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ABsTRACT. The paper is concerned with a class of control systems which can be represented by a
graphical model called an MG-control system (MGCS) In particular, the closure properties of this
class are studied More precisely, this paper presents necessary and sufficient conditions for the com-
posite system, obtained by interconnecting two of these systems, to be represented as an MGCS.
These results are then extended to networks composed of several interconnected control systems. In
solving this problem, 1t is shown that whenever the interconnection of two or more systems resultsin a
system that is not representable as an MGCS, 1t 18 due to the presence of ‘“deadlock’ in the composite
gystem. Hence the results of the paper provide a means of detecting deadlock 1n a network of control
systems.
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1. Introduction

This paperis a continuation of the study of asynchronous control systems presented in
[8]. As before, we view a control system as a device which enforces certain specified con-
straints on the order of occurrence of “‘events’” where these occurrences are characterized
as follows.

(1) An occurrence of an event is initiated by a control signal called a ready signal.

(2) Once initiated, an occurrence requires a finmite but unbounded period of time.

(3) When an occurrence terminates, an acknowledge signal is generated.

(4) Each event may occur repeatedly, and several different events may occur concur-
rently.

A control system communicates with its environment through links, where there is one
link for each event and each link contains a ready terminal and an acknowledge terminal. In
the case of an input link, the corresponding event is initiated by the system’s environ-
ment by sending a ready signal to the system through the link’s ready terminal.
When this event is terminated, an acknowledge signal is transmitted to the environ-
ment through the acknowledge terminal of the same link. Events are initiated by the con-
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trol system when a ready signal is sent to the environment through the ready terminal of
an output hink. The environment signals the completion of this event by generating an
acknowledge signal on the acknowledge terminal of that link.

The ready and acknowledge signals associated with a link will be referred to as link
signals. If the last link signal transmitted through a hink was an acknowledge signal, the
link is said to be 1dle. A link is active if the last link signal was a ready signal. Initially, all
links of a system are idle. It is assumed that neither the system nor its environment will
ever try to activate an active link or deactivate an idle link. Hence the ready and acknowl-
edge signals of a link must alternate.

Consider a control system which has reached a state in which all input links are active,
all output links are idle, and the system is unable to produce any new output signals on
any of its links. In this case, the environment must wait for an output signal from the sys-
tem before it can generate a new input signal. Hence the system 1s incapable of any fur-
ther activity. If it is possible for a control system to ever reach such a state, we say that the
system contains deadlock. Thus is a condition analogous to the system deadlock or deadly
embrace encountered in large multiprogramming systems [2].

When an output link is connected to an input link, the ready signals of the output link
are transmitted directly to the ready terminal of the input link, and an acknowledge sig-
nal generated on the input link becomes an acknowledge signal for the output link. It has
been shown that when links of control systems which are free of deadlock are connected
in this way, it may result in a new system which does contain deadlock [1, 5]. Hence an
important analysis problem is to determine when this can happen.

The purpose of this paper is to characterize the behavior of networks of control systems
that communicate with each other through their links. A mathematical model called a
marked graph is used for this purpose. In particular, 1t 1s shown how to construct a marked
graph representation for the behavior of a network given such a representation of its com-
ponent systems. Then a necessary and sufficient condition for a network to be free of dead-
lock is developed. Deadlock is characterized in terms of the familiar property of liveness in
marked graphs. A major contribution of the paper is that it transforms the well-known
mathematical characterization of liveness in marked graphs into a form that is more con-
venient for the analysis of control systems that are realized as a network of smaller con-
trol systems.

The effect of connecting a single pair of links is analyzed first. Section 3 considers the
case where both links are on the same system. It is shown that if these links satisfy a con-
dition called buffering, then their connection results in a well-formed system that is free of
deadlock (Theorem 3.4). If, on the other hand, the links are not buffered, then connecting
them will produce a system that will ultimately reach a deadlocked state (Theorem 3.5).
The connection of two links on different systems is studied in Section 4. In this case, it is
shown that such a connection will always result in a deadlock-free system (Theorems 4.1
and 4.5). In the process of characterizing the effect of connecting a pair of links, marked
graph representations for the resulting systems are developed.

Any connection between two subsystems in a network can be viewed as either a con-
nection between two distinct systems or one between two links on the same system.
Hence the results of Sections 3 and 4 are used in Section 5 to analyze complex networks.
Specifically, it is shown how deadlock in a network can be detected by analyzing its link
connections, one at a time,

2. MG-Control Systems

This section consists of a brief introduction to the asynchronous control system model
used in this paper. A more detailed and complete development of the basic properties of
this model can be found in [8]. The model is based on a directed graph, called a marked
graph [3, 6, 7], in which the state of the system is represented by placing markers on some
of the edges. A change of state is then simulated by the movement of markers in the graph.
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The model may be viewed as a special case of the P-net model developed to represent the
behavior of control modules [4, 12]. Indeed, P-nets are based on a generalization of marked
graphs called Petri nets [7, 14].

We view a (directed) graph as an ordered pair (T,P) where T is a countable set of
vertices and P © T X T is the set of edges. A path of length n 15 a sequence
T =0y,%, -, v, of vertices such that (v, ,v,41) € Pfori = 0,1, -+, n ~ 1. If all of
the inner vertices of a path are distinct, it is said to be elementary. Given an elementary
path =, then w(z,y) denotes a subpath of = which extends fromztoy. If m = vy, vy, - - -,
vwand 7 = g, wu, - -, U are two paths with v, = uo, then the composition of = and 7
isthepathm, 7 = w5, 01, -+, 0a, -+ -, um . Given a vertex v, I{2») denotes the set of edges
directed into » and O(v) the set of edges directed out of v.

A marking of a graph (T,P) is a function M from P into N, , the set of nonnegative in-
tegers.' The interpretation of M is that edge e contams M (e) markers under M. If 7 is a
pathin (T ,P), then Z(M | m) denotes the number of markers on x under M.

