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and (2) instead of being given C and D directly, one is given a program for calculating them that 
is minimal in size. Unlike previous definitions, this one has precisely the formal properties of the 
entropy concept of information theory. For example, H(A,B) = H(A) + H(B/A)  -~ 0(1). Also, if a 
program of length k is assigned measure 2 -k, then H(A) = -log2 (the probability that the standard 
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1. In troduct ion  

There is a persuasive analogy between the entropy concept of information theory and the 
size of programs. This was realized by the first workers in the field of program-size com- 
plexity, Solomonoit [1], Kolmogorov [2], and Chait in [3, 4], and it accounts for the large 
measure of success of subsequent work in this area. However, it is often the case tha t  
results are cumbersome and have unpleasant error terms. These ideas cannot be a tool for 
general use until  they are clothed in a powerful formalism like tha t  of information theory. 

This opinion is apparently not shared by all workers in the field (see Kolmogorov [5]), 
but  it has led others to formulate alternative definitions of program-size complexity, for 
example, Loveland's uniform complexity [6] and Schnorr's process complexity [7]. In  this 
paper we present a new concept of program-size complexity. What  train of thought led us 

to it? 
Follo~ing [8, Sec. VI, p. 7], think of a computer as decoder equipment at  the receiving 

end of a noiseless binary communications channel. Think of its programs as code words, 
and of the result of a computation as the decoded message. Then it is natural  to require 
tha t  the programs/code words form what is called an "instantaneous code," so tha t  
successive messages sent across the channel (e.g. subroutines) can be separated. Instan-  
taneous codes are well understood by information theorists [9-12]; they are governed by 
the Kraft  inequality, which therefore plays a fundamental  role in this paper. 
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One is thus led to define the relative complexity H(A,  B/C, D) of A and B ~-ith respect 
to C and D to be the size of the shortest self-delimiting program for producing A and B 
from C and D. However, this is still not  quite right. Guided by the analogy with informa- 
tion theory, one would like H(A,  B) = H(A)  -'b H ( B / A )  -b A to hold with an error term 
A bounded in absolute value. But, as is shown in the Appendix, ] A I is unbounded. So we 
stipulate instead tha t  H(A,  B/C, D) is the size of the smallest self-delimiting program 
that  produces A and B when it is given a minimal-size self-delimiting program for C and 
D. Then it can be sho~n that  I 5 I is bounded. 

In  Sections 2-4 we define this new concept formally, establish the basic identities, and 
briefly consider the resulting concept of randomness or maximal entropy. 

We recommend reading Willis [13]. In  retrospect it is clear that  he was aware of some 
of the basic ideas of this paper, though he developed them in a different direction. Chai- 
tin's study [3, 4] of the state complexity of Turing machines may be of interest, because in 
his formalism programs can also be concatenated. To compare the properties of our en- 
t ropy function H with those it has in information theory, see [9-12]; to contrast its prop- 
erties with those of previous definitions of program-size complexity, see [14]. Cover [15] 
and Gewirtz [16] use our new definition. See [17-32] for other applications of informa- 
t ion/entropy concepts. 

2. Definitions 

X -- { A, 0, 1, 00, 01, 10, 11,000, • • • } is the set of finite binary strings, and X ® is the set 
of infinite binary strings. Henceforth we shall merely say "string" instead of "binary 
string," and a string will be understood to be finite unless the contrary is explicitly stated. 
X is ordered as indicated, and I s I is the length of the string s. The variables p, q, s, and t 
denote strings. The variables a and ¢0 denote infinite strings, a ,  is the prefix of a of length 
n. N = {0, 1, 2, - • • } is the set of natural numbers. The variables c, i,j, k, m, and n denote 
natural numbers. R is the set of positive rationals. The variable r denotes an element of 
R. We write "r.e." instead of "recursively enumerable," "lg" instead of "log~," and some- 
times "2 1" (x)"  instead of"2*. ' '  #(S)  is the cardinality of the set S. 

Concrete Definition of a Computer. A computer C is a Turing machine ~ t h  two tapes, 
a program tape and a work tape. The program tape is finite in length. Its leftmost square 
is called the dummy square and ahvays contains a blank. Each of its remaining squares 
contains either a 0 or a 1. I t  is a read-only tape, and has one read head on it which can 
move only to the right. The work tape is two-way infinite and each of its squares contains 
either a 0, a 1, or a blank. I t  has one read-write head on it. 

At  the start  of a computation the machine is in its initial state, the program p occupies 
the whole program tape except for the dummy square, and the read head is scanning the 
dummy square. The work tape is blank except for a single string q whose leftmost symbol 
is being scanned by the read-write head. Note tha t  q can be equal to A. In that  case the 
read-write head initially scans a blank square, p can also be equal to ^ .  In that  case the 
program tape consists solely of the dummy square. See Figure 1. 

During each cycle of operation the machine may halt, move the read head of the pro- 
gram tape one square to the right, move the read-write head of the work tape one square 
to the left or to the right, erase the square of the work tape being scanned, or write a 0 
or a 1 on the square of the work tape being scanned. Then the machine changes state. The 
action performed and the next state are both functions of the present state and the con- 
tents of the two squares being scanned, and are indicated in two finite tables with nine 
columns and as man), rows as there are states. 

If  the Turing machine eventually halts with the read head of the program tape scanning 
its rightmost square, then the computation is a success. If  not, the computation is a 
failure. C(p, q) denotes the result of the computation. If  the computation is a failure, then 
C(p, q) is undefined. If  it is a success, then C(p, q) is the string extending to the right 
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Fro. 1. The start of a computation. 
p = 0011010 and q = 1100. 

