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ABSTRACT. The paper is concerned with a class of control systems which can be represented by a 
graphical model called an MG-control system (MGCS) In particular, the closure propertms of thin 
class are studmd More precisely, this paper presents necessary and sufficmnt conditions for the com- 
pomte system, obtained by interconnecting two of these systems, to be represented as an MGCS. 
These results are then extended to networks composed of several interconnected control systems. In 
solwng this problem, it is shown that whenever the lnterconnectmn of two or more systems results m a 
system that is not representable as an MGCS, it m due to the presence of "deadlock" in the composite 
system. Hence the results of the paper provide a means of detecting deadlock in a network of control 
systems. 
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1. Introduction 
This paper i s  a continuation of the s tudy of asynchronous control systems presented in 
[8]. As before, we view a control system as a device which enforces certain specffied con- 
s traints  on the order of occurrence of " 'events"  where these occurrences are characterized 
as follows. 
(1) An occurrence of an event is ini t iated by  a control signal called a ready signal. 
(2) Once initiated, an occurrence requires a fimte but  unbounded period of time. 
(3) When an occurrence terminates,  an acknowledge s~gnal is generated. 
(4) Each event may occur repeatedly, and several different events may occur concur- 
rently.  

A control system communicates with its environment through links, where there is one 
link for each event and each link contains a ready terminal and an acknowledge terminal. In  
the case of an input link, the corresponding event is ini t iated by  the system's environ- 
ment  by  sending a ready signal to the system through the l ink 's  ready terminal.  
When this event is terminated,  an acknowledge signal is t ransmit ted  to the environ- 
ment  through the acknowledge terminal  of the same link. Events  are ini t iated by the con- 
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trol system when a ready signal is sent to the environment through the ready terminal  of 
an output hnk. The environment signals the completion of this event by  generating an 
acknowledge signal on the acknowledge terminal  of tha t  link. 

The ready and acknowledge signals associated with a link will be referred to as link 
signals. If  the last link signal t ransmit ted through a hnk was an acknowledge signal, the 
link is said to be idle. A link is active if the  last link signal was a ready signal. Init ial ly,  all 
links of a system are idle. I t  is assumed tha t  neither the system nor its environment will 
ever t ry  to activate an active link or deact ivate an idle link. Hence the ready and acknowl- 
edge signals of a link must alternate. 

Consider a control system which has reached a state in which all input  links are active, 
all output  links are idle, and the system is unable to produce any new output  signals on 
any of its links. In  this case, the environment must wait for an output  signal from the sys- 
tem before it can generate a new input  signal. Hence the system is incapable of any fur- 
ther activity.  If  it  is possible for a control system to ever reach such a state, we say tha t  the 
system contains deadlock. This is a condition analogous to the system deadlock or deadly 
embrace encountered in large mult iprogramming systems [2]. 

When an output  link is connected to an input  link, the ready signals of the output  link 
are t ransmit ted directly to the ready terminal of the input  link, and an acknowledge sig- 
nal generated on the input  link becomes an acknowledge signal for the output  link. I t  has 
been shown tha t  when links of control systems which are free of deadlock are connected 
in this way, i t  may result in a new system which does contain deadlock [1, 5]. Hence an 
impor tant  analysis problem is to determine when this can happen. 

The purpose of this paper is to characterize the behavior of networks of control systems 
tha t  communicate with each other through their links. A mathematical  model called a 
marked graph is used for this purpose. In  particular,  i t  is shown how to construct a marked 
graph representation for the behavior of a network given such a representation of its com- 
ponent systems. Then a necessary and sufficient condition for a network to be free of dead- 
lock is developed. Deadlock is characterized in terms of the familiar proper ty  of liveness in 
marked graphs. A major contribution of the paper  is tha t  i t  transforms the well-known 
mathematical  characterization of liveness in marked graphs into a form tha t  is more con- 
venient for the analysis of control systems tha t  are realized as a network of smaller con- 
trol systems. 

The effect of connecting a single pair of links is analyzed first. Section 3 considers the 
case where both links are on the same system. I t  is shown that  if these links satisfy a con- 
dition called buffering, then their connection results in a well-formed system tha t  is free of 
deadlock (Theorem 3.4). If, on the other hand, the links are not  buffered, then connecting 
them will produce a system tha t  will ul t imately reach a deadlocked state (Theorem 3.5). 
The connection of two links on different systems is studied in Section 4. In  this case, i t  is 
shown that  such a connection will always result in a deadlock-free system (Theorems 4.1 
and 4.5). In  the process of characterizing the effect of connecting a pair of links, marked 
graph representations for the resulting systems are developed. 

Any connection between two subsystems in a network can be viewed as either a con- 
nection between two distinct systems or one between two links on the same system. 
Hence the results of Sections 3 and 4 are used in Section 5 to analyze complex networks. 
Specifically, i t  is shown how deadlock in a network can be detected by analyzing its link 
connections, one at  a time. 

2. MG-Control Systems 

This section consists of a brief introduction to the asynchronous control system model 
used in this paper. A more detailed and complete development of the basic properties of 
this model can be found in [8]. The model is based on a directed graph, called a marked 
graph [3, 6, 7], in which the state of the system is represented by  placing markers on some 
of the edges. A change of s tate is then simulated by the movement of markers in the graph. 
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The model may be viewed as a special case of the P-net  model developed to represent the 
behavior of control modules [4, 12]. Indeed, P-nets  are based on a generalization of marked 
graphs called Petr i  nets [7, 14]. 

We view a (directed) graph as an ordered pair  ( T , P )  where T is a countable set of 
vertices and P c T X T is the set of edges. A pa th  of length n is a sequence 
7r = vo, v l ,  . ' . ,  vn of vertices such tha t  (v, ,  v,+l) E P f o r / =  0, 1, . . . ,  n - 1. If  all of 
the  inner vertices of a pa th  are distinct, i t  is said to be elementary. Given an elementary 
pa th  7r, then ~'(x,y) denotes a subpath of ~" which extends from x to y. I f  ~" = v0, vl ,  • • . ,  
v~ and ~- = u0, u l ,  • - . ,  Um are two paths with v~ = u0, then the compositwn of 7r and 7- 
is the pa th  ~', r = vo , vl , • • . ,  vn , • •. ,  u,~ . Given a vertex v, I ( v )  denotes the set of edges 
directed into v and O(v) the set of edges directed out of v. 

A marking of a graph (T ,P )  is a function M from P into No, the set of nonnegative in- 
tegers. I The interpretat ion of M is tha t  edge e contains M(e)  markers under M. If  7r is a 
pa th  in ( T , P ) ,  then Z ( M  I ~r) denotes the number of markers on v under M. 

A marked graph is a triple ( T , P , M )  where (T ,P )  is a graph in which I ( v )  and O(v) are 
finite sets for all v E T and M is a marking of (T ,P)  called the znztzal marking. 
If  Z ( M  I ~r) = 0 for a pa th  ~r, then ~- is said to be marker-free. 

Given a graph (T ,P ) ,  a vertex v E T isfirable under a marking M' if Ml(e)  > 0 for all 
e E I ( v ) .  Moreover, when v fires, a new marking M '~ is produced, where M" is defined by  

~M'(e) - 1, if e E I ( v )  - O ( v ) ,  
M"(e )  = ~ i ' ( e )  .+ 1, if e E O(v) - I ( v ) ,  

( M '  (e), otherwise. 

Hence, the operation of firing a vertex v can be represented by  removing one marker  from 
each edge in I (v )  and adding one to each edge in O(v). Note tha t  if e is a self-loop, then 
M~'(e) = M' (e ) .  A sequence vo, Vl, v~, - • . ,  v~ of vertices in T is called afir~ng sequence of 
the marked graph ( T , P , M )  if there is a sequence Mo, M1,  • •. ,  M~+i of markings such 
tha t  Mo = M, v, is firable under M , ,  and M,+~ is the marking produced when v, fires, for 
i = 1,2,  . . . , n .  