A marked graph is a triple (T,P,M ) where (T',P) is a graph in which /(v) and O(v) are
finite sets for all v € T and M is a marking of (T,P) called the ntral marking.
If Z(M | w) = Ofor a path , then = is said to be marker-free.

Given a graph (T,P), a vertex v € T is firable under a marking M’ if M’(e) > 0 for all
e € I(v). Moreover, when v fires, a new marking M” is produced, where M” is defined by

M) —1, if e€ I(x) — 0®),
M'(e) = {M'(e) + 1, if e € O@v) — I(v),
M'(e), otherwise.

Hence, the operation of firing a vertex v can be represented by removing one marker from
each edge in I(v) and adding one to each edge in O(v). Note that if ¢ is a self-loop, then
M"(e) = M'(e). Asequence vy, vy, v, , - - -, v, of vertices in T is called a firing sequence of
the marked graph (7T,P,M) if there is a sequence My, My, - - -, M,41 of markings such
that M, = M, v, is firable under M, , and M., is the marking produced when v, fires, for
i=1,2 -, n

A vertex in a marked graph G is said to be live if it appears in at least one firing sequence
of &, otherwise it is dead. A marked graph is lzve if all of its vertices are live. It has been
shown that a vertex v is dead iff there is an infinite, marker-free path directed into v {7].
Hence a finite marked graph is live iff every cycle contains at least one initial marker.

An edge of a marked graph is safe if it contains at most one marker under any marking
reachable from the imitial marking. It has been shown that an edge lying in a cycle that
contains exactly one initial marker is safe [7]. Such cycles will be called synchronizing loops.
A marked graph is said to be safeif all its edges are safe. It has also been shown that a finite
and live marked graph is safe if and only if every edge is contained in a synchromzing
loop [7].

The marked graph model will be used to represent the behavior of control systems by
associating the links of the system with certain edges of a marked graph in the following
way.

Definition.  An MG-control system (MGCS) is a triple C = (G,a,L) where:

(1) G = (T,P,M) is a finite marked graph that is live, safe, and strongly connected;
(2) L is a finite set of links;
(8) ais a partial function from P onto L such that
(a) theset o '(¢) = {e € P| a(e) = ¢} is contained in a synchronizing loop of G,
forallq € L,
(b) no vertex in T is the endpoint of more than one edge in dom ¢,?
(¢) if (x,y) € dom o, then | I(y) | = 1,2

1 In this paper,Z = {---, - 2,—-1,0,1,2,---}, N = {1,2,3,---},and Ny = {0, 1, 2, ---}
2 “Dom e’ denotes the domain of the partial function a.
3| I(y) | denotes the cardinality of the set I(y).
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(d) if p is an input link, then exactly one edge in o '(p) contains an initial marker;
if p is an output link, then no edge in & '(p) contains an initial marker.
a is called a valid link assignment.

A valid link assignment o assigns edge ¢ to link a(e). The number of edges assigned to
link p is called the multiplicaty of p and is denoted by the symbol p.

We denote the ready signal on link p by 7, and the acknowledge signal by a, . These
signals are called external signals since they represent the interaction of the control system
with its environment. Since a link assignment is not necessarily one-to-one, different oc-
currences of an external signal may be associated with different edges. In order to dis-
tinguish these different occurrences, we define an internal signal as one of the form r,’ or
ay’ , wherep € Land 0 <) < p.

In order to associate internal signals with vertices of G, we first order the edges in each
of the sets o '(p) where p € L. To this end, let 7 be the synchronizing loop containing
o '(p) and ¢, = (u,v) be the edge of 7 that contains an initial marker. If e = (z,y) is an
edge in o '(p), then we define the loop order of e to be j where 7 is the number of edges of
o }(p) that lie on the subpath w(,2). Now the signal assignment for C is the function 8,
with domain 7, defined as follows:

(1) B(v) = 0 if v is not the endpoint of any edge in dom «. In this case, B(v) is called
an internal vertex.
(2) Lete = (u,») be an edge in dom « with a(e) = p and loop orderj:

(a) B(u) = r,°and B(v) = a,’if p is an output link, and

(b) B(u) = a,’and B(v) = r3P*P if pis an input link.*

We now use the signal assignment, of an MG-control system to get the following al-
ternate representation for the behavior of the system.

Definstion. Let C = (G,a,L) be an MGCS with G = (T,P,M) and 8 its signal assign-
ment. Then the signal graph for C is the marked graph G, = (T., P, ,M.) where:

(1) T. = B(T) = {B(v) |v € T},
(2) P. = B(P) = {(B(w), B(v)) | (up) € P},
(8) M. = B(M) = {(B(w),B(v)) | (up) € M}.

Wesay that two MG-control systems C1 and C2 are disyount if the vertex sets of the sig-
nal graphs G, and G. are disjoint. Note that disjoint MG-control systems will have
disjoint link sets.

The activity of a control system is simulated by the movement of markers in the signal
graph. When a vertex of the forms r,’ or a,’ fires, this is interpreted as the generation of
the link signal r, or a,, respectively. Since the loop order has been used to assign the
superscripts of internal signals, the firing of vertex z,” may be interpreted as the jth
(modulo p) occurrence of external signal x, . Hence the condition that o '(p) be con-
tained in a synchronizing loop will ensure that the sth occurrence of a signal precedes its
(¢ 4+ 1)-th occurrence. Since every edge of a synchronizing loop is safe, the environment
of a system is restricted to generating input signals so that ready signals alternate with ac-
knowledge signals on each link. The conditionthat | I(y) | = 1 whenever (z,y) € & '(p)
guarantees that this is the only ordering constraint placed on the environment by the
system.

