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ABsTRacT It s found that Moyles and Thompson’s algorithm contains some mistakes. An efficient
algorithm for finding a minimal equivalent graph (MEG) 1s presented The algorthm proceeds with
the following steps First, all the strongly connected (s ¢ ) components are found. Then the set of
vertices 15 reordered such that the set of vertices 1n an s ¢ component is ordered by consecutive
integers The rows and columns of the adjacency matrix are permuted accordingly Then an MEG
for each s ¢. component 1s found Finally, the parallel and the superfluous edges are removed
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1. Intreduction

This paper studies the problem of removing the maximum number of edges from a
digraph without affecting the reachability of the digraph. An algorithm for finding a
minimal equivalent graph (MEG) was first presented by Moyles and Thompson [1]. It
is found that their algorithm contains some mistakes and that it is not efficient.

This paper first discusses an MEG of an acyelic digraph and then an MEG of a strongly
connected (s.c.) digraph. These two results are then used to find an MEG of a digraph.
In order to find an MEG of a digraph, first all the s c. components are found, then the
set of vertices are reordered such that the set of vertices in an s ¢. component is always
ordered by consccutive integers. The rows and columns of an adjacency matrix are
permuted accordingly It is found that this will simplhfy the problem of removing the
parallel edges and the superfluous cdges.

The reader is advised to read Moyles and Thompson [1]. The terminology used in this
paper follows that in Moyles and Thompson [1] as nearly as possible.

2,  Preluninaries

Let G = (V, I/) be a digraph, where V 1s the set of all the vertices where | V| = N, and
E is the set of all the edges in G, where | E | = M. For all vertices v, and v, of G, if there
is an elementary path from v, to v,, it is said that v, R v,. All the paths in this paper refer
to clementary directed paths.

An s.c. digraph is one such that for all v, and v, € V, », Ry, and v, R v;. An acyclic
digraph is onc such that 1f », R v,, then », B v,. An acyclic digraph contains no eycles. The
following defines an NEG of a digraph.
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Let G° = (V, E°) be an MEG of the digraph G = (V, E; then the following conditions
nust be satisfied.

(1) Forallv,and v,in V, v, Rv,in G° if and only if v, R v, in G.

(2) E° is the smallest subset of E such that condition (1) is satisfied.

1t is quite obvious that there ean be more than one MEG. This paper presents an
algorithm to find one of the MEGs.

If the adjacency matrix X of a digraph @ is given, then the path matrix P can be easily
found by Warshall’s algorithm [2].

If a digraph contains ! s.c. components, then the set of vertices V can be partitioned
into [ subsets,i.e. V= V; UV, U -.- UV, where V.11V, = & fori # jand | V.| =
n.. Some V., might have only one vertex. The problem of finding the set of all the s.c.
components is exactly the same as partitioning the set of vertices V into ! subsets.

An s.c. component is defined as G, = (V,, V., X V, N E).

If the set of vertices are reordered such that in each s.c. component the set of vertices
are ordered by consecutive integers, and the rows and columns of adjacency matrix X
are permuted accordingly, then X can be partitioned into submatrices as:

Xll XlZ et Xl‘
X = Xn X - Xu '
Xu X --- Xun

X.. is of order n, X n,; X,,;, where ¢ # 3, is of order n, X n,. X..is the adjacency matrix
of the s.c. component G.. If the submatrix X,,, where 7 5 7 has m nonzero entries, then
the m edges shown in X,, are called parallel edges from the sth to the jth s.c. components.
If there is a path (7, -- -, k) of length greater than or equal to 2, and (s, k) € E, then
(7, k) is called a superfluous edge.

A condensed digraph (see Berztiss [3]) is defined as:

o, Yiz, --*, Yu
Yu, 0, oo, ym

Y = ,
Yu, Yz, -0y 0

where ¥.. = 0 for all 7, and y,, = 1 for 7 # j if the submatrix X,, # 0.

The digraph G’ with adjacency matrix Y is called a condensed digraph. Each s.c.
component in @ is represented by a vertex in G’. If (7, k) is a superfluous edge in G’, then
all the edges shown in X, are superfluous edges in G.

3. Presentation of Results

This section first deals with an MEG of two special classes of digraphs: acyclic and
strongly connected. The two results are then used to find an MEG of a general class of
digraphs.

A. Acvcuic Dicrapus. Moyles and Thompson’s algorithm A4 is suitable for acyclic
digraphs. However, it is too complicated to implement. It requires a maximum of up to

Nt 4 > (% : lz> steps of computation and a very large computer storage area.

The following is a very simple algorithm to find an MEG of an acyclic digraph. In order
to apply the algorithm, a path matrix P = [p,,] is also required. The path matrix P can
be found by using Warshall’s algorithm [1].

Tareorem 1. Let X = [z,,] be the adjacency mairiz of an acyclic digraph. If p,, = 1
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and py = 1, then z., the (1, k)-th entry of X, can be set to zero without affecting the reach-
ability of the acyclic digraph.