A vertex in a marked graph G is said to be live if i t  appears in at  least one firing sequence 
of G, otherwise i t  is dead. A marked graph is live if all of its vertices are live. I t  has been 
shown that  a vertex v is dead iff there is an infinite, marker-free pa th  directed into v [7]. 
Hence a finite marked graph is live iff every cycle contains at  least one imtial  marker.  

An edge of a marked graph is safe if it  contains at  most one marker  under any marking 
reachable from the imtial  marking. I t  has been shown tha t  an edge lying in a cycle tha t  
contains exactly one initial marker  is safe [7]. Such cycles will be called synchronizing loops. 
A marked graph is sald to be safeif all its edges are safe. I t  has also been shown that  a finite 
and live marked graph is safe if and only if every edge is contained in a synchromzing 
loop [7]. 

The marked graph model will be used to represent the behavior of control systems by  
associating the links of the system with certain edges of a marked graph in the following 
way. 

Definitwn. An MG-control system (MGCS)  is a tr iple C = (G,c~,L) where: 
(1) G = ( T , P , M )  is a finite marked graph tha t  is live, safe, and strongly connected; 
(2) L is a finite set of links; 
(3) a is a part ial  function from P onto L such tha t  

(a)  the  set o~-l(q) = {e E P [ c~(e) = q} is contained in a synchronizing loop of G, 
for all q E L, 

(b)  no vertex in T is the endpoint of more than one edge in dora ol, 2 
(c)  if (x,y)  E dom a,  then I I ( y )  ] = 1, 3 

I n  t h l s p a p e r ,  Z = {--- ,  --  2, --  1,0, 1,2, - . -} ,  N = {1,2,3,  - . . } ,  and No = {0, 1, 2, .--} 
2 " D o r a  a "  denotes  the  domain  of the  par t i a l  f u n c t m n  a .  
s I l ( y )  I denotes  the  e a r d i n a h t y  of t he  set  I ( y ) .  
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(d) if p is an input link, then exactly one edge in - l ( p )  contains an initial marker; 
if p is an output link, then no edge in a- l (p)  contains an initial marker. 

v~ is called a valid link assignment. 
A valid link assignment o~ assigns edge e to link a(e).  The number of edges assigned to 

link p is called the multiplicity of p and is denoted by the symbol p. 
We denote the ready signal on link p by rp and the acknowledge signal by a~. These 

signals are called external signals since they represent the interaction of the control system 
with its environment. Since a link assignment is not necessarily one-to-one, different oc- 
currences of an external signal may be associated with different edges. In  order to dis- 
tingnish these different occurrences, we define an internal signal as one of the form r~ ~ or 
a p ' , w h e r e p  C L a n d 0 _ < 3  < P. 

In  order to associate internal signals with vertices of G, we first order the edges in each 
of the sets o~-l(p) where p E L. To this end, let ~- be the synchronizing loop containing 
a - l (p )  and eo = (u,v) be the edge of 7r that  contains an initial marker. If  e = (x,y) is an 
edge in c~-l(p), then we define the loop order of e to be3 where3 is the number of edges of 
a-~(p) that  lie on the subpath ~r(v,x). Now the signal assignment for C is the function fl, 
with domain T, defined as follows: 
(1) fl(v) = to ° if v is not the endpoint of any edge in dom a. In  this case, fl(v) is called 
an internal vertex. 
(2) Let e = (u,v) be an edge in dom a with a(e)  = p and loop order3: 

(a) ~(u) = r~ ~ and ~(v) = a~ ~ if p is an output link, and 
(b) fl(u) = ap ~ and fl(v) = r~ ~+I/pJ if p is an input link. 4 

We now use the signal assignment of an MG-control system to get the following al- 
ternate representation for the behavior of the system. 

Defimtion. Let C = (G,a,L) be an MGCS with G = (T ,P ,M)  and fl its signal assign- 
meat. Then the signal graph for C is the marked graph Gc = (To, Pc ,Me) where: 
(1) To =~3(T) ={jg(v) l v E  T}, 
(2) Po = f l (P) = {(fl(u), fl(v)) [ (u,v) E P}, 
(3) M~ = ~(M) = {($(u),~(v)) [ (u,v) E M/. 

We say that  two MG-control systems C1 and C2 are disjoznt if the vertex sets of the sig- 
nal graphs Go~ and Gc~ are disjoint. Note that  disjoint MG-control systems will have 
disjoint link sets. 

The activity of a control system is simulated by the movement of markers in the signal 
graph. When a vertex of the forms r~ ' or ap ~ fires, this is interpreted as the generation of 
the link signal rp or av, respectively. Since the loop order has been used to assign the 
superscripts of internal signals, the firing of vertex x J  may be interpreted as the j th  
(modulo p)  occurrence of external signal xp. Hence the condition that  a-1(p) be con- 
tained in a synchronizing loop will ensure that  the ~th occurrence of a signal precedes its 
(i + 1)-th occurrence. Since every edge of a synchronizing loop is safe, the environment 
of a system is restricted to generating input signals so that  ready signals alternate with ac- 
knowledge signals oneach link. The condition that  ] I ( y )  I = 1 whenever (x, y) E a- l (p)  
guarantees that  this is the only ordering constraint placed on the environment by the 
system. 

The behavior of a control system is completely characterized by the set o i all possible 
sequences of signals on its links. Due to the correspondence between the generation of 
link signals and the firing of vertices, we will define the behavior of an MGCS in terms of 
the firing sequences of its signal graph. To this end, let ~ be a firing sequence for a signal 
graph. Then the corresponding reduced firing sequence is the sequence of internal signals 
obtained by deleting all of the internal vertices from ~. The signal sequence corresponding 
to ~ is the sequence of external signals obtained by removing the superscripts from all of 

*R[3/p] denotes the remainder and Q[3/p] the quotmnt obtained by dividing j by p. Thus 
3 = Q ~ / P ] P  + R[J/p] 



600 J. R. JUMP AND P. S. THIAGARAJAN 

the internal signals in the corresponding reduced firing sequence. We now define the 
behawor of an MGCS as the set of all possible signal sequences of its signal graph. 

We will say that  two MG-control systems are equivalent iff they have equal behaviors. 
Note tha t  tMs definition imposes the constraint that  two equivalent control systems have 
eqmd link sets. 

The concept of system deadlock is formalized with the MGCS model in the following 
way. 

Definition. Let Go be the signal graph of an MGCS C. Then C is said to contain a 
deadlock if there is a reachable marking M' of Gc under which no internal signal (i.e. a 
vertex of the form rp3 or ap e) is firable. The marking M'  is also referred to as a deadlock 
of C. 

I t  has been shown that  if a strongly connected, finite marked graph is live, then there 
is no upper bound on the number of times a vertex may fire. However, if such a marked 
graph contains at least one dead vertex, then the graph will reach a marking under which 
no vertex will fire [7]. I t  therefore follows that  an MGCS is free of deadlocks. 

We now introduce an alternative representation, called a behavior graph, for the be- 
havior of an MGCS. To this end, we first introduce the following terminology. An ele- 
mentary path in a signal graph is said to be signal-free if none of its inner vertices are 
internal signals. A path ~r from x to y is called marker-m,nimal if Z(Mo [ ~r') > Z(Mo I lr) 
for all paths ~" from x to y. Now let C be an MGCS and Gc its signal graph. Then the 
constraint relation of C is the ternary relation ~c ~ Tc X Tc X No defined by: (x,y,m) E ~/c 
iff x and y are internal signals and there is a marker-minimal, signal-free path 7r from x 
to y such that  2~(M~ [ 7r) = m. 

Definitwn. Let-re denote the constraint relation and S~ the set of external signals of an 
MGCS C. Then the behavior graph for C is the (infinite) marked graph Go = ( To ,PC ,ll~/~) 
where: 
(1) T~ = {xp~l xp E S~ and3 E Z}, 
(2 )  Pc ~ [~3 "-i'np ,l(n+m)q'~ :I l = (xv  ,yq ,m)  "y~ n / ~ v  ,~q J[ E and E Z}, 
(3) 11~¢, = {xp',yq z) E /5  I1 < 0 and l > 0. 