I I I I I  

Fro. 2. The end of a successful computation. 
C(p, q) = 010. 

from the square of the work tape that  is being scanned to the first blank square. Note that  
C(p, q) = ^ if the square of the work tape being scanned is blank. See Figure 2. 

Definition of an Instantaneous Code. An instantaneous code is a set of strings S ~4th 
the property that  no string in S is a prefix of another. 

Abstract Definition of a Computer. A computer is a partial recursive function 
C : X X X --* X with the property that  for each q the domain of C( -, q) is an instanta- 
neous code; i.e. if C(p, q) is defined and p is a proper prefix of p', then C(p', q) is not 
defined. 

TH~:OI~EI~ 2.1. The two definitions of a computer are equivalent. 
PROOF. Why does the concrete definition satisfy the abstract one? The program must 

indicate within itself where it ends since the machine is not allowed to run off the end of 
the tape or to ignore part of the program. Thus no program for a successful computation is 
the prefix of another. 

Why does the abstract definition satisfy the concrete one? We show how a concrete 
computer C can simulate an abstract computer C'. The idea is that  C should read another 
square of its program tape only when it is sure that  this is necessary. 

Suppose C found the string q on its work tape. C then generates the r.e. set 
S = {p I C'(p, q) is defined} on its work tape. 

As it generates S, C continually checks whether or not that  part p of the program that  
it has already read is a prefix of some known element s of S. Note tha t  initially p = ^ .  

Whenever C finds that  p is a prefix of an s E S, it does the follo~ing. If  p is a proper 
prefix of s, C reads another square of the program tape. And if p = s, C calculates 
C'(p, q) and halts, indicating this to be the result of the computation. Q.E.D. 

Definition7 of an Optimal Universal Computer. U is an optimal universal computer iff 
for each computer C there is a constant sire(C) with the following property: if C(p, q) is 
defined, then there is a p '  such that  U(p', q) = C(p, q) and I PP I -< I P J + sire(C). 

THEOnEM 2.2. There is an optimal u~iversal computer U. 
:PROOF. U reads its program tape until it gets to the first 1. I f  U has read i O's, it then 

simulates C,, the ith computer (i.e. the computer with the ith pair of tables in a recursive 
enumeration of all possible pairs of defining tables), using the remainder of the program 
tape as the program for C~. Thus if C~(p, q) is defined, then u ( 0 q p ,  q) = C~(p, q). 
Hence U satisfies the definition of an optimal universal computer with sim(C~) = i + 1. 
Q.E.D. 

We somehow pick out a particular optimal universal computer U as the standard one for use 
throughout the rest of this paper. 

Defi~ition of Canonical Programs, Complexities, and Probabilities. 
(a) The canonical program, s* = min p(U(p, ^ ) = s). I.e. s* is the first element in 

the ordered set X of all strings that is a program for U to calculate s. 
(b) Complexities. 

He(s) -- minlp  ] (C(p, ^ )  = s) ( m a y b e  ~ ) ,  H(s) = Hv(s), 

He(s/t) = rain I P l (C(p, t*) = s) (may be ~ ) ,  H(s/t)  = Hv(s/ t) .  
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(e) Probabilities. 

P c ( s )  = ~ 2 -Ipj (C(p ,  A) = s), P ( s )  = Pu(a) ,  

P c ( s / t )  = ~ . 2  -tpt (C(p ,  t*) = s), P ( s / t )  = P v ( s / t ) .  

Remark on Nomenclature. There are two different sets of terminology for these con- 
cepts, one derived from computational complexity and the other from information theory. 
H ( s )  may be referred to as the information-theoretic or program-size complexity, and 
H ( s / t )  may be referred to as the relative information-theoretic or program-size com- 
plexity. Or H ( s )  and H ( s / t )  may be termed the algorithmic entropy and the conditional 
algorithmic entropy, respectively. Similarly, this field might be referred to as "informa- 
tion-theoretic complexity" or as "algorithmic information theory." 

Remark on the Definition of Probabilities. There is a very intuitive way of looking at 
the definition of P c .  Change the definition of the computer C so that  the program tape is 
infinite to the right, and remove the (now impossible) requirement for a computation to 
be successful that  the rightmost square of the program tape is being scanned when C halts. 
Imagine each square of the program tape except for the dummy square to be filled with a 
0 or a 1 by a separate toss of a fair coin. Then the probability that  the result s is obtained 
when the work tape is initially blank is Pc(s ) ,  and the probability that  the result s is 
obtained when the work tape initially has t* on it is P c ( s / t ) .  
THEOREM 2.3. 

(a) H ( s )  < Hc ( s )  -P sire(C),  
(b) H ( s / t )  < Hc (a / t )  Jr- aim(C),  
( c )  a* ~ A, 

(d)  s = U(s*, ^ ), 
(e) H ( s )  = I a* 1, 
( f )  H ( s )  ~ a~, 
(g) n ( s / t )  ~ ao, 
(h)  0 < Pc(a )  < 1, 
( i )  0 ~ P c ( s / t )  <_ 1, 
( j )  1 > ~ ,  P c ( s ) ,  

( k )  I > ~ .  Pc  ( a / t ) ,  

(l)  Pc(a)  > 2 T ( - I t c ( a )  ), 
(m)  P c ( s / t )  > 2 T ( - H c ( a / t ) ) ,  
( n )  0 < P ( a )  <-I, 
(o) 0 < P ( s / t )  < 1, 
(p)  # ( l a l H c ( s )  < n}) < 2", 
(q) # ( { s l H c ( s / t )  < n}) < 2", 
(r)  # ( { s l P c ( s )  > r}) < I / r ,  
(a) # ( l a I P c ( s / t )  > r}) < 1/r. 

