
A Theory of Program Size Formally Identical to Information

Theory

GREGORY J. CHAITIN

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. A new definition of program-size complexity is made. H(A,B/C,D) is defined to be the
size in bits of the shortest self-delimiting program for calculating strings A and B if one is given a
minimal-size self-delimiting program for calculating strings C and D. This differs from previous
definitions: (1) programs are required to be self-delimiting, i.e. no program is a prefix of another,
and (2) instead of being given C and D directly, one is given a program for calculating them that
is minimal in size. Unlike previous definitions, this one has precisely the formal properties of the
entropy concept of information theory. For example, H(A,B) = H(A) + H(B/A) -~ 0(1). Also, if a
program of length k is assigned measure 2 -k, then H(A) = -log2 (the probability that the standard
universal computer will calculate A) -{- 0(1).

KEY WORDS AND PHRASES: computational complexity, entropy, information theory, instantaneous
code, Kraft inequality, minimal program, probability theory, program size, random string, reeursive
f u n c t i o n theory, Turing machine

CR CATE•ORmS: 5.25, 5.26, 5.27, 5.5, 5.6

1. In troduct ion

There is a persuasive analogy between the entropy concept of information theory and the
size of programs. This was realized by the first workers in the field of program-size com-
plexity, Solomonoit [1], Kolmogorov [2], and Chait in [3, 4], and it accounts for the large
measure of success of subsequent work in this area. However, it is often the case tha t
results are cumbersome and have unpleasant error terms. These ideas cannot be a tool for
general use until they are clothed in a powerful formalism like tha t of information theory.

This opinion is apparently not shared by all workers in the field (see Kolmogorov [5]),
but it has led others to formulate alternative definitions of program-size complexity, for
example, Loveland's uniform complexity [6] and Schnorr's process complexity [7]. In this
paper we present a new concept of program-size complexity. What train of thought led us

to it?
Follo~ing [8, Sec. VI, p. 7], think of a computer as decoder equipment at the receiving

end of a noiseless binary communications channel. Think of its programs as code words,
and of the result of a computation as the decoded message. Then it is natural to require
tha t the programs/code words form what is called an "instantaneous code," so tha t
successive messages sent across the channel (e.g. subroutines) can be separated. Instan-
taneous codes are well understood by information theorists [9-12]; they are governed by
the Kraft inequality, which therefore plays a fundamental role in this paper.

Copyright © 1975, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
This paper was written while the author was a visitor at the IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, New York, and was presented at the IEEE InternationM Symposium o n

Information Theory, Notre Dame, Indiana, October 1974.
Author's present address: Rivadavia 3580, Dpto. 10A, Buenos Aires, Argentina.

Journal of the Association for Computing Machinery, Vot. 22, No. 3, July 1975, pp. 329-340.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321892.321894&domain=pdf&date_stamp=1975-07-01

330 GREGORY J. CHAITIN

One is thus led to define the relative complexity H(A, B/C, D) of A and B ~-ith respect
to C and D to be the size of the shortest self-delimiting program for producing A and B
from C and D. However, this is still not quite right. Guided by the analogy with informa-
tion theory, one would like H(A, B) = H(A) -'b H (B / A) -b A to hold with an error term
A bounded in absolute value. But, as is shown in the Appendix,] A I is unbounded. So we
stipulate instead tha t H(A, B/C, D) is the size of the smallest self-delimiting program
that produces A and B when it is given a minimal-size self-delimiting program for C and
D. Then it can be sho~n that I 5 I is bounded.

In Sections 2-4 we define this new concept formally, establish the basic identities, and
briefly consider the resulting concept of randomness or maximal entropy.

We recommend reading Willis [13]. In retrospect it is clear that he was aware of some
of the basic ideas of this paper, though he developed them in a different direction. Chai-
tin's study [3, 4] of the state complexity of Turing machines may be of interest, because in
his formalism programs can also be concatenated. To compare the properties of our en-
t ropy function H with those it has in information theory, see [9-12]; to contrast its prop-
erties with those of previous definitions of program-size complexity, see [14]. Cover [15]
and Gewirtz [16] use our new definition. See [17-32] for other applications of informa-
t ion/entropy concepts.

2. Definitions

X -- { A, 0, 1, 00, 01, 10, 11,000, • • • } is the set of finite binary strings, and X ® is the set
of infinite binary strings. Henceforth we shall merely say "string" instead of "binary
string," and a string will be understood to be finite unless the contrary is explicitly stated.
X is ordered as indicated, and I s I is the length of the string s. The variables p, q, s, and t
denote strings. The variables a and ¢0 denote infinite strings, a , is the prefix of a of length
n. N = {0, 1, 2, - • • } is the set of natural numbers. The variables c, i,j, k, m, and n denote
natural numbers. R is the set of positive rationals. The variable r denotes an element of
R. We write "r.e." instead of "recursively enumerable," "lg" instead of "log~," and some-
times "2 1" (x)" instead of"2*. ' ' #(S) is the cardinality of the set S.

Concrete Definition of a Computer. A computer C is a Turing machine ~ t h two tapes,
a program tape and a work tape. The program tape is finite in length. Its leftmost square
is called the dummy square and ahvays contains a blank. Each of its remaining squares
contains either a 0 or a 1. I t is a read-only tape, and has one read head on it which can
move only to the right. The work tape is two-way infinite and each of its squares contains
either a 0, a 1, or a blank. I t has one read-write head on it.

At the start of a computation the machine is in its initial state, the program p occupies
the whole program tape except for the dummy square, and the read head is scanning the
dummy square. The work tape is blank except for a single string q whose leftmost symbol
is being scanned by the read-write head. Note tha t q can be equal to A. In that case the
read-write head initially scans a blank square, p can also be equal to ^ . In that case the
program tape consists solely of the dummy square. See Figure 1.

During each cycle of operation the machine may halt, move the read head of the pro-
gram tape one square to the right, move the read-write head of the work tape one square
to the left or to the right, erase the square of the work tape being scanned, or write a 0
or a 1 on the square of the work tape being scanned. Then the machine changes state. The
action performed and the next state are both functions of the present state and the con-
tents of the two squares being scanned, and are indicated in two finite tables with nine
columns and as man), rows as there are states.

