(1 - p)~. (1.5) 

We see from this expression that  the transient period is inversely proportional to the 
square of 1 - p, the probability that  the server is idle. A similar observation can be made 
on the scaling factor of the queue size: a//~ ] = (c, -t- c ,p) / ]  1 - p 1. 
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The transient solution p (yo, Y; r) for p < 1 (~ < O), with the initial condition yo : 0 
(dashed curves), and y0 = 2 (solid curves). 
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1.2. A CYCLIC Q~mVEINO SYSTEM. Let  us now consider the cyclic queueing system 
which was discussed in [5, Ex. 4.1]. Service times a t  Stat ion i are i.i.d, with the  mean m 
and the squared coefficient of variat ion c~, i = 1, 2. The system is a closed queueing net- 
work; hence N,  the total  number of jobs in the system, remains constant. Let  us denote 
by  x (t) the diffusion process which approximates the queue size nl (t) (Figure 3). Then 
the corresponding diffusion equation is 

(O/Ot)p(xo, x; t) = ½a°(O2/Ox2)p(xox; t) -- B°(O/Ox)p(zo, x; t),  (1.6) 

where a ° and fl ° are a~l of [5, eq. (4.3)] and B~ of [5, eq. (4.4)], respectively: a ° = cl/m 
+ c2/~, B ° = 1/V2 -- 1/Ul. We now want  to solve (1.6) with the boundary  condition 
0 < x(t) < N + 1, for every t _> 0. Note tha t  the upper boundary is N + 1 instead of 
N, since the queue size nl corresponds to uni t  interval n~ < x < n~ + 1, where nl = 0, 
1, 2, . . .  , N. (See [5, eq. (2.6)].) By applying the scaling transformations 

y = x l l  ,~°/~° I = =/I (c, + c~p)/(1 - p)I, 
~- = tl(o~°l~ °~) = U . , ( c ,  + c2p)/(1 - -  p ) e ,  

where p = #z/a2, we now have the coordinate-free diffusion equation 

(O/O~-)p(yo, y; r )  = ½(O~/Oy')p(yo, y; r )  -- ~. (O/Oy)p(yo, y; r )  

with two reflecting barriers a t  y = 0 and y = b: 

}(O/Oy)p(yo, y ; r ) -  ~'p(yo, y , r )  = 0 at  y = 0 and y = b, 
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The transient solution fo v p(Yo, z; ~) dz forp > 1 (~ > 0) with the initial condition yo = 0 
(dashed curves), and y0 = 2 (solid curves). 
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(a) A cyclic queueing model; (b) a typical behavior of the CPU queue size hi(t) 
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where 

i if p < l ,  
= if o = 1, (1.10) 

- if  p > l ,  

and. b = ( N  + 1 )/I (cl + c2p)/ (1 - p) 1. B y  applying the method of "eigenfunetion ex- 
pansion," a technique frequently used in solving partial differential equations, we obtain 
the following solution to (1.8) (Appendix A) :  

- 1 )  -F  expt (y - y 0 -  
| 

p(Yo, Y; ~') = ~ "~¢.(y)~b~(y0) exp(--X.sv/2),  0 _< 9 _~ b, (1.11) 
I 
~,0, elsewhere, 

where ¢.  (y) 's  are eigenfunctions associated with eigenvalues },.'s: 

4~,(Y) = [2k,~/b(k, ~ + 1)] ½ {cos k,y + (~/k,) sin k,y}, 

and ~, = n~-/b, n = 1, 2, 3, . . . .  The first term of (1.11) represents the steady-state 
probability and the second term gives the transient part  in terms of eigenfunction ex- 
pansion. Note that  (1.11) satisfies the initial condition y = yo, i.e. p (yo, y; r)  = ~ (y - 
y0), since the delta function is expressed in terms of the eigenfunctions as shown by (A-7) 
in Appendix A. The second term of (1.11) is an infinite series, but  can be well approxi- 
mated by finite terms, since the factor exp { -½~,2r} approaches zero as n increases. 