PROOF. These are immediate consequences of the definitions. Q.E.D. 
Definition of Tuples of Strings. Somehow pick out a particular recursive bijection 

b : X × X --~ X for use throughout the rest of this paper. The 1-tuple (s,) is defined to be 
the string s~. For n > 2 the n-tuple ( s ~ , . . . ,  s,) is defined to be the string 
b( (s l ,  . . .  , s,_~),  s , ) .  

Extensions of the Previous Concepts to Tuplea of Strings (n  > 1, m > 1 ). 

Hc(sa , . . .  , a,) = Hc(  (Sl , " "  , am>), 

H e ( S , ,  " "  , s J t ,  , - . - ,  t,~) -- Hc(<al, . . .  , a,)/(t~ , . . . ,  t,~)), 

H(sa , . . .  , s~) = Hv(s l  , . . .  , s , ) ,  

H( s~ ,  . . .  , s , / t t  , . . .  , t,,) = Hv(a~ , . . .  , shirt ,  . . .  , t,~), 

Pc(a~ ,  . . .  , s , )  = Pc(  (s~, . . .  , s , ) ) ,  

Pc(S~ , . . . ,  a # t l ,  . . . ,  t , )  = Pc((a~, . . . ,  a,)/(t~ , . . . ,  t , J ) ,  

P ( s i , ' "  s , )  = P v ( s a , ' " , s n ) ,  

P(s l  , . . .  s , / t , ,  . . . ,  t,,) -- e v ( s , ,  . . . ,  s j t ~ ,  . . . ,  t~,). 

Definition of the Information in  One Tuple of Strings About Another (n  ~ 1, m > 1). 

Ic ( s ,  , . . .  , sn : t~ , . . .  , t,~) = Hc( t l  , . . .  , t , )  - Hc( t l  , . . .  , t , / s l  , . . .  , s~), 
I (s~  , . . . ,  s ,  : a , . . .  , t~,) = Iv(S~ , . . .  , sn : h , . . .  , t , , ) .  
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Extensions of the Previous Concepts to Natural Numbers. We have defined H, P, and I 
for tuples of strings. This is now extended to tuples each of whose elements may either be 
a string or a natural number. We do this by identifying the natural number n with the 
nth string (n = 0, 1, 2, • • • ). Thus, for example, " H ( n ) "  signifies " H  (the nth element 
o f X ) , " a n d  "U(p,  ^ ) = n"stands for "U(p,  ^ ) = the nth element of X."  

3. Basic Identities 

This section has two objectives. The first is to show that H and I satisfy the fundamental 
inequalities and identities of information theory to within error terms of the order of 
unity. For example, the information in s about t is nearly symmetrical. The second objec- 
tive is to show that P is approximately a conditional probability measure: P( t / s )  and 
P(s,  t ) / P ( s )  are ~ithin a constant multiplicative factor of each other. 

The follo~ing notation is convenient for expressing these approximate relationships. 
0(1)  denotes a function whose absolute value is less than or equal to e for all values of 
its arguments. Andf  ~ g means that the functions f and g satisfy the inequalities cf > 
g and f < cg for all values of their arguments. In both cases c E N is an unspecified con- 
stant. 

THEORWM 3.1. 
(a) H(s ,  t) = H(t ,  s) + 0(1) ,  
(b) H(s/s)  = O(U,  
(c) H ( H ( s ) / s )  = 0(1),  
(d) H(s )  < H(s,  t) + 0(1) ,  
(e) H(s / t )  < H(s )  "4- 0(1),  
(f) H(s,  t) < H(s )  + H( t / s )  + 0(1) ,  
(g) H(s,  t) < H(s )  -4- H( t )  q- 0(1) ,  

(h) I ( s  :t)  > 0(1),  
(i) I ( s  :t)  <: H(s)  q- H( t )  

- H ( s ,  t) "F 0(1), 
( j )  I ( s  :s) = H(s)  "F O(1), 
(k) 1( ^ :s) = O(U,  
(l) I ( s  : ^ )  = 0(1). 

PROOF. These are easy consequences of the definitions. The proof of Theorem 3.1(f) 
is especially interesting, and is given below in full. Also, note that Theorem 3.1(g) follows 
immediately from Theorem 3.1(f, e), and Theorem 3.1(i) follows immediately from 
Theorem 3.1(f) and the definition of I.  

Now for the proof of Theorem 3.1(f). We claim that there is a computer C ~ith the 
follo~ing property. If U(p, s*) = t and ] p I = H( t / s )  (i.e. if p is a minimal-size program 
for calculating t from s*), then C(s*p, h ) = (s, t). By using Theorem 2.3(e, a) we see 
t h a t H c ( s , t )  < Is*Pl = Is*l  + ]P] = H(s )  -4- H ( t / s ) , a n d H ( s , t )  < Hc(s , t ) -4 -  
sim(C) < H(s)  + H( t / s )  + 0(1).  ~' 

I t  remains to verify the claim that there is such a computer. C does the following when 
it is given the program s*p on its program tape and the string h on its work tape. First 
it simulates the computation that U performs when given the same program and work 
tapes. In this manner C reads the program s* and calculates s. Then it simulates the com- 
putation that U performs when given s* on its work tape and the remaining portion of 
C's program tape. In this manner C reads the program p and calculates t from s*. The 
entire program tape has now been read, and both s and t have been calculated. C finally 
forms the pair (s, t) and halts, indicating this to be the result of the computation. Q.E.D. 