If the Turing machine eventually halts with the read head of the program tape scanning
its rightmost square, then the computation is a success. If not, the computation is a
failure. C(p, q) denotes the result of the computation. If the computation is a failure, then
C(p, q) is undefined. If it is a success, then C(p, q) is the string extending to the right

A Theory of Program Size F

~ o l o 1 , 1 , 1 o l ,

1
~ 1 I t I '1 '1°1°1 I]

FIo . 1. The s t a r t o f a cc
p = 0011010 and q =

from the square of the work
C(p, q) = ^ i f thesquareot

Defnition of an Instanta~,
the property that no string

Abstract Definition of a
C : X X X - - * X w i t h t h e p
neous code; i.e. if C(p, q) i
defined.

THEOREM 2.1. The two d,
PROOF. Why does the e(

indicate within itself where
the tape or to ignore part of
the prefix of another.

Why does the abstract d
computer C can simulate a~
square of its program tape c

Suppose C found the ."
S = {p]C'(p,q) is defined

As it generates S, C corn
it has already read is a prefi:

Whenever C finds that p
prefix of s, C reads anoth,
C'(p, q) and halts, indicatil

Definition of an Optimal
for each computer C there i
defined, then there is apt su

THEOREM 2.2. There is
P~OOF. Ureads i t s pro~

simulates C~, the ith comp~
enumeration of all possible
tape as the program for C
Hence U satisfies the defin~
Q.E.D.

We somehow pick out a p~
throughout the rest of this pa

Definition of Canonical P
(a) The canonical progr:

the ordcred set X of all stri
(b) Complexities.

Hc(s) = mini p

Hc(s/t) = mini p

A Theory of Program Size Formally Identical to Information Theory 331

Illolol,l,lol,lol [lolol,l,lol,l_~l, ,,

I Initial state I Halted

J
I I I I I I 1 1 1 o l o l I I I I I 1 1 I I I Io~111ol I I I I I I

Fro. 1. The start of a computation.
p = 0011010 and q = 1100.

I I I I I

Fro. 2. The end of a successful computation.
C(p, q) = 010.

from the square of the work tape that is being scanned to the first blank square. Note that
C(p, q) = ^ if the square of the work tape being scanned is blank. See Figure 2.

Definition of an Instantaneous Code. An instantaneous code is a set of strings S ~4th
the property that no string in S is a prefix of another.

Abstract Definition of a Computer. A computer is a partial recursive function
C : X X X --* X with the property that for each q the domain of C(-, q) is an instanta-
neous code; i.e. if C(p, q) is defined and p is a proper prefix of p', then C(p', q) is not
defined.

TH~:OI~EI~ 2.1. The two definitions of a computer are equivalent.
PROOF. Why does the concrete definition satisfy the abstract one? The program must

indicate within itself where it ends since the machine is not allowed to run off the end of
the tape or to ignore part of the program. Thus no program for a successful computation is
the prefix of another.

Why does the abstract definition satisfy the concrete one? We show how a concrete
computer C can simulate an abstract computer C'. The idea is that C should read another
square of its program tape only when it is sure that this is necessary.

Suppose C found the string q on its work tape. C then generates the r.e. set
S = {p I C'(p, q) is defined} on its work tape.

As it generates S, C continually checks whether or not that part p of the program that
it has already read is a prefix of some known element s of S. Note tha t initially p = ^ .

Whenever C finds that p is a prefix of an s E S, it does the follo~ing. If p is a proper
prefix of s, C reads another square of the program tape. And if p = s, C calculates
C'(p, q) and halts, indicating this to be the result of the computation. Q.E.D.

Definition7 of an Optimal Universal Computer. U is an optimal universal computer iff
for each computer C there is a constant sire(C) with the following property: if C(p, q) is
defined, then there is a p ' such that U(p', q) = C(p, q) and I PP I -< I P J + sire(C).

THEOnEM 2.2. There is an optimal u~iversal computer U.
:PROOF. U reads its program tape until it gets to the first 1. I f U has read i O's, it then

simulates C,, the ith computer (i.e. the computer with the ith pair of tables in a recursive
enumeration of all possible pairs of defining tables), using the remainder of the program
tape as the program for C~. Thus if C~(p, q) is defined, then u (0 q p , q) = C~(p, q).
Hence U satisfies the definition of an optimal universal computer with sim(C~) = i + 1.
Q.E.D.

We somehow pick out a particular optimal universal computer U as the standard one for use
throughout the rest of this paper.

Defi~ition of Canonical Programs, Complexities, and Probabilities.
(a) The canonical program, s* = min p(U(p, ^) = s). I.e. s* is the first element in

the ordered set X of all strings that is a program for U to calculate s.
(b) Complexities.

He(s) -- minlp] (C(p, ^) = s) (m a y b e ~) , H(s) = Hv(s),

He(s/t) = rain I P l (C(p, t*) = s) (may be ~) , H(s/t) = Hv(s/ t) .

332 QR~-GORr J. CI~ITIN

(e) Probabilities.

P c (s) = ~ 2 -Ipj (C(p , A) = s), P (s) = Pu(a) ,

P c (s / t) = ~ . 2 -tpt (C(p , t*) = s), P (s / t) = P v (s / t) .

Remark on Nomenclature. There are two different sets of terminology for these con-
cepts, one derived from computational complexity and the other from information theory.
H (s) may be referred to as the information-theoretic or program-size complexity, and
H (s / t) may be referred to as the relative information-theoretic or program-size com-
plexity. Or H (s) and H (s / t) may be termed the algorithmic entropy and the conditional
algorithmic entropy, respectively. Similarly, this field might be referred to as "informa-
tion-theoretic complexity" or as "algorithmic information theory."

