
An Algorithm for Finding a Minimal Equivalent

Graph of a Digraph

H A R R Y T. H S U

Colorado Slate Unwcrs~ty, Fo~ t Collins, Colorado

ABSTRACT It lS found that Moyles and Thompson's algorithm contains some mistakes. An efficmnt
algorLthm for finding a mlmmal eqmvalent graph (MEG) is presented The algorithm proceeds with
the following steps First, all the strongly connected (s c) components are found. Then the set of
vertmes is reordered such that the set of vertices in an s c component is ordered by consecutive
integers The rows and columns of the adjacency matrix are permuted accordingly Then an MEG
for each s c. component is found Finally, the parallel and the superfluous edges are removed

KEY WORDS AND PHRASES' digraph, algorithm, minimal equivalent graph, adjacency matrix, acychc
digraph, condensed digraph

CR CATLGORILS' 5 32

1. Introductzw~

This paper studies the problem of removing the max imum number of edges f rom a
digraph wi thou t affecting the reaehabfl i ty of t he digraph. An a lgor i thm for finding a
mimmal equiva len t graph (M E G) was first presented by Moyles and T h o m p s o n [1]. I t
is found tha t their a lgor i thm contains some mistakes and tha t i t is no t efficient.

This paper first discusses an M E G of an acyclie digraph and then an M E G of a s t rongly
connected (s.c.) digraph. These two results are then used to find an M E G of a digraph.
In order to find an M E G of a digraph, first all the s c. components are found, t hen the
set of ver t ices are reordered such t h a t t he set of ver t ices in an s c. componen t is a lways
ordered by consecut ive integers. The rows and columns of an adjacency ma t r ix are
pe rmuted accordingly I t is found t h a t this will s imphfy the problem of removing the
parallel edges and the superfluous edges.

The reader is advised to read Moyles and Thompson [1]. The te rminology used in this
paper follows tha t in Moyles and Thompson [1] as nearly as possible.

2. Prelzminaries

Let G = (V, E) be a digraph, where V as the set of all the vert ices where [V I = N, and
E is the set of all the edges in G, where I E I = M. For M1 vert ices v, and v~ of G, if there
is an e lementary pa th f rom v, to v~, i t is said tha t v, R v~. All the pa ths in this paper refer
to e lementa ry directed paths.

An s.c. d igraph is one such t h a t for all v, and v~ E V, v, R vj and v, R re. An acyclic
digraph is one such tha t if v, R v,, then vj,R v,. An acyclic digraph contains no cycles. The
following defines an M E G of a digraph.

Copyright © 1975, Assoclatlon for Computing Machinery, Inc General permission to repubhsh,
but not for profit, all or part of tins material ~s granted provided that ACM's copyright notice ~s
given and that reference is made to the pubhcatmn, to ItS date of issue, and to the fact that reprinting
prlwleges were granted by permlssmn of the Assocmtmn for Computing Machinery
This research was supported m part by a Colorado State Umverslty faculty research grant
Author's address Department of Computer Science, Colorado State Umverslty, Fort Colhns, CO
80521

Journal of the Assoclatlon for Computing Machinery, Vol 22, No. 1, January 1975, pp 11-16

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321864.321866&domain=pdf&date_stamp=1975-01-01

12 HARRY T. HSU

Let G ° -- (V, E °) be an MEG of the digraph G = (V, E); then the following conditions
must be satisfied.

(1) For all v, and vj in V, v, R v~ in G ° if and only if v, R v~ in G.
(2) E ° is the smallest subset of E such that condition (1) is satisfied.
I t is quite obvious that there can be more than one MEG. This paper presents an

algorithm to find one of the MEGs.
I f the adjacency matrix X of a digraph G is given, then the path matrix P can be easily

found by Warshall's algorithm [2].
If a digraph contains 1 s.c. components, then the set of vertices V can be partitioned

intolsubsets, i . e . V = V 1 U V 2 U . " (JVl, whereV, NV~ = ~ f o r i ~ j a n d [V ~ [=
n,. Some V~ might have only one vertex. The problem of finding the set of all the s.c.
components is exactly the same as partitioning the set of vertices V into l subsets.