Remark. The rest of this section is devoted to sho~ing that the " ~ "  in Theorems 
3.1(f) and 3.1(i) can be replaced by " =  ." The arguments used to do this are more proba- 
bilistie than information-theoretic in nature. 

Tn~o~M 3.2 (Extension of the Kraft inequality condition for the existence of an 
instantaneous code). 

Hypothesis. Consider an effectively given list of finitely or infinitely many "requirements" 
(sk , n,) (k = O, 1, 2, • • • ) for the construction of a computer. The requirements are said to be 
"consistent" i f  1 > ~'~k2 ~ ( - n , ) ,  and we assume that they are consistent. Each require- 
ment (s~ , ~ )  requests that a program of length n~ be "assig~ed" to the result sk . A computer C 
is said to "satisfy" the requirements if  there are precisely as many programs p of length n such 
that C(p, h ) = s as there are pairs (s, n) in the list of requirements. Such a C must have the 
property thatPc(s)  --- ~ 2 W ( - n ~ )  (sk = s) andHc(s )  = min nk (s~ = s). 
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Conclusion. There are computers that satisfy these requirements. Moreover, i f  we are given 
the requirements one by one, then we can simulate a computer that satisfies them. Hereafter we 
refer to the particular computer that the proof of this theorem shows how to simulate as the one 
that is "determined" by the requirements. 

PROOF. (a) First we give what we claim is the (abstract) definition of a particular 
computer C that  satisfies the requirements. In  the second part of the proof we justify this 
claim. 

As we are given the requirements, we assign programs to results. Initially all programs 
for C are available. When we are given the requirement (sk, n~) we assign the first available 
program of length nk to the result sk (first in the ordering which X was defined to have in 
Section 2). As each program is assigned, it and all its prefixes and extensions become un- 
available for future assignments. Note that  a result can have many programs assigned to 
it (of the same or different lengths) if there are many requirements involving it. 

How can we simulate C? As we are given the requirements, we make the above assign- 
ments, and we simulate C by using the technique that  was given in the proof of Theorem 
2.1 for a concrete computer to simulate an abstract one. 

(b) Now to justify the claim. We must  show that  the above rule for making assign- 
ments never fails, i.e. we must show that  it is never the case that  all programs of the 
requested length are unavailable. The proof we sketch is due to N. J. Pippenger. 

A geometrical interpretation is necessary. Consider the unit interval [0, 1). The kth 
program of length n (0 ~ k < 2") corresponds to the interval [k2-", (k -[- 1)2-") .  As- 
signing a program corresponds to assigning all the points in its interval. The condition 
tha t  the set of assigned programs must be an instantaneous code corresponds to the rule 
tha t  an interval is available for assignment iff no point in it has already been assigned. 
The rule we gave above for making assignments is to assign that  interval [k2-", (k + 1). 
2-") of the requested length 2-" that  is available that  has the smallest possible k. Using 
this rule for making assignments gives rise to the following fact. 

Fact. The set of those points in [0, 1) that  are unassigned can always be expressed as 
the union of a finite number of intervals [k,2 T ( - n ~ ) ,  (k, + 1)2 T ( - n , ) )  with the 
following properties: n, > n~+l, and (k, -t- 1)2 T ( - n , )  ~_ k,+l 2 T ( -n ,+x) .  I.e. these 
intervals are disjoint, their lengths are distinct powers of 2, and they appear in [0, 1) in 
order of increasing length. 

We leave to the reader the verification that  this fact is always the case and that  it 
implies tha t  an assignment is impossible only if the interval requested is longer than the 
total length of the unassigned part of [0, 1), i.e. only if the requirements are inconsistent. 
Q.E.D. 

TheOREM 3.3. (Recursive "estimates" for Hc and Pc).  Consider a computer C. 
(a) The set of all true propositions of the form "He(s)  ~_ n" is r.e. Given t* one can re- 

cursively enumerate the set of all true propositions of the form "Hc( s/t) <_ n". 
(b) The set of all true propositions of the form "Pc(s)  > r" is r.e. Given t* one can re- 

cursively enum erats the set of all true propositions of the form " P  c ( s/t ) > r". 
PROOF. This is an easy consequence of the fact that  the domain of C is an r.e. set. 

Q.E.D. 
Remark. The set of all true propositions of the form "H(s / t )  <_ n" is not r.e.; for if it 

were r.e., it would easily follow from Theorems 3.1 (c) and 2.3(q) that  Theorem 5.1 (f) is 
false, which is a contradiction. 

THEOREM 3.4. For each computer C there is a constant c such that (a) H(s)  <_ --lg 
Pc(s)  + c, (b) S ( s / t )  ~_ - - lgPc(s / t )  + c. 