Remark on the Definition of Probabilities. There is a very intuitive way of looking at
the definition of P c . Change the definition of the computer C so that the program tape is
infinite to the right, and remove the (now impossible) requirement for a computation to
be successful that the rightmost square of the program tape is being scanned when C halts.
Imagine each square of the program tape except for the dummy square to be filled with a
0 or a 1 by a separate toss of a fair coin. Then the probability that the result s is obtained
when the work tape is initially blank is Pc(s) , and the probability that the result s is
obtained when the work tape initially has t* on it is P c (s / t) .
THEOREM 2.3.

(a) H (s) < Hc (s) -P sire(C),
(b) H (s / t) < Hc (a / t) Jr- aim(C),
(c) a* ~ A,

(d) s = U(s*, ^),
(e) H (s) = I a* 1,
(f) H (s) ~ a~,
(g) n (s / t) ~ ao,
(h) 0 < Pc(a) < 1,
(i) 0 ~ P c (s / t) <_ 1,
(j) 1 > ~ , P c (s) ,

(k) I > ~ . Pc (a / t) ,

(l) Pc(a) > 2 T (- I t c (a)),
(m) P c (s / t) > 2 T (- H c (a / t)) ,
(n) 0 < P (a) <-I,
(o) 0 < P (s / t) < 1,
(p) # (l a l H c (s) < n}) < 2",
(q) # ({ s l H c (s / t) < n}) < 2",
(r) # ({ s l P c (s) > r}) < I / r ,
(a) # (l a I P c (s / t) > r}) < 1/r.

PROOF. These are immediate consequences of the definitions. Q.E.D.
Definition of Tuples of Strings. Somehow pick out a particular recursive bijection

b : X × X --~ X for use throughout the rest of this paper. The 1-tuple (s,) is defined to be
the string s~. For n > 2 the n-tuple (s ~ , . . . , s,) is defined to be the string
b((s l , . . . , s,_~), s ,) .

Extensions of the Previous Concepts to Tuplea of Strings (n > 1, m > 1).

Hc(sa , . . . , a,) = Hc((Sl , " " , am>),

H e (S , , " " , s J t , , - . - , t,~) -- Hc(<al, . . . , a,)/(t~ , . . . , t,~)),

H(sa , . . . , s~) = Hv(s l , . . . , s ,) ,

H(s~ , . . . , s , / t t , . . . , t,,) = Hv(a~ , . . . , shirt , . . . , t,~),

Pc(a~ , . . . , s ,) = Pc((s~, . . . , s ,)) ,

Pc(S~ , . . . , a # t l , . . . , t ,) = Pc((a~, . . . , a,)/(t~ , . . . , t , J) ,

P (s i , ' " s ,) = P v (s a , ' " , s n) ,

P(s l , . . . s , / t , , . . . , t,,) -- e v (s , , . . . , s j t ~ , . . . , t~,).

Definition of the Information in One Tuple of Strings About Another (n ~ 1, m > 1).

Ic (s , , . . . , sn : t~ , . . . , t,~) = Hc(t l , . . . , t ,) - Hc(t l , . . . , t , / s l , . . . , s~),
I (s~ , . . . , s , : a , . . . , t~,) = Iv(S~ , . . . , sn : h , . . . , t , ,) .

A Theory of Program Size Formally Identical to Information Theory 333

Extensions of the Previous Concepts to Natural Numbers. We have defined H, P, and I
for tuples of strings. This is now extended to tuples each of whose elements may either be
a string or a natural number. We do this by identifying the natural number n with the
nth string (n = 0, 1, 2, • • •). Thus, for example, " H (n) " signifies " H (the nth element
o f X) , " a n d "U(p, ^) = n"stands for "U(p, ^) = the nth element of X."

3. Basic Identities

This section has two objectives. The first is to show that H and I satisfy the fundamental
inequalities and identities of information theory to within error terms of the order of
unity. For example, the information in s about t is nearly symmetrical. The second objec-
tive is to show that P is approximately a conditional probability measure: P(t / s) and
P(s, t) / P (s) are ~ithin a constant multiplicative factor of each other.

The follo~ing notation is convenient for expressing these approximate relationships.
0(1) denotes a function whose absolute value is less than or equal to e for all values of
its arguments. Andf ~ g means that the functions f and g satisfy the inequalities cf >
g and f < cg for all values of their arguments. In both cases c E N is an unspecified con-
stant.

THEORWM 3.1.
(a) H(s , t) = H(t , s) + 0(1) ,
(b) H(s/s) = O(U,
(c) H (H (s) / s) = 0(1),
(d) H(s) < H(s, t) + 0(1) ,
(e) H(s / t) < H(s) "4- 0(1),
(f) H(s, t) < H(s) + H(t / s) + 0(1) ,
(g) H(s, t) < H(s) -4- H(t) q- 0(1) ,

(h) I (s :t) > 0(1),
(i) I (s :t) <: H(s) q- H(t)

- H (s , t) "F 0(1),
(j) I (s :s) = H(s) "F O(1),
(k) 1(^ :s) = O(U,
(l) I (s : ^) = 0(1).

PROOF. These are easy consequences of the definitions. The proof of Theorem 3.1(f)
is especially interesting, and is given below in full. Also, note that Theorem 3.1(g) follows
immediately from Theorem 3.1(f, e), and Theorem 3.1(i) follows immediately from
Theorem 3.1(f) and the definition of I.

Now for the proof of Theorem 3.1(f). We claim that there is a computer C ~ith the
follo~ing property. If U(p, s*) = t and] p I = H(t / s) (i.e. if p is a minimal-size program
for calculating t from s*), then C(s*p, h) = (s, t). By using Theorem 2.3(e, a) we see
t h a t H c (s , t) < Is*Pl = Is*l +]P] = H(s) -4- H (t / s) , a n d H (s , t) < Hc(s , t) -4 -
sim(C) < H(s) + H(t / s) + 0(1). ~'

I t remains to verify the claim that there is such a computer. C does the following when
it is given the program s*p on its program tape and the string h on its work tape. First
it simulates the computation that U performs when given the same program and work
tapes. In this manner C reads the program s* and calculates s. Then it simulates the com-
putation that U performs when given s* on its work tape and the remaining portion of
C's program tape. In this manner C reads the program p and calculates t from s*. The
entire program tape has now been read, and both s and t have been calculated. C finally
forms the pair (s, t) and halts, indicating this to be the result of the computation. Q.E.D.