Example 1.1. Let us consider the numerical example discussed in [5, Ex. 4.2]: We 
choose parameters p = 0.75, c~ = 1, c2 = 0.2, and N = 10, which lead to ~ = 1 and 
b = 2.39. The set of curves of Figure 4 are plots of (1.11) for various values of time r 
when the initial value of queue length at CPU (Station 1 ) is y0 = 0 (i.e. CPU is empty) ,  
yo = b/2 (i.e. nl = N / 2  = 5), and y0 = b (i.e. I /O  is empty).  As we see from these 
curves, the equilibrium distribution is reached approximately by r = 5 again, similar to 
a :single server queue system shown in Figure 1. This agreement is not  a coincidence. A 
cyclic queue system is approximately equivalent to a singer server system with a finite 
waiting room. The equivalence holds exactly if one of the stations has an exponential 
service time distribution [1, 6]. 

2. Resource Utilization, System Throughput, and Response Times 

Among most frequently used performance measures for computer system performance 
evaluation are the CPU and device utilizations, system throughput, the response time 
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FIG. 4. The  tral~siel~t behav ior  p(yo, y;  T) of  a cycl ic queueing system w i th  the in i t i a l  cond i t ion  
y, -- O, y ,  = b/2,  and y0 = b. 
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distribution, etc. In  this section we define these terms precisely and show how our results 
based on the diffusion approximation technique can be applied to performance evaluation 
and prediction of a computer system,. 

2.1. U T I L I Z A T I O N  AND T H R O U G H P U T  IN A Q U E U E I N G  N E T W O R K  M O D E L .  In  an open 
network of queues the utilization of an ruth processor (or server) u~ is, according to [5, 
eq. (3.12)], given by 

u,~ = p m  = e,~,~/#0 (2.1) 

if the system is stable, i.e. the rightmost expression of (2.1) is less than unity for all m. 
Here g,~ is the average service time at processor m, go is the average interarrival time, 
and em is the average number of visits to processor m by a task during its lifetime (i.e. 
between its arrival and departure). Recall that  vector [1, el, e:, • • • , e~] is the solution of 
[5, eq. (3.11)]: 

M 

e,~ = ~etr ( l ,~n) ,  1 < m < M, (2.2) 

and e,~ corresponds to the average number of visits that  a job makes to Station m during 
its entire life in the system. Here r (l, m) is the transition probability from Station l to 
Station m as was defined in [5]. 

If the task arrival rate l/go is sufficiently high so that  the load on some processor ex- 
ceeds its processing capacity, i.e. if 

max {e~gm} = e~,~,~, > ~o, (2.3) 

then the processor m* becomes a bottleneck of the system and its utilization (busy factor) 
is 100 percent: 

u,~, = 1 (2.4) 
and 

u~ = e,,~m/e,,.~., for m ~ ~n*. (2.5) 

By combining (2.1)-(2.5), a general expression for utilization is given by 

u~, = em~/ max {ezmz}, (2.6) 
l E [0,I" • ',M] 

where 
e0 = 1. (2.7) 

The system throughput is usually defined as the number of tasks which can be completed 
per unit of time. In  an open network system, the amount of service that  one task requires 
of processor m is, on the average, equal to emit,n; therefore the system throughput rate, r, 
is given by r = u~/e,~g,~, which is then written, using (2.6) and (2.7), as 

r = re_in {1/ezuz} = rain {l/u0, 1/e,~*um*}. (2.8) 
t E [o,1,. • .,~1 

Equation (2.8) shows that  once the system becomes saturated an increase in the system 
throughput can be achieved only by increasing the processing speed of bottleneck pro- 
cessor m*, i.e. by effectively decreasing the value gin*. 

In  a closed network e '  = [el, e2, - "  , e~] is a left eigenvector of the Markov matrix 
[r°(l, m)] associated with eigenvalue being unity, where we assume that  this Markov 
chain is irreducible. (See [5, eq. (4.6)].) Although the solution vector is not  unique (since 
ke is also a solution for arbitrary k), we can still interpret that  e~ is proportional to the 
frequency of visits to processor m by  a task. By imposing an additional constraint 
~ - 1  e~, = 1, the vector e is now uniquely defined and it corresponds to the stationary 
probability vector of the Markov chain. The resource utilization formula (2.6) is, how- 
ever, not applicable to a closed network model, since eogo is undefined here. The only 
thing that  remains to hold is the property that  um is proportional to e~gm, i.e. u~ = e ~ , / L .  



