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ABSTRACT It lS found that Moyles and Thompson's algorithm contains some mistakes. An efficmnt 
algorLthm for finding a mlmmal eqmvalent graph (MEG) is presented The algorithm proceeds with 
the following steps First, all the strongly connected (s c ) components are found. Then the set of 
vertmes is reordered such that the set of vertices in an s c component is ordered by consecutive 
integers The rows and columns of the adjacency matrix are permuted accordingly Then an MEG 
for each s c. component is found Finally, the parallel and the superfluous edges are removed 
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1. Introductzw~ 

This  paper  studies the  problem of removing  the  max imum number  of edges f rom a 
digraph wi thou t  affecting the  reaehabfl i ty  of t he  digraph.  An  a lgor i thm for finding a 
mimmal  equiva len t  graph ( M E G )  was first presented by  Moyles  and T h o m p s o n  [1]. I t  
is found tha t  their  a lgor i thm contains some mistakes and tha t  i t  is no t  efficient. 

This  paper  first discusses an M E G  of an acyclie digraph and then  an M E G  of a s t rongly 
connected (s.c.) digraph. These  two results are then  used to find an M E G  of a digraph. 
In  order to find an M E G  of a digraph, first all the  s c. components  are found, t hen  the  
set of ver t ices  are reordered such t h a t  t he  set of ver t ices  in an s c. componen t  is a lways 
ordered by consecut ive integers.  The  rows and columns of an adjacency ma t r ix  are 
pe rmuted  accordingly I t  is found t h a t  this will s imphfy the  problem of removing  the  
parallel  edges and the  superfluous edges. 

The  reader  is advised to read Moyles  and Thompson  [1]. The  te rminology used in this 
paper  follows tha t  in Moyles  and Thompson  [1] as nearly as possible. 

2. Prelzminaries 

Let  G = (V, E )  be a digraph, where V as the  set of all the  vert ices  where [ V I = N,  and 
E is the  set of all the  edges in G, where I E I = M. For  M1 vert ices  v, and v~ of G, if there  
is an e lementary  pa th  f rom v, to v~, i t  is said tha t  v, R v~. All the  pa ths  in this paper  refer 
to e lementa ry  directed paths.  

An s.c. d igraph is one such t h a t  for all v, and v~ E V, v, R vj and v, R re. An  acyclic 
digraph is one such tha t  if v, R v,, then vj,R v,. An acyclic digraph contains  no cycles. The  
following defines an M E G  of a digraph. 
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Let  G ° -- (V, E °) be an MEG of the digraph G = (V, E); then the following conditions 
must be satisfied. 

(1) For all v, and vj in V, v, R v~ in G ° if and only if v, R v~ in G. 
(2) E ° is the smallest subset of E such that condition (1) is satisfied. 
I t  is quite obvious that there can be more than one MEG. This paper presents an 

algorithm to find one of the MEGs. 
I f  the adjacency matrix X of a digraph G is given, then the path matrix P can be easily 

found by Warshall's algorithm [2]. 
If  a digraph contains 1 s.c. components, then the set of vertices V can be partitioned 

intolsubsets,  i . e . V =  V 1 U V 2 U . "  (JVl, whereV, NV~ = ~ f o r i ~ j a n d [ V ~ [  = 
n,. Some V~ might have only one vertex. The problem of finding the set of all the s.c. 
components is exactly the same as partitioning the set of vertices V into l subsets. 

An s.c. component is defined as G~ = (V,, V~ X V, N E). 
If the set of vertices are reordered such that in each s.c. component the set of vertices 

are ordered by consecutive integers, and the rows and columns of adjacency matrix X 
are permuted accordingly, then X can be partitioned into submatrices as: 

[XH X~, ... X,,] 
x = / X ' ~  X,, -.. X,,]_ 

l.Xn X,~ ... X,.J 

X,, is of order n, X n,; X , ,  where i ~ j, is of order n, × n~. X ,  is the adjacency matrix 
of the s.c. component G,  If  the submatrix X,j, where i ~ 3 has m nonzero entries, then 
the m edges shown in X ,  are called parallel edges from the zth to the3th s.c. components. 
If there is a path (i, . . .  , k) of length greater than or equal to 2, and ( t  k) E E, then 
(i, k) is called a superfluous edge. 