The behavior of a control system is completely characterized by the set of all possible
sequences of signals on its links. Due to the correspondence between the generation of
link signals and the firing of vertices, we will define the behavior of an MGCS in terms of
the firing sequences of its signal graph. To this end, let @ be a firing sequence for a signal
graph. Then the corresponding reduced firing sequence is the sequence of internal signals
obtained by deleting all of the internal vertices from 4. The signal sequence corresponding
to 4 is the sequence of external signals obtained by removing the superscripts from all of

* R[3/p] denotes the remainder and Q[3/p] the quotient obtained by dividing j by p. Thus
7=Ql/vlp + Els/pl
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the internal signals in the corresponding reduced firing sequence. We now define the
behavior of an MGCS as the set of all possible signal sequences of its signal graph.

We will say that two MG-control systems are equivalent iff they have equal behaviors.
Note that this definition imposes the constraint that two equivalent control systems have
equal link sets.

The concept of system deadlock is formalized with the MGCS model in the following
way.

Definition. Let G, be the signal graph of an MGCS C. Then C is said to contain a
deadlock if there is a reachable marking M’ of G, under which no internal signal (i.e. a
vertex of the form 7,7 or a,?) is firable. The marking M’ is also referred to as a deadlock
of C.

It has been shown that if a strongly connected, finite marked graph is live, then there
is no upper bound on the number of times a vertex may fire. However, if such a marked
graph contains at least one dead vertex, then the graph will reach a marking under which
no vertex will fire [7]. It therefore follows that an MGCS is free of deadlocks.

We now introduce an alternative representation, called a behavior graph, for the be-
havior of an MGCS. To this end, we first introduce the following terminology. An ele-
mentary path in a signal graph is said to be s:gnal-free if none of its inner vertices are
internal signals. A path 7 from z to y is called marker-mnimal if Z(M, | ©') > (M. | 7)
for all paths 7 from z to y. Now let C be an MGCS and G, its signal graph. Then the
constraznt relation of C is the ternary relationy, € T, X T. X Ny defined by: (z,y,m) € .
iff  and y are internal signals and there is a marker-minimal, signal-free path = from z
to y such that Z(M.| r) = m.

Definition. Let~y, denote the constraint relation and Sg the set of external signals of an
MGCS C. Then the behavior graph for C is the (infinite) marked graph G. = (T. ,P. ,M.)
where:

1) T, = {z,’ | 2, € Sp and € Z},
(2) Bo = {(25 ™y " ™) | (2,’y,,m) € v.and n € Z},
(3) M, = {2,°9,") € P,]g <0andl > 0.

We can associate signal sequences with firing sequences of G, in the same way it was
done for signal graphs. It was shown in [8] that the set of signal sequences generated by
G, is equal to the behavior of C. Hence if C1 and C2 are two MG-control systems, and
G. = Gz, then C1 and C2 are equivalent.

Some of the concepts introduced in this section are illustrated by the signal graph in
Figure 1. This graph represents an MGCS with link set L = {1,2,3} where links 2 and 3
are output links of multiplicity 1 and link 1 is an input link that has multiplicity 2. The
initial markers are indicated by darkened circles on edges. Hence vertex r,° is the only
firable vertex under the initial marking and the path = = r°, t’, .’ is signal-free. Vertex
&’ is the only internal vertex as all of the other vertices are labeled with internal signals.
The synchronizing loop containing «™*(2) is #°, 7', @’ &,° while the synchronizing loop
), 1, @, r', s, a5, ar, m° contains both & (1) and o *(3). Two examples of signal
sequences are given by ry, a1, 72,6 ,nandn,rn, 6,4, n.

3. Connection of Two Links on the Same System

In this section we consider the effect of connecting a single output link to an input link
on the same system. When this system is representable as an MGCS, we show that the

@D ()
(9
(D—(D—D ()

Fi1e. 1. Signal graph for the MGCS C1
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following condition is necessary and sufficient for the resulting system, obtained by con-
necting the two links, to be represented by an MGCS.

Definition. Let p be an output link and ¢ an input link of an MGCS C. Then (p,q) is
a buffered pair of links if
(1) p and ¢ have equal multiplicity (i.e. p = q), and
(2) every path from r,’ to 7, and every path from a,’ to a,’ in the signal graph G, con-
tains at least one marker under M., for 0 < j < p.

In Subsection A below, we show that if (p,q) is a buffered pair of links, then connecting
them produces a system that can be represented by an MGCS. In Subsection B we show
that a system obtained by connecting two unbuffered links cannot be represented by a
well-formed MGCS. Moreover, we show that such a system will contain a deadlock.

A. SvurriciENcy oF THE BurreRING ConpiTioN. The operation of connecting a
buffered pair of links is modeled in the following way.

Definition. Let (p,g) be a buffered pair of links of the MGCS C and let G. =
(T.,P, ,M.) be the signal graph of C. Then G,, is the marked graph (Tpq ,Ppq ,Mpq)
where:

(1) Tpe =T,
(2) Pye = (P.U{(ro1"), (a,8,') |0 < j < p}) — (a7 (p) U a™'(9)),
(3) My, = Mcanq-

To see that Gp, models the connection of links p and ¢, note that the physical connec-
tion of output link p to input link ¢ establishes direct paths from the ready terminal of
link p to the ready terminal of link ¢ and from the acknowledge terminal of link ¢ to the
acknowledge terminal of link p. Hence the ready signal r, is transmitted through this con-
nection and becomes a ready signal for link ¢. Similarly, acknowledge signals are trans-
mitted from link ¢ to link p. The effect of this connection on the behavior of the system is
to change the constraints on occurrences of link signals 7, and a, . Recall that the edges in
a"l(p_) U a'(g) represent constraints that are enforced by a system’s environment. Thus
the only constraint on the jth occurrence of signal a, is that it must be preceded by the
Jth occurrence of r, . Similarly, the only restriction on occurrences of 7, is that the jth
occurrence of a, must precede the (7 4 1)-th occurrence of r, . When links p and ¢ are
connected, these constraints on r, and a, are replaced by new ones which ensure that the
Jjth occurrences of a, and r, are preceded by the jth occurrences of a, and r, , respectively.
Thus the new constraints on the signals r, and a, are represented by removing the edges
in a7'(p) U a'(¢) and adding the edges (r,’,r;’) and (az,a,’) forj = 0,1,2, .-+, p — 1.