We can associate signal sequences with firing sequences of G~ in the same way it was 
done for signal graphs. I t  was shown in [8] that  the set of signal sequences generated by 
(~o is equal to the behavior of C. Hence if C1 and C2 are two MG-control systems, and 
Gol = (~c2, then C1 and C2 are equivalent. 

Some of the concepts introduced in this section are illustrated by the signal graph in 
Figure 1. This graph represents an MGCS with link set L = {1,2,3} where links 2 and 3 
are output links of multiplicity 1 and link 1 is an input link that  has multiplicity 2. The 
inil,ial markers are indicated by darkened circles on edges. Hence vertex r~ ° is the only 
firable vertex under the initial marking and the path 7r = r~ °, t4 °, r~ ° is signal-free. Vertex 
6 ° is the only internal vertex as all of the other vertices are labeled with internal signals. 
The synchronizing loop containing a-~(2) is t4 °, r2 °, a~ °, t4 ° while the synchronizing loop 
r~ °, t4 °, al °, r~ ~, r3 °, aa °, al ~, r~ ° contains both a-~(1) and a-~(3). Two examples of signal 
sequences are given by r~, a~, r2, ~ ,  r~ and r~, r2, a2, a~, r~. 

3. Connection of Two Links on the Same System 

In  this section we consider the effect of connecting a single output link to an input link 
on the same system. When this system is representable as an MGCS, we show that  the 

FIG. I. Signal graph for the MGCS C1 
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following condition is necessary and sufficient for the resulting system, obtained by con- 
necting the two links, to be represented by an MGCS. 

Definition. Let p be an output link and q an input link of an MGCS C. Then (p,q) is 
a buffered pair of links if 
(1) p and q have equal multiplicity (i.e. p = q), and 
(2) every path from rq ~ to r~ ~ and every path from av e to aq ~ in the signal graph Gc con- 
tains at least one marker under Me, for 0 < j < p. 

In  Subsection A below, we show that  if (p,q) is a buffered pair of links, then connecting 
them produces a system that  can be represented by an MGCS. In  Subsection B weshow 
that  a system obtained by connecting two unbuffered links cannot be represented by a 
well-formed MGCS. Moreover, we show that  such a system will contain a deadlock. 

A. SUFFICIENCY OF THE BUFFERING CONDITION, The operation of connecting a 
buffered pair of links is modeled in the following way. 

Definition. Let (p,q) be a buffered pair of links of the MGCS C and let Gc = 
(To ,Pc ,Me) be the signal graph of C. Then G~q is the marked graph (T~q ,Pvq ,M~q) 
where: 
(1) T~g = To, 
(2) Pzq = (Pc U {(r~',rp'), (aq',ap') 10 _< j < p}) --  (o~-l(P) U o~-l(q)) ,  
(3) M~q = Mc N Ppq. 

To see that  Gpq models the connection of links p and q, note that  the physical connec- 
tion of output link p to input link q establishes direct paths from the ready terminal of 
link p to the ready terminal of link q and from the acknowledge terminal of link q to the 
acknowledge terminal of link p. Hence the ready signal r~ is transmitted through this con- 
nection and becomes a ready signal for link q. Similarly, acknowledge signals are trans- 
mitted from link q to link p. The effect of this connection on the behavior of the system is 
to change the constraints on occurrences of link signals rq and a~. Recall tha t  the edges in 
a - ' ( p )  U - l ( q )  represent constraints that  are enforced by a system's environment. Thus 
the only constraint on the j th  occurrence of signal a~ is that  it must be preceded by the 
j th  occurrence of rp. Similarly, the only restriction on occurrences of rq is that  the j th  
occurrence of aq must precede the ( j  + 1)-th occurrence of rq. When links p and q are 
connected, these constraints on rq and a~ are replaced by new ones which ensure that  the 
j th  occurrences of a~ and rq are preceded by the j th  occurrences of aq and rp, respectively. 
Thus the new constraints on the signals rq and ap are represented by removing the edges 
in a-~(p) U a-~(q) and adding the edges (rpJ,% j) and (aqJ,%0 for j  = 0, 1, 2, . . .  , p - 1. 

If  G~q is to be a live marked graph, then the addition of edges to Po in order to form 
P~q must not create any marker-free cycles. Moreover, if G~q is to be safe, then the dele- 
tion of the edges in a-1(p) and ~-~(q) must not eliminate any necessary synchronizing 
loops. We now show that  the buffering condition is sufficient to guarantee both liveness 
and safeness in Gpq. 

THEOREM 3.1. Let (p, q) be a buffered pair of links for the MGCS C. Then Gpq is a live 
marked graph. 

PROOF. Let ~ be an elementary cycle in Gpq. If  all of the edges of u are in P~, then 
is also a cycle of G~ so that  ~(M~ I #) = 2~(M~q I ~) > 0. We therefore assume that  at 

least one edge of # is in the set P ~  - P~. 
Let X~q = {r~,a~J,rq~,aq ~ I 0 _< j < Pl. We order the elements of X~q by means of the 

function f : X~q --~ N, which is defined as follows: 

I i  i i fx  = r a n d u  = p, 4 j -+  1 i fx  = r a n d u =  q, 
f ( xJ )  = 4 j -{ -2  if x - -  a a n d u  = q, 

3 i fx  = a a n d u  -- p. 

Note that  if x,  ~ and y~ (where u = p or u = q) are two elements of Xvq, then they 
are both link signals for link u and therefore lie in the synchronizing loop ~r which con- 
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71JX ~ lx tains a - l (u) .  Moreover, if f(x~ ~) < f ( y~) ,  then the subpath ~ ~ ,y~ ) contains no 
markers under Mo. 

Let Yvq denote the set of all endpoints of those edges in Pp~ - Po which are also edges 
of #. Let x~ ~ be the element of Ypq such that  f(x~ ~) < f (z )  for all z in Yp~. Finally, let 
gl be the subpath of tt such that :  
(1) the terminal endpoint of/.tl is x~ ~, 
(2) y~, the initial endpoint of ~1, is an element of Yvq, and 
(3) no inner vertex of gl is an element of Yvq. 
We will show that  Z(Mp~ I gl) > 0. 

Case l .  u =  v. Sincef(x~ ~) < f ( y / ) , t h e r e  is a path # 2 f r o m x J  to y / i n  G~ and 
Z(M~ I m) = 0. Due to condition (3) above, ~1 is also a path in Go. Hence there is a 
cycle in G~ consisting of the two paths gl and g2 • Since 2~(Mo [ ~2) = 0 and G~ is 
live.. Z(Mo [~1) = ~(M,q  [~,) > O. 

l Ix i Case2 .u  ~ v. From the way that  y /  was selected and the definition off, ty~ ,y~ ) s a n  
edge in Pv~ Po and f ( y~ )  f (y~)  1. Hence f ( x J )  _ f(y~ ) so that  either x~ = y,~ 
or there is a path m from x~ ~ to y Z in G~ and 2~(M¢ I #2) = 0. But gl is also a path in G~ so 
that  the composition of/.tl and m is a path from y~ to y~. Hence 2~(M~ [ #1) = ~(Mv~ [ ~ )  
must be greater than 0 since links p and q are buffered. [] 

In  order to prove that  Gvq is safe, we first establish a relationship between paths in 
G~ and paths in Gp~. 

LEMMA 3.1. Let (p, q) be a buffered pair of links for the MGCS C and let 7r and r de- 
note synchronizing loops of G, contazning a- l (p)  and a-l(q) ,  respectively. Then lr and r 
haw; no edges ,n common. 

PROOF. Let e = (u,v) be an edge on both z- and r. Since a-~(p) and a-~(q) are dis- 
joint, there are three cases to consider. 