464 H I S A S H I  K O B A Y A S H I  

I t  seems that  there is no simple way to determine constant L except for those cases in 
which we know the queue size distribution exactly. However, we see that  L is bounded by 

L > e ~ , ~ ,  = max  { e ~ } .  
ra E [1,~," - " ,HI .  

If  N ,  the total number of tasks in the system, is sufficiently large, then the processor m* 
will be almost always busy; thus the formula (2.5) can be a good approximation in this 
case. This approximation was in fact used in [5, See. 4] to approximate the queue size 
distribution (see [5, eq. (4.8)]. 

2.2. THE AVERAGE RESPONSE TIME AND RESPONSE TIME DISTRIBUTIONS. The 
average response time, T, in equilibrium state is related to r, the system throughput,  and 
~, the average number of tasks residing in the system, according to the following simple 
formula: 

rT = fi, (2.9) 

which is often called Little's formula [7]. 
In  a single server model discussed in [5, Sec. 2], we can compute a based on the ap- 

proximate distribution [5, eq. (2.9)] as 

tiff = ~ n p ( n )  = p / ( l  - ~), (2.10) 

where ~ = exp { - 2  1B I/a} = exp { - 2  (1 - p) / ( c ,  + cop)} when p = ~,/~, < 1. Recal l 
that  if c, = ca = 1, it follows that  ~ --~ p. If  ca and/or  c, is greater than one, then ~ < p 
and the system tends to have a longer queue. 

Let us consider an M / G / 1  system, i.e. Poisson arrivals and a general service time dis- 
tribution. Then ca = 1 and ~ = exp { - 2 ( I  - p) / (c ,  q- p)} a= f (p ) .  By applying the 
Taylor series expansion to f ( p )  around p = 1, we obtain 

:= y(p)  = f (1)  q- (p -- 1 ) f ( 1 )  -b ~(p -- 1)~f'(1) 
+ . . . .  1 + 2 ( p - -  1 ) / ( 1 - 1 -  c,) + . . -  . (2 .11)  

Therefore by substituting (2.11 ) into (2.10) we have the following approximate result: 

fi -~. p(1 -'k c , ) /2(1  -- p). (2.12) 

On the other hand the exact solution of fi for M / G / 1  is known and given by 

= p q- / (1 -I- c , ) /2(1  -- p) = p(1 "4- c,) /2(1 -- p) -t- (1 -- c,) /2,  

which is often called the Pollaczek-Khinchine formula [2]. Therefore we see that  (2.12) 
is a good approximation when either p or c, is close to 1. 

The system throughput of a single server system is, from (2.8), given by 

r = min{1/#a, l/p,} = 1/~a (2.13) 

when p < 1. The average response time, T, is therefore given from (2.9), (2.10), and 
(2.13) by T = a i r  = ~, / ( I  - ~) = ~ / ( I  - ~)t~, -/- ~,. The first term in the last equa- 
tion is the average waiting time, and the second term is clearly the average processing 
time. 

For an M / G / 1  system we can obtain approximate solutions to waiting and response 
time distributions which are easier to calculate than a general formula given in terms of 
Laplace transform (see [2, p. 57]). Let q (l) be the probability of the queue length (ex- 
eluding a task in service) l = n - 1 conditioned that  the system is nonempty, i.e. q(1) 
==Pr {n = I .q- 1 I n  > 0} = p(1 "4- 1) / (1  -- p(0) ) ,  1 = 0, 1, 2, . - -  . Using the approxi- 
mate distribution p ( n )  of [5, eq. (2.9)], we obtain q( l )  = (1 - ~)~z, l _> 0. We define 
a probability generating function Q (z) by 

o o  

Q(z)  = ~ q( l )z '  = (1 - # ) / (1  - t~z). (2.14) 
l - -0 
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Let w(t)  be the probability density function of waiting time t. I t  is clear tha t  w(t)  can 
be represented as 

w(t) = (1 - p )~( t )  + ~ v , ( t ) ,  (2 .15)  

where w~ (t) is the probability density of waiting time conditions that  it is nonzero. Since 
the number of arrivals during [0, t] is Poisson distributed with parameter t/Ha, an alterna- 
tive derivation of q(l) is given by q(l) = fo p 1/l!(t /~,)Zexp(--t /~,)wl~t)dr,  and its 
generating function is 