An s.c. component is defined as G~ = (V,, V~ X V, N E).
If the set of vertices are reordered such that in each s.c. component the set of vertices

are ordered by consecutive integers, and the rows and columns of adjacency matrix X
are permuted accordingly, then X can be partitioned into submatrices as:

[XH X~, ... X,,]
x = / X ' ~ X,, -.. X,,]_

l.Xn X,~ ... X,.J

X,, is of order n, X n,; X , , where i ~ j, is of order n, × n~. X , is the adjacency matrix
of the s.c. component G, If the submatrix X,j, where i ~ 3 has m nonzero entries, then
the m edges shown in X , are called parallel edges from the zth to the3th s.c. components.
If there is a path (i, . . . , k) of length greater than or equal to 2, and (t k) E E, then
(i, k) is called a superfluous edge.

A condensed digraph (see Berztiss [3]) is defined as:

Y = 0, yl~, "", ylz 1 y~, 0, "", y~z

: { 0 A ' Ly~l, yl~, " ' ' ,

where y,, = 0 for all z, and y , = 1 for i ~ j if the submatrix X , ~ 0.
The digraph G' with adjacency matrix Y is called a condensed digraph. Each s.c.

component in G is represented by a vertex in G'. If (i, k) is a superfluous edge in G ', then
all the edges shown in X,~ are superfluous edges in G.

3. Presentation of Results

T]~ds section first deals with an MEG of two special classes of digraphs: acyclic and
strongly connected. The two results are then used to find an MEG of a general class of
digraphs.

A. ACVCLIC DIGRAPHS. Moyles and Thompson's algorithm A4 is suitable for acyclic
digraphs. However, it is too complicated to implement. I t requires a maximum of up to

.{_ ~,N-~i (~ - 1i)steps of computation and a very large computer storage area. N:'

The following is a very simple algorithm to find an MEG of an acyclic digraph. In order
to apply the algorithm, a path matrix P = [p,] is also required. The path matrix P can
be found by using Warshall's algorithm [1].

THEOREM 1. Let X -- [x,] be the adjacency matrix of an acyclic d~graph. I f p , = 1

A n Algorithm for Finding a Minimal Equivalent Graph of a Digraph 13

and p~k -- 1, then x,~, the (% k)-th entry of X, can be set to zero without affecting the reach-
ability of the acyclie digraph.

PROOF. I f X,k is ini t ia l ly zero, t hen no edge is r emoved if x,k is set to zero.
I f x,k is ini t ial ly 1, t hen there is an edge connect ing ~ and k. I f p , = 1 and P~k = 1,

then there exists a p a t h from i to j and a pa th from.7 to k. I f (i, k) is an edge in the p a t h
f rom i to 3, t h e n (k • • • j • • • k) forms a cycle, which is a contradict ion. Similarly, i t can
be shown tha t (i, k) cannot be an edge in t he pa th f rom 3 to k.

Since p , = 1 and p~ = 1, the edge (i, k) is a superfluous edge. Therefore x,~ is set to
zero.

ALGORITHM A1. Finding an MEG of an Acyclic Digraph

(AC1) Initially set X ~- P.
(AC2) Set j ~-- 1.
(AC3) Set ~ *-- 1.
(ACA) (a) If z , = 1.

For all x~k = 1, set x,~ = 0, where k = 1, 2, 3, . . . , N.
Go to AC5.
(b) If x,~ = O, go to AC5

(ACS) (Update ~) set i ~-- i q- 1.
If ~ < N, go to ACA. Otherwise, go to AC6.

(AC6) (Update 3) set j ¢- j T 1.
If j ~ N, go to AC3. Otherwise go to ACT

(ACT) Terminate the algorithm.
X is the adjacency matrix of an MEG of an acyclie digraph.

THEORE~t 2. I f Algorithm A1 is applied to an acyclic digraph, then X is the adjacency
matrix of an M E G of an acyclic digraph.

PROOF. I f p , = 1 and p~k = 1, t h e n as a resul t of Theorem 1, x,~ should be set to
zero. Therefore in s tep AC4 of Algor i thm A1, x,~ is set to zero.

Since X is init ial ly set to P , af ter Algor i thm A2 is applied, X migh t no t be t h e adjacency
mat r ix of an M E G . I f i t is so, t hen the result ing digraph G mus t conta in a t least a super-
fluous edge. Le t H be a subgraph of G which contains a superfluous edge. H is shown in
F igure 1. Clear ly the edge (i, k) is superfluous. Le t is = rain {/1, is, . - - , i l l . In i t ia l ly
x,~ = 1 and x,,k = 1. T h e n as a result of Algor i thm A1, x,~ is set to zero. Therefore
the re is no edge (i, k) af ter Algor i thm A1 is applied, which is clearly a contradic t ion.