PROOF. I t  follows from Theorem 3.3(b) that  the set T of all true propositions of the 
form "Pc(s)  > 2 . . . .  is r.e., and that  given t* one can recursively enumerate the set Tt of 
all true propositions of the form "Pc(s / t )  > 2 . . . .  . This will enable us to use Theorem 
3.2 to show that  there is a computer C' with these properties: 

(1) Uc,(s) = [ - - lgPc(s ) l  + 1, Pc, (s) = 2 T ( - [ - l g P c ( s ) ] ) ,  
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(2) Hc,(s/ t)  = [ - l g P c ( s / t ) ]  + 1, Pc,(s/ t)  = 2 T ( - [ - l g P c ( s / t ) ] ) .  
Here [xl denotes the least integer greater than x. By applying Theorem 2.3(a, b) to 

(1) and (2), we see tha t  Theorem 3.4 holds ~i th  c = s im(C' )  + 2. 
How does the computer  C' work? First of all, it checks whether it has been given h or 

t* on its work tape. These two cases can be distinguished, for by Theorem 2.3(c) it is 
impossible for t* to be equal to h .  

(a) If  C' has been given h on its work tape, it enumerates T and simulates the com- 
puter determined by all requirements of the form 

(3) (s, n + 1) ("Pc(s )  > 2 . . . .  E T) .  
Thus (s, n) is taken as a requirement iff n ~ [ - l g  Pc(s) l  + 1. Hence the number  of 

programs p of length n such tha t  C'(p, h ) = s is 1 if n ~ [--lg Pc(s) l  -{- 1 and is 0 
otherwise, which immediately yields (1). 

However, we must  check tha t  the requirements (3) are consistent. ~-~2 -Ipl (over all 
programs p we wish to assign to the result s) = 2 T ( - r - l g P c ( s ) l )  <~ Pc(s) .  Hence 
~-~.2 -Ipl (over all p we wish to assign) < ~'~,Pc(s) _< 1 by Theorem 2.3(j). Thus the 
hypothesis of Theorem 3.2 is satisfied, the requirements (3) indeed determine a computer, 
and the proof of (1) and Theorem 3.4(a) is complete. 

(b) If C' has been given t* on its work tape, it enumerates Tt and simulates the com- 
puter determined by all requirements of the form 

(4) (s, n + 1) ( "Pc(s / t )  > 2 . . . .  E T,) .  
Thus (s, ~) is taken as a requirement iff n >__ [ - l g  Pc(s / t ) l  -t- 1. Hence the number  of 

programs p of length n such tha t  C'(p, t*) = s is 1 if n _> [ - l g  Pc(s/ t ) l  + 1 and is 0 
other~ise, which immediately yields (2). 

However, we must check tha t  the requirements (4) are consistent. ~-~2 -lpl (over all 
programs p we wish to assign to the result s) = 2 T ( - [ - l g  Pc(s / t ) l )  < Pc(s / t ) .  Hence 
~-~2 -I~1 (over all p we wish to assign) <~ ~ , P c ( s / t )  _~ 1 by Theorem 2.3(k). Thus the 
hypothesis of Theorem 3.2 is satisfied, the requirements (4) indeed determine a com- 
puter, and the proof of (2) and Theorem 3.4(b) is complete. Q.E.D. 

THEOREM 3.5. 
(a) For each computer C there is a constant c such that P(s)  >_ 2-cPc(s), P(s / t )  > 

- - ¢  

2 Pc(s/ t ) .  
(b) H(s)  = - - lgP(s )  'F 0(1 ) ,  H(s / t )  = - l g P ( s / t )  + 0(1) .  
PROOF. Theorem 3.5(a) follows immediately from Theorem 3.4 using the fact tha t  

P(s)  > 2 T ( - H ( s ) )  and P(s / t )  >_ 2 T ( - H ( s / t ) )  (Theorem 2.3(1, m) ) .  Theorem 
3.5(b) is obtained by taking C = U in Theorem 3.4 and also using these two inequali- 
ties. Q.E.D. 

Remark. Theorem 3.5(a) extends Theorem 2.3(a, b) to probabilities. Note that  
Theorem 3.5(a) is not an immediate consequence of our weak definition of an optimal 
universal computer.  

Theorem 3.5(b) enables one to reformulate results about  H as results concerning P, 
and vice versa; it is the first member of a trio of formulas tha t  will be completed with 
Theorem 3.9(e, f). These formulas are closely analogous to expressions in information 
theory for the information content of individual events or symbols [10, Secs. 2.3, 2.6, 
pp. 27-28, 34-37]. 

THEOREM 3.6. 

( a ) # ( { p l  U(p, A) = s & [ P I - ~  H(s)  + n } )  _< 2 T ( n + 0 ( 1 ) ) .  
(b) #({p  I U(p,t*)  = s & I P ]  < H ( s / t )  + n } )  < 2 $ ( n +  0 (1 ) ) .  
PROOF. This follows immediately from Theorem 3.5(b). Q.E.D. 
T~EOREM 3.7. P(S) ,~ ~'-~,P(s, t). 
PROOF. On the one hand, there is a computer  C such tha t  C(p, A ) = s if U(p, A ) = 

(s, t). Thus Pc(s) >_ ~-~,P(s, t). Using Theorem 3.5(a), we see tha t  P(s)  >_ 2-¢~-~,P(s,t). 
On the other hand, there is a computer C such tha t  C(p, A ) = (s, s) if U(p, h ) = s. 
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Thus ~-~,Pc(s, t) >_ Pc(s, s) >_ P(s) .  Using Theorem 3.5(a), we see tha t  Y~,P(s, t) >_ 
2-~P(s).  Q.E.D.  