Case 1. e ~ a- l (p )  and e ~ a-~(q). Then there exist two integers i a n d j  such that  
e is an edge on both the subpaths ~r(av~,rv ~t~+~/t'~) and r(r~',a~'). Note that  the subpath 
z(r~',a~') is marker-free. If  ~(M~ [ ~r(u, rye)) = 0, then r(r~',u), 7r(u,r~') extends from 
r~* to rv' and contains no markers under M~. But this is a contradiction since links p and q 
are buffered. On the other hand, if 2~(M~ I ~-(u, rr ' ) )  = 1, then ~(Mo J 7r(av', u) )  = 0 
so that  the path ~r(av',u), r(u,a~ ) provides a contradiction. 

Case 2. e ~ a- i (p) .  Then e = (rv~,av ~) for some j, and there is an integer i such that  
e is on the subpath r(r~',aq'). As in case 1, it can be easily shown that  either there is a 
marker-free path from r~ to rv or one from av to aq. 

Case 3. e ~ a-~(q). Then e = (a~',r~ RI'+~/q~) for some z, and e is on the subpath 
zr(a~,rv Rt~+~/pl) for some 3. If  Z(M,  [ 7r(av¢,rv Rt~+~/v~)) = O, then the proof that  links p 
and q are not buffered is similar to case 1. If  the subpath contains an initial marker, then 
R[j + l / p ]  = 0 and3 = P - 1 = q - 1. Since the only marker on path r is on edge 

q - I  0 (a~ ,r~ ), there is either a marker-free path from av ~ to a~ ~ or one from r~ ° to rv °. 
In  each of the three cases, the assumption that  r and r share an edge leads to the 

conclusion that  links p and q are not buffered. Hence they must not have any edge in 
common. [] 

THEOUEM 3.2. Let (p, q) be a buffered pair of lznks for the MGCS C. I f  there is a path tt~ 
from node u to node v in the szgnal graph G~ , then there zs a path I~ from u to v zn Gv~ and 
Z(Mo It  t,) = 2~(M~a I,~). 

PROOF. If/.tl contains no edges in a-~(p) U a-~(q), then/.t2 = gl is the required path 
in Gvq. Assume that  gl contains an edge e = (aq~,rq Rt~+~/ql) in a-~(q). If  g is the syn- 
chronizing loop containing a-X(p), then tt(aJ,rv R[~+~/p~) is a path in G~. Due to Lemma 
3.1, it is also a path in Gv~. Hence the edge e can be replaced by the path (av~,av~), 
~r(a/,rvgt~+~/P]), (rv R[~+~/D], rq Rt~+~/q~) in Gyp. Since the number of initial markers on 
~r(a/,rv R~'+~/p~) equals the number on edge e, this replacement does not change the 
number of markers on the path. This procedure can be repeated until all of the edges of 
a-~(p) have been removed. A similar procedure exists for replacing the edges in a- l(q)  
with paths in Gw • [] 



On the Interconnection of Asynchronous Control Structures 603 

COROLLARY 3.1 I f  (p,q) is a buffered parr of links for the MGCS C, then the set 
Ppq - Pc = { (rp~,rq~), (aqJ,a~ ~) I 0 _< j < p} ~s contained ~n a synchronizing loop of Gpq. 

PROOF. 7r, the synchronizing loop containing cCl(p),  contains all of the endpoints of 
edges in P~q - Pc .  The procedure for replacing edges of - l ( p )  U o~-l(q) by  paths  in 
G~q can be used to construct a cycle in Gpq tha t  contains all of the edges in P~q - Pc and 
exactly one initial marker. Since Gpq is live, this cycle must be elementary and, therefore, 
a synchronizing loop. [] 

COROLLARY 3.2. I f  (p,q) ~S a buffered pair of l~nks for the MGCS C, then Gp~ is strongly 
connected. 

THEOREM 3.3. I f  (p,q) is a buffered parr of links for the MGCS C, then Gpq is a safe 
marked graph. 

PROOF. Let  e be an edge of Gpq. We will show tha t  there is a synchronizing loop in 
Gpq tha t  contains e. If  e ~ Pc,  then the result follows at  once from Corollary 3.1. There- 
fore, assume that  e E Pc • Since Gc is safe, there is a synchromzing loop in G~ which con- 
tains e. By Theorem 3.2, there is a cycle # in G~q which contains e and exactly one initial 
marker. Since Gpq is live, ~ is elementary, and therefore a synchronizing loop of Gpq. [] 

We can now summarize this subsection with the following theorem. 
THEOREM 3.4. Let (p,q) be a buffered pair of links of the MGCS C. Then Gpq is the 

signal graph of an MGCS representing the system obtazned by connecting &nks p and q. 
PROOf. Let  C = (G,c~,L) and consider the triple C' = (Gpq ,a' ,L') where L '  = 

L -- {p,q} and a '  is o~ restricted to Pc - (a - l (p )  U a-l(q) ). I t  can be easily shown, using 
Theorems 3.1, 3.2, and 3.3, that  C' is an MGCS and tha t  its signal graph is Gpq. [] 

In  order to il lustrate the results presented in this subsection, consider the MGCS in 
Figure 2. Links 4 and 7 of this MGCS are buffered and can be connected. Links 5 and 6 
are not  buffered, nor are links 5 and 7. We show in the following subsection tha t  if they 
were connected, the system would contain a deadlock. 

B. NECESSITY Of THE BUFFERING CONDITION. Let  p be an output  link and q an 
input  link of the MGCS C such tha t  p and q are not buffered. Then in the signal graph 
G~, either (1) p ~ q, or (2) there is a marker-free path  from rq J to rp ~ orone  from a~ ~ 
to aq ~, for some 3. In  the second case, we could model the connection of links p and q with 
the marked graph Gpq as before In the first case, however, this technique will not  work 

FIG. 2 Signal graph for the MGCS C2 
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since internal signals for links p and q do not  match up. Moreover, i t  was shown in [8] 
t ha t  if two links have different multiplicities in one MGCS representation of a system, 
then they will be different in any MGCS representation of tha t  system. Thus the effect 
of interconnecting links p and q cannot be modeled at  the signal graph level using the 
method of Subsection A. The same argument used to justify the val idi ty  of the model 
G~ can, however, be applied at  the behavior graph level. This leads to the following model 
for the behavior  of the system obtained by  connecting links p and q. 

Definition. Let Gc = ( ~'c ,Po ,/l~r~) be the  behavior graph of an MGCS and let p be 
an output  l ink and q an input  link of C. Then G~q = ( Tpq ,Ppq ,21~rpq) is the marked graph 
such tha t  
(1) Tp~ = To, 
(2) P~e ( P c -  {" ' ' + "  = taq,re ) , ( r~ ' ,av  ~) t3  >-- 0}) U{(rv ' , re ' ) ,  (ae~,% ~) 13 -> 0}, and 
(3) i . e  = i c .  

Let x, '  C T~e where j > 0. If  this vertex is dead in Gpe, then we can conclude tha t  the  
link signal x, does not  occur more t h a n j  - I times. Furthermore,  if we find tha t  for every 
s E L - {p,q} there exists a j > 0 for which the vertex xJ  is dead in G~q, then we can 
conclude tha t  the system represented by  Gpe contains deadlock and hence cannot be 
modeled as an MGCS.  We now use these observations to show tha t  connecting two links 
of the same MGCS always produces a system with deadlock when the links are not  
buffered. 

LEMMA 3.2. Let G~e be the marked graph obtazned from the behavzor graph G~ as in  the 
previous definition and let j > O. Then 
(1) either there is a path zn Gp~ from aq3(r~ ~) to r~+l(av ') or the vertex r~+l(ap ') zs dead in 
G~e ; 

~+1, , ,  the vertex r~+l(ae J) zs dead in (2)  either there is  a path in Gv~frorn ap3(rq J) to rp (a e ) or 
(l~e. 