Remark. The rest of this section is devoted to sho~ing that the " ~ " in Theorems
3.1(f) and 3.1(i) can be replaced by " = ." The arguments used to do this are more proba-
bilistie than information-theoretic in nature.

Tn~o~M 3.2 (Extension of the Kraft inequality condition for the existence of an
instantaneous code).

Hypothesis. Consider an effectively given list of finitely or infinitely many "requirements"
(sk , n,) (k = O, 1, 2, • • •) for the construction of a computer. The requirements are said to be
"consistent" i f 1 > ~'~k2 ~ (- n ,) , and we assume that they are consistent. Each require-
ment (s~ , ~) requests that a program of length n~ be "assig~ed" to the result sk . A computer C
is said to "satisfy" the requirements if there are precisely as many programs p of length n such
that C(p, h) = s as there are pairs (s, n) in the list of requirements. Such a C must have the
property thatPc(s) --- ~ 2 W (- n ~) (sk = s) andHc(s) = min nk (s~ = s).

334 GREGORY J . CHAITIN

Conclusion. There are computers that satisfy these requirements. Moreover, i f we are given
the requirements one by one, then we can simulate a computer that satisfies them. Hereafter we
refer to the particular computer that the proof of this theorem shows how to simulate as the one
that is "determined" by the requirements.

PROOF. (a) First we give what we claim is the (abstract) definition of a particular
computer C that satisfies the requirements. In the second part of the proof we justify this
claim.

As we are given the requirements, we assign programs to results. Initially all programs
for C are available. When we are given the requirement (sk, n~) we assign the first available
program of length nk to the result sk (first in the ordering which X was defined to have in
Section 2). As each program is assigned, it and all its prefixes and extensions become un-
available for future assignments. Note that a result can have many programs assigned to
it (of the same or different lengths) if there are many requirements involving it.

How can we simulate C? As we are given the requirements, we make the above assign-
ments, and we simulate C by using the technique that was given in the proof of Theorem
2.1 for a concrete computer to simulate an abstract one.

(b) Now to justify the claim. We must show that the above rule for making assign-
ments never fails, i.e. we must show that it is never the case that all programs of the
requested length are unavailable. The proof we sketch is due to N. J. Pippenger.

A geometrical interpretation is necessary. Consider the unit interval [0, 1). The kth
program of length n (0 ~ k < 2") corresponds to the interval [k2-", (k -[- 1)2-") . As-
signing a program corresponds to assigning all the points in its interval. The condition
tha t the set of assigned programs must be an instantaneous code corresponds to the rule
tha t an interval is available for assignment iff no point in it has already been assigned.
The rule we gave above for making assignments is to assign that interval [k2-", (k + 1).
2-") of the requested length 2-" that is available that has the smallest possible k. Using
this rule for making assignments gives rise to the following fact.

Fact. The set of those points in [0, 1) that are unassigned can always be expressed as
the union of a finite number of intervals [k,2 T (- n ~) , (k, + 1)2 T (- n ,)) with the
following properties: n, > n~+l, and (k, -t- 1)2 T (- n ,) ~_ k,+l 2 T (-n ,+x) . I.e. these
intervals are disjoint, their lengths are distinct powers of 2, and they appear in [0, 1) in
order of increasing length.

We leave to the reader the verification that this fact is always the case and that it
implies tha t an assignment is impossible only if the interval requested is longer than the
total length of the unassigned part of [0, 1), i.e. only if the requirements are inconsistent.
Q.E.D.

TheOREM 3.3. (Recursive "estimates" for Hc and Pc). Consider a computer C.
(a) The set of all true propositions of the form "He(s) ~_ n" is r.e. Given t* one can re-

cursively enumerate the set of all true propositions of the form "Hc(s/t) <_ n".
(b) The set of all true propositions of the form "Pc(s) > r" is r.e. Given t* one can re-

cursively enum erats the set of all true propositions of the form " P c (s/t) > r".
PROOF. This is an easy consequence of the fact that the domain of C is an r.e. set.

Q.E.D.
Remark. The set of all true propositions of the form "H(s / t) <_ n" is not r.e.; for if it

were r.e., it would easily follow from Theorems 3.1 (c) and 2.3(q) that Theorem 5.1 (f) is
false, which is a contradiction.

THEOREM 3.4. For each computer C there is a constant c such that (a) H(s) <_ --lg
Pc(s) + c, (b) S (s / t) ~_ - - lgPc(s / t) + c.

PROOF. I t follows from Theorem 3.3(b) that the set T of all true propositions of the
form "Pc(s) > 2 is r.e., and that given t* one can recursively enumerate the set Tt of
all true propositions of the form "Pc(s / t) > 2 This will enable us to use Theorem
3.2 to show that there is a computer C' with these properties:

(1) Uc,(s) = [- - lgPc(s) l + 1, Pc, (s) = 2 T (- [- l g P c (s)]) ,

A Theory of Program Size Formally Identical to Information Theory 335

(2) Hc,(s/ t) = [- l g P c (s / t)] + 1, Pc,(s/ t) = 2 T (- [- l g P c (s / t)]) .
Here [xl denotes the least integer greater than x. By applying Theorem 2.3(a, b) to

(1) and (2), we see tha t Theorem 3.4 holds ~i th c = s im(C') + 2.
How does the computer C' work? First of all, it checks whether it has been given h or

t* on its work tape. These two cases can be distinguished, for by Theorem 2.3(c) it is
impossible for t* to be equal to h .

(a) If C' has been given h on its work tape, it enumerates T and simulates the com-
puter determined by all requirements of the form

(3) (s, n + 1) ("Pc(s) > 2 E T) .
Thus (s, n) is taken as a requirement iff n ~ [- l g Pc(s) l + 1. Hence the number of

programs p of length n such tha t C'(p, h) = s is 1 if n ~ [--lg Pc(s) l -{- 1 and is 0
otherwise, which immediately yields (1).