Proor. If z, is initially zero, then no edge is removed if . is set to zero.

If . is initially 1, then there is an edge connecting 2 and k. If p,, = 1 and py = 1,
then there exists a path from ¢ to 7 and a path from j to k. If (, k) is an edge in the path
from ¢ to 7, then (k --- 7 - -+ k) forms a cycle, which is a contradiction. Similarly, it ean
be shown that (7, k) cannot be an edge in the path from j to k.

Since p., = 1 and p,; = 1, the edge (¢, k) is a superfluous edge. Therefore x.; is set to
2Zero.

ALGORITHM Al. Finding an MEG of an Acyclic Digraph

(AC1) Initially set X « P.
(AC2) Set j « 1.
(AC3) Set 2 « 1.
(AC4) (a) I z,, = 1.

Forall z,, = 1,set 2., = 0, where k = 1,2,3, ---, N.

Go to AC5.

(b) If z,; = 0, go to AC5
(AC5) (Update 1) set 7 « 1 + 1.

If 1 < N, go to AC4. Otherwise, go to AC6.
(AC6) (Update ) setj «— g+ 1.

If j £ N, go to AC3. Otherwise go to AC7
(AC7) Termunate the algorithm.

X is the adjacency matrix of an MEG of an acyclic digraph.

TrEOREM 2. If Algorithm A1 is applied to an acyclic digraph, then X is the adjacency
matriz of an MEG of an acyclic digraph.

Proor. If p,, = 1 and p, = 1, then as a result of Theorem 1, ., should be set to
zero. Therefore in step AC4 of Algorithm Al, z,; is set to zero.

Since X is initially set to P, after Algorithm A2 is applied, X might not be the adjacency
matrix of an MEG. If it is so, then the resulting digraph G must contain at least a super-
fluous edge. Let H be a subgraph of G which contains a superfluous edge. H is shown in
Figure 1. Clearly the edge (¢, k) is superfluous. Let ¢, = min {7, 72, - - -, 7;}. Initially
%., = 1 and 2, = 1. Then as a result of Algorithm Al, . is set to zero. Therefore
there is no edge (¢, k) after Algorithm Al is applied, which is clearly a contradiction.

Therefore X must be the adjacency matrix of an MEG after Algorithm A1 is applied.

Example 1, shown in Figure 2, illustrates Algorithm Al.

m 1111 17
001110
000100
0000O0OO0 .

001100

0 1111 0

Fic. 1. Subgraph H Fre. 2 Digraph G
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Initially set X «— P. After Algorithm Al is applied, X becomes

M 00 0 0 I

000010

6 00100

0 1 0 0 0 0!

An MEG of the digraph is given in Figure 3.

B. SrtronGLy CoNNECTED DIGraPHs. Before presenting an algorithm for finding
an MEG of an s.c. digraph, it is first shown that Moyles and Thompson’s Algorithm A2
for finding an MEG of an s.c. digraph contains some mistakes. Example 2, shown in
Figure 4, illustrates a case where Moyles and Thompson’s Algorithm A2 cannot find an
MEG of an s.c. digraph.

A tree is constructed in Figure 5, and according to Moyles and Thompson’s Algo-
rithm A2, it is not certain which one of the following two sequences should be
taken: {1-3-4-5-1, 1-2-3-6-1} or {1-3-4-5-1, 1-3-6-1-2}. In either case, all the vertices
are included. But in both cases, they are not MEGs.

An MEG of the s.c. graph is given in Figure 6.

The following steps present an algorithm for finding an MEG of an s.c. digraph. An
acyclic subgraph G1 of G is first defined as:

(1) Pick up any vertex of G which has an outgoing degree greater than or equal to
the incoming degree and order it vertex 1.

{(2) Order all those vertices v which are adjacent from vertex 1, i.e. (1,v) € @ as vertices
2,3,4,....

(3) Apply the same procedure as given in step (2) to every other vertex which has
been ordered so far. If (3, 7) € G and (), 7) § G where ¢ > j, then the two orders 7 and
can be interchanged. The idea is to make G1 contain as many edges of G as possible.

6 5 4
5 4
J 2 3 6
Fic. 3 MEQG of digraph ¢ Fic. 4. Case where Moyles

and Thompson’s algorithm A2
cannot find an MEG of a di-
graph

| 2 3

6
Fig. 5. Tree Fig. 6. MEG of G
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2 3 4
2 3 4
i 5 6
i 5 6
File 7 @ Fre. 8 Q1
2 3 q
this path consists of
/ p + q edges
6 ' h !
‘ 5
Fic 9 G2 Fic. 10. Superfluous edge (2, 7)
and path between 2 and J
2 3 4 2 3
'y
5
| 5 6
| N 6
Fic 11. MEG of G3 Fic.12. G3 = 2U G - G1

It can easily be seen that G1 contains all the vertices of G and that G1 is a subgraph
of @ such that for all (z, 5) € G1, @ < ;. It can easily be seen that G1 is acyclic.