Q(z) = f 1 / l ! ( t z / . . )  ~ exp(- t /u . . )w~(t)  dt = w~*((1 Z ) /Na)~ 
l-O 

where wl* (s) is the Laplace transform of wl (t). By equating (2.14) and (2.11) we obtain 
wx*(s) = [(1 - ~) /~ ,] / [s  + (1 - ~ ) / ~ ] .  Hence by inverting wl*(s) and substituting 
the result into (2.15) we have the following approximation formula of waiting time: 

w(t)  = (1 - p)~(t) + [0(1 - ~ ) / ~ . ]  exp [ -  (1 -- ~)t/~,,], t >_ Oi 

The response time density function is therefore given by 

T( t )  = w(t)  @ s(t) = (1 -- p)s(t) + [ p ( 1  - -  ~)/~#a]s(t) ® exp[-- (1 -- ~)t/~#~], 

where s (t) is the probability density function of service time and @ means convolution. 
Let us now consider the response time of a network of queues. The expectation of the 

total number of tasks residing in the system is computable from [5, eqs. (3.8) and (3.13)] 
M - as ~ = ~ , , -~  nm = ~ - 1  [pro~ (1 -- ~,.)] when the system is stable. The average response 

time of the network system is T = ~/r = ~ - 1  e=T~, where T,~ is the average time that  
a task spends at processor m and its queue and is given by an expression analogous to 
(2.13): T= = Lsm/(1 - ~m)]#m + #,~. The probability density functions of waiting time 
and response time at each processor can be computed in exactly the same manner as ob- 
tained for a single server model: 

w~(t)  ---- (1 -- p~)~(t) + [pro(1 -- ~=)/~m~,,] exp[--(1 -- ~,,)t/~,,~m], 

T, ,( t)  = w,~(t) ® s,,(t), 

where p,~ and ~m are defined by [5, eq. (3.10)] and [5, eq. (3.14)], respectively; s,, (t) 
is the probability density function of processing time at processor m. The waiting time and 
response time distributions in the whole network are difficult to obtain, since the waiting 
times of, say, two consecutive visits of a task to the same processor are clearly correlated. 
The problems can be formulated as the first-passage time problems for diffusion processes 
and will be discnssed in a separate report. 

3. Conclusions 

In  Section 1 of this paper derivations of transient (nonequilibrium) solutions of queue 
length distributions in single server and cyclic queue models are presented with some 
numerical examples. In  those cases equilibrium state is almost reached by ~- = 5, where 
time ~- is the normalized time defined by (1.5) or (1.7). The scaling transformation in- 
dicates that  the transient time is longer when the system is heavily loaded (p ~-  1 ) and 
the distributions of interarrival time and service time have large variances. These results 
could be very useful in many respects: the sampling rate and observation period can be 
chosen appropriately in measurements of operational systems or simulation models; 
adaptive scheduling or resource allocation schemes require an appropriate choice of the 
observation period (e.g. integration or smoothing time), since the interval should be short 
enough to follow the change of input processes and yet  should be long enough to allow a 
sufficient number of sampled data. 

Section 2 presents how to use the diffusion approximation solutions to performance 



466 H I S A S H I  K O B A Y A S H I  

evaluation of computer systems. Such performance measures as utilization, throughput,  
the average and distribution of response time, etc., are clearly defined and their quantita- 
tive relationships are investigated. 

Appendix A.  Derivation of the Transient Solution (1.11) 

There are at  least three different methods to solve the diffusion equation. They are the 
method of images [10], the method of separation of variables [8, 11], and the Laplace 
transform method [3]. Here we use the second method and follow the treatment by Sweet 
and Hardin [11]. 