Therefore X m u s t be t he adjacency mat r ix of an M E G after Algor i thm A1 is applied.
Example 1, shown in F igure 2, i l lustrates Algor i thm A1.

P =

~ 1 1 1 1 1 -

0 0 1 1 1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 1 1 0 0

L O 1 1 1 1 0 J

12
h ~ f~

Fia. 1. Subgraph H Fro. 2 Digraph G

14 ~R~Y T. ~sv

Initially set X ~-- P. After Algorithm A1 is applied, X becomes

"0 0

o o

o 0
X =

0 o

o 0 1

.0 1 0

An MEG of the digraph is given in Figure 3.

o 0 0 1

0 0 1 0

0 1 o 0

0 0 o 0

0 0 0

0 0 0

B. STRONGLY CONNECTED DIGRAPHS. Before presenting an algorithm for finding
an MEG of an s.c. digraph, it is first shown that Moyles and Thompson's Algorithm A2
for finding an MEG of an s.c. digraph contains some mistakes. Example 2, shown in
Figure 4, illustrates a case where Moyles and Thompson's Algorithm A2 cannot find an
MEG of an s.c. digraph.

A tree is constructed in Figure 5, and according to Moyles and Thompson's Algo-
rithm A2, it is not certain which one of the following two sequences should be
taken: {1-3-4-5-1, 1-2-3-6-1} or {1-3-4-5-1, 1-3-6-1-2}. In either case, all the vertices
are included. But in both cases, they are not MEGs.

An MEG of the s.c. graph is given in Figure 6.
']'he following steps present an algorithm for finding an MEG of an s.c. digraph. An

acyclic subgraph G1 of G is first defined as:
(1) Pick up any vertex of G which has an outgoing degree greater than or equal to

the incoming degree and order it vertex 1.
(2) Order all those vertices v which are adjacent from vertex 1, i.e. (1, v) C G as vertices

2, 3, 4 ,
(3) Apply the same procedure as given in step (2) to every other vertex which has

been ordered so far. I f (b 3) E G and (3, i) ~ G where i > j, then the two orders i and 3
can be interchanged. The idea is to make G1 contain as many edges of G as possible.

6 5 4

FIG. 3 MEG of digraph G

I

o l

FIG. 5. Tree

FIG. 4. Case where Moyles
and Thompson's algorithm A2
cannot find an MEG of a di-

graph

I 2 3

FIG. 6. MEG of O

An Algorithm for Finding a Minimal Equivalent Graph of a Digraph 15

4

Fxo 7 G
{ 5 6

FIG. 8 Gt

FIG

3 4
A =

[l l this path consists of

p + q edges

5

9 O2 Fro. 10. Superfluous edge (i, j)
and path between ~ and 3

5

I

Fm 11. MEG of G3 FIG. 12. 03 = G2U G - GI

I t can easily be seen tha t G1 contains all the vert ices of G and t h a t G1 is a subgraph
of G such t h a t for all (i, 3) E G1, ~ < 3. I t can easily be seen t h a t G1 is aeyclic.

F igure 8 shows an acyclic d igraph G1 which is obta ined f rom an s.c. d igraph G g iven
in Figure 7. Define G2 to be an M E G of'G1 which is ob ta ined by removing all t he super-
fluous edges of G1. G2 can be obta ined by applying Algor i thm A1. F igure 9 gives an
example of G2 which is an M E G of the digraph G1 given in F igure 8.

I n order to apply Algor i thm A2, i t is assumed t h a t (i, j) is a superfluous edge and t h a t
be tween vert ices i and.j there is a pa th which consists of p number of edges f rom G - G1
and q number of edges from G2. Figure 10 shows the superfluous edge (i, 3) as well as the
pa th be tween i and j .

ALGORITHM A2. Finding an MEG of an S C. Graph

G3 is defined to be G2 U G - G1
(SC1) Imtially set p = 1 and q = 1, where p and q are defined as shown in Figure 10
(SC2) Use only p number of edges from G - G1 and q number of edges from G2; try to remove as

many superfluous edges of G3 as posmble.
After SC2 is exhausted, go to SC3.
(SC3) (Update p) set p = p -Jr 1

(a) If p _~ I G - G1 I, where I G - G1 { is the number of edges in G - G1, go to SC2.
(b) I f p > I G - Gl l , go toSC4

(SCA) (Update q) set q = q .-k 1.
(a) I fq_~ [G2{ , se tp = 1 and go toSC2.
(b) Otherwise go to SC5.