If Gp, is to be a live marked graph, then the addition of edges to P, in order to form
P,, must not create any marker-free cycles. Moreover, if G, is to be safe, then the dele-
tion of the edges in & '(p) and o '(g) must not eliminate any necessary synchronizing
loops. We now show that the buffering condition is sufficient to guarantee both liveness
and safeness in G, .

THEOREM 3.1. Let (p, q) be a buffered pair of links for the MGCS C. Then Gy 18 a live
marked graph.

Proor. Let u be an elementary cycle in G,, . If all of the edges of u are in P, , then
4 is also a cycle of G, so that (M. | u) = Z(Mp, | u) > 0. We therefore assume that at
least one edge of u is in the set Py, — P, .

Let X, = {rp’,0,°7°,a | 0 < j < p}. We order the elements of X,, by means of the
function f : X, — N, which is defined as follows:

44 ifz =rand u = p,
44+ 1 ifz=randu =g,
474+ 2 ifz=aandu =g,
4+ 3 ifz=cacandu = p.

fla) =

Note that if z,” and z.' (where v = p or u = ¢) are two elements of X,,, then they
are both link signals for link « and therefore lie in the synchronizing loop 7 which con-
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tains «'(u). Moreover, if f(z,’) < f(%.'), then the subpath =(z.’y.') contains no
markers under M, .

Let Y,, denote the set of all endpoints of those edges in P,, — P, which are also edges
of p. Let z,” be the element of ¥, such that f(z,”) < f(z) for all zin ¥,, . Finally, let
1 be the subpath of u such that:

(1) the terminal endpoint of y; is z,’,

(2) ., the initial endpoint of g , is an element of Y, , and
(3) no inner vertex of p, is an element of ¥, .

We will show that Z(Mp, | w1) > 0.

Casel. u = v. Since f(z,’) < f(y.’), there is a path g, from z,” to .’ in G. and
Z(M.| p2) = 0. Due to condition (3) above, y; is also a path in G, . Hence there is a
cycle in G, consisting of the two paths y; and g . Since (M, | p) = 0 and G, is
live, Z(M.|m) = Z(Mpq| ) > 0.

Case2.u #v. From the way that y,’ was selected and the definition of f, (y.' ,y,, Y is an
edge in P,, — P, and f(y.' ) = f(y,, ) — 1. Hence f(z,”) < f(y.') so that either z,” = 3,
or there is a path y, from z,” to 3, in G, and Z(M. | u2) = 0. But u is also a path in G, so
that the composition of u; and g, is a path from v,' to 1,'. Hence (M., | ) = Z(Mpq | 1)
must be greater than 0 since links p and ¢ are buffered. 0O

In order to prove that G,, is safe, we first establish a relationship between paths in
G, and paths in G, .

Lemma 3.1, Let (p, q) be a buffered pair of links for the MGCS C and let 7 and 7 de-
note synchronizing loops of G, contawning o *(p) and o *(q), respectively. Then T and
have no edges in common.

Proor. Lete = (u,) be an edge on both 7 and 7. Since « "(p) and o '(q) are dis-
joint, there are three cases to consider.

Casel.e ¢ o '(p)ande ¢ o« '(¢). Then there exist two integers 7 and j such that
e is an edge on both the subpaths 7(a,’r,""'®) and 7(r,",a,"). Note that the subpath
7(r",a") is marker-free. If (M. | n(xu, r,")) = 0, then 7(r,'u), w(u,r,’) extends from
74 tor, and contains no markers under M, . But this is a contradiction since links p and ¢
are buffered. On the other hand, if Z(M,| w(u, rp’)) = 1, then T(M,| 7(a,’, u)) =
so that the path m(a,"u), 7(u,a,") provides a contradiction.

Case2.¢ € o (p). Thene = (r,°,a,’) for some j, and there is an integer 4 such that
e is on the subpath 7(r,',a,"). As in case 1, it can be easily shown that either there is a
marker-free path from ;" to r,* or one from a,’ to a,".

Case 3. ¢ € o '(q). Then e = (ag',r;""¥) for some 2, and e is on the subpath
w(ay’, 5 P for some 5. If (M, | w(a,’r,"" ")) = 0, then the proof that links p
and ¢ are not buffered is similar to case 1. If the subpath contains an initial marker, then
Rlj+ 1/pl=0andj = p — 1 = q — 1. Since the only marker on path 7 is on edge
(a37'r,"), there is either a marker-free path from a,’ to a,’ or one from r;’ to r,".

In each of the three cases, the assumption that m and 7 share an edge leads to the
conclusion that links p and gq are not buffered. Hence they must not have any edge in
common. []

THEOREM 3.2. Let (p, q) be a buffered pair of links for the MGCS C. If there is a path
from node u to node v in the signal graph G. , then there 1s a path ps from u to v wn Gpy and
Z(Me| ) = Z(Mpq| pe).