K (0) +1 PROOF. Let  K(0 )  = j and assume tha t  there are no paths  in G,e from aq K(°) to r~ . 
. K(0)  K ( 0 ) \  / K ( 0 ) + !  K ( 0 ) + I ~  Since the edges (aq ,ap ) and ~re ,re ) are in Pv~, we can conclude tha t  there 

are no paths  from avK(°) to rv K(°)+~ in G ~ .  But  there is at  least one such pa th  in G~ [8]. 
Also, no pa th  in G¢ from a~ (°) to r~ (°)+~ contains an edge of the form (rv~,av ~) since G¢ 
is ]ive. Hence, for some K(1 )  .> 0, i t  must  be the case tha t  there is a pa th  7r0 in Go from 

. K ( 0 ) + I  av ~<°) to r~ such that  
K (I )  . K(1) -b l  (1) there is a subpath (edge) of ~r0 from a e ~o re , 

K(1)+~  • (2) there are no paths from aq K(~) to re m G w ,  and 
(3) the subpath , K(1)+I K(0)-bl\ 7ro(r e ,r~ ) is also a pa th  in G~q. 
Due to the second condition above, the same argument can be used to show tha t  for 
i = 1, 2, 3, • • • , there is a pa th  ¢r, and an integer K ( i  -4- 1) >_ 0 such tha t  

K ($-4-1) K (*-bl) "~-1 (1) there is a subpath of 7r, ~rom ae to re in G~, 
. K ~ + I ) + I  (2) there are no paths  from a~ ~'+a~ to "r~ in Gw,  and 

(3) the subpath , K(,+~)+~ ~(,)+~, ~r,~re ,rv ) is also a pa th  in Gve • 
K ( * + I ) + I  K ( * ) + i \  ~ K ( * ) + I  K ( * ) + I \  Hence, for i = 0, 1, 2, • • • , the sequence r,  = ~r,~re ,rv ), ~rq ,% ) is a 

pa th  in Gyp. Thus the infinite sequence • • • , r , ,  • • . ,  r2,  ra,  ro is also a pa th  of Gvq 
K(0)+~ ~+~ Since K ( i )  > 0 for all ~ > 0, this infinite pa th  contains which terminates at  rq = r~ . _ _ 

no initial markers. But  this is a sufficient condition for the vertex r~ +~ to be dead [7]. 
The dual s ta tement  for par t  (1) of the theorem, involving vertices rv' and a J ,  can 

obviously be proved in the same way as above. Par t  (2) of the theorem follows as an 
immediate corollary to par t  (1) since vertex r~+l(aq ~) lies on the infinite, marker-free 
pa th  directed into r~+~(av'). [] 

PROPOSITION 3.1. Let  x /  and y Z be two vertzces in  Gc with 3, l > O. I f  there is a path 
in  Go from x J  to y~ ,  then either there is a path from x /  to yet zn G~e or the vertex y~* is dead. 

PROOF. Let  ~r be a pa th  in (~ from x / t o  y~ and assume tha t  there is no pa th  in G~e 
from x / t o  y~*. Then for some n > 0, either (1) there is no pa th  from ae n to r~ +1 and 
there is a pa th  from r~ +z to y~* in Gvq, or (2) there is no pa th  from rv" to av" and there 
is a pa th  from av ~ to y,t  in Gvq. In  the  first case, r~ +' is dead and in the second case, 
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ap ~ is dead. In  either case, y,~ is dead since it lies on a marker-free path from a dead 
vertex. [] 

COROLLARY 3.3. Let s be a link of the MGCS C. Then for any j _> O, either there is a 
path in Gpq from a / ( r / )  to r~+l(a/) or the vertex r~,+l(a/) ~s dead. 

PROOF. For any link s and3 > 0, there is a path in Gc from a / ( r / )  to r~+~(a/) [8]. 
COROLLARY 3.4. Let x, be any link s~gnal of the MGCS C and let y~  be a dead vertex m 

k 
G~q with l >_ O. Then there is an ~nteger k such that the vertex x, ~s dead inn Gpq . 

PROOF. For some k > 0, there is a path from y Z to x, k in Gc [8]. [] 
We may therefore conclude that  if Gpq contains a dead vertex, then the system it 

represents contains a deadlock. 
LEMMA 3.3. Let p be an output link and q an input link of the MGCS C. I f  p and q are 

not buffered, then Gpq contains a dead vertex. 
PROOF. First, assume that  p ~ q and, without loss of generality, that  p ( q. Let 

j be the least positive integer such that  there is a path from rq ° to  r~ J in G~. Let n be 
the least positive integer such that  n( q - p)  > .7 and set m = n( q - p)  - 3. 

3+m (Corollary 4.1. in [8]). Hence there is a path 7rl There is a path in Gc from r~ ~ to r~ 
from r~ q to  r 7  np in G~ and also a path ~r2 f rom r~ +np to r~ +m+~p in Gc [8, Prop. 5.1]. But  
3 ~ m q- n p  = j - b  n q  - n p  - j q- n p  = nq .  Hence there i s a p a t h ~ r  = zrl,lr2 

n q  n q  f romr~ ,rq in 0~. 
n q  If  there is a path in 0~q from r~ q to r~ , then there is a marker-free cycle in 0~q since 

n q  n q \  rp ,rq ) is an edge of G~q. All of the vertices on this cycle are dead. I f  there are no 
paths in Gpq from r~q to r~U, then r~q is dead by Proposition 3.1. 

Now assume that  there is a marker-free path in G~ from rq ~ to r~ ~ for some j. Then there 
is a path in G~ from rq J to  rq ~ [8]. By Proposition 3.1 either there is a path from rq j to  rp * 
in G~q or r~ ~ is dead in Qpq. Since G~q contains the edge (r~*,rq~), r J  is dead in either case. 
If  there is a marker-free path in Go from a~ ~ to aq ~ for some j, then a similar argument 
shows that  aq ~ is dead in G~q. [] 

Lemma 3.3 and Corollary 3.4 imply the following theorem, which describes the result 
of connecting an output link to an input link of the same MGCS when the two links are 
not buffered. 

TH~ORE~ 3.5. Let p be an output lank, and q an input link of the same MGC S such that 
p and q are not buffered. Then the connection links p and q result ~n a system which contains 
a deadlock and, therefore, cannot be represented by an MGCS. 

4. Connection of Two Links on Different Systems 

We now consider connecting an output link on one control system to an input link on a 
different control system. Since the ready and acknowledge signals of a link alternate, one 
would not expect such a connection to introduce a deadlock into the system. Indeed, it 
can easily be shown that  if the two component systems are represented by MG-control 
systems C1 and C2 in which the two links have equal multiplicities, then an MGCS 
representation for the composite system can be constructed from C1 and C2. This con- 
struction is given in the following theorem. 

THEOREM 4.1. Let p be an output link and q an input link of MG-control systems C1 
and C2, respectwely. Let Gel = (Tel  ,Pox ,Mc~) and Gc2 = (To2 ,Pc2 ,Mc~) be the signal 
graphs for C1 and C2. I f  p = q, then the marked graph ( T ,P ,M ) where 
(1) T'  = T c~ U T c2 , 
(2) P ' =  (Pc~ (JPc2 ~ {(r~,rq~), (aq~,a~')]O _~ j < p}) - (a -~ (P) (J  a-~(q)) ,  and 
(3) M'  = (Mc~ [.J Me2) ~ P '  
is the signal graph of an M GC S representing the system obtained by connecting links p and q. 

PROOF. Since links p and q trivially satisfy the buffering condition, the theorem fol- 
lows immediately from Theorem 3.4. [] 

Theorem 4.1 is illustrated by Figure 3, which shows the signal graph obtained by con- 
necting link 6 on the MGCS in Figure 2 to link 1 on ~he MGCS in Figure 1. 

