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Real-Time Middleware for Cyber-Physical Event Processing

CHAO WANG, CHRISTOPHER GILL, and CHENYANG LU, Washington University in St. Louis

Cyber-physical systems (CPS) involve tight integration of cyber (computation) and physical domains, and

both the effectiveness and correctness of a cyber-physical system application may rely on successful enforce-

ment of constraints such as bounded latency and temporal validity subject to physical conditions. For many

such systems (e.g., edge computing in the Industrial Internet of Things), it is desirable to enforce such con-

straints within a common middleware service (e.g., during event processing). In this article, we introduce

CPEP, a new real-time middleware for cyber-physical event processing, with (1) extensible support for com-

plex event processing operations, (2) execution prioritization and sharing, (3) enforcement of time consistency

with load shedding, and (4) efficient memory management and concurrent data processing. We present the de-

sign, implementation, and empirical evaluation of CPEP and show that it can (1) support complex operations

needed by many applications, (2) schedule data processing according to consumers’ priority levels, (3) enforce

temporal validity, and (4) reduce processing delay and improve throughput of time-consistent events.
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1 INTRODUCTION

Real-time event processing is essential for cyber-physical systems (CPS), such as Industrial Internet

of Things [8, 9, 23] systems, which must perform operations on sensor data carried by events and

must respond to stimuli with quick and correct actions (e.g., in milliseconds [21, 22]). For example,

smart electric grid applications require latency to be less than 50ms, and processing operations are

conducted near the edge of the network to the extent possible [22].

Multi-sensor fusion is required by many real applications, such as position estimation, obstacle

detection, and object tracking [7, 29, 31, 33]. By synthesizing data supplied by different sensors,

multi-sensor fusion offers subscribers a more cohesive and reliable assessment of the environment.

Such processing is typically multi-stage. For example, data from sensors (event suppliers) is first
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Fig. 1. Cyber-physical event processing.

passed through one or more filters for noise reduction, then a Fast Fourier Transform (FFT) is

applied to the result to obtain frequency domain representations. Results from different processing

streams are then combined, producing an event that represents a broader-spectrum assessment for

applications (event consumers).

Real-time cyber-physical event processing must support configurable complex operations, meet

applications’ latency requirements, enforce temporal validity of events, and leverage multi-core

platforms, as Figure 1 illustrates. First, applications often perform simple common operations (e.g.,

FFT) and complex operations that may be realized by combining other common operations (e.g., a

multi-sensor fusion realized by filters, FFTs). Second, a cyber-physical system must accommodate

applications’ different latency requirements, and should allow applications to share processing and

data. Duplicating complex operations (or even portions of them) across application features wastes

both communication bandwidth and computational resources, and re-implementing such opera-

tions for each application may unnecessarily increase software complexity and decrease software

reliability. Third, cyber-physical applications are often subject to temporal validity constraints. For

example, for automotive driving features such as adaptive cruise control, where data from sensors

are fused to provide range estimates, the relevance of each sensor reading may decrease over time,

and outdated data should be discarded. Finally, to better serve the needs of real-time edge com-

puting [23], an event processing service must efficiently work with streams of events in terms of

memory allocation and throughput.

To address these needs, in this article we introduce CPEP, a real-time middleware for cyber-

physical event processing, with the following four features: (1)configurable processing operations

integrate both simple and complex event processing; (2) processing prioritization and sharing en-

sure that higher-priority events are processed first and reduce the likelihood of starvation of lower-

priority ones; (3) enforcement of temporal validity and shedding maintains temporal validity con-

straints, identifying and removing outdated data; and (4) efficient concurrent processing minimizes

memory allocation for events and can scale up throughput with the number of CPU cores.

We implemented CPEP within TAO, a mature and widely used open source middleware [18, 30],

by adding the preceding capabilities. We compared CPEP with the Apache Flink stream processing

platform [1], and our empirical results show that CPEP can (through prioritization) better prevent

higher-priority processing from incurring unnecessary delay, (through operation sharing) help

reduce latency of lower-priority processing, and (through shedding) improve throughput of time-

consistent events.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 29. Publication date: August 2019.



Real-Time Middleware for Cyber-Physical Event Processing 29:3

2 RELATED WORK

Cyber-physical event processing is an essential part of modern Industrial Internet-of-Things ar-

chitectures [20], and in many use cases [9, 23] it is critical to minimize the time it takes to respond

to stimuli. To this end, both messaging middleware (e.g., Kafka [25]) and the Data Distribution Ser-

vice (DDS [15]) have been deployed. Kafka provides fault tolerance and load balancing for delivery

of time-stamped log messages, and provides an interface for implementing message processing,

but does not differentiate messages according to consumers’ priority levels. DDS provides QoS

options for data (event) delivery but does not process events. In contrast, CPEP both differentiates

messages according to consumers’ priority levels and processes events subject to time consistency.

Apache Flink is an open source stream processing framework featuring high throughput, low

latency event processing and windowing, and fault tolerance [1]. The Flink framework accepts

multiple event streams and performs stream transformations according to a plan. The results are

new event streams, which in turn can be used for further transformations or be delivered to event

subscribers. Flink supports a distributed runtime environment, where JobManagers (masters) re-

ceive the processing plans from clients and then distribute them to TaskManagers (workers) for

execution. Windowing in Flink is either time driven (e.g., every 30 seconds) or event driven (e.g.,

every 100 events) and is typically used for event aggregation. Flink does not support absolute and

relative time consistency enforcement, both of which are critical to real-time cyber-physical event

processing, nor does it differentiate stream processing. In contrast, CPEP supports both types of

time consistency enforcement and can prioritize stream processing.

Time consistency has been studied in real-time databases [32, 35], where absolute time consis-

tency means that the datum being used by a transaction still carries a timely measurement, and

relative time consistency means that the data being used by a transaction are updated within a spec-

ified time interval [32]. In our CPEP architecture, we extend the definition of time consistency for

real-time cyber-physical event processing, and provide a design and implementation to enforce

time consistency and to shed invalid work.