Proor. If p, contains no edges in o« (p) U a”'(¢), then p» = w is the required path
in G,y . Assume that p; contains an edge e = (a,r;" "9 in o '(q). If u is the syn-
chronizing loop containing o™ *(p), then u(a,’,r,""*®!) is a path in G, . Due to Lemma
3.1, it is also a path in G,,. Hence the edge e can be replaced by the path (a,’a,’),
w(ap’,ry TP (r,t ["H/"' rltaly in @, . Since the number of initial markers on
T(ep’,, R““’"’) equals the number on edge ¢, this replacement does not change the
number of markers on the path. This procedure can be repeated until all of the edges of
o '(p) have been removed. A similar procedure exists for replacing the edges in o *(q)
with pathsin G,,,. O
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CoroLLArY 3.1 If (p,q) is a buffered pawr of links for the MGCS C, then the set
Py — P, = {(r'rd), (a,85°) |0 < j < p} 1s contarned 1n a synchronizing loop of Gypq -

Proor. , the synchronizing loop containing o' (p), contains all of the endpoints of
edges in P,, — P, . The procedure for replacing edges of & (p) U a'(¢) by paths in
G, can be used to construct a cycle in G, that contains all of the edges in P,, — P, and
exactly one initial marker. Since G, is live, this cycle must be elementary and, therefore,
a synchronizing loop. O

CoOROLLARY 3.2. If (p,q) 15 a buffered pair of links for the MGCS C, then Gyq is strongly
connected.

TuroreM 3.3. If (p,q) is a buffered pawr of links for the MGCS C, then G, 1s a safe
marked graph.

Proor. Let e be an edge of G,, . We will show that there is a synchronizing loop in
G, that contains e. If e € P, then the result follows at once from Corollary 3.1. There-
fore, assume that ¢ € P, . Since G, is safe, there is a synchromzing loop in G, which con-
tains e. By Theorem 3.2, there is a cycle p in G, which contains e and exactly one initial
marker. Since G, is live, u is elementary, and therefore a synchronizing loop of G, . 0O

We can now summarize this subsection with the following theorem.

TuroreM 3.4. Let (p,q) be a buffered pair of luinks of the MGCS C. Then G,y is the
signal graph of an MGCS representing the system obtained by connecting links p and q.

Proor. Let ¢ = (G,a,L) and consider the triple ¢’ = (G,q,a/,L’) where L' =
L — {p,g} and o' is a restricted to P, — (o '(p) U a(q)). It can be easily shown, using
Theorems 3.1, 3.2, and 3.3, that ¢’ is an MGCS and that its signal graph is G,,. O

In order to illustrate the results presented in this subsection, consider the MGCS in
Figure 2. Links 4 and 7 of this MGCS are buffered and can be connected. Links 5 and 6
are not buffered, nor are links 5 and 7. We show in the following subsection that if they
were connected, the system would contain a deadlock.

B. Necessity oF THE BUrreErING ConbiTiON. Let p be an output link and ¢ an
input link of the MGCS C such that p and g are not buffered. Then in the signal graph
G, , either (1) p # q, or (2) there is a marker-free path from r,” to r,’ or one from a,’
toa,’, for some 7. Inthe second case, we could model the connection of links p and ¢ with
the marked graph G,, as before In the first case, however, this technique will not work

©

Fic. 2 Signal graph for the MGCS C2



604 J. R. JUMP AND P. S. THIAGARAJAN

since internal signals for links p and ¢ do not match up. Moreover, it was shown in [8]
that if two links have different multiplicities in one MGCS representation of a system,
then they will be different in any MGCS representation of that system. Thus the effect
of interconnecting links p and ¢ cannot be modeled at the signal graph level using the
method of Subsection A, The same argument used to justify the validity of the model
Gy, can, however, be applied at the behavior graph level. This leads to the following model
for the behavior of the system obtained by connecting links p and q.

Definition. Let G. = (T, ,P, ,M.) be the behavior graph of an MGCS and let p be
an output link and ¢ an input link of C. Then Gpq = ( Tpq ,Ppe ,M pq) is the marked graph
such that

(1) _mz = 1e,
(2) Py = (P - {(an>7{1+) (rp'a5") l7 2 0}) U{(ij;'rq]); (aap’) |9 = 0}, and
(3) M,,q =M,.

Let z,” € T,y wherej > 0. If this vertex is dead in G,,, then we can conclude that the
link signal 2, does not occur more than j — 1 times. Furthermore, if we find that for every
s € L — {p,g} there exists a 7 > 0 for which the vertex x,” is dead in G,,, then we can
conclude that the system represented by G,, contains deadlock and hence cannot be
modeled as an MGCS. We now use these observations to show that connecting two links
of the same MGCS always produces a system with deadlock when the links are not
buffered.

LemMa 3.2. Let G,, be the marked graph obtained from the behavior graph G, as in the
previous definition and let 7 > 0. Then
(1) either there is a path wn Gy, from ag'(ry’) to i+ (ay’) or the vertex r
Gog 5
(2) either there is a path in Goq from a,’(r) to vy (a,’) or the vertex
qu

Proor. Let K (0) = ] and assume that there are no paths in G, from ar @ to rF
Since the edges (az *,a5”) and (r7 "5 ™) are in P,,, we can conclude that there
are no paths from a, <°) to r2 @ in Gy, . But there is at least one such path in G, [8]
Also, no path in G, from aK(O) to 75 ¥* contains an edge of the form (r,’a,') since G,
is live. Hence, for some K(1) > 0, it must be the case that there is a path m in G, from

@ to r5* such that
(1) there is a subpath (edge) of o from af ™ to X1,
(2) there are no paths from a; ® to ry ' in G,,, and
(3) the subpath mo(r "+, Kw)”) is also a path in G,, .

Due to the second condition above, the same argument can be used to show that for
2=1,2,3,---, there is a path =, and an integer K(¢ -+ 1) > 0 such that

(1) there is a subpath of . from aX“*™" to rX¢**™ in G, ,

(2) there are no paths from ar ¥ to ry ¥ 2y in G,,, and

(3) the subpath =, (ry OtV H p K(’)“) is also a path in G,,

" (a,’) 15 dead in

U a,’) s dead in

K (0) +1

« 1 : 1 1 K .
Hence, for ¢ = 0, 1, 2, -- -, the sequence 7, = m,(r7 "™ * 5OM), ({0 70M) isa
path in G,, . Thus the infinite sequence ---, 7., - -+, 72, 71, 7o is also a path of Gy,

which terminates at ry @™ = 73*'. Since K () > 0 for all 2 > 0, this infinite path contains
no initial markers. But this is a sufﬁcnent condition for the vertex 73" to be dead [7].