THEOREM 3.8. There is a computer C and a constant c such that Hc( Us ) = H ( s, t) - 

H(s) + c. 
PnOOF. The  set of all programs p such tha t  U(p, ^ ) is defined is r.e. Let pk be the 

kth program in a particular recursive enumeration of this set, and define sk and tk by 
(sk, tk) = U(pk,  ^ ) .  By Theorems 3.7 and 3.5(b) there is a c such tha t  
2 ~ (H(s)  - c))"~,P(s, t) < 1 for all s. Given s* on its work tape, C simulates the 
computer C, determined by the requirements (tk, [ pk [ - ] s* ] + c) for k = 0, 1, 2, • .- 
such tha t  sk = U(s*, h ) .  Recall Theorem 2.3(d, e). Thus for each p such 
tha t  U(p, ^ ) = (s, t) there is a corresponding p' such tha t  C(p', s*) = C°(p', h ) = t 
and] p' I = I P ] -- H(s)  q- c. HenceHc( t / s )  = H(s,  t) -- H(s)  q- c. 

However, we must  check tha t  the requirements for C, are consistent. Y:~2 T ( - I pt 1) 
(over all programs p '  we wish to assign to any result t) = ~-~2 T ( - I p ] -t- H(s)  - c) 
(overal l  p such tha t  U (p, h ) = (s, t) ) = 2 T (H ( s) - c) Y~.,P( s, t) _< 1 because of the 
way c was chosen. Thus the hypothesis of Theorem 3.2 is satisfied, and these requirements 
indeed determine C, .  Q.E.D. 

TH*'.OnEM 3.9. 
ia) H(s,  t) = H(s)  + H( t / s )  + 0(1 ) .  
(b) I ( s  : t )  ffi H(s)  + H(t )  -- H(s,  t) + 0(1) .  
(c) I ( s  : t )  ffi I ( t  :s)  -k- 0 (1 ) .  

(d) P(t /s)  ~ P(s, t ) /P(s) .  
(e) H(t /s)  = lgP(s) /P(s ,  t) + 0(1) .  
(f) I ( s  :t)  = lg P(s, t ) /P(s )P( t )  

+ O(1). 
PROOF. Theorem 3.9(a) follows immediately from Theorems 3.8, 2.3(b), and 3.1(f). 

Theorem 3.9(b) follows immediately from Theorem 3.9(a) and the definition of I(s  : t). 
Theorem 3.9(c) follows immediately from Theorems 3.9(b) and 3.1 (a). Theorem 3.9(d, e) 
follows immediately from Theorems 3.9(a) and 3.5(b). Theorem 3.9(f) follows imme- 
diately from Theorems 3.9(b) and 3.5(b). Q.E.D. 

Remark.  We thus have a t  our disposal essentially the entire formalism of information 
theory. Results such as these can now be obtained effortlessly: 

H(s l )  _< H(sx/s~) + H(s~/s3) + H(s~/s4) + H(s4) + 0(1 ) ,  

H(sa, s2, s3, s4) -- H(sx/s2, s3, s4) + H(s2/s3, s4) + H(s3/s4) + H(s4) -~- 0 (1 ) .  

However, there is an interesting class of identities satisfied by our H function tha t  has 
no parallel in information theory. The simplest of these is H ( H  (s) /s)  --= 0 (1) (Theorem 
3.1(c)), which with Theorem 3.9(a) immediately yields H(s, H(s)) = H(s) + 0(1). This 
is just one pair of a large family of identities, as we now proceed to show. 

Keeping Theorem 3.9(a) in mind, consider modifying the computer  C used in the 
proof of Theorem 3.1(f) so tha t  it also measures the lengths H(s)  and H(t / s )  of its sub- 
routines s* and p, and halts indicating (s, t, H(s ) ,  H(t / s ) )  to be the result of the computa- 
tion instead of (s, t). I t  follows tha t  H(s, t) = H(s,  t, H(s ) ,  H( t / s ) )  + 0(1)  
and H(H(s ) ,  H( t / s ) / s ,  t) -= 0(1) .  In  fact, it is easy to see tha t  H(H(s ) ,  H( t ) ,  H( t / s ) ,  
H(s / t ) ,  H(s,  t) /s ,  t) = 0 (1 ) ,  which implies H ( I ( s  :t)/s,  t) = 0(1) .  And of course these 
identities generalize to tuples of three or more strings. 

4. A Random Infinite String 

The undecidabifity of the halting problem is a fundamental theorem of recursive function 
theory. In  algorithmic information theory the corresponding theorem is as follows: The 
base-two representation of the probabili ty tha t  U halts is a random (i.e. maximally com- 
plex) infinite string. In  this section we formulate this s ta tement  precisely and prove it. 

THEOREM 4.1 (Bounds on the complexity of natural  numbers).  
(a) ~ .  2 -"c"~ < 1. 

J 
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Consider a recursive function f : N --* N.  
(b) I f  ~-~.~ 2 -t(') diverges, then H(n )  > f (n )  infinitdy often. 
(e) I f  ~-~n 2 - j~)  converges, thenH(n)  ~ f ( n )  + 0(1) .  
PnooF. 
(a) By Theorem 2.3(1, j),  ~-~., 2 -~("~ ~ ~ ,  P ( n )  ~ 1. 
(b) I f  :~-~, 2 -1(n) diverges, and H(n)  <_ f (n )  held for all but finitely many  values of n, 

then ~--:~ 2 -~(~) would also diverge. But  this would contradict Theorem 4.1(a), and thus 
H ( n) > f(  n) infinitely often. 

(c) I f  )":~ 2 - j~) converges, there is an n0 such that  ~'~>_,o 2-t(") -< 1. By  Theorem 3,2 
there is a computer  C determined by the requirements (n, f ( n ) )  (n >__ no). Thus H ( n )  _~ 
](n)  "-k sim(C) fo r a l l n  > no. Q.E.D. 