Time consistency is needed by many real-world applications. For example, a fire detection sys-

tem may deploy a rule that triggers an alarm when both smoke and a high temperature occur

within a certain time interval [3]; in modern automotive systems, conflicting commands sent to

the same set of actuators (e.g., throttle actuator and/or brake actuator) within a certain time in-

terval may cause unsafe interactions [6]. Juarez Dominguez et al. [6] also surveyed other feature

interactions in embedded systems.

In social network analysis [16], the popularity of a post, as well as the size of the involved

community, is determined by scores that decrease over time. Although social network analysis is

typically conducted at the scale of seconds or even hours, in our CPEP middleware we enforce

time consistency at scales as fine as milliseconds, a resolution required by many cyber-physical

applications. The field of Complex Event Processing (CEP) [27] offers rich semantics for expressing

stimuli using sets of events [4, 24]. GraphCEP [28] processes events for social network analysis, and

implements timetables for updating the ranking of posts and comments according to the progress

of time. GraphCEP maintains time consistency (at the timescale of hours and seconds) but does

not share computation among processing streams. In contrast, CPEP maintains time consistency

at the timescale of milliseconds and supports sharing of computation between processing streams.

3 CYBER-PHYSICAL EVENT-PROCESSING MODEL

Our event processing model consists of three kinds of components: suppliers, an event service,

and consumers. Each supplier pushes typed data items, which we call events, to the event service;

the event service processes the events according to a graph that defines the needed operations and

their input/output events, as illustrated in Figure 2; and a consumer subscribes to the output events
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Fig. 2. Example graph of event processing streams in which si denotes a supplier; ci , a consumer; and oi , an
operator.

of operations. Each supplier pushes events either periodically or sporadically. Each consumer is

associated with a priority level. In practice, a supplier (consumer) may be mapped to a distinct

sensor or other device, and multiple suppliers (consumers) may be mapped to a single device. The

event service is executed within a single host.

In the following, we first define the processing within the event service, and then we define

absolute time consistency and relative time consistency [32, 35],1 which identify the temporal validity

of an event or a set of events, respectively.

3.1 Event Processing

Event processing in our model is configured as a directed acyclic graph, as illustrated in Figure 2,

and paths along the edges in the graph define the data processing streams for each consumer.

The nodes of the graph are event processing operators, such as FFT, and the edges denote the

precedence relations between operators. For example, Figure 2 shows processing streams for four

consumers, and the streams for consumer c2 involve operators o1, o2, and o6. Operator o1 has three

downstream operators (o5, o6, and o7), and operator o6 has two upstream operators (o1 and o2).

A complex operation, such as multi-sensor fusion, may be built from a set of common operators.

Execution of an operator produces an event. We call events that are pushed from one operator to

another internal events, the events pushed from suppliers supplier events, and the events pushed to

consumers consumer events.

The event service schedules operators to process events. An operator is ready for execution

if its specified dependencies are satisfied—for example, its upstream operators have completed

processing, and all of its input events have arrived. The event service adds ready operators to the

execution schedule. After execution, the same events will never be used again by the same operator.

This ensures that cyber-physical operations, such as multi-sensor fusion, do not (prematurely)

process newly arriving data in combination with previously used data.

In Section 4, we describe how CPEP first prioritizes operators based on the consumers’ priority

levels and then schedules the operators using a fixed-priority preemptive scheduling policy. We

assume that the configuration of processing streams is specified by domain experts developing a

particular application.

3.2 Absolute Time Consistency

Event ei is temporally valid at time t if t falls within the absolute validity interval of ei , defined by

abs(ei ) = [tb (ei ), te (ei )), (1)

where tb (ei ) and te (ei ) respectively define the beginning and the end of the interval. Because only

supplier events are associated with physical phenomena, we define an internal event’s absolute

validity interval to be the maximum overlap of all ei ’s upstream supplier events’ absolute validity

1We extend the definitions to make them suitable for real-time cyber-physical event processing, as described in Sections 3.2

and 3.3, respectively.
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Fig. 3. Example timeline of event processing for consumer c2 in Figure 2. Each vertical arrow marks either
the event creation times at the suppliers or the event arrival time at the consumer.

intervals. Let o(ei ) be the operator that produces ei , and let Iei
be the set of events required by

operator o(ei ). We have

tb (ei ) = max{tb (u) | u ∈ Iei
}; (2)

te (ei ) = min{te (u) | u ∈ Iei
}. (3)

If ei is from a supplier, tb (ei ) is defined to be the creation time of the event. For example, as shown

in Figure 3, [t1, t5), [t2, t7), and [t3, t6) respectively represent the absolute validity intervals of the

events from s2, s1, and s3, and an event for consumer c2 is temporally valid as long as it would arrive

at c2 before t5. We assume that each supplier event’s absolute validity interval is also specified by

domain experts developing a particular application.

3.3 Relative Time Consistency

Here we reuse the definition of absolute time consistency. In general, we say that sets of events

required by an operator may have relative time validity constraints, and each such constraint

describes a mutually dependent timed relation between the events in a set. Formally, we say that

Iei
is temporally valid, if given sets Q j ⊆ Iei

, j > 0, we have

|tb (ex ) − tb (ey ) | ≤ RQ j
(4)

for every two events ex and ey in Q j . We call RQ j
the relative validity interval of the set Q j . From

Equation (4), equivalently, Iei
is temporally valid if

|tb (ep ) − tb (eq ) | ≤ RQ j
(5)

for all Q j , where event ep is the earliest created and event eq the latest created in each Q j . Equa-

tion (5) offers an efficient way to verify the relative time consistency at runtime, which we will

discuss in Section 4.3. As with absolute time consistency, we assume that set Q j and interval RQ j

are specified by domain experts.

4 CPEP DESIGN

CPEP processes cyber-physical events as follows. First, the graph of event processing streams is

constructed from a configuration file, which specifies a list of the needed operators, with each item

containing the operator type, the number of operators that immediately follow, and the indices to

those operators. For each operator whose output event would be subscribed by a consumer, the

operator is associated with a priority level mapped from the consumer’s QoS specification. The

event service assigns priority levels to the other operators by propagating upstream the priority

levels of the consumer-facing operators, where each operator is assigned the highest priority level

among its downstream operators. For example, the operators in Figure 2 would be partitioned into

three priority groups (high: o1,o5; middle: o2,o6; and low: o3,o4,o7). A supplier event’s priority

level is set to the highest priority level among the supplier-facing operators that would use it.