However, we must check tha t the requirements (3) are consistent. ~-~2 -Ipl (over all
programs p we wish to assign to the result s) = 2 T (- r - l g P c (s) l) <~ Pc(s) . Hence
~-~.2 -Ipl (over all p we wish to assign) < ~'~,Pc(s) _< 1 by Theorem 2.3(j). Thus the
hypothesis of Theorem 3.2 is satisfied, the requirements (3) indeed determine a computer,
and the proof of (1) and Theorem 3.4(a) is complete.

(b) If C' has been given t* on its work tape, it enumerates Tt and simulates the com-
puter determined by all requirements of the form

(4) (s, n + 1) ("Pc(s / t) > 2 E T,) .
Thus (s, ~) is taken as a requirement iff n >__ [- l g Pc(s / t) l -t- 1. Hence the number of

programs p of length n such tha t C'(p, t*) = s is 1 if n _> [- l g Pc(s/ t) l + 1 and is 0
other~ise, which immediately yields (2).

However, we must check tha t the requirements (4) are consistent. ~-~2 -lpl (over all
programs p we wish to assign to the result s) = 2 T (- [- l g Pc(s / t) l) < Pc(s / t) . Hence
~-~2 -I~1 (over all p we wish to assign) <~ ~ , P c (s / t) _~ 1 by Theorem 2.3(k). Thus the
hypothesis of Theorem 3.2 is satisfied, the requirements (4) indeed determine a com-
puter, and the proof of (2) and Theorem 3.4(b) is complete. Q.E.D.

THEOREM 3.5.
(a) For each computer C there is a constant c such that P(s) >_ 2-cPc(s), P(s / t) >

- - ¢

2 Pc(s/ t) .
(b) H(s) = - - lgP(s) 'F 0(1) , H(s / t) = - l g P (s / t) + 0(1) .
PROOF. Theorem 3.5(a) follows immediately from Theorem 3.4 using the fact tha t

P(s) > 2 T (- H (s)) and P(s / t) >_ 2 T (- H (s / t)) (Theorem 2.3(1, m)) . Theorem
3.5(b) is obtained by taking C = U in Theorem 3.4 and also using these two inequali-
ties. Q.E.D.

Remark. Theorem 3.5(a) extends Theorem 2.3(a, b) to probabilities. Note that
Theorem 3.5(a) is not an immediate consequence of our weak definition of an optimal
universal computer.

Theorem 3.5(b) enables one to reformulate results about H as results concerning P,
and vice versa; it is the first member of a trio of formulas tha t will be completed with
Theorem 3.9(e, f). These formulas are closely analogous to expressions in information
theory for the information content of individual events or symbols [10, Secs. 2.3, 2.6,
pp. 27-28, 34-37].

THEOREM 3.6.

(a) # ({ p l U(p, A) = s & [P I - ~ H(s) + n }) _< 2 T (n + 0 (1)) .
(b) #({p I U(p,t*) = s & I P] < H (s / t) + n }) < 2 $ (n + 0 (1)) .
PROOF. This follows immediately from Theorem 3.5(b). Q.E.D.
T~EOREM 3.7. P(S) ,~ ~'-~,P(s, t).
PROOF. On the one hand, there is a computer C such tha t C(p, A) = s if U(p, A) =

(s, t). Thus Pc(s) >_ ~-~,P(s, t). Using Theorem 3.5(a), we see tha t P(s) >_ 2-¢~-~,P(s,t).
On the other hand, there is a computer C such tha t C(p, A) = (s, s) if U(p, h) = s.

336 G R E G O R Y Jo C H A I T I N

Thus ~-~,Pc(s, t) >_ Pc(s, s) >_ P(s) . Using Theorem 3.5(a), we see tha t Y~,P(s, t) >_
2-~P(s). Q.E.D.

THEOREM 3.8. There is a computer C and a constant c such that Hc(Us) = H (s, t) -

H(s) + c.
PnOOF. The set of all programs p such tha t U(p, ^) is defined is r.e. Let pk be the

kth program in a particular recursive enumeration of this set, and define sk and tk by
(sk, tk) = U(pk, ^) . By Theorems 3.7 and 3.5(b) there is a c such tha t
2 ~ (H(s) - c))"~,P(s, t) < 1 for all s. Given s* on its work tape, C simulates the
computer C, determined by the requirements (tk, [pk [-] s*] + c) for k = 0, 1, 2, • .-
such tha t sk = U(s*, h) . Recall Theorem 2.3(d, e). Thus for each p such
tha t U(p, ^) = (s, t) there is a corresponding p' such tha t C(p', s*) = C°(p', h) = t
and] p' I = I P] -- H(s) q- c. HenceHc(t / s) = H(s, t) -- H(s) q- c.

However, we must check tha t the requirements for C, are consistent. Y:~2 T (- I pt 1)
(over all programs p ' we wish to assign to any result t) = ~-~2 T (- I p] -t- H(s) - c)
(overal l p such tha t U (p, h) = (s, t)) = 2 T (H (s) - c) Y~.,P(s, t) _< 1 because of the
way c was chosen. Thus the hypothesis of Theorem 3.2 is satisfied, and these requirements
indeed determine C, . Q.E.D.

TH*'.OnEM 3.9.
ia) H(s, t) = H(s) + H(t / s) + 0(1) .
(b) I (s : t) ffi H(s) + H(t) -- H(s, t) + 0(1) .
(c) I (s : t) ffi I (t :s) -k- 0 (1) .

(d) P(t /s) ~ P(s, t) /P(s) .
(e) H(t /s) = lgP(s) /P(s , t) + 0(1) .
(f) I (s :t) = lg P(s, t) /P(s)P(t)

+ O(1).
PROOF. Theorem 3.9(a) follows immediately from Theorems 3.8, 2.3(b), and 3.1(f).

Theorem 3.9(b) follows immediately from Theorem 3.9(a) and the definition of I(s : t).
Theorem 3.9(c) follows immediately from Theorems 3.9(b) and 3.1 (a). Theorem 3.9(d, e)
follows immediately from Theorems 3.9(a) and 3.5(b). Theorem 3.9(f) follows imme-
diately from Theorems 3.9(b) and 3.5(b). Q.E.D.