A condensed digraph (see Berztiss [3]) is defined as: 

Y = 0, yl~, "", ylz 1 y~, 0, "", y~z 

: { 0 A '  Ly~l, yl~, " ' ' ,  

where y,, = 0 for all z, and y ,  = 1 for i ~ j if the submatrix X ,  ~ 0. 
The digraph G' with adjacency matrix Y is called a condensed digraph. Each s.c. 

component in G is represented by a vertex in G'. If  (i, k) is a superfluous edge in G ', then 
all the edges shown in X,~ are superfluous edges in G. 

3. Presentation of Results 

T]~ds section first deals with an MEG of two special classes of digraphs: acyclic and 
strongly connected. The two results are then used to find an MEG of a general class of 
digraphs. 

A. ACVCLIC DIGRAPHS. Moyles and Thompson's algorithm A4 is suitable for acyclic 
digraphs. However, it is too complicated to implement. I t  requires a maximum of up to 

.{_ ~,N-~i ( ~  - 1i)steps of computation and a very large computer storage area. N:' 

The following is a very simple algorithm to find an MEG of an acyclic digraph. In order 
to apply the algorithm, a path matrix P = [p,] is also required. The path matrix P can 
be found by using Warshall's algorithm [1]. 

THEOREM 1. Let X -- [x,] be the adjacency matrix of an acyclic d~graph. I f  p ,  = 1 
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and p~k -- 1, then x,~, the (% k)-th entry of X,  can be set to zero without affecting the reach- 
ability of the acyclie digraph. 

PROOF. I f  X,k is ini t ia l ly  zero, t hen  no edge is r emoved  if x,k is set to  zero. 
I f  x,k is ini t ial ly 1, t hen  there  is an  edge connect ing ~ and k. I f  p ,  = 1 and P~k = 1, 

then  there  exists a p a t h  from i to j and a pa th  from.7 to  k. I f  (i, k) is an  edge in the  p a t h  
f rom i to 3, t h e n  (k • • • j • • • k) forms a cycle, which is a contradict ion.  Similarly,  i t  can 
be shown tha t  (i, k) cannot  be an  edge in t he  pa th  f rom 3 to  k. 

Since p ,  = 1 and p~  = 1, the  edge (i, k) is a superfluous edge. Therefore  x,~ is set  to  
zero. 

ALGORITHM A1. Finding an MEG of an Acyclic Digraph 

(AC1) Initially set X ~- P. 
(AC2) Set j ~-- 1. 
(AC3) Set ~ *-- 1. 
(ACA) (a) If z ,  = 1. 

For all x~k = 1, set x,~ = 0, where k = 1, 2, 3, . . . ,  N. 
Go to AC5. 
(b) If x,~ = O, go to AC5 

(ACS) (Update ~) set i ~-- i q- 1. 
If ~ < N, go to ACA. Otherwise, go to AC6. 

(AC6) (Update 3) set j ¢- j T 1. 
If j ~ N, go to AC3. Otherwise go to ACT 

(ACT) Terminate the algorithm. 
X is the adjacency matrix of an MEG of an acyclie digraph. 

THEORE~t 2. I f  Algorithm A1 is applied to an acyclic digraph, then X is the adjacency 
matrix of an M E G  of an acyclic digraph. 

PROOF. I f  p ,  = 1 and  p~k = 1, t h e n  as a resul t  of Theorem 1, x,~ should be  set  to 
zero. Therefore  in s tep AC4 of Algor i thm A1, x,~ is set to  zero. 

Since X is init ial ly set to  P ,  af ter  Algor i thm A2 is applied, X migh t  no t  be  t h e  adjacency 
mat r ix  of an M E G .  I f  i t  is so, t hen  the  result ing digraph G mus t  conta in  a t  least  a super- 
fluous edge. Le t  H be a subgraph of G which contains  a superfluous edge. H is shown in 
F igure  1. Clear ly  the  edge (i, k) is superfluous. Le t  is = rain {/1, is, . - -  , i l l .  In i t ia l ly  
x,~ = 1 and x,,k = 1. T h e n  as a result  of Algor i thm A1, x,~ is set  to zero. Therefore  
the re  is no edge (i, k) af ter  Algor i thm A1 is applied, which is clearly a contradic t ion.  

Therefore  X m u s t  be  t he  adjacency mat r ix  of an  M E G  after  Algor i thm A1 is applied. 
Example  1, shown in F igure  2, i l lustrates Algor i thm A1. 