The dual statement for part (1) of the theorem, involving vertices r,’ and a,’, can
obviously be proved in the same way as above. Part (2) of the theorem follows as an
immedate corollary to part (1) since vertex 5 '(a;’) les on the infinite, marker-free
path directed into 72" (a,’). O

ProposttioN 3.1. Let z,” and y." be two vertrces in G, with 7, 1 > 0. If there is a path
in G, from z,” to ', then either there is a path from x,’ to yul wn Gyq or the vertex y,' is dead.

Proor. Let 7 be a path in G, from z,” to 3.’ and assume that there is no path in Gy,
from ,” to .. Then for some 7 > 0, either (1) there is no path from a." to rg ™' and
there is a path from r; % to y,’ in Gpq, or (2) there is no path from r,” to a,” and there
is a path from a,” to 3.’ in G,,. In the first case, r; I is dead and in the second case,
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a," is dead. In either case, ¥." is dead since it lies on a marker-free path from a dead
vertex. [

CoroLLARY 3.3. Let s be a link of the MGCS C. Then for any j > 0, either there is a
path in Gy from a’(ry’) to vi (e, or the vertex v (a.’) 1s dead.

Proor. For any link sand ) > 0, there is a path in G, from a,’(7,’) to 72+ (a,”) [8].
_CoroLLaRY 34.  Let z, be any link signal of the MGC'S C and let . be a dead vertex mn
Gpq with 1 > 0. Then there is an wnteger k such that the vertex z, 1s dead in Gy .

Proor. For some k > 0, there is a path from y,' to z,* in G, [8]. 0O

We may therefore conclude that if G,, contains a dead vertex, then the system it
represents contains a deadlock.

Lemma 3.3.  Let p be an output link and g an input link of the MGCS C. If p and q are
not buffered, then G,, contains a dead vertez.

Proor. First, assume that p # q and, without loss of generality, that p < q. Let
J be the least positive integer such that there is a path from r,” to 7,” in G.. Let n be
the least positive integer such that n(q — p) > jand set m = n(q —~ p) — 7.

7+m

There is a path in G, from r,’ to v, ™ (Corollary 4.1. in [8]). Hence there is a path m
from 779 to r5 " in G, and also a path ; from r5 " to 757" *"® in G, [8, Prop. 5.1]. But
J+m+np =34+ nq - np —j+ np = nq. Hence there isa path r = m , m
from 739, 77%in G, .

If there is a path in Gy, from ;% to 739, then there is a marker-free cycle in G,, since
(rp%r7Y) is an edge of G,,. All of the vertices on this cycle are dead. If there are no
paths in Gy, from r7%to 739, then r;%is dead by Proposition 3.1.

Now assume that there is a marker-free path in G, from r,” to »,’ for some j. Then there
is a path in G, from r,” to r,’ [8]. By Proposition 3.1 either there isa path from r,’ to r,’
in G, or r,’is dead in G,,, . Since G, contains the edge (r,°r,’), r,’ is dead in either case.
If there is a marker-free path in G, from a,’ to a,” for some 7, then a similar argument
shows that a,” is dead in G,;. [

Lemma 3.3 and Corollary 3.4 imply the following theorem, which describes the result
of connecting an output link to an input link of the same MGCS when the two links are
not buffered.

TusoreEM 3.5. Let p be an output link, and q an tnput link of the same MGCS such that
p and q are not buffered. Then the connection links p and q result wn a system which contains
a deadlock and, therefore, cannot be represented by an MGCS.

4. Connection of Two Links on Different Systems

We now consider connecting an output link on one control system to an input link on a
different control system. Since the ready and acknowledge signals of a link alternate, one
would not expect such a connection to introduce a deadlock into the system. Indeed, it
can easily be shown that if the two component systems are represented by MG-control
systems C1 and C2 in which the two links have equal multiplicities, then an MGCS
representation for the composite system can be constructed from C1 and €2, This con-
struction is given in the following theorem.

TueorREM 4.1. Let p be an output link and q an input link of MG-control systems C1
and C2, respectwely. Let Gox = (Te1 ,Por,Ma) and Ger = (Te2 ,Por ,Mc2) be the signal
graphs for C1 and C2. If p = q, then the marked graph (T' P’ M) where
(1) T'"=TaUTe,

(2) P'= (PaUPaU{(r)1)), (a,8,) |10 < 5 < p}) — (a(p) UaT'(g)), and
(3) Ml = (Mc[ UMcz) n Pl
18 the signal graph of an M GC S representing the system obtained by connecting links p and q.

Proor. Since links p and ¢ trivially satisfy the buffering condition, the theorem fol-
lows immediately from Theorem 3.4. O

Theorem 4.1 is illustrated by Figure 3, which shows the signal graph obtained by con-
necting link 6 on the MGCS in Figure 2 to link 1 on the MGCS in Figure 1.

It is less trivial to construct an MGCS representation for a composite system from the

[
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Fic. 3. Signal graph for the interconnection of MGCS C1 and MGCS (2

MGCS representations for its two component systems if the connecting links have dif-
ferent multiplicities in these representations. Our approach to this problem is as follows.
Given an MGCS C and a positive integer n, we show how to construct an MGCS nC
which 1s equivalent to € and therefore has the same set of links. This MGCS has the
additional property that the multiplicity of link p, relative to nC, is n times the multi-
plicity of link p, relative to C. Now, given an output link p of an MGCS C1 and an input
link ¢ of a different MGCS (2, let m denote the least common multiple of p and q, the
nultiplicities of links p and g relative to Cy and C» . Then the multiplicity of link p relative
to (m/p)C1 and the multiplicity of link ¢ relative to (m/q)C2 are both equal to m.
Hence the construction in Theorem 4.1 can be used to find an MGCS representation for
the system obtained by interconnecting (m/p)C1 and (m/q)C2 through links p and q.
Since (m/p)C1 and (m/ q)C2 are equivalent to C1 and C2 respectively, this new MGCS
is also a valid representation for the interconnection of C1 and C2 through links p and q.