Remark. We thus have a t our disposal essentially the entire formalism of information
theory. Results such as these can now be obtained effortlessly:

H(s l) _< H(sx/s~) + H(s~/s3) + H(s~/s4) + H(s4) + 0(1) ,

H(sa, s2, s3, s4) -- H(sx/s2, s3, s4) + H(s2/s3, s4) + H(s3/s4) + H(s4) -~- 0 (1) .

However, there is an interesting class of identities satisfied by our H function tha t has
no parallel in information theory. The simplest of these is H (H (s) /s) --= 0 (1) (Theorem
3.1(c)), which with Theorem 3.9(a) immediately yields H(s, H(s)) = H(s) + 0(1). This
is just one pair of a large family of identities, as we now proceed to show.

Keeping Theorem 3.9(a) in mind, consider modifying the computer C used in the
proof of Theorem 3.1(f) so tha t it also measures the lengths H(s) and H(t / s) of its sub-
routines s* and p, and halts indicating (s, t, H(s) , H(t / s)) to be the result of the computa-
tion instead of (s, t). I t follows tha t H(s, t) = H(s, t, H(s) , H(t / s)) + 0(1)
and H(H(s) , H(t / s) / s , t) -= 0(1) . In fact, it is easy to see tha t H(H(s) , H(t) , H(t / s) ,
H(s / t) , H(s, t) /s , t) = 0 (1) , which implies H (I (s :t)/s, t) = 0(1) . And of course these
identities generalize to tuples of three or more strings.

4. A Random Infinite String

The undecidabifity of the halting problem is a fundamental theorem of recursive function
theory. In algorithmic information theory the corresponding theorem is as follows: The
base-two representation of the probabili ty tha t U halts is a random (i.e. maximally com-
plex) infinite string. In this section we formulate this s ta tement precisely and prove it.

THEOREM 4.1 (Bounds on the complexity of natural numbers).
(a) ~ . 2 -"c"~ < 1.

J

A Theory of Program Size Formally Identical to Information Theory 337

Consider a recursive function f : N --* N.
(b) I f ~-~.~ 2 -t(') diverges, then H(n) > f (n) infinitdy often.
(e) I f ~-~n 2 - j~) converges, thenH(n) ~ f (n) + 0(1) .
PnooF.
(a) By Theorem 2.3(1, j), ~-~., 2 -~("~ ~ ~ , P (n) ~ 1.
(b) I f :~-~, 2 -1(n) diverges, and H(n) <_ f (n) held for all but finitely many values of n,

then ~--:~ 2 -~(~) would also diverge. But this would contradict Theorem 4.1(a), and thus
H (n) > f(n) infinitely often.

(c) I f)":~ 2 - j~) converges, there is an n0 such that ~'~>_,o 2-t(") -< 1. By Theorem 3,2
there is a computer C determined by the requirements (n, f (n)) (n >__ no). Thus H (n) _~
](n) "-k sim(C) fo r a l l n > no. Q.E.D.

THEOREM 4.2 (Maximal complexity finite and infinite strings).
(a) max H (s) (I s I = n) = n + H (n) -~ 0(1) .
(b) # ({s[I s[= n & H (s) < n + H (n) - k}) _< 2 T (n - k -b 0 (1)) .
(c) Imagine that the infinite string a is generated by tossing a fair coin once for each of

its bits. Then, with probability one, H (a ,) > n for all but finitely many n.
PROOF. Consider a string s of length n. By Theorem 3.9(a), H(s) -~ H(n , s) -b

0(1) = H (n) + H (s / n) "-k 0(1) . W e n o w obtain Theorem 4.2(a, b) from this estimate
for H(s) .

There is a computer C such tha t C(p, I P I*) = P for all p. Thus H (s / n) < n -k sim(C),
and H(s) < n "Jr" H(n) + 0(1) . On the other hand, by Theorem 2.3(q), fewer than
2 "-k of the s satisfy H (s / n) < n - k. Hence fewer than 2 "-k of the s satisfy H(s) <
n - k + H (n) ~- 0 (1). Thus we have obtained Theorem 4.2 (a, b).

Now for the proof of Theorem 4.2(c). By Theorem 4.2(b), at most a fraction of 2 T
(- H (n) ~ e) of the strings s of length n satisfy H(s) < n. Thus the probability that a
satisfies H (a ,) < n is _< 2 1" (- H (n) -'b c). By Theorem 4.1(a), ~ , 2 T (- -H(n) --b c)
converges. Invoking the Borel-Cantelli lemma, we obtain Theorem 4.2(c). Q.E.D.

Definition of Randomness. A string s is random iff H(s) is approximately equal to
[s I + H(I s [). An infinite string a is random iff :3c Vn H(a~) > n - c.

Remark. In the case of infinite strings there is a sharp distinction between randomness
and nonrandomness. In the case of finite strings it is a mat te r of degree. To the question
"How random is s?" one must reply indicating how close H(s) is to I s l ~- H(] s I).

C. P. Schnorr (private communication) has shown tha t this complexity-based defini-
tion of a random infinite string and P. Mart in-LSf 's statistical definition of this concept
[7, pp. 379-380] are equivalent.

Definition of Base-Two Representations. The base-two representation of a real
number x E (0, 1] is tha t unique infinite string b~b2b~ . . . with infinitely many l 's such
tha t x -- ~":~1 bk2 -k.

Definition of the Probability ¢o that U Halts. ~ = ~'~, P(s) = ~ 2 -I~l (U(p, A) is
defined).

By Theorem 2.3(j, n), w E (0, 1]. Therefore the real number w has a base-two rep-
resentation. Henceforth w denotes both the real number and its base-two representation.
Similarly, ~ denotes a string of length n and a rational number m / 2 ~ with the property
t h a t w > w ~ a n d c 0 - w n _ < 2 -~.