Let us assume the following solution form: p (y0, y; T) = q (Y0, Y )e z~" r (T), and substitute 
this into (1.8). Then we obtain the following two equations which are interrelated via 
unknown parameter d2: 

q" (yo, Y) + (d ~ - ~)q(yo, y)  = 0 (A-I)  
and 

/'(v) + (d~/2)r(T) = O, (h-2) 

where ' and • denote differentiation with respect to y and T, respectively. Then by the 
standard techniques for ordinary differential equations, we find that  

4,(Y) = Ae ~v -k Be -~y (A-3) 

satisfies (A-l)  where X2 = d 2 _ 82. By imposing the boundary condition (1.9) on (A-3), 
we find that  the following equation must be met by h: 

(~2 -k h ~) sin hb = 0. (A-4) 

Furthermore the constants A and B must satisfy (~ - j~)A -b (~ -b jX)B = 0. Thus the 
eigenvalues which satisfy (A-4) are X = ~ f l ,  ~ = 0, and ~n = nr/b,  n = :k l ,  :k2, :k3, 
• . . .  However, the eigenfunctions of the form (A-3) are the same for ~. and X-n. For 

= 0 we find the corresponding function 4, (Y) = 0. Therefore we need only consider the 
following eigenvalues: ho A j~, ~n = nT/b, n = 1, 2, 3, • • • , and the eigenfunctions as- 
sociated with these eigenvalues are 4,o (y) -- [2~/(e 2b~ - 1 )]*e ~ and 

4,,(y) = [2h~/b(~  ~ -b 1)]~{cos h~y + (~/y~) sin h~y}, n = 1, 2, 3, . - . .  

The functions 4~(Y), 4,1(y), ¢2(y), " '" are orthonormal and form a complete set for all 
differentiable functions whose support is [0, b]. Once h is determined, the corresponding 
solution to (A-2) is given by r (r)  = exp[-½ (h z -t- ~z)r]. Therefore, we arrive at  the fol- 
lowing form for a general solution: 

p(yo, y; ~) = ~ a~4,~(y) exp[Sy -- ½(h, 2 "-k 5~)r]. (A-5) 
n~0 

The constants a0, a~, as, . . .  are to be determined bjr the initial condition y(0)  = y0, 
which is equivalent to 

p(y0, p; 0) = ~(y - y0), 0 < y ~ b, (A-6) 

where ~ ( . )  is the delta function 1 and can be expanded in terms of eigenfunctions as fol- 
lows [8]: 

~(y -- yo) -- ~4,~(y)4,~(yo). (A-7) 
n ~ O  

A careful observation of (A-5) with r being set to zero suggests replacing (A-6) by the 
following equivalent condition: 

$(.) has no relation with the variable defined by (1.10). 
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oo 

P(yo, Y; r )  = exp(@ -- @o)~(Y -- Y0) = exp(@ -- @o)~]eh,~(y)4~,~(yo). (A-8) 

Then by  comparing the coefficients of (A-5) and (A-8) we obtain ao = [2~/(e 2sb - 1 )]~, 
a .  = exp (--~Yo)¢~ (Y0). Therefore the solution of the diffusion equation (1.8) is given by  

p(Yo, Y; r )  = 2~e~/(e  ~sb 1) + exp(@ @o ~ r)~]¢,,(y)tk~(yo) exp( - -½~2r ) .  

Appendix B. Glossary of Symbols for Parts I and I I  

A (t): cumulative number  of arrivals up to t ime t. 
Am(t):  cumulative number  of arrivals a t  s tat ion m up to t ime t. 
,~ = ca/l~ A- c./#,: increasing rate of the variance of diffusion process x (t). 
a:  increasing rate of the covariance matr ix of x (t) in an open network. 
o :  increasing rate of the covariance matrix of x (t) in a closed network. 
~°-:  pseudo (generalized) inverse of singular matrix u°. 
C~ml, : (m, m ' )  element of ~t. 
b = (N + 1 )/I a /~  [: normalized reflecting barrier. 

= 1/ga - I / m :  increasing rate of the mean of diffusion process x(t).  
~: increasing rate of the mean vector of x (t) in an open network. 
~°: increasing rate  of the mean vector of x (t) in a closed network. 
/%~: ruth component of ~. 
ca = a~2/Ua2: squared coefficient of variat ion of interarrival  time. 
c, = a,2/m2: squared coefficient of variat ion of service time in a single server system. 
cm = ~,,2/~m2: squared coefficient of variat ion of service time at  s tat ion m. 

= 2u-1~: (defined for an open network of queues). 
V° = 2a°-~°: (defined for a closed network of queues). 
v,,: ruth component of V. 
D (t): cumulative number  of departures up to time t. 
D~(t): cumulative number  of departures from station I up to t ime t. 
D~,,, (t): cumulative number of jobs up to t ime t which leave stat ion l and join stat ion m. 