Rather than constructing nC directly, we will construct its signal graph G, by expand-
ing the signal graph of C. The following function is used for this purpose.

Defintron.  Let T, be the set of vertices of the signal graph G. and Ny = {0, 1,2, --,}.
Then for n > 0, Yn is the function, with domain T, X Ny, defined by ¥.(z,",u) =
oy le/™P for all (z,7u) in T, X N, .2

¥ 1s extended to paths of G, in the following way. Let 7 be a path of length m in G.
and © € N, . Then y,(w, u) denotes the sequence of m + 1 elements defined inductively
as follows:

m = 1. Then = has the form z,’, y,’ and ¥, (mu) = ¥u(2,’u), Yulys, u + (M. | 7)).
m > 1. In this case, 7 consists of a subpath m from z,’ to y,' of length m and a subpath
m, from y,' to z,* of length 1. Then ¥, (wu) = ¥u(m,u), ¥a(zs, u + Z(M.| 7).

As an example, consider the path = = a,, n’, &,’, .°, a°, t.*, @.” in the signal graph of

Figure 1. Then

1 2 1 1 1 2 4 3 4 2 2 2 0 [
¢3(W70) =a1,r1,t4,7'2,a2,t4,a1, 1[/3(1,1) =a177'1:t471‘27a2:t4 y 01,
5 0 [} 0 0 1 2
and ¥s5(m,2) =ar,m, b, 12,0, b, 01

5 If ¢,°is an internal transition, then we set v = 1.
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Fic. 4. Expansion of MGCS C1

Definition. Let G. = (T, ,P.,M.) be the signal graph of the MGCS C and let n be a
positive integer. Then the n-th expansion of G, is the marked graph G = (Tne ,Pre ,Muc)
where:

The = {Yu(2u) |2,/ € Te and 0 < u < 7,
P,. = {¢.(e,u) |e € P, and 0 < u < n}, and
M. = {Ya(e,n — 1) | e € M}.

The expansion of the signal graph in Figure 1 for n = 3 is shown in Figure 4.
In order to prove that G, is a signal graph of an MGCS that is equivalent to C, we
must first establish a relationship between the paths of ¢, and the paths of G, .
Defimition. 0 denotes the function from T, to T, defined by 8(z,”) = z&"'® for all

z, in T,, .
Given a path = = 2,7, y,', -+, 2" in G., 0(7) denotes the sequence 8(z,’),
8(yy'), -, 8(2)) of elements of 7. . The functions ¥, and 8 will now be used to relate

the paths of G, and G, .

LemMa 4.1, Let 7 be a path of length m from z,’ to y,' in G, and let u and n be integers
such that 0 < u < n. Then ™ = Y. (mu) 1s a path of length m from Yu(z,’ w) to ¥u(ys,
U+ Z(M,| 7)) 1 Gueand 2(M,e | 7)) = Qu + (M. | 7)/n].

Proor. From the definition of M,, and ¥, , it can be easily seen that for any v > 0,
VYale,v) € M, iff e € M. and R[v/n] = n — 1. Using this observation, the proof of the
lemma proceeds by induction on m.

Basis step. Let m = 1. Then 0 < (M, | 7) < 1 since 7 is an edge and G. is safe.
7’ = Yu(mu) is a path of length 1 from y¥,(z,'u) to ¥a(y,, u + Z(M.| =)) by the
definition of P,. . Moreover, 0 < (M, | 7') < 1. Also, Z(M,..| ©') = 1 iff R[u/n] =
u=mn—1and Z(M,|7) = 1. Hence Z(M,.| 7)) = 1iff Qu + Z(M.| w)/n] = 1,
since u < n.

Induction step. Assume that the lemma holds for all paths of length m and let 7 be a
path of length m 4 1. Then = consists of a subpath ; of length m from z,” to 2,* and
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subpath  of length 1 from 2,* to y,’, for some 2, . Hence m’ = ¥, (m , u) is a path in
Gne of length m from Yu(2,’u) to ¥n(z', u + Z(M,|m)) with Z(M,|7) =
Qu + =(M.| m) | n]. Moreover, m’ = Yu(m2, u + Z(M.| m)) is a path from ¥n(z.%,
w4+ Z(M.| ™)) to

‘/’n(yql: w4 Z(M;|m) + Z(M,|m)) = ‘l’n(yql, u+ (M| 7)).

Hence 7° = ¥,(,u) is the path formed by composing m” and m". If (M, | m) =0
Rlu + Z(M.| m)/n] < n — 1, then Z(Mu | ') = 0 and Qu + Z(M.| m)/n]
Qlu + Z(M.|w)/n]. Hence Z(M..{7') = Qu + Z(M.{w)/n]. If Z(M.|m) =
and Rlu + (M| m)/n] = n — 1, then (M| m) = 1 so that S(M,..| =)
Qu + Z(M,| m)/n] + 1. But then

Qu + Z(M,. | r)/n] = Qu + Z(M,|m) + Z(M.| m:)/n]
=Qlu+ Z(M.|m) + 1/n] = Qu 4+ Z(M.| m)/n] + 1
= Z(M,.| ). O

LemMa 4.2, If 7 is a path of length m from z,’ to yg' 10 Ga. , then © = 8(x) is a path
of length m from 6(x,’) to 0(ys') m G, and Z(M,.| ') = (Z(Mn.| 7)) n + Q[l/q] —
Qly/pl.

Proor. The proof is by induction on m.