With that priority assignment, the event service then reacts to the events pushed from suppliers,
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Fig. 4. CPEP EventProcessors for Figure 2 (H, high priority; M, middle priority; L, low priority).

processes them according to the graph of event processing streams, and pushes the resulting events

to consumers.

4.1 Prioritized Processing and Sharing

The top-level component for processing is an EventProcessor, and there is one EventProcessor

per priority level, as is illustrated in Figure 4. An EventProcessor includes two sets of active ob-

jects [26]: a set of worker threads in charge of processing same-priority events and a set of mover

threads in charge of sharing the events that carry results of processing across priority levels (e.g.,

o1 → o6, o2 → o3, and o5 → o7 in Figure 2).

A worker thread executes each operator that is ready due to arrival of a supplier event and/or

completion of its upstream operator(s), and will proceed to process the next supplier event only

when there remain no such pending operators. A mover thread shares the processing result in

a tuple that contains both a reference to the pending operator and a reference to the resulting

event.

CPEP prioritizes processing of streams and enforces the following two properties: (1) any pro-

cessing of a certain priority level will preempt any cross-priority sharing from the same (or a

lower) priority level, and (2) any cross-priority sharing from a certain priority level will preempt

any processing of a lower priority level. This is achieved by assigning adjacent thread-level pri-

orities to the worker and mover threads and scheduling them using a fixed-priority preemptive

scheduling policy: starting from the EventProcessor of the highest priority level, we first assign

all of its worker threads the highest thread-level priority and then assign all of its mover threads

the next thread-level priority. We then repeat the process for the EventProcessor at the next pri-

ority level, using the remaining thread-level priorities. An example priority assignment is shown

in Figure 4.

Each EventProcessor has three queues. The InputQ buffers all supplier events of the same pri-

ority level as that of the EventProcessor. The PendingQ holds the tuples for the subsequent same-

priority operators along the graph of processing streams, and the MovingQ holds the tuples for

cross-priority sharing. If cross-priority sharing is needed, the current worker thread puts the
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corresponding tuple into the MovingQ. An idle mover thread then moves the tuple from the

MovingQ to the PendingQ(s) of the destination EventProcessor(s), which is then processed by

the worker thread of each destination EventProcessor.

4.2 Concurrent Processing and Replacement

To improve throughput and reduce latency, on a multi-core platform CPEP can deploy multiple

same-priority worker threads and execute independent operations concurrently (including inde-

pendent portions of a complex operation), and different-priority worker threads can concurrently

work using different CPU cores when possible. Concurrent processing is available in the follow-

ing two circumstances: (1) when there are multiple event arrivals, be it from suppliers or from

some preceding operators (e.g., via sharing) and (2) when an operator that is followed by multiple

operators produces an event. In both cases, the PendingQ will be populated by multiple tuples.

Concurrent processing is made possible in the following two ways: (1) collaborative, in which idle

worker threads can take pending operators from the PendingQ after others have populated it (e.g.,

operators o3 and o4 in Figure 2 may be processed concurrently), and (2) pipeline like, in which

CPEP allows a new series of processing along the graph of streams to start before the completion

of the current series (e.g., processing for operators o1 and o2 in Figure 2 may start even before the

completion of processing for operator o6).

For each EventProcessor, we set both the number of worker threads and the number of mover

threads to be equal to the number of CPU cores that are dedicated for processing but do not pin

them to particular CPU cores. This can improve resource utilization and reduce processing la-

tency.2 For example, threads of lower priority levels, upon being preempted, can migrate to avail-

able CPU cores.

With concurrent and prioritized processing, for an operator requiring multiple events (e.g., op-

erator o6 in Figure 2), it is possible that an upstream operator may produce a second copy of a

previously delivered event while the operator is waiting for an event from another operator up-

stream. In this case, the worker thread taking the second event will replace the previous event

by it. Such replacement occurs each time a new event arrival is available, until the needed event

from the other upstream operator is available. The replacement only takes effect on the immediate

operator that receives the event, and other worker threads processing operators downstream from

it will keep using the event they took when processing that operator.

CPEP can be configured to also enforce event replacement in the InputQ, in which case the

buffer length is at most the number of different supplier event types, and each new event arrival

of the same type will replace the previous event as long as the previous one has not yet been

dequeued. Without event replacement, lower-priority InputQ’s buffer needs to be large enough to

accommodate preemption. The buffer length can be determined from workload profiling.

For both time and space efficiency, internally CPEP maintains a single instance for each event

creation, and all workers may access the same instance concurrently if they need it. The event is

stored in a centralized structure, named the EventStore, where each event is typed according to

the supplier/operator that produced it. To accommodate pipeline-like concurrency, the EventStore

includes one ring buffer per event type, and a new event of that type is put into the ring’s next

slot. The ring size is bounded by the maximum number of temporally valid instances of that event

type at any given time point. For example, the ring size is equal to one if the event’s absolute

validity interval is smaller than the event’s inter-arrival time. Slots are reclaimed in a lazy fashion,

and only if there is a new event creation but no available slot. When needed, the slot holding the

oldest event is reclaimed.

2See the related discussion for multi-processor global scheduling and partitioned scheduling [5].
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4.3 Time Consistency Enforcement and Shedding

CPEP enforces both absolute time consistency and relative time consistency, and can be configured

to have worker threads either mark or shed time-inconsistent events. With marking, CPEP simply

labels such events and lets consumers decide what to do with them. With shedding, CPEP aborts

any subsequent processing. Validation of both types of consistency is performed upon the invo-

cation of each operator in the event processing graph. In addition, the absolute time consistency

is also validated when the processing result is to be pushed to a consumer.

4.3.1 Absolute Time Consistency Validation. Given event ei , to validate absolute time consis-

tency, a worker thread compares the current time t against te (ei )—for instance, the end time of the

absolute validity interval. The worker thread reports a violation if t > te (ei ). Upon a violation, if

CPEP is configured to shed time-inconsistent events, the worker thread will update the value of

te (ei ) to the earliest end time among the absolute validity intervals of events on time-consistent

upstream branches and will remove the event references of the time-inconsistent upstream branch.