= sgn (1 - p):  ~ = "4-1, 0, or - 1 ,  depending on p being less than, equal to, or greater 
than unity. 

(y) : delta function. 
e l :  average number of visits to stat ion ~n by  a task during its entire life in the  system. 
K :  normalization constant for the queue-length distr ibution of a closed network of 

queues. 
~ = nr/b: eigenvalue of the diffusion equation for a cyclic queue system. 
M:  number  of stations in a network. 
~ta: mean interarr ival  time. 
u.: mean service t ime in a single server system. 
tt~: mean service time at  stat ion m in a network of queues. 
N:  number  of tasks in a closed network (or degree of mult iprogramming in a closed 

network model).  
: average number of tasks in a single server or open network system. 

p (n):  probabi l i ty  of queue length being n. 
i~ (n):  approximation of p (n). 
p(nl, ~2, "- • , riM): joint  probabil i ty  of queue lengths being nl, n~, - - .  , n ~  a t  s tat ions 

1, 2, . . .  , M,  respectively. 
i3(nl, n~, . . .  , riM): approximation of p(nl, n2, . ' .  , riM). 
p (Xo, X; t) :  probabi l i ty  densi ty function of diffusion process x (t) given tha t  x (0) = x0. 
p (x) = p (Xo, x; ¢¢ ): probabi l i ty  density function of diffusion process x (t a t  equilibrium 

state. 
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p (x0, x; t):  joint probability density function of M-dimensional diffusion process x (t) 
given that  x (0) -- Xo. 

p(x)  = p(x0, x; ~ ) :  joint probability density function of M-dimensional process 
x (t) at  equilibrium state. 

p(yo, y; v): the probability density function of diffusion process y(v)  (after scaling 
transformation) given that  y (0) = Y0. 

• (x): standard normal integral, i.e. integration of unit normal distribution function 
over ( -  ~ ,  x]. 

¢~ (y): eigenfunction associated with eigenvalue h.. 
Q (t) = A (t) - D (t): queue length (including one in service) at time t. 
AQ(t) = Q ( T  + A)  - Q(t):  change in queue length during (t, t "-b 4]. 
Q,, (t) = A ~ (t) - D,~ (t): queue length (including one in service) of station m at time t. 
AQ,~(t) = Qm(t -t- 4 )  - Q,~(t): change in queue length at station m during (t, t -t- A]. 
Q (z) : probability generating function of { q (1)l. 
q(l )  = p(1 + 1) {1 - p(0)}:  probability of queue length 1 (excluding one in service), 

conditioned that  the system is not idle. 
r: system throughput rate. 
r (m, m~): transition probability from station m to station m' in an open network. 
r ° (m, m ' ) :  transition probability from station m to station m r in a closed network. 
p := ~ , / ~ :  utilization factor in a single server system. 

:= exp {2~/al ,  ~ < 0):  parameter that  characterizes p (n )  of a single server system. 
~,~ = exp ~m: parameter that  characterizes the ruth marginal distribution of ~ (n~, n2, 

• " "  , r i m ,  ' ' '  , r i M ) .  

s: service time (random variable). 
or, a: variance of interarrival time. 

2 a, : variance of service time in a single server system. 
2 a,, : variance of service time at station m in a network of queues. 

T: average response time. 
T,.: average time that  a task spends at station m (including queueing times). 
T (t) : probability density function of response time t. 
T = l~ (a / i f )  : normalized time to make the diffusion equation coordinate-free. 
u~: utilization factor of station (or processor) m. 
w (t): probability density function of waiting time t. 
w~. (t) : probability density function of waiting time t conditioned that  t > 0. 
w~ (t) : Laplace transform of wl (t). 
x (t): diffusion process which approximates Q (t). 
x: random variable x (t) with time parameter t being suppressed. 
x (t): M-dimensional diffusion process which approximates joint queue lengths {Q1 (t), 

Q2(t), . . . ,  QM(t)}. 
x~ (t): ruth element of x (t). 
y = x/I a /~  I: normalized x to make the diffusion equation coordinate-free. 
z (t): white Gaussian process with zero mean and unit variance. 
z (t): M-dimensional white Gaussian process with each component possessing zero mean, 

unit variance, and zero cross-variance. 
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