THEOREM 4.2 (Maximal complexity finite and infinite strings). 
(a) max H ( s ) (  I s I = n) = n + H ( n )  -~ 0(1 ) .  
(b) # ({s[I  s[ = n & H ( s )  < n + H ( n )  - k}) _< 2 T (n - k -b 0 (1 ) ) .  
(c) Imagine that the infinite string a is generated by tossing a fair coin once for each of 

its bits. Then, with probability one, H ( a , )  > n for all but finitely many n. 
PROOF. Consider a string s of length n. By  Theorem 3.9(a), H(s)  -~ H(n ,  s) -b 

0(1)  = H ( n )  + H ( s / n )  "-k 0(1) .  W e n o w  obtain Theorem 4.2(a, b) from this estimate 
for H(s ) .  

There is a computer  C such tha t  C(p, I P I*) = P for all p. Thus H ( s / n )  < n -k sim(C),  
and H(s)  < n "Jr" H(n )  + 0(1) .  On the other hand, by Theorem 2.3(q), fewer than 
2 "-k of the s satisfy H ( s / n )  < n - k. Hence fewer than 2 "-k of the s satisfy H(s )  < 
n - k + H (n) ~- 0 ( 1 ). Thus we have obtained Theorem 4.2 (a, b ). 

Now for the proof of Theorem 4.2(c). By  Theorem 4.2(b), at  most a fraction of 2 T 
( - H ( n )  ~ e) of the strings s of length n satisfy H(s) < n. Thus the probability that  a 
satisfies H ( a , )  < n is _< 2 1" ( - H ( n )  -'b c). By Theorem 4.1(a), ~ ,  2 T ( - -H(n)  --b c) 
converges. Invoking the Borel-Cantelli lemma, we obtain Theorem 4.2(c). Q.E.D. 

Definition of Randomness. A string s is random iff H(s )  is approximately equal to 
[ s I + H( I  s [). An infinite string a is random iff :3c Vn H(a~ )  > n - c. 

Remark.  In  the case of infinite strings there is a sharp distinction between randomness 
and nonrandomness. In the case of finite strings it is a mat te r  of degree. To the question 
"How random is s?" one must reply indicating how close H(s )  is to I s l ~- H(]  s I). 

C. P. Schnorr (private communication) has shown tha t  this complexity-based defini- 
tion of a random infinite string and P. Mart in-LSf 's  statistical definition of this concept 
[7, pp. 379-380] are equivalent. 

Definition of Base-Two Representations. The base-two representation of a real 
number  x E (0, 1] is tha t  unique infinite string b~b2b~ . . .  with infinitely many l 's  such 
tha t  x -- ~":~1 bk2 -k. 

Definition of the Probability ¢o that U Halts. ~ = ~'~, P(s )  = ~ 2 -I~l (U(p,  A ) is 
defined). 

By  Theorem 2.3(j, n),  w E (0, 1]. Therefore the real number  w has a base-two rep- 
resentation. Henceforth w denotes both the real number  and its base-two representation. 
Similarly, ~ denotes a string of length n and a rational number  m / 2  ~ with the property 
t h a t w  > w ~ a n d c 0 - w n _ <  2 -~. 

THEOI~EM 4.3 (Construction of a random infinite string). 
(a) There is a recursive function w : N  --~ R such that w(n)  ~_ w(n -b 1) 

and w = lim,~®w(n). 
( b ) ~ is random. 
(e) There is a reeursive predicate D : N X N X N --* {true, false} such that the k-th bit 

of ~ i s a  l i f f ' a i W j  D ( i , j , k )  (k = 0 , 1 , 2 , . . . ) .  
PROOF. {P ] U(p, h ) is defined} is r.e. Let p,  (k -- 0, 1, 2, • • .) denote the kth p in a 

particular recursive enumeration of this set. Let  w(n)  = ~k<~ 2 ~ ( - -  I P* I). w(n)  
tends monotonically to w from below, which proves Theorem 4.3(a). 
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In  view of the fact tha t  to > ton > to - 2-" (see the definition of ¢o), if one is given 
ton one can find an m such that  to > w(m) > to, > to - 2 -n. Thus to -- w(m)  < 2 -n, 
and {pk I k _< m} contains all programs p of length less than or equal to n such that  
U(p, A) is defined. Hence {U(pk, h ) l k  < m & [p~[ < n} = { s i l l ( s )  < n}. I t  
follows there is a computer C with the property that  if U(p, h ) = to,, then C(p, h ) 
equals the first string s such that  H(s)  > n. Thus n < H(s)  g H(to,) + sim(C), which 
proves Theorem 4.3(b). 

To prove Theorem 4.3(c), define D as follows: D(i ,  j ,  k) iff j >_ i implies the kth bit 
of the base-two representation of w(j )  is a 1. Q.E.D. 

Appendix. The Traditional Concept of Relative Complexity 

In  this Appendix programs are required to be self-delimiting, but the relative complexity 
H(s / t )  of s ~-ith respect to t ~ill now mean that  one is directly given t, instead of being 
given a minimal-size program for t. 