(SC5) Terminate the algorithm The resulting digraph G4 is an MEG of G.

Figure 11 shows an M E G of the s.c. d igraph which is g iven in F igure 7. G4 is obta ined
by apply ing a lgor i thm A2 to the d igraph G3 = G2 U G - G1. G3 is shown in F igure 12.

C. AN M E G OF A D m P ~ P m Now Algor i thms A1 and A2 shall be used to find an
M E G of a digraph. I n the first place, all t he s.c. components shall be found.

16 HARRY T. HSU

Algor i thm A3 presents an a lgor i thm to par t i t ion V into 1 subsets, i.e. V,, 1 < , < I.
V, is the set of all the ver t ices in t he zth s.c. component . Once the par t i t ion has been
accomplished, the set of ver t ices in V are going to be reordered such t h a t all the ver t ices
in each V, are to be ordered by consecut ive integers. As a result , the columns and rows
of the ad jacen t ma t r ix X are also to be pe rmu ted accordingly. T h e adjacency ma t r ix X
is therefore represented as:

I
x~,, x , , , . . . , x , , 1

X~I, X~, . . . , X2~|
X ~ /

k 11, Xu, " , Xu-.l

where each X , is a submatr ix of order n~ × nj.

ALGORITHM A3 Finding All the S.C. Components of a Digraph
For convenience of representation, we let X (i , 3) represent x,2 of matrix X and P(i , j) represent P,3
of matrix P S(1) represents the smallest element in the set S
(PTI) ImtiMly S = {1, 2, 3, . . . , N}

I ~-- 1, ROOT <-- 1, P R ~ 1, J ~ ROOT -'t- 1, Vx ~- ROOT.
(PT2) (a) If J E S, X (P R , J) = 1, and P (J , ROOT) = 1, then Vx ~-- {J} {J Vr and S ~-- S - {JJ.

Set P R ~ J , go to PT3
(b) Otherwise go to PT3

(PT3) (Update J) J 6- J + 1
I f J < N, g o t o P T 2
I f J > N, g o t o P T 4

(PT, t) (a) If S ~ ~ , then ROOT ~- S(1).
I ~ I + 1, J ~ ROOT -b 1, Vx 6-- ROOT.
PR ,-- ROOT
go to PT2.

(b) If S = ~ , go to PT5
(PTS) Print out the contents of Vx, 1 < I < 1

After the set of ver t ices in each s.c. component has been found, the set of ver t ices V
is to be reordered such t h a t in each s.c. component , the set of ver t ices V,, 1 < i < l,
is to be ordered by consecut ive integers. T h e columns and rows of X are to be pe rmu ted
accordingly.

Algor i thm A2 is then appl ied to each s.c. component wi th adjacency ma t r ix X , ,
where 1 < i < l. An M E G for each s.c. componen t wi th new X, , is therefore obta ined.

The final step to be carried ou t is to r emove all the superfluous edges and all the
parallel edges except one in X , , where z ~ j . This can be easily implemen ted by using
Algor i thm A4.

ALGORITHM A4 Removing the Superfluous and the Parallel Edges

(1) Construct the condensed digraph with adjacency matrix Y. Apply Algorithm A1 to the condensed
digraph to remove all the superfluous edges

(2) Set X , to 0, where 0 is a zero matrix of order n, X n~ if the corresponding y,~ is zero.
(3) In each X,~, where Y,3 = 1 and * ~ 3, keep only one nonzero entry and reduce all the rest to zeros.

Step (3) is to remove all the parallel edges.
(4) Reconstruct the adjacency matrix X, where X,,, 1 < , _< l, is the new X,, which is obtained by

applying Algorithm A2. The resulting X is the adjacency matrix of an MEG of the digraph.

REFERENCES

1 MOYLES, D M,, AND THOMPSON, G. L An algori thm for finding a minimal equivalent graph of
a digraph J A C M 16, 3 (July 1969), 455-460.

2. WAaSHALL, S. A theorem on Boolean matrices J. A C M 9 (Jan. 1962), 11-12.
3 B~RZTISS, A T Data Structures. Academic Press, New York, 1971.

RECEtVED APRIL 1973; REVISED JULY 1974

Journal of the Assocmtlon for Computtng Machinery, Vol 22, No 1, January 1975