P = 

~ 1 1 1 1 1 -  

0 0 1 1 1 0  

0 0 0 1 0 0  

0 0 0 0 0 0  

0 0 1 1 0 0  

L O 1 1 1 1 0 J  

12 
h ~ ..... f~ 

Fia. 1. Subgraph H Fro. 2 Digraph G 
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Initially set X ~-- P. After Algorithm A1 is applied, X becomes 

"0 0 

o o 

o 0 
X =  

0 o 

o 0 1 

.0 1 0 

An MEG of the digraph is given in Figure 3. 

o 0 0 1  

0 0 1 0  

0 1 o 0  

0 0 o 0  

0 0 0  

0 0 0  

B. STRONGLY CONNECTED DIGRAPHS. Before presenting an algorithm for finding 
an MEG of an s.c. digraph, it is first shown that  Moyles and Thompson's Algorithm A2 
for finding an MEG of an s.c. digraph contains some mistakes. Example 2, shown in 
Figure 4, illustrates a case where Moyles and Thompson's Algorithm A2 cannot find an 
MEG of an s.c. digraph. 

A tree is constructed in Figure 5, and according to Moyles and Thompson's Algo- 
rithm A2, it is not certain which one of the following two sequences should be 
taken: {1-3-4-5-1, 1-2-3-6-1} or {1-3-4-5-1, 1-3-6-1-2}. In  either case, all the vertices 
are included. But in both cases, they are not MEGs. 

An MEG of the s.c. graph is given in Figure 6. 
']'he following steps present an algorithm for finding an MEG of an s.c. digraph. An 

acyclic subgraph G1 of G is first defined as: 
(1) Pick up any vertex of G which has an outgoing degree greater than or equal to 

the incoming degree and order it vertex 1. 
(2) Order all those vertices v which are adjacent from vertex 1, i.e. (1, v) C G as vertices 

2, 3, 4 , . . . .  
(3) Apply the same procedure as given in step (2) to every other vertex which has 

been ordered so far. I f  (b 3) E G and (3, i) ~ G where i > j, then the two orders i and 3 
can be interchanged. The idea is to make G1 contain as many edges of G as possible. 

6 5 4 

FIG. 3 MEG of digraph G 

I 

o l  

FIG. 5. Tree 

FIG. 4. Case where Moyles 
and Thompson's algorithm A2 
cannot find an MEG of a di- 

graph 

I 2 3 

FIG. 6. MEG of O 
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FIG. 8 Gt 

FIG 

3 4 
A = 

[ l l this path consists of 

p + q edges 

5 

9 O2 Fro. 10. Superfluous edge (i, j) 
and path between ~ and 3 

5 

I 

Fm 11. MEG of G3 FIG. 12. 03 = G2U G -  GI 

I t  can easily be seen tha t  G1 contains  all the  vert ices  of G and t h a t  G1 is a subgraph  
of G such t h a t  for all (i, 3) E G1, ~ < 3. I t  can easily be seen t h a t  G1 is aeyclic.  

F igure  8 shows an acyclic d igraph G1 which is obta ined  f rom an s.c. d igraph  G g iven  
in Figure  7. Define G2 to be an M E G  of'G1 which is ob ta ined  by removing  all t he  super- 
fluous edges of G1. G2 can be obta ined by applying Algor i thm A1. F igure  9 gives an  
example  of G2 which is an M E G  of the  digraph G1 given in F igure  8. 

I n  order  to  apply Algor i thm A2, i t  is assumed t h a t  (i, j )  is a superfluous edge and t h a t  
be tween  vert ices  i and.j  there is a pa th  which consists of p number  of edges f rom G - G1 
and q number  of edges from G2. Figure  10 shows the  superfluous edge (i, 3) as well as the  
pa th  be tween  i and j .  

ALGORITHM A2. Finding an MEG of an S C. Graph 

G3 is defined to be G2 U G - G1 
(SC1) Imtially set p = 1 and q = 1, where p and q are defined as shown in Figure 10 
(SC2) Use only p number of edges from G - G1 and q number of edges from G2; try to remove as 

many superfluous edges of G3 as posmble. 
After SC2 is exhausted, go to SC3. 
(SC3) (Update p) set p = p -Jr 1 

(a) If p _~ I G - G1 I, where I G - G1 { is the number of edges in G - G1, go to SC2. 
(b) I f p  > I G -  Gl l ,  go toSC4 

(SCA) (Update q) set q = q .-k 1. 
(a) I fq_~  [G2{ , se tp  = 1 and go toSC2. 
(b) Otherwise go to SC5. 