The standard optimal universal computer U remains the same as before. H and P are 
redefined as follows: 
Hc(s / t )  = mini  p[ (C(p,  t) = s) 

(may be ~ ), 
He(s)  = H e ( s / A ) ,  
H(s / t )  = Hv(s / t ) ,  
H(s )  = Hv(s ) ,  

Pc(s / t )  = ~ 2 -'~' (C(p, t) = s), 
Pc(s)  = Pc(s~ h ), 
P(s / t )  = Pv(s / t ) ,  
P (s )  = Pv(s) .  

These concepts are extended to tuples of strings and natural numbers as before. Finally, 
A(s, t) is defined as follows: 

H(s,  t) = H(s )  W H( t / s )  -4- A(s, t). 
TaEOREM 5.1. 

(a) H(s ,  H(s )  ) = H(s )  -4-0(1) ,  (e) A ( s , H ( s )  ) = - - H ( H ( s ) / s )  
(b) H(s,  t) = H(s )  -4- H(t /s ,  H ( s ) )  + 0(1) ,  W 0(1) ,  
(c) - H ( H ( s ) / s )  - 0 ( 1 )  _< A(s, t) < 0 (1) ,  (f)  H ( H ( s ) / s )  ~ 0(1) .  
(d) A(s, s) = 0 (1 ) ,  

PROOF. (a) On the one hand, H(s, H ( s ) )  < H(s)  -4- c because a minimal-size program 
for s also tells one its length H(s) ,  i.e. because there is a computer C such that  C(p, h ) = 
(U(p,  h ) ,  [p  [) if U(p, A) is defined. On the other hand, obviously H(s)  < 
H(s,  H ( s ) )  + c. 

(b) On the one hand, H(s,  t) < H(s)  W H(t /s ,  H(s )  ) + c follows from Theorem 5.1 
(a) and the obvious inequality H(s, t) < H(s,  H(s )  ) W H(t /s ,  H(s )  ) W c. On the other 
hand, H( s, t) > H(s )  -4- H(t /s ,  H(s )  ) - c follows from the inequality H( t/s, H(s )  ) <_ 
H(s,  t) -- H(s )  "4- c analogous to Theorem 3.8 and obtained by adapting the methods of 
Section 3 to the present setting. 

(c) This follows from Theorem 5.1(b) and the obvious inequality H(t/s ,  H ( s ) )  - 
c <_ H( t / s )  <_ H ( H ( s ) / s )  + H ( t / s , H ( s ) )  + c. 

(d) If  t -= s, H(s,  t) -- H(s )  - H( t / s )  = U(s,  s) - H(s)  - H(s / s )  = U ( s ) - -  H(s)  
W 0(1)  - 0(1), for obviously H(s, s) = H(s)  -4- 0(1)  a n d H ( s / s )  = 0(1) .  

(e) If  t = H(s ) ,  H(s ,  t) - H(s)  -- H( t / s )  = H(s,  H(s)  ) -- H(s )  -- H ( H ( s ) / s )  = 
- - H ( H ( s ) / s )  + 0(1)  by Theorem 5.1(a). 

(f) The proof is by reductio ad absurdum. Suppose on the contrary that  H ( H ( s ) / s )  < c 
for all s. First we adapt  an idea of A. R. Meyer and D. W. Loveland [6, pp. 525-526] to 
show that  there is a partial recursive function f : X  --, N with the property that  if f ( s )  
is defined it is equal to H(s)  and this occurs for infinitely many values of s. Then we 
obtain the desired contradiction by showing that  such a function f cannot exist. 

Consider the set K, of all natural numbers k such that  H(k / s )  < e and H(s)  <_ k. 
Note that  rain K, = H(s) ,  #(K,) < 2 c, and given s one can recursively enumerate K , .  
Also, given s and #(K,) one can recursively enumerate K, until one finds all its elements, 

::(i 
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and, in particular, its smallest element, which is H(s) .  Let m = lim sup #(K,),  and let n 
be such that  t s I -> n implies #(K,) _< m. 

Knowing m and n one calculates f ( s )  as follows. First one checks if I s I < n. If so, 
f ( s )  is undefined. If not, one recursively enumerates K, until  m of its elements are found. 
Because of the way n was chosen, K, cannot have more than m elements. If it has less 
than m, one never finishes searching for m of them, and so f ( s )  is undefined. However, if 
#(K,) = m, which occurs for infinitely many values of s, then one eventually realizes all 
of them have been found, including f ( s )  = min K, = H(s) .  Thus f ( s )  is defined and 
equal to H(s)  for infinitely many values of s. 

I t  remains to show that  such an f is impossible. As the length of s increases, H(s)  tends 
to infinity, and so f is unbounded. Thus given n and H(n)  one can calculate a string sn 
such that  H ( n ) ~- n < f(  sn) = H ( sn), and so H ( s J n ,  H ( n ) ) is bounded. Using Theorem 
5.1(b) we obtain H ( n )  + n < H(s , )  <_ H(n ,  s~) + c' <_ H(n )  -~ H(s~/n,  H ( n ) )  T 
c" <_ H(n)  -{- c", which is impossible for n > c ' .  Thus f cannot exist, and our initial 
assumption that  H ( H ( s ) / s )  < c for all s must be false. Q.E.D. 

Remark. Theorem 5.1 makes it clear that  the fact that  H ( H ( s ) / s )  is unbounded 
implies that  H( t / s )  is less convenient to use than H(t /s ,  H ( s ) ) .  In  fact, R. Solovay 
(private communication) has announced that  max H ( H ( s ) / s )  taken over all strings s of 
length n is asymptotic to lg n. The definition of the relative complexity of s with respect 
to t given in Section 2 is equivalent to H(s/ t ,  H( t )  ). 
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