4.3.2 Relative Time Consistency Validation. Let S = {e1, e2, . . . , ek } be a set of event types sub-

ject to a specified relative validity interval, and following Equation (5) we say that the relative time

consistency is violated if the maximum time difference of any two events in S is larger than the

specified interval. To validate such consistency, for each operator CPEP maintains an ordered list

of timestamps—one timestamp per event type in S . When a worker thread invokes an operator

with a new event, it first updates the list and then compares the time interval between the last

and the first element in the list against the relative time consistency interval. The worker thread

reports a violation if the latter interval is smaller.

The preceding design ensures the correctness of enforcement: for an operator, it is necessary to

keep track of the timestamp of each required event, because event replacements may occur before

all of the needed events are available. For example, suppose that we only keep track of the earliest

timestamp, say t1, and the latest timestamp, say t2, with respect to S . Given the second arrival

of an event type where its previous arrival has defined t1, the second arrival will define t2, but

t1 will become undefined because its previous definition was from the same event type that now

defines t2.

4.4 Discussion on Distributed Settings

In the current version of CPEP, we describe a centralized service design where a single service host

processes all events. Extension to support distributed settings deserves further study but is beyond

the scope of this article. Here we discuss how the CPEP design may scale to support distributed

settings. In particular, we focus on support for mapping the operators in the event processing graph

onto multiple service hosts, to achieve distributed real-time cyber-physical event processing.

An ideal operator mapping would improve performance while preserving both latency differ-

entiation and time consistency. In principle, first, in terms of latency, where to map the operators

involves a tradeoff between inter-host communication delays and intra-host contention delays.

Inter-host communication involves event transmission, and intra-host contention involves queue-

ing and preemption. Therefore, for example, given an event processing graph with independent

same-priority subgraphs, it may be advantageous to map operators of the same subgraph onto a

single service host (thus minimizing inter-host communication) and operators of different sub-

graphs onto distinct service hosts (thus reducing intra-host contention). Further, it may be advan-

tageous to map lower-priority operators onto multiple service hosts, provided that the amount of

higher-priority interference on a service host outweighs the overhead of inter-host communica-

tion. Second, in terms of time consistency, events’ validity intervals may drive mapping decisions
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Fig. 5. Implementation within the TAO event channel.

as well. Third, in terms of memory efficiency, for multiple operators that share events, it may be

advantageous to map them onto the same service host, to reduce additional event copies.

The operator mapping may be static, dynamic, or a hybrid. A static mapping may minimize

the runtime overhead, with both the operators pre-allocated to each service host and the event

routing pre-determined across service hosts. A downside is that the mapping may be pessimistic

in the presence of aperiodic events. A dynamic mapping may reduce the pessimism at the cost

of additional latency for runtime modules that must both decide where and how to route events

and load operators if needed. A hybrid mapping also may be advantageous (e.g., adopting static

mapping for periodic events and dynamic mapping for aperiodic events).

5 CPEP FRAMEWORK IMPLEMENTATION

In the architecture illustrated in Figure 4, we implemented MovingQ using C++11’s standard prior-

ity queue, and to preserve the ordering of same-priority items we customized the priority queue’s

Compare type to use the timestamp taken at insertion as a tie-breaker. We implemented PendingQ

using C++11’s standard FIFO queue. For the configuration of event replacement, we implemented

InputQ using C++11’s standard FIFO queues to hold indices of each supplier event type. The in-

dices are used to access a static storage for each supplier event type, and the size of the storage is

equal to the number of different supplier event types. To enforce event replacement, each event

arrival replaces the corresponding entry in the storage, and we push its index to the FIFO queue

only if there is no such an index in the queue. For the configuration of no event replacement, we

implemented InputQ using C++11’s standard array as a ring buffer.

We protected all MovingQs, PendingQs, and InputQs with readers-writer locks to allow con-

current checks for non-emptiness of each queue. Each slot in the EventStore is also protected

by a readers-writer lock to allow concurrent reads. To reduce priority inversion, we applied the

pthread priority inheritance protocol to all worker threads and mover threads. At runtime, it takes

O (1) time to validate absolute time consistency, by comparing te (ei ) against the current time. We

maintain te (ei ) by keeping track of the earliest end time for each upstream branch of o(ei ).

The graph of event processing was implemented by an array of structs, each struct including

both data structures for a node in the graph and pointers that build the graph’s topology. The size of

the struct was 464 bytes, including padding. The construction of the graph needs two linear scans

through the array of structs: one scan for propagating priority-level information upstream and

another scan for propagating time consistency information downstream. Notably, all constructions

will complete before the system starts processing events.

We implemented CPEP within the TAO real-time event service [18]. Event suppliers and con-

sumers in TAO are connected via one or more event channels, each containing five modules, as

shown in Figure 5. Event filtering is conducted at both the Subscription & Filtering module and the

Event Correlation module, where the former filters events according to event’s type and source ID,

and the latter filters events according to correlation rules defined over event types. The Dispatching
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Fig. 6. Graph of event processing streams for Experiment Sets 1, 2, and 5.

module dispatches events to the subscribed consumers. Prior to our work, the TAO real-time event

service only supports simple correlations (logical conjunction and disjunction) over events’ head-

ers, with non-sharing filters built per consumer. In contrast, CPEP provides prioritized event pro-

cessing, enforces time consistency, and enables sharing of operations for better performance.

In our implementation, we kept the original interfaces of the Supplier Proxies and the Consumer

Proxies so that suppliers and consumers can connect to the event channel as before. We replaced

the Subscription & Filtering and Event Correlation modules with EventProcessors. We connected

the Supplier Proxies to EventProcessors by a hook method within the push method of the Supplier

Proxies module to put each event into the corresponding EventProcessor’s InputQ. Worker threads

dispatch their output events reactively.