Figure 8 shows an acyclic digraph G1 which is obtained from an s.c. digraph ¢ given
in Figure 7. Define G2 to be an MEG of G1 which is obtained by removing all the super-
fluous edges of G1. G2 can be obtained by applying Algorithm Al. Figure 9 gives an
example of G2 which is an MEG of the digraph G1 given in Figure 8.

In order to apply Algorithm A2, it is assumed that (Z, j) is a superfluous edge and that
between vertices 7 and 7 there is a path which consists of » number of edges from G — G1
and ¢ number of edges from G2. Figure 10 shows the superfluous edge (¢, 7) as well as the
path between ¢ and j.

ALGORITHM A2. Finding an MEG of an 8 C. Graph
G3 is defined to be G2 UG — GL

(SC1) Imtially set » = 1 and ¢ = 1, where p and ¢ are defined as shown in Figure 10

(SC2) Use only p number of edges from G —~ G1 and ¢ number of edges from G2; try to remove as
many superfluous edges of G3 as possible.

After SC2 is exhausted, go to SC3.

(SC3) (Update p)setp =p + 1
(a) If p < |@ —~ Q1 |, where | @ —~ G1 | is the number of edges in @ — G1, go to SC2.
b)Ifp>|G@— G gotoSC4

(8C4) (Update ¢) set ¢ = ¢ + 1.
(a) If ¢ < | G2 |, set p = 1 and go to SC2.
(b) Otherwise go to SC5.

(8C5) Terminate the algorithm The resulting digraph G4 is an MEG of G.

Figure 11 shows an MEG of the s.c. digraph which is given in Figure 7. G4 is obtained
by applying algorithm A2 to the digraph G3 = G2 U G — G1. G3 is shown in Figure 12.

C. AN MEG oF a Digrary. Now Algorithms Al and A2 shall be used to find an
MEG of a digraph. In the first place, all the s.c. components shall be found.



16 HARRY T. HSU

Algorithm A3 presents an algorithm to partition V into ! subsets, ie. V,, 1 < ¢ < L.
V. is the set of all the vertices in the +th s.c. component. Once the partition has been
accomplished, the set of vertices in V are going to be reordered such that all the vertices
in each V., are to be ordered by consecutive integers. As a result, the columns and rows
of the adjacent matrix X are also to be permuted accordingly. The adjacency matrix X
is therefore represented as:

Xu, X, -, Xu

X, Xo, -, Xu
X = ,

Xu, Xu, -, Xu

where each X, is a submatrix of order n, X n,.

ALGORITHM A3 TFinding A}l the 8.C. Components of a Digraph

For convenience of representation, we let X (2, 7) represent z., of matrix X and P (%, j) represent p,,
of matrix P S(1) represents the smallest element in the set S
(PT1) Imtially S = {1,2,3, ---, N}
I <1, ROOT « 1, PR «1,J « ROOT + 1, V; « ROOT.
(PT2) (@) IfJ € S,X(PR,J) = 1,and P(J, ROOT) = 1, then Vi~ {J} UVrand S« 8 — {J}.
Set PR « J, go to PT3
(b) Otherwise go to PT3
(PT3) (Update J) J —J + 1
If J < N, go to PT2
If J > N, go to PT4
(PT4) (a) If 8 = &, then ROOT « S(1).
Ie~71+1,J«ROOT+ 1, V;« ROOT.
PR — ROOT
go to PT2.
) If S = &, go to PTH
(PT5) Print out the contents of V;, 1 < I <1

After the set of vertices in each s.c. component has been found, the set of vertices V
is to be reordered such that in each s.c. component, the set of vertices V,, 1 < ¢ < I,
is to be ordered by consecutive integers. The columns and rows of X are to be permuted
accordingly.

Algorithm A2 is then applied to each s.c. component with adjacency matrix X,.,
where 1 < 7 < I. An MEG for each s.c. component with new X,, is therefore obtained.

The final step to be carried out is to remove all the superfluous edges and all the
parallel edges except one in X,;, where v 5 j. This can be easily implemented by using
Algorithm A4.

ALGORITHM A4 Removing the Superfluous and the Parallel Edges

(1) Construet the condensed digraph with adjacency matrix Y. Apply Algorithm Al to the condensed
digraph to remove all the superfluous edges

(2) Set X,, to 0, where 0 is a zero matrix of order n, X =, if the corresponding y,, is zero.

(3) Ineach X,,, where y,, = 1 and 2 # ), keep only one nonzero entry and reduce all the rest to zeros.
Step (3) 18 to remove all the parallel edges.

(4) Reconstruct the adjacency matrix X, where X,,, 1 £ 2 < [, is the new X,, which is obtained by
applying Algorithm A2. The resulting X is the adjacency matrx of an MEG of the digraph.
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