(SC5) Terminate the algorithm The resulting digraph G4 is an MEG of G. 

Figure  11 shows an M E G  of the  s.c. d igraph which is g iven  in F igure  7. G4 is obta ined 
by  apply ing  a lgor i thm A2 to the  d igraph G3 = G2 U G - G1. G3 is shown in F igure  12. 

C. AN M E G  OF A D m P ~ P m  Now Algor i thms A1 and A2 shall  be  used to  find an 
M E G  of a digraph.  I n  the  first place, all t he  s.c. components  shall be  found. 
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Algor i thm A3 presents  an  a lgor i thm to  par t i t ion  V into 1 subsets, i.e. V,, 1 < , < I. 
V, is the  set of all the  ver t ices  in t he  zth s.c. component .  Once the  par t i t ion  has  been  
accomplished,  the  set  of ver t ices  in V are  going to be  reordered such t h a t  all the  ver t ices  
in each V, are  to  be  ordered by  consecut ive  integers.  As a result ,  the  columns and rows 
of the  ad jacen t  ma t r ix  X are also to be  pe rmu ted  accordingly.  T h e  adjacency ma t r ix  X 
is therefore  represented as: 

I 
x~,, x , , ,  . . . ,  x , ,  1 

X~I, X~,  . . . ,  X2~| 
X ~ / 

k 11, Xu, " , Xu-.l 

where each X ,  is a submatr ix  of order n~ × nj. 

ALGORITHM A3 Finding All the S.C. Components of a Digraph 
For convenience of representation, we let X ( i ,  3) represent x,2 of matrix X and P(i ,  j )  represent P,3 
of matrix P S(1) represents the smallest element in the set S 
(PTI) ImtiMly S = {1, 2, 3, . . . ,  N} 

I ~-- 1, ROOT <-- 1, P R  ~ 1, J ~ ROOT -'t- 1, Vx ~- ROOT. 
(PT2) (a) If J E S,  X ( P R ,  J)  = 1, and P ( J ,  ROOT) = 1, then Vx ~-- {J} {J Vr and S ~-- S - {JJ. 

Set P R  ~ J ,  go to PT3 
(b) Otherwise go to PT3 

(PT3) (Update J )  J 6- J + 1 
I f J  < N, g o t o P T 2  
I f J  > N, g o t o P T 4  

(PT, t) (a) If S ~ ~ ,  then ROOT ~- S(1). 
I ~ I + 1, J ~ ROOT -b 1, Vx 6-- ROOT. 
PR ,-- ROOT 
go to PT2. 

(b) If S = ~ ,  go to PT5 
(PTS) Print out the contents of Vx, 1 < I < 1 

After  the  set of ver t ices  in each s.c. component  has been  found,  the  set  of ver t ices  V 
is to be reordered such t h a t  in each s.c. component ,  the  set of ver t ices  V,, 1 < i < l, 
is to be ordered by  consecut ive integers.  T h e  columns and rows of X are  to  be pe rmu ted  
accordingly.  

Algor i thm A2 is then  appl ied to each s.c. component  wi th  adjacency ma t r ix  X , ,  
where 1 < i < l. An  M E G  for each s.c. componen t  wi th  new X, ,  is therefore  obta ined.  

The  final step to be carried ou t  is to r emove  all the  superfluous edges and all the  
parallel  edges except  one in X , ,  where z ~ j .  This  can be easily implemen ted  by  using 
Algor i thm A4. 

ALGORITHM A4 Removing the Superfluous and the Parallel Edges 

(1) Construct the condensed digraph with adjacency matrix Y. Apply Algorithm A1 to the condensed 
digraph to remove all the superfluous edges 

(2) Set X ,  to 0, where 0 is a zero matrix of order n, X n~ if the corresponding y,~ is zero. 
(3) In each X,~, where Y,3 = 1 and * ~ 3, keep only one nonzero entry and reduce all the rest to zeros. 

Step (3) is to remove all the parallel edges. 
(4) Reconstruct the adjacency matrix X, where X,,, 1 < , _< l, is the new X,, which is obtained by 

applying Algorithm A2. The resulting X is the adjacency matrix of an MEG of the digraph. 
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