I t  is less trivial to construct an MGCS representation for a composite system from the 
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FIG. 3. Signal graph for the interconnectlon of MGCS C1 and MGCS C2 

MGCS representations for its two component systems if the connecting hnks have dif- 
ferent multiplicities in these representations. Our approach to this problem is as follows. 
Given an MGCS C and a positive integer n, we show how to construct an MGCS nC 
which is equivalent to C and therefore has the same set of links. This MGCS has the 
addit ional  proper ty  tha t  the mult ipl ici ty of link p, relative to nC, is n times the multi- 
plici ty of link p, relative to C. Now, given an output  link p of an MGCS C1 and an input  
l ink q of a different MGCS C2, let m denote the least common multiple of p and q, the 
multiplicities of links p and q relative to Cz and C2. Then the mult iphci ty of link p relative 
to (nz/p)C1 and the mult ipl ici ty of link q relative to ( m / q ) C 2  are both equal to ~ .  
Hence the construction in Theorem 4.1 can be used to find an M G C S  representation for 
the system obtained by interconnecting ( m / p ) C 1  and ( m / q ) C 2  through links p and q. 
Since (~n/p)  C1 and ( m / q )  C2 are equivalent to C1 and C2 respective]y, this new MGCS 
is also a valid representation for the interconnection of C1 and C2 through links p and q. 

Rather  than constructing nC directly, we will construct its signal graph Gn~ by expand- 
ing the signal graph of C. The following function is used for this purpose. 

D e f i m t w n .  Let Tc be the set of vertices of the signal graph Gc and No = {0, I,  2, • • , }. 
Then for n > 0, ~bn is the function, with domain Tc X No, defined by  ¢/n(xp~,u) = 

R[u/n]p for all (xpJ, u )  in T~ × No 5 X3+~o 
¢,n is extended to paths  of G~ in the following way. Let  7r be a pa th  of length m in G~ 

and u E No. Then ~b~(~-, u) denotes the sequence of m --{- 1 elements defined inductively 
as follows: 
m = I. Then 7r has the form x~ ~, yqZ and ~b~(Tr,u) = ¢~(xp~,u),  ¢~(yq~, u + 2~(M~ I 7r)). 
m > 1. In  this case, 7r consists of a subpath 7rz from x~ ~ to yqZ of length m and a subpath  
7r2 from yq~ to z, k of length 1. Then ~b~(Tr,u) = ~b~(~-1 ,u), ~b~(z, ~, u -[- Z(Mo I ~')).  

As an example, consider the pa th  ~r = a~ ~, rl °, t4 °, r2 °, a2 °, t4 °, al ° in the signal graph of 
Figure 1. Then 

1 2 4 .2 2 2 ¢~( Tr, O) = a~ ~, r~ ~, t~ 1, r~ ~, a~ , t~ , a~ , ~ (  ~r, 1) = a~ ~, r~ ~, ~, , r~ , a~ , t~ °, az °, 

and ¢'3(lr, 2) - -a l  5, rl °, t4 °, r2 °, a2 °, t4 z, al 2. 

If t~ is an internal transition, then we set v = 1. 



On the Interconnection of Asynchronous Control Structures 607 

FIG. 4. Expansion of MGCS C1 

Definition. Let  Gc = (To ,Pc ,Mc) be the signal graph of the MGCS C and let n be a 
positive integer. Then the n-th expanswn of Gc is the marked graph G~o = ( Tnc ,Pn, ,Mnc) 
where: 

The = {~b~(x~J,u) lxp ~E Tc and 0 < u < n } ,  

Pnc = {~b~(e,u) ]e C P ,  and 0 < u < n}, and 

Mn~ = {~b~(e, n - 1 ) [ e  E Mo}. 

The expansion of the signal graph in Figure 1 for n = 3 is shown in Figure 4. 
In  order to prove tha t  G~c is a signal graph of an MGCS that  is equivalent to C, we 

must first establish a relationship between the paths of G~ and the paths  of G ~ .  
Def imtwn.  0 denotes the function from T~ to To defined by O(xp ~) = xvRI~/Pl, for all 

xp ~ in THe. 
Given a path  7r = x J ,  y q l ,  . . .  , z, k in G~ , 0(Tr) denotes the sequence O(xp~), 

O(yqZ), . . .  , O(z, k) of elements of T~. The functions ~b~ and 0 will now be used to relate 
the paths  of G~c and G~. 

LEMMA 4.1. Let ~r be a path of length m from xp J to yql in G~ and let u and n be integers 
such that 0 < u < n. Then 7r' = ~b~(lr,u) ~s a path of length m from ~b,(xpJ,u) to  ¢n(yq t, 
u + ~ ( M o  17r))~n G~c and ~ ( i ~ c  ]Tr') = Q[u Jr ~ ( i ~  17r)/n]. 

PROOf. From the definition of M ~  and ~b~, it  can be easily seen tha t  for any v > 0, 
~b,(e, v) E M~, iff e C M, and R[v/n] = n -- 1. Using this observation, the proof of the 
lemma proceeds by induction on m. 

Bas , s s t ep .  L e t m  = 1. T h e n 0  < S , ( M c [ r )  < l s i n c e  r is an edge and G, i ssafe .  
7r' = ~/,~(~r,u) is a pa th  of length 1 from ~b~(x,~,u) to ¢/n(yq~, u + Z ( M ,  [ 7r)) by  the 
definition of P~, .  Moreover, 0 < Z(M~c I 7r') < 1. Also, ~(M~,  I ~r') = 1 iff R[u/n] = 
u = n -  l a n d Z ( M c [ T r )  = 1. Hence2~(M~c[~r ')  = l i f f Q [ u  + Z ( M c I T r ) / n ]  = 1, 
since u < n. 

Induction step. Assume tha t  the lemma holds for all paths of length m and let 7r be a 
pa th  of length m + 1. Then ~- consists of a subpath 7r~ of length m from xp 3 to  z, k and 
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subpath ~'2 of length 1 from z, * to yqZ, for some z, * . Hence ~-1' = ¢,(~-1, u) is a path in 
G~c of length m from ~bn(xp~,u) to ¢~(z, k, u % ~(Mc I ~'1)) with ~(M.c [Tr') = 
Q[u -/- Z(M~ I ~'l) I n]. Moreover, ~-s' = ~b,(~'~, u + Z(M~ I ~'l)) is a path from ¢.(z,  k, 
u + Z(M~I r~)) to 

~b.(yq ~, u + 2~(M¢ [ ~-,) ~- Z(M~ I ~r2)) = ~b~(yq z, u T 2~(Mo ] ~r)). 

Heace 7r' = ~b,(~',u) is the path formed by composing ~'1' and v2'. If  Z(M~ I ~'2) = 0 or 
R[u Jr Z(M¢[~' i ) /n]  < n - 1, then Z(M~oI~-2') = 0 a n d  Q[u + Z(M~]~rl)/n] = 
q[u W Z(M¢[ ~r)/n]. Hence 2~(M~c t ~") = q[u -b Z(M¢ t 7r)/n]. If  Z(M~ I 7r2) = 1 
and R[u -~ Z(Mc]~r~)/n] = n - 1, then Z(M,~t~-2') = 1 so that  Z(M,¢[~- ' )  = 
q[u W Z(M~t  7rl)/n] T 1. But then 

Qlu + Z(M~ I lr)/n] = Q[u -~ Z(M:  I 7r,) + Z (M:  I r~)ln] 

= Q[u + Z ( M :  I 7r,) + 1/n] = q[u -~ Z(M~ I ~'~)/n] Jr 1 

LEMMA 4.2. I f  ~r is a path of length m from x~ ~ to yqt m G,o , then ~r' = O( ~r) is a path 
of length m from O(x~ ~) to O(yq ~) zn Gc and Z(M~ [ v ')  = (~(M~c I ~r)) n + Q[l/q] - 
Q[:/p].  

PROOF. The proof is by induction on m. 
Basis step. Let m = 1. Then there is an edge ~" = (x~',yq~) in Pc such that 

j = i Jr R[u/n]p and l = k ~- R[u + Z(M¢ I ~r')/n]q for some 0 _~ u < n. But then 
R[2/p] = ~and R[l/q] = k since ~ < p and k < q. Also, Z(M~c I ~') = Q[u ~- 
~(M~ [ ~r')/n]. Hence 

u + Z(M~ l 7r') = (Q[u -b ~(M~[ ~r')/n]) n + R[u -~ Z(Mc[ ~r')/n] 

= (Z(M,~ I ~'))n + Q[Uq]. 