THEOI~EM 4.3 (Construction of a random infinite string).
(a) There is a recursive function w : N --~ R such that w(n) ~_ w(n -b 1)

and w = lim,~®w(n).
(b) ~ is random.
(e) There is a reeursive predicate D : N X N X N --* {true, false} such that the k-th bit

of ~ i s a l i f f ' a i W j D (i , j , k) (k = 0 , 1 , 2 , . . .) .
PROOF. {P] U(p, h) is defined} is r.e. Let p, (k -- 0, 1, 2, • • .) denote the kth p in a

particular recursive enumeration of this set. Let w(n) = ~k<~ 2 ~ (- - I P* I). w(n)
tends monotonically to w from below, which proves Theorem 4.3(a).

338 G R E G O R Y J . C H A I T I N

In view of the fact tha t to > ton > to - 2-" (see the definition of ¢o), if one is given
ton one can find an m such that to > w(m) > to, > to - 2 -n. Thus to -- w(m) < 2 -n,
and {pk I k _< m} contains all programs p of length less than or equal to n such that
U(p, A) is defined. Hence {U(pk, h) l k < m & [p~[< n} = { s i l l (s) < n}. I t
follows there is a computer C with the property that if U(p, h) = to,, then C(p, h)
equals the first string s such that H(s) > n. Thus n < H(s) g H(to,) + sim(C), which
proves Theorem 4.3(b).

To prove Theorem 4.3(c), define D as follows: D(i , j , k) iff j >_ i implies the kth bit
of the base-two representation of w(j) is a 1. Q.E.D.

Appendix. The Traditional Concept of Relative Complexity

In this Appendix programs are required to be self-delimiting, but the relative complexity
H(s / t) of s ~-ith respect to t ~ill now mean that one is directly given t, instead of being
given a minimal-size program for t.

The standard optimal universal computer U remains the same as before. H and P are
redefined as follows:
Hc(s / t) = mini p[(C(p, t) = s)

(may be ~),
He(s) = H e (s / A) ,
H(s / t) = Hv(s / t) ,
H(s) = Hv(s) ,

Pc(s / t) = ~ 2 -'~' (C(p, t) = s),
Pc(s) = Pc(s~ h),
P(s / t) = Pv(s / t) ,
P (s) = Pv(s) .

These concepts are extended to tuples of strings and natural numbers as before. Finally,
A(s, t) is defined as follows:

H(s, t) = H(s) W H(t / s) -4- A(s, t).
TaEOREM 5.1.

(a) H(s , H(s)) = H(s) -4-0(1) , (e) A (s , H (s)) = - - H (H (s) / s)
(b) H(s, t) = H(s) -4- H(t /s , H (s)) + 0(1) , W 0(1) ,
(c) - H (H (s) / s) - 0 (1) _< A(s, t) < 0 (1) , (f) H (H (s) / s) ~ 0(1) .
(d) A(s, s) = 0 (1) ,

PROOF. (a) On the one hand, H(s, H (s)) < H(s) -4- c because a minimal-size program
for s also tells one its length H(s) , i.e. because there is a computer C such that C(p, h) =
(U(p, h) , [p [) if U(p, A) is defined. On the other hand, obviously H(s) <
H(s, H (s)) + c.

(b) On the one hand, H(s, t) < H(s) W H(t /s , H(s)) + c follows from Theorem 5.1
(a) and the obvious inequality H(s, t) < H(s, H(s)) W H(t /s , H(s)) W c. On the other
hand, H(s, t) > H(s) -4- H(t /s , H(s)) - c follows from the inequality H(t/s, H(s)) <_
H(s, t) -- H(s) "4- c analogous to Theorem 3.8 and obtained by adapting the methods of
Section 3 to the present setting.

(c) This follows from Theorem 5.1(b) and the obvious inequality H(t/s , H (s)) -
c <_ H(t / s) <_ H (H (s) / s) + H (t / s , H (s)) + c.

(d) If t -= s, H(s, t) -- H(s) - H(t / s) = U(s, s) - H(s) - H(s / s) = U (s) - - H(s)
W 0(1) - 0(1), for obviously H(s, s) = H(s) -4- 0(1) a n d H (s / s) = 0(1) .

(e) If t = H(s) , H(s , t) - H(s) -- H(t / s) = H(s, H(s)) -- H(s) -- H (H (s) / s) =
- - H (H (s) / s) + 0(1) by Theorem 5.1(a).

(f) The proof is by reductio ad absurdum. Suppose on the contrary that H (H (s) / s) < c
for all s. First we adapt an idea of A. R. Meyer and D. W. Loveland [6, pp. 525-526] to
show that there is a partial recursive function f : X --, N with the property that if f (s)
is defined it is equal to H(s) and this occurs for infinitely many values of s. Then we
obtain the desired contradiction by showing that such a function f cannot exist.

Consider the set K, of all natural numbers k such that H(k / s) < e and H(s) <_ k.
Note that rain K, = H(s) , #(K,) < 2 c, and given s one can recursively enumerate K , .
Also, given s and #(K,) one can recursively enumerate K, until one finds all its elements,

::(i

A Theory of Program Size Formally Identical to Information Theory 339

and, in particular, its smallest element, which is H(s) . Let m = lim sup #(K,), and let n
be such that t s I -> n implies #(K,) _< m.

Knowing m and n one calculates f (s) as follows. First one checks if I s I < n. If so,
f (s) is undefined. If not, one recursively enumerates K, until m of its elements are found.
Because of the way n was chosen, K, cannot have more than m elements. If it has less
than m, one never finishes searching for m of them, and so f (s) is undefined. However, if
#(K,) = m, which occurs for infinitely many values of s, then one eventually realizes all
of them have been found, including f (s) = min K, = H(s) . Thus f (s) is defined and
equal to H(s) for infinitely many values of s.