6 EMPIRICAL EVALUATION

Here we present six sets of experimental results. In Set 1, we compare CPEP against Apache Flink

in terms of latency, throughput, and memory footprint; in Sets 2 through 5, we evaluate the ef-

fectiveness of CPEP in terms of prioritization, sharing, absolute time consistency shedding, and

relative time consistency shedding, respectively; and in Set 6, we present CPEP’s overhead statis-

tics. In all experiments, we enabled event replacement at InputQ; results of the configuration with

no event replacement were reported in our previous work [34].

Our test-bed consists of three hosts: on Host 1, we ran all event suppliers (Pentium Dual-Core

3.2GHz, Ubuntu Linux with kernel v.3.19.0); on Host 2, we ran the CPEP event service and the

Apache Flink server (Intel i5-4590 3.3GHz four-core machine, Ubuntu Linux with kernel v.4.2.0);

and on Host 3, we ran all event consumers (Pentium Dual-Core 3.2GHz, Ubuntu Linux with kernel

v.3.13.0). We connected the three hosts via a Gigabit switch running in a closed LAN. Host 2 had

two NICs, and we used one for inbound traffic from Host 1 and another for outbound traffic to

Host 3. Out of its four cores, on Host 2 we used three cores in the first experiment set (a comparison

study with Apache Flink), and in the remaining experiment sets we offloaded the inbound network

IO and CPEP’s Supplier Proxies to the fourth core, and the three cores were dedicated to event

processing.

TAO’s event channel was configured with the following parameters: we used the default

factory, and we assigned null to ECFiltering, ECSupplierFiltering, ECProxyConsumerLock,

and ECProxySupplierLock; reactive to ECDispatching, ECConsumerControl, and ECSupplier-
Control; and 0 to both ECConsumerControlPeriod and ECSupplierControlPeriod.

We assigned real-time priority levels to both worker threads and mover threads, with the highest

priority level set to 99. We also assigned 99 as the priority level of the thread for Supplier Proxies.

We did not use the PREEMPT_RT patch [10].

Events were supplied at different rates, and consumers of events were assigned different prior-

ities. We used two graphs of processing streams, shown in Figures 6 and 7, and in each case we
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Fig. 7. Graphs of event processing streams for Experiment Sets 3, 4, and 6.

evaluated the performance under different degrees of system workload. The workload we imple-

mented demonstrates standard multi-sensor fusion operations [7, 29, 31, 33], with the following

four operators combined in different ways: Extended Kalman Filter (EKF) [36], FFT [11], Concate-

nation (CAT) (implemented using C++’s memcpy function), and the Advanced Encryption Stan-

dard (AES) [14]. We ensured that the operators are thread safe by creating a distinct Kalman filter

object per EKF operator and distinct FFTW matrices per FFT operator; the Libgcrypt library is by

default thread safe, and we created a single Libgcrypt handler for all AES operators.

Because both absolute and relative time consistency enforcement use events’ creation times to

validate consistency, for event suppliers belonging to the same stream we chose to coordinate the

phasing of event creations when evaluating absolute time consistency shedding (otherwise, the

time difference between the creation times may dominate the latency and hence the shedding de-

cision), and we chose not to coordinate event creations when evaluating relative time consistency

shedding (otherwise, either all events would pass or all of them would be shed). Specifically, in the

first four and the sixth experiment sets, we coordinated the event suppliers belonging to the same

stream, and in the fifth experiment set, we chose not to coordinate as we did in the others. We

coordinated the phasing of all suppliers that are upstream from a common consumer event and

that have the same event rate, by dispatching them all from the same timer expiration rather than

from individual independent timers.

We measured the end-to-end latency—that is, the time interval between the latest time a supplier

pushed a required event and the time the consumer received the resulting event (e.g., [t3, t4] in
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Figure 3). We synchronized our test-bed’s hosts via PTPd [13], an open source implementation

of the IEEE Std. 1588-2008 Precision Time Protocol [19]. Both the service host’s clock and the

consumer host’s clock were synchronized to the clock of the supplier host. The synchronization

error was within 0.05ms.

In each of the first four experiment sets, we ran each sub-case 10 times and calculated the 95%

confidence interval for each measurement; in the fifth experiment set, where we chose not to

coordinate event suppliers, we ran each sub-case 40 times so that the 95% confidence interval

converged. In each sub-case, we sequentially ran three phases: warm-up, measuring, and dumping.

In the warm-up phase, we connected all event suppliers and consumers to CPEP, and had them

start pushing and receiving events; in the measuring phase, we measured both the latency and the

throughput of output events, and we kept all measurements in memory, which were then saved to

disk in the dumping phase. For CPEP, the warm-up phase took 10 seconds. Apache Flink requires

a longer warm-up time, and we set it to 75 seconds. In both cases, the measuring phase spanned

100 seconds.

6.1 Experiment Set 1: Comparison with Apache Flink

Figure 6 shows the graph of event processing streams used in this experiment set. To cover different

degrees of workload, we first deployed 3 copies of the high-priority streams, 3 copies of the middle-

priority streams, and 12 copies of the low-priority streams, and then we increased the workload by

deploying more copies of the middle-priority streams. Each supplier event carried a batch of one-

byte datapoints3: each event supplied by s1 and s2 carried 512 datapoints (5ms event inter-arrival

time); s3 to s6, 1,024 datapoints (10ms); and s7 and s8, 2,048 datapoints (20ms). Each output event for

a high-priority consumer carried 512 one-byte datapoints; each output event for a middle-priority

consumer carried 1,024 16-byte datapoints4; and each output event for a low-priority consumer

carried 2,048 eight-byte datapoints.

For a fair comparison to CPEP, in our Apache Flink (we simply call it Flink hereafter) Java

application we used the same C++ libraries for the EKF, FFT, and AES operators, and invoked

them via Java JNI. Considering that in this article we focus on single-host event processing, we

configured Flink to run in a local environment, with a single Flink JobManager and TaskManager,

respectively, and we ensured that they ran within the same JVM. To utilize multiple CPU cores, we

set Flink’s parallelism level equal to the number of CPU cores used for event processing (i.e., three)

and also had the TaskManager use three task slots for concurrent execution. We implemented a

socket data source to connect Flink with event suppliers and a socket data sink to connect it with

event consumers. We chose not to use Flink’s CEP library [12], because so far it does not support

the removal of used events to avoid premature processing, which is required by cyber-physical

event processing (see Section 3.1). We therefore implemented event processing using Flink’s built-

in data transformation functions. We also turned off checkpointing to reduce latency in Flink.