But Q[j/p] = R[u/n] = u so that  E ( i c  [ 7r') = (Z(U.~ [ ~'))n + Q[l/q] - Q[j/p]. 
Inductwn step. Assume that  the lemma holds for all paths of length m and let 7r be a 

path of length m + 1. Then there is a path ~'~ from x J  to z, ~ of length m and a path 7r2 
from z, ~ to yqt of length 1. Hence ~rl' = 0(~r~) is a path of length m from O(x~ ~) to O(z, ~) 
and Z(M~ [ ~-~') = (Z(M,c [ ~-~))n + Q[k/s] - Q[3/p]. Also, ~r2' = 0(~r2) is a path of 
length 1 from O(z, ~) to O(yq ~) with Z(M~ I ~r~') = (Z(M~c 1 ~r~))n + Q[l/q] - Q[k/s]. 
Hence ~r' = 0(7r) is a path from O(x~ ~) to O(yq ~) and 

= (Z(M,¢ t~r~))n -~ Q[k/s] - Q[j/p] + (Z(M,~ I ~r2))n + Q[//q] 

- Q[k/s] 

= ( ~ ( M ~  [ 7r))n + Q[l/q] - Q[j/p]. [] 

We now use these two lemmas to show that  the marked graph G~o is both live and safe. 
THEOREM 4.2. G~, *s a Ave marked graph. 
PROOF. Let ~r be a cycle from x~ ~ to x~ ~ in G~o. Then ~r' = 0(~r) is a cycle in Go. 

If  Z(M~¢ t T r) = O, then Z(M,  [ ~") = 0 .n  + Q[g/p] - Q[3/p] = 0. But this contradicts 
the liveness of Go. [] 

THEOREM 4.3. G~, ~s a safe marked graph. 
PROOF. Let e = (x~,y~ ~) be an edge in P~¢. Then e' = O(e) = (O(x,~),O(yq~)) is an 

edge in Pc.  Since G, is safe, there is a synchronizing loop ~-' of G, containing e'. Then 7r' 
may be viewed as a path from O(xr ~) to O(x~ ~) consisting of the edge e' composed with 
the subpath of ~r' from O(yq ~) to O(x~). Let ~'~' denote the path obtained by composing 
v '  with itself n times. Let 7r = ~b~(z~',Q[j/p]). Using Lemma 4.1, it can be easily shown 
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tha t  ~" is a cycle of G~c containing the edge e. Also, Z(Mn~ I 7r) = Q[Q[3/P] + n/n] = 1 
since Q[j/p] < n. Hence ~- is a synchronizing loop containing e. D 

THEOREM 4.4. Let Gc be the signal graph of an MGCS C and let G,c be the n-th expansion 
of G~. Then there exists an MGCS nC such that: (1) Gnc is the szgnal graph of nC, (2) C 
and nC have ~dent~cal hnk sets, and (3) the multzplwity of link p, relatwe to nC, is n times 
the multiplicity of link p, relative to C. 

PROOF. Let  L be the l ink set and c~ the link assignment for the MGCS C. Define no~ 
as the function from {¢.(e,u)  [ e C dom o~ and 0 < u < n} to L such tha t  nv~(~b~(e,u) ) = 
o~(e). Then i t  can be shown, using Lemmas 4.1 and 4.2, tha t  na is a valid link assignment 
for the marked graph Gut. Moreover, G,¢ is live and safe by Theorems 4.2 and 4.3. I t  is 
strongly connected due to the strong-connectedness of G¢ and Lemma 4.1. Hence the 
triple nC = (Gn~ ,nc~,L) is an MGCS which can easily be shown to satisfy the three 
conditions in the s ta tement  of the theorem. [] 

Since G~ is the sigrial graph for an MGCS nC, the elements of T~o can be classified as 
either internal vertices or internal signals, relative to the link assignment not. Indeed, 
if the element x of Tc is an internal vertex (signal) of Go, then ~bn(x, u)  is an internal 
vertex (signal) of G ~ ,  for 0 _~ u < n. 

We now show tha t  the MG-control  systems C and nC are equivalent. For  this purpose, 
we state the following result, which can easily be derived from Lemmas 4.1 and 4.2. 

LEMMA 4.3. I f  ~r is a marker-minimal, s~gnal-free path m G~ , then O(Tr) is a marker- 
m~nimal, signal-free path zn Go. Conversely, i f  lr zs a marker-minimal, signal-free path in 
Gc , then ~b,( Tr, u) is both marker-minimal and signal-free in Gnc , for 0 < u < n. 

THEOREM 4.5. The MG-control systems C and nC are equivalent. 
PROOF. Let  G~ = ( T~ ,Pc ,M~) and G~ = ( T~ , P ~  ,ll~¢) be the behavior graphs of 

G~ and G,¢, respectively. We will prove tha t  C and nC are equivalent by  showing tha t  
Po = P~o [8]. 

• ( ~ $ - t - u p  l ÷ u q .  t Let e be an edge i n / 5  I t  was shown in [8] tha t  e must have the form e = ~ ,yq / 
_ R [ l / q ]  in for some u C Z, and there is a marker-minimal,  signal-free pa th  ~r from xp ~ to yq 

G~ with ~(M~ [ lr) = Q[l/q]. By Lemmas 4.1 and 4.3, there is a marker-minimal,  signal- 
J- t -R[u/n]p  free pa th  ~r ~ from ~bn(xJ, R[u/n]) = x~ to 

¢ /  R[//q] R[u/n] + Q[l/ q]) = yq ni, y q  , . R [ l / q ] T R [ R [ u / n | W Q [ l / q ] / n ] q  

in G~o, with Z(Mno I ~") = Q[R[u/n] + Q[l/q]/n]. But if there is a marker-minimal,  
signal-free pa th  r from xp' to yqk in G~c with 2~(M~ ] r )  = m, then the ordered pair 

++vnp  k - t - ( v + m ) n q x  ~-  
xp ,yq ) is in P ~  [8]. Sett ing i 3 -~ R[u/n]p and v = Q[u/n], we have tha t  

i + vnp = j -k R[u/n]p + Q[u/n]np = j + up.  

Setting k = R[l/ q] + R[R[u/n] + Q[l/ q]/n]q and m = Q[R[u/n] + Q[l/ q]/n], we have 

k + (v + m ) n q  = R[l/q] + R[R[u/n] + Q[L/q]/n]q + Q[R[u/n] 

+ Q[l/q]/n]nq "k Q[u/n]nq 

= R[l/q] + (R[u/n] + Q[l/q])q + Q[u/n]nq 

= R[I/q] + Q[l/q]q + (R[u/n] --[- Q[u/n]n)q 

= l + u q .  
( a f J + u p  l + u q ~  - -  . Therefore, e ~ ,yq / is an element of ]5 so t h a t / 5  C Pat 

The proof tha t  P~o C / 5  uses Lemma 4.2 in a way tha t  is similar to the use of Lemma 
4.1 above. The details are left to the reader. [] 

We summarize this section with the following theorem. 
THEOREM 4.6. Let C1 and C2 be distinct MG-control systems and let p be an output hnk 

of C1 and q an input link of C2. Then the system obtained by connecting links p and q can 
be represented by an MGCS. 
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5. Networks of Control Systems 

In  Sections 2-4 we have completely characterized the effect of connecting a single-output 
link Lo a single-input link. We now show how these results can be used to solve the more 
general problem of analyzing a network of several control systems interconnected by 
means of several pairs of links. 

We first note that  the general problem can immediately be reduced to analyzing the 
effect of connecting several output links to several input links of the same system. To see 
this, consider an arbitrary network of control systems. The interconnection pattern of the 
network can be represented by an undirected graph F = (V,E) where the elements of the 
vertex set V correspond to the control systems in the network and there is an edge in E 
connecting two vertices iff their corresponding control systems are connected through a 
pair of links. Let T = (V ,E ' )  be a spanning tree for F and consider the subnetwork 
formed by connecting only those pairs of links that  correspond to edges in E' .  Using 
Theorem 4.6, it is easy to see that  if each of the component systems is represented by an 
MGCS, then there is an MGCS C which represents the behavior of this subnetwork. 
Hence each edge of r that  is not in T (i.e. edges in E -- E ' )  corresponds to the connection 
of two links of the system. Therefore, the problem of determining whether or not the 
behavior of a network of control systems can be represented by an MGCS has been reduced 
to analyzing the effect of making those connections which correspod to edges in E - E ' .  