I t remains to show that such an f is impossible. As the length of s increases, H(s) tends
to infinity, and so f is unbounded. Thus given n and H(n) one can calculate a string sn
such that H (n) ~- n < f(sn) = H (sn), and so H (s J n , H (n)) is bounded. Using Theorem
5.1(b) we obtain H (n) + n < H(s ,) <_ H(n , s~) + c' <_ H(n) -~ H(s~/n, H (n)) T
c" <_ H(n) -{- c", which is impossible for n > c ' . Thus f cannot exist, and our initial
assumption that H (H (s) / s) < c for all s must be false. Q.E.D.

Remark. Theorem 5.1 makes it clear that the fact that H (H (s) / s) is unbounded
implies that H(t / s) is less convenient to use than H(t /s , H (s)) . In fact, R. Solovay
(private communication) has announced that max H (H (s) / s) taken over all strings s of
length n is asymptotic to lg n. The definition of the relative complexity of s with respect
to t given in Section 2 is equivalent to H(s/ t , H(t)).

ACKNOWLEDGMENTS. The author is grateful to the follo~ing for conversations tha t
helped to crystallize these ideas: C. H. Bennett , T. M. Cover, R. P. Daley, M. Davis,
P. Elias, T. L. Fine, W. L. Ge~'irtz, D. W. Loveland, A. R. Meyer, M. Minsky, N. J.
Pippenger, R. J. Solomonoff, and S. Winograd. The author also ~ishes to thank the ref-
erees for their comments.

REFERENCES

(Note. Reference [33] is not cited in the text.)

1. SOLOMONOFF, R.J. A formal theory of inductive inference. Inform. and Contr. 7 (1964), 1-22,
224-254.

2. KOLMOGOROV, A.N. Three approaches to the quantitative definition of information. Problems
of Inform. Transmission 1, 1 (Jam-March 1965), 1-7.

3. CHAITX~, G.J. On the length of programs for computing finite binary sequences. J. ACM 1S,
4 (Oct. 1966), 547-569.

4. CHAITIN, G.J. On the length of programs for computing finite binary sequences: Statistical
considerations. J. ACM I6, 1 (Jan. 1969), 145-159.

5. •OLMOGOROV, A.N. On the logical foundations of information theory and probability theory.
Problems of Inform. Transmission 5, 3 (July-Sept. 1969), 1-4.

6. LOVELAND, D.W. A variant of the Kolmogorov concept of complexity. Inform. and Contr. 15
(1969), 510-526.

7. SCHNORR, C.P. Process complexity and effective random tests. J. Comput. and Syst. Scis. 7
(1973), 376-388.

8. CHAITIN, G.J. On the difficulty of computations. 1EEE Trans. IT-16 (1970), 5-9.
9. FEINSTEIN, A. Foundations of Information Theory. McGraw-Hill, New York, 1958.

10. FANO, R. M. Transmission of Information. Wiley, New Nork, 1961.
11. ABRAMSON, N. Information Theory and Coding. McGraw-Hill, New York, 1963.
12. AsH, R. Information Theory. Wiley-Interscience, New York, 1965.
13. W~LLIS, D.G. Computational complexity and probability constructions. J. ACM 17, 2 (April

1970), 241-259.
14. ZVONKIN, A. K., ANn LEVlN, L.A. The complexity of finite objects and the development of

the concepts of information and randomness by means of the theory of algorithms. Russ. Math.
Survs. 25, 6 (Nov.-Dec. 1970), 83-124.

15. COVER, T.M. Universal gambling schemes and the complexity measures of Kolmogorov and
Chaitin. Rep. No. 12, Statistics Dep., Stanford U., Stanford, Calif., 1974. Submitted to Ann.
Statist.
GEWIaTZ, W. L. Investigations in the theory of descriptive complexity. Ph.D. Thesis, New
York University, 1974 (to be published as a Courant Institute rep.).

16.

340 GREGORY J. CHAITIN

17. WEISS, B. The isomorphism problem in ergodic theory. Bull. Amer. Math. Soc. 78 (1972),
668-684.

18. R~NYI, A. Foundations of Probability. Holden-Day, San Francisco, 1970.
19. FINE, T . L . Theories of Probability: An Examination of Foundations. Academic Press, New

York, 1973.
20. COVER, T .M. On determining the irrationality of the mean of a random variable. Ann. Statist.

1 (1973), 862-471.
21. CHAITIN, G . J . Information-theoretic computational complexity. I E E E Trans. IT-20 (1974),

10-15.
22. LEvis, M. Mathematical Logic for Computer Scientists. Rep. TR-131, M.I.T. Project MAC,

1974, pp. 145-147, 153.
23. CHAITIN, G . J . Information-theoretic limitations of formal systems. J. ACM £I, 3 (July 1974),

403--424.
24. MINSKY, M. L. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs,

N. J., 1967, pp. 54, 55, 66.
25. MINSK¥, M., AND PAPERT, S. Perceptrons: An Introduction to Computational Geometry. M.I.T.

Press, Cambridge, Mass., 1969, pp. 150, 153.
26. SCHWARTZ, J . T . On Programming: An Interim Report on the SETL Project. Instal lment I:

Generalities. Lecture Notes, Courant Inst i tute , New York University, New York, 1973, pp.
1-20.

27. BENNETT, C.H. Logical reversibility of computation. I B M J. Res. Develop. 17 (1973), 525-532.
28. DALEY, R . P . The extent and density of sequences within the minimal-program complexity

hierarchies. J. Comput. and Syst. Scis. (to appear).
29. CHAITIN, G. J. Information-theoretic characterizations of recursive infinite strings. Sub-

mitted to Theoretical Comput. Sci.
30. ELIAS, P. Minimum times and memories needed to compute the values of a function. J. Corn-

put. and Syst. Scis. (to appear).
31. ELIAS, P. Universal codeword sets and representations of the integers. IEEE Trans. I T (to

appear).
32. HELLMAN, M . E . The information theoretic approach to cryptography. Center for Systems

Research, Stanford U., Stanford, Calif., 1974.
33. CHAITI~, G.J . Randomness and mathematical proof. Sc/. Amer. ~35, 5 (May 1975), in press.

RECEIVED APRIL 1974; REVISED DECEMBER 1974

Journal of the Assoclat~on for Computing Machinery, Vol. 22, No. 3, July 1975