6.1.1 Latency Comparison. The latency results are shown in Figures 8 (high priority), 9 (middle

priority), and 10 (low-priority) and Table 1; Figure 8(a) shows the CPU utilization normalized to the

number of cores. The results show that CPEP outperformed Flink in terms of latency in all degrees

of workload, and CPEP’s latency performance followed the order of priority level. A major reason

is that CPEP prioritizes event processing based on the consumer priority levels, whereas Flink

3For example, in structural health monitoring [17], FFT may require 2,048 samples to perform, and raw data may need to

be transmitted to a base station if in situ processing is not sufficient.
4The FFT operator caused the increase in datapoint size, as the FFTW library transformed each byte of datapoints into an

eight-byte real number (the single-precision version of FFTW).
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Fig. 8. Experiment Set 1: Latency results of high-priority streams.

Table 1. Experiment Set 1: The 99th Percentile Latency (ms)

Priority Service Number of Middle-Priority Streams
3 6 9 12 15

High

Middle

Low

Flink 3.8 ± 0.1 5.9 ± 0.2 12.6 ± 0.4 52.6 ± 4.1 448.9 ± 171.7

CPEP 0.8 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 0.7 ± 0.0

Flink 4.5 ± 0.1 6.4 ± 0.2 11.3 ± 0.4 28.9 ± 0.5 107.9 ± 18.1

CPEP 1.6 ± 0.0 1.8 ± 0.0 2.2 ± 0.0 2.5 ± 0.0 3.0 ± 0.1

Flink 5.2 ± 0.3 7.4 ± 0.2 15.5 ± 0.6 43.3 ± 1.3 679.8 ± 274.0

CPEP 3.7 ± 0.3 4.8 ± 0.2 6.8 ± 0.6 10.6 ± 1.0 33.4 ± 0.2

does not. In CPEP, tasks of higher priority will preempt lower-priority tasks’ execution, whereas

in Flink, tasks of higher priority may need to wait for the execution of tasks of lower priority.

Here we qualify the latency results by the corresponding inter-arrival times of events. In gen-

eral, latency longer than the inter-arrival time implies that there are newer data available before a

consumer has received the processed result. In practice, it is desirable to have latency even shorter

than the inter-arrival time, and latency beyond the inter-arrival time may not be acceptable. Under

moderate workload (CPU utilization = 40%–80%), both CPEP and Flink had 90th percentile latency

and mean latency shorter than the corresponding inter-arrival time of events; under heavy work-

load (CPU utilization > 80%), however, the latency of Flink may exceed the inter-arrival time of
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Fig. 9. Experiment Set 1: Latency results of middle-priority streams.

Fig. 10. Experiment Set 1: Latency results of low-priority streams.

events. The high-priority streams, for example, had about 10ms mean latency (Figure 8(c)), which

is twice the inter-arrival time.

For the 99th percentile latency, as shown in Table 1, CPEP’s latency was shorter than the inter-

arrival time in every sub-case except for that of low-priority streams along with 15 middle-priority

streams (33.4 ± 0.2ms versus 20ms); in this sub-case, the CPUs were nearly saturated, and the

latency of Flink was also beyond the inter-arrival time of events (679.8 ± 274.0 ms versus 20ms).

For the low-priority streams, both the 90th percentile latency and mean latency of CPEP were

similar to those of Flink, except for the aforementioned sub-case.

6.1.2 Throughput Comparison. The throughput results for each priority level are shown in

Figure 11. The plots labeled by CPEP/Flink total show the throughput in terms of total events

received by a consumer, and the plots labeled by CPEP/Flink timely show the throughput in terms

of events received with latency shorter than the inter-arrival time. For the high-priority consumers
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Fig. 11. Experiment Set 1: Throughput results of each priority level.

(Figure 11(a)), both CPEP and Flink produced events at rates close to the event rates at the suppli-

ers (three high-priority streams), but Flink produced much less timely events as we increased the

workload. For example, in the presence of 12 middle-priority streams, Flink only produced about

300 events per second, half of the ideal rate. For the middle-priority consumers (Figure 11(b)), Flink

started to produce fewer events as we increased the workload. For the low-priority consumers

(Figure 11(c)) we made the same observation for CPEP. In general, CPEP and Flink behaved differ-

ently under heavy workload: in CPEP, the greater latency accrued to events of the lowest priority

level, thanks to the prioritized processing; in Flink, the latency was distributed to all events, as

Flink does not differentiate processing for different priority levels.

The prolonged latency also suggests that in terms of absolute time consistency, many events may

not be considered valid, hence both wasting CPU resources and unnecessarily increasing delay.

Indeed, many more violations of absolute time consistency can occur, as the latency here only

accounted for the duration between the last event creation and the event delivery (e.g., [t3, t4] in

Figure 3), whereas the absolute time consistency accounts for the duration between the first event

creation and the ultimate event delivery (e.g., [t1, t4] in Figure 3). In Experiment Set 4, we evaluate

CPEP’s absolute time consistency enforcement and its shedding strategy. In the remaining five

experiment sets, we do not use Flink and instead focus on evaluating CPEP’s performance with

different configurations, as CPEP clearly outperformed Flink in this comparison.
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Fig. 12. Experiment Set 1: Memory footprint comparison.

6.1.3 Memory Footprint Comparison. We empirically compared the memory footprint of Flink

and CPEP by querying the kernel data structures via /proc/[pid]/status. We show in Figure 12

the result of virtual memory size (VmSize) and the virtual memory resident size (VmRSS). Com-

pared with Flink’s memory usage, CPEP reduced more than 88% of the max VmSize (from 7146.5 to

824.6 MB) and more than 97% of the max VmRSS (from 1,424.8 to 31.5 MB). We also measured Java

JNI’s impact on the memory footprint, via the pmap utility. The sampling rate was 100ms, and we

took 600 samples. The VmRSS of the JNI task was always 48KB, which is less than 0.005% of the

total VmRSS.