We represent the effect of connecting several pairs of links of the same ACS by means of 
the following marked graph. 

Definitwn. Let Go = ( Tc, Po,  2l~rc) be the behavior graph of an MGCS C and let f b e  a 
one-to-one function from a nonempty subset X of the set of output links of C into the set 
of input links of C. Then Gs denotes the marked graph (Ts, Ps,/lEts) where 
(1) Ts = Tc, 
(2)  Ps = ( P c -  { ( r ; , a ~ ' ) , '  ~ ~+1. (a~ ,rq ) I P  E X , f ( p )  = q and j_>  0}) 

U{(rp 3,r~J),(ap ~,ap ~) I P E x , f ( p )  = q and j>_  0}, and 
(3)  Ms = i o  N Ps. 
Hence Gs represents the behavior of the system obtained by connecting link p to link 
f ( p )  for all p in X. 

We have seen in Section 3 that  if the connection of an input and an output link of the 
same MGCS produces a system that  cannot be modeled as an MGCS, then this new sys- 
tem contains deadlock. We now show that  this deadlock cannot be removed by connecting 
additional pairs of links. 

PnoPosITION 5.1. Let X be a nonempty set of output links and f a one-to-one function 
from X into the set of input hnks of an MGCS C = ( G,a,L ). Then for all p zn L and 3 >- O, 

~ /  $+1 ",, .7/ J + l  "~ either there ~s a path ~n Gs from rp~( a/~p) ) to ap Lric(p)) or the vertex ap Lrs(p)) is dead in G~, . 
PROOF. The proof is by induction on I X ]. 
Basis step. If  ] X ] = 1, then this proposition follows immediately from Corollary 3.3. 
Induction step. Assume that  the lemma holds for all sets of output  links with n ele- 

ments and let X be a set of output links such that  ] X I = n -{- 1. Let q E X and X '  = 
X - {ql. Let f b e  any 1-1 function from X into the set of input links of C and let f be the 
restriction of f to X' .  By the induction hypothesis, either there is a path 7r in GI' from 
r J  to a~ j , or an infinite, marker-free path r in G~, directed into ap ~ , for all p in L. 

If  ~" exists in Gs' and is also a path in Gs, then there is a path from rp ~ to ap ~ in GI • 
Assume that  7r exists in Gs' but  there is no path in GI from rp ~ to a~ ~ . Then for some l > 0 ,  
either 
(1) (rq ~ ,aq t) is an edge on ~" and there is a path from aq ~ to ap ~ but none from rq t to aq ~ 
in Gs, or 
(2)  ~ ~+l, - -  ~+~ (az(q) ,rs(q) ) is an edge on rr and there is a path Irom rz(~) to ap ~ but none from as(q) to 

lq-1 r~(q) in G~. 
Similarly, if r exists in Gs' and is also a path in Gs, then a J  is dead in Gs- If  r exists in 
(~/' but is not a path in GI,  then there is an I >_ 0 such that  either 



On the Interconnection of Asynchronous Control Structures 611 

(3) (rq ~ ,aq z) is an edge on r and there is a pa th  from aq ~ to  a~, ~ but  none from rq t to aq Z 
in G:, or 
(4) z z+l (a:(q) ,r:(q)) is an edge on 7- and there is a pa th  from aq ~ to ap ~ but  none from a:~q) to 

l + l  
r:(~) in Gs- 

In  all four cases, a proof similar to tha t  of Lemma 5.1 can easily be constructed to show 
the existence of an infinite, marker-free pa th  in G: directed into aj, Z . Hence ap Z is dead in 

COROLLARY 5.1. I f  O: contazns a dead vertex, then for every hnk signal xp of C, there is an 
l > 0 such that x~ ~ is a dead vertex in G/• 

COROLLARY 5.2. Let X '  be a nonempty subset of X,  and let f be the function f restricted 
to X' .  Then G/contains a dead vertex whenever Gs' contains a dead vertex. 

From Corollaries 5.1 and 5.2, we may conclude that  if connecting one or more pairs of 
links of an MGCS produces a system with a deadlock, then connecting addit ional pairs of 
links can never eliminate this deadlock. Hence an arbi t rary  network of control systems 
can be analyzed in the following way. Firs t  pick a spanning tree T = (V,E ' )  for the inter- 
connection graph P = (V,E)  of the network. Then construct an MGCS C for the subnet- 
work obtained by  connecting only the pairs of links tha t  correspond to edges in T. Check 
each pair of links tha t  corresponds to an edge in E - E '  to see if the two links have equal 
multiplicities. If  not, the network contains a deadlock. Otherwise, pick an edge e in E - E '  
and determine if the pair of links corresponding to e is buffered in C. I f  not, the network 
contains a deadlock. If  i t  is buffered, then form a new MGCS C' by connecting the pair. 
Next  pick a new edge in (E  - E')  -- {e} and check the corresponding pair of links to see if 
they are buffered in C'. This procedure can obviously be repeated until  either it  is estab- 
hshed tha t  the network contains deadlock or an MGCS representation for its behavior is 
obtained. 

6. Conclusion 

In  this paper we have completely characterized the effect of interconnecting links of MG- 
control systems. I t  has been shown tha t  there are two possibilitms when two links are con- 
nected. Ei ther  the resultmg system is an MGCS or it  contains deadlock. When two links 
of disjoint control systems are connected, the composite system is always an MGCS. If  
the two links are from the same MGCS, then the new system is an MGCS iff the links 
are buffered. We now compare these results with previous work on the interconnection of 
asynchronous systems. 

The problem of detecting deadlock in networks of control modules has been investi- 
gated by Bruno and Altman [1] and Fr iedman and Menon [5]. The control modules used 
by  Bruno and Al tman were the WYE,  SEQUENCE,  J U N C T I O N ,  I T E R A T E ,  and 
SELECT modules. They characterized the class of networks which are free of deadlock in 
terms of the interconnection pa t te rn  of the network. The WYE,  SEQUENCE,  and 
J U N C T I O N  modules can easily be represented as MG-control  systems in which the 
mult iphcity of every link is 1 [4]. Hence their characterization for deadlock-free networks 
composed of these modules can also be derived from Theorems 3.4, 3.5, and 4.1. 

Fr iedman and Menon consider only one type  of module. I t  is similar to modules pro- 
posed by Muller [11] in tha t  a communication cycle on a link involves a more compli- 
cated "pipehning" operation. While Bruno and Al tman assume tha t  all modules s tar t  in a 
quiescent state with all links idle, Fr iedman and Menon allow each module to be initialized 
to one of two stable states. Hence the existence of deadlock depends on the initial s tate of 
the network as well as its topology. As a result, their characterizations of networks with 
deadlock cannot be derived from the interconnection theorems of this paper.  However, 
given the initial s tate of a network of these modules, its behavior can be represented by a 
marked graph. Changing the initial s tate corresponds to using a different initial marking 
of the same graph. In  this case, the detection of deadlock is equivalent to determining 
whether or not  the marked graph is live. 
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Muller [9,10] has also considered the problem of interconnecting asynchronous systems. 
He was primarily concerned with guaranteeing that  the composite system display a cer- 
tain type of determinacy called semimodularity. This property of systems is roughly 
equivalent to safeness in marked graphs. However, if we restrict our at tention to MG- 
control systems in which every link has multiplicity 1, then Theorem 4.1 can be easily 
derived from his basic interconnection theorem. I t  would appear to be more difficult to 
formulate the interconnection of links with multiplicity greater than 1 and the intercon- 
nection of two links of the same MGCS in terms of this more general theory. The problem 
of preserving determinacy under the interconnection of systems has also been investigated 
by Pati l  [13]. 
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