6.2 Experiment Set 2: CPEP Prioritization

CPEP can be configured for either prioritized or non-prioritized processing. In this experiment set,

we compared the event latency of prioritized processing versus that of non-prioritized processing.

Figure 13 shows latency comparisons under different system workloads, with CPU utilization

from around 45% to 95%, normalized to the number of cores used in processing event operations. As

shown in Figure 13(b), prioritization maintained the latency of high-priority streams across differ-

ent workloads. In contrast, without prioritization, the latency increased as the workload increased.

Middle-priority streams exhibited similar behavior, shown in Figure 13(c). Low-priority streams

exhibited the opposite behavior, shown in Figure 13(d), where prioritization led to higher latency

for them than no prioritization did. This was because prioritization caused preemption of lower-

priority processing. Nevertheless, the resulting latency was still less than half of the inter-arrival

time of events (except for the sub-case of 15 middle-priority streams), and, as the next experiment

set will show, sharing operations can further reduce the latency.

Figure 13 also shows that streams may have high tail latency even though the system was not

heavily loaded (e.g., the 99th percentile latency of high-priority streams in the sub-case of six

middle-priority streams, with the normalized CPU utilization 63% (Figure 13(b))). This happened

because event arrivals of different streams were independent of each other and sometimes arrived

close in time and contended heavily with each other. A stream may experience a higher tail latency

under a higher workload, because in this case the processing of the stream is more likely to be

delayed due to such contentions.

6.2.1 Results for Sporadic Events. We evaluated CPEP’s performance with sporadic event

streams by adding a random time offset in the range of ±2.5ms to the inter-arrival time of each

event supplier. The result is shown in Figure 14. The performance is similar to the case without

random time offsets (Figure 13), confirming that CPEP works for both periodic and sporadic event

streams.
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Fig. 13. Experiment Set 2: Latency results.

6.3 Experiment Set 3: Sharing Operators

In this experiment set, we evaluated the latency performance of sharing operations. We also en-

abled prioritized processing. We configured the graph of event processing streams as shown in

Figure 7. Each event supplied by s1 to s4 carried 512 datapoints, and s5 to s8 carried 1,024 dat-

apoints. The non-sharing version was constructed from the sharing version by duplicating the

shared operators (FFT2 and FFT4) and all of their upstream operators (EKF2 and EKF4). All suppli-

ers generated events with inter-arrival time of 10ms. Because the streams share operations, here

we varied workload by deploying copies of the whole graph.

The latency results shown in Figure 15 confirm that sharing operations can help reduce event

latency. In particular, lower-priority streams received higher reductions in latency, because the
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Fig. 14. Experiment Set 2: Latency results (sporadic events).

shared operations were done by the higher-priority counterpart. Figure 15(d) shows that as the

workload increased, with sharing we may reduce the latency of lower-priority streams by more

than 30% (e.g., the sub-case with seven copies of the whole graph), and with about the same mean

latency, the system can accommodate 40% more streams (e.g., from five to seven copies of the

whole graph). Besides reducing latency, sharing also saved CPU utilization. Figure 15(a) shows

that with five copies of the whole graph, sharing can save about 20% in CPU utilization.

For lower-priority streams, the result in Figure 15(d) also suggests that the savings in processing

time due to sharing may outweigh the time spent waiting for higher-priority streams. For higher-

priority streams, as shown in Figures 15(b) and (c), sharing processed events to a lower-priority

counterpart did not incur much overhead either.
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Fig. 15. Experiment Set 3: Latency results. There was no output event of low priority for the case “w/o
sharing” in the presence of nine copies of the whole graph.

6.4 Experiment Set 4: Enforcing Absolute Time Consistency

In this experiment set, we evaluated the performance of absolute time consistency shedding and

sharing, both separately and combined, in terms of timely-throughput (i.e., delivery of events within

their absolute validity intervals). Here we reuse the graph of processing streams as shown in

Figure 7. We set the absolute validity interval to 10ms.

Figure 16 shows the result of timely-throughput in terms of events per second, where

Figure 16(a) shows the CPU utilization. The benefit of shedding for timely-throughput was

bounded by a range of system load, and for streams of higher priority the range shifted toward

higher loads. This occurs because shedding did not take place under trivial loads, and because

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 29. Publication date: August 2019.



29:20 C. Wang et al.

Fig. 16. Experiment Set 4: Timely throughput under different loads.

under heavy loads there is less slack time for streams to exploit. Considering that the absolute

validity intervals approximate the supplier events’ inter-arrival times, shedding occurred only

when the total processing demand overloaded the CPUs. In particular, without sharing and with 11

copies of the graph of streams, the CPUs were saturated and shedding helped improve the timely-

throughput of middle-priority streams (Figure 16(c)). With sharing and with 15 or more copies of

the graph of streams, high-priority processing demand dominated CPU resources and therefore

the timely-throughput of middle-priority streams dropped. Under such conditions, not shedding

middle-priority demand at operators may improve timely-throughput, because the incurred delay

may lead to event replacements in InputQ, which act essentially as early removals of events that,

if otherwise dequeued, would still become outdated before processing completion.

High-priority streams (Figure 16(d)), although already protected by prioritization, still benefited

from shedding, because when the system is overloaded shedding can reduce the amount of intra-

priority contention—that is, the contention between the outdated processing and the processing
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Fig. 17. Experiment Set 4: Total timely-throughput (Mbps).

that works to meet the timing constraint. Low-priority streams (Figure 16(b)) benefited most from

sharing but may not benefit much from shedding, because (1) shedding works best when the sys-

tem is under heavy load, in which case the lower-priority streams may already suffer non-trivial

preemption, and (2) the benefit of shedding would accrue first to higher-priority streams due to

prioritization.

Figure 17 shows the timely-throughput and includes all three priority levels. It shows that with-

out sharing, even though the CPUs had been saturated in the presence of nine copies of the graph,

with the help of shedding the system can keep producing at 200Mbps with up to 19 copies of the

graph of streams; with sharing, we could still save about 20% CPU utilization in the presence of 11

copies of the graph.

6.5 Experiment Set 5: Enforcing Relative Time Consistency

In this experiment set, we used the graph of event processing streams as shown in Figure 6, and

we did not coordinate the suppliers for each stream. We set the relative validity interval to 5ms for

both high- and low-priority streams, and for the middle-priority streams we evaluated four relative

validity intervals: 5.5ms, 7.0ms, 8.5ms, and 10.0ms. In all cases, we enabled prioritized processing

and did not enable absolute validity shedding. In the following, we first show the performance

with no relative validity shedding, and then we show the performance improvement by enabling

relative validity shedding.

6.5.1 Effects of Violations of Relative Time Consistency. For the cases of no relative validity

shedding, Figure 18(a) through (c) show the percentage of relatively time-consistent events pro-

duced, and Figure 18(d) shows the CPU utilization, for each case of the middle-priority relative

validity interval. First of all, Figure 18(a) shows that the high-priority streams were protected by

prioritized processing; they were not affected by different middle-priority validity intervals, nor

were they affected by the increase in the number of middle-priority streams. Figure 18(c) shows

that, also due to prioritized processing, the low-priority streams had a decrease in the percentage of

relatively time-consistent events produced as we increased the number of middle-priority streams.

Figure 18(b) shows the results of middle-priority streams. The middle-priority streams are sub-

ject to more relative time consistency violations, because they depend on four event types, two

more than the high-priority streams and middle-priority streams (see Figure 6). Figure 18(b) shows

that with a longer relative validity interval, there was an increase in the percentage of relatively

time-consistent event production. With the relative validity interval equal to 10ms, close to the

event inter-arrival time, the percentage was close to 100%. In general, the percentage did not

change much as we increased the number of middle-priority streams, because (1) the contention

from high-priority streams did not change; (2) relative time consistency depends on the event

creation time, which is indifferent to the time of processing; and (3) the CPUs did not saturate.

Figure 18(d) shows the CPU utilization normalized to the number of cores. With the result shown

in Figure 18(b), this suggests that with no relative validity shedding, many more CPU cycles were

wasted if we had a shorter relative validity interval.
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Fig. 18. Experiment Set 5: Percentage of relatively valid events with no relative validity shedding.

Fig. 19. Experiment Set 5: Relative validity shedding with relative validity interval = 5.5ms.

6.5.2 Effects of Relative Time Consistency Enforcement and Shedding. Figures 19 through 21

show the result of relative validity shedding with each relative validity interval, respectively. In

all cases, relative validity shedding produced a higher relatively time-consistent throughput and

at the same time reduced CPU utilization. With a shorter relative validity interval, there was more

relative gain in throughput by shedding, because in that case there were more violations of relative

time consistency and thus shedding saved more CPU cycles for relatively time-consistent process-

ing. Figure 20, for example, shows the results for relative validity interval = 7.0ms, in which case

shedding helped improve the throughput by about 200 events/second and saved about 5% in CPU

utilization. It might not be possible to achieve the ideal throughput, which is 100 × k , where k is

the number of middle-priority streams, because event suppliers were not coordinated and consid-

ering that without phase coordination the relevant events may spread out in time, violations of

relative time consistency are more likely. With relative validity shedding, the throughput we had

is much closer to ideal.
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Fig. 20. Experiment Set 5: Relative validity shedding with relative validity interval = 7.0ms.

Fig. 21. Experiment Set 5: Relative validity shedding with relative validity interval = 8.5ms.

Table 2. Experiment Set 6: Latency of Event Queues

InputQ PendingQ MovingQ

Enqueue 1.23ns 34.86ns 194.21ns

Dequeue 1.03ns 337.81ns 177.33ns

6.6 Experiment Set 6: Overhead Measurements

We evaluated CPEP’s runtime overhead by showing both (1) queueing overhead and (2) preemp-

tion overhead. For queueing overhead, we measured both enqueue and dequeue times for the

InputQ, PendingQ, and MovingQ. We took the average of 1 million measurements of each opera-

tion, and the result is shown in Table 2. The recorded dequeue time for the PendingQ included the

time spent in binding operator’s parameters to the dequeued metadata. The time complexity of the

MovingQ is logarithmic in the queue length. Regarding the number of queueing operations per

event, each supplier event needs at most one enqueue and one dequeue for the InputQ, each oper-

ator along the event processing graph needs exactly one enqueue and one dequeue for the Pend-

ingQ, and each transition between operators of different priority needs exactly one enqueue and

one dequeue for the MovingQ. Our implementation permits concurrent checks for non-emptiness

of a queue via readers-writer lock (see Section 5).

For the preemption overhead, we used trace-cmd to measure the number of scheduling events

at runtime for 100 seconds. We compared CPEP’s prioritization (using Linux’s SCHED_RR real-time

scheduler with real-time priorities) against a baseline version that disabled CPEP’s prioritization

(using Linux’s default CFS scheduler with no real-time priority). Our result shows a 40% reduction

in the number of context switches (the sched_switch events), with prioritization enabled than

with it disabled, from about 60 switches per millisecond to about 37 switches per millisecond. As
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the SCHED_RR real-time scheduler permits global push and pull operations, it resulted in an increase

in the number of thread migrations (the sched_migration events) from about 2.5 migrations per

millisecond under CFS to about 6.3 migrations per millisecond under SCHED_RR. The preemption

overhead therefore involves a tradeoff between a reduction in context switches and a smaller in-

crease in the thread migrations. A detailed comparison between SCHED_RR and CFS can be found

in the literature [2].

7 CONCLUDING REMARKS

In this article, we introduced the CPEP middleware for real-time cyber-physical event process-

ing. CPEP features configurable operations, prioritization, time consistency enforcement, efficient

memory management, and concurrent processing. We implemented CPEP within the TAO event

service and empirically evaluated it in comparison to Apache Flink, showing that CPEP outper-

forms Flink in terms of latency, throughput, and memory footprint. Our further experiments

showed that CPEP can both reduce latency and improve timely-throughput, through prioritiza-

tion, sharing, absolute time consistency shedding, and relative time consistency shedding.
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