Basis step. Let m = 1. Then there is an edge # = (z,°9,) in P, such that
J= 14+ Rlu/nlp and | = k + Rlu + Z(M.| 7')/n]q for some 0 < u < n. But then
Rly/p]l = 2and Rl/q) = ksince 2 < p and k < q. Also, Z(M.. | 7) = Qu +
Z(M.| 7')/n]. Hence

w4 (M. | 7) = (Qu + Z(M.|7')/n])) n + Rlu + Z(M.| ") /n]
= (Z(M..| ™)n + Qll/q).

But Q[j/p] = Rlu/n] = u so that T(M.| ') = (S(M,.| 7))n + Qli/q] — Qj/pl.

fnduction step. Assume that the lemma holds for all paths of length m and let 7 be a
path of length m + 1. Then there is a path m from z,” to 2,° of length m and a path m,
from 2,* to y,’ of length 1. Hence m = 6(m) is a path of length m from 8(z,’) to 6(z,%)
and (M, | 7)) = (S(Ma.| m))n + Q[k/s] — Q[3/p). Also, m' = 0(m) is a path of
length 1 from 8(2,*) to 8(y,') with (M. | m') = (Z(Mn| m))n + QU/ql — Qlk/s).
Hence 7’ = 6() is a path from 6(z,’) to 8(y,') and

(M. | 7') = S(M.| 7)) + Z(M.| )
= (3(M. | m))n + Qk/s] — QLi/p) + (Z(Mae| m))n + QIl/ q]
— QUie/s]
= (S(Mn | ™))n + QIl/al — QLj/p) o

We now use these two lemmas to show that the marked graph G, is both live and safe.

THeOREM 4.2. G, 15 a lwe marked graph.

Proor. Let 7 be a eycle from z,’ to z,” in Gn.. Then 7’ = 8(x) is a eycle in G, .
If Z(M,.|7) = 0,then Z(M.| ') = 0-n + Q[7/p} — Q[7/p] = 0.But this contradicts
the liveness of G.. O

ToEOREM 4.3. G, ts a safe marked graph.

Proor. Lete = (z,,5,') be an edge in P,.. Then ¢ = 0(e) = (8(x,"),0(y,")) is an
edge in P. . Since G, is safe, there is a synchronizing loop = of G. containing ¢’. Then 7’
may be viewed as a path from 6(z,’) to 6(x,’) consisting of the edge ¢ composed with
the subpath of #’ from 6(y,') to 8(x,’). Let m, denote the path obtained by composing
x’ with itself n times. Let 7 = ¥,(, ,Q[j/p]). Using Lemma 4.1, it can be easily shown

Q
L]

|
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that = is a cycle of G, containing the edge e. Also, Z(M.. | 7) = Q[Q[3/p] + n/n} =
since Q[j/p] < n. Hence 7 is a synchronizing loop containing e. [

TureoreM 4.4. Let G, be the signal graph of an MGCS C and let G, be the n-th expansion
of G.. Then there exists an MGCS nC such that: (1) G, is the signal graph of nC, (2) C
and nC have dentrcal link sets, and (3) the multsplicity of link p, relatwe to nC, is n times
the multiplicity of link p, relative to C.

Proor. Let L be the link set and « the link assignment for the MGCS C. Define na
as the function from {{¥.(e,u) | ¢ € dom aand 0 < u < n} to L such that na(y.(eu)) =
a(e). Then it can be shown, using Lemmas 4.1 and 4.2, that ne is a valid link assignment
for the marked graph G... Moreover, G, is live and safe by Theorems 4.2 and 4.3. It is
strongly connected due to the strong-connectedness of G, and Lemma 4.1. Hence the
triple nC = (G, ,na,L) is an MGCS which can easily be shown to satisfy the three
conditions in the statement of the theorem. [

Since G, is the signal graph for an MGCS nC, the elements of T, can be classified as
either internal vertices or internal signals, relative to the link assignment na . Indeed,
if the element x of T, is an internal vertex (signal) of G, , then ¢, (x, u) is an internal
vertex (signal) of G, , for 0 < u < n,

We now show that the MG-control systems C and nC are equivalent. For this purpose,
we state the following result, which can easily be derived from Lemmas 4.1 and 4.2.

Lemma 4.3. If w is a marker-mwnymal, signal-free path 1n Gy, , then 8(7) is a marker-
munimal, signal-free path in Q. . Conversely, if m 1s @ marker-minimal, signal-free path in
G, , then Y, (, u) is both marker-minimal and signal-free in Gp. , for 0 < u < n.

TueoREM 4.5. The MG-control systems C and nC are equivalent.

Proor. Let G. = (T.,P.,M.) and G,. = (T ,Prc ,M,.) be the behavior graphs of
G. and G, , respectively. We will prove that C and nC are equivalent by showing that
P, =P, (8]

Let e be an edge in P, . It was shown in [8] that e must have the form ¢ = (m’+"p yoTea
for some u € Z, and there is a marker-minimal, signal-free path = from z,’ to y“”“' in
G, with (M. | v) = Q[i/q]. By Lemmas 4.1 and 4.3, there is a marker-minimal, signal-
free path «’ from ¥, (z,’, Rlu/n]) = a5 *™"P to

‘pn(yk[l/q] [u/,n] + Q[l/q]) — yR[l/ql+R[R[u/ﬂ1+0[l/q1/n]q

in Gn, with Z(M,. | =) = Q[R[u/n] + Q[I/ql/n]. But if there is a marker-minimal,
signal-free path 7 from z:,,' to Y in Gy with Z(M,.|7) = m, then the ordered pair
(23,95 """ ™) is in P, [8]. Setting ¢ = 7 + Rfu/n]p and v = Q[u/n], we have that

t+ wnp = j + Rlu/nlp + Qu/nlnp = j + up.
Setting &£ = R[l/q] + R[R[u/n] + Q[!/ql/n]q and m = Q[R[u/n] + Q[i/ ql/n], we have
k + (v + m)nq = R[l/q] + R[R[u/n] + Q[L/ql/nlq + Q[R[u/n]
+ Q[l/dl/ning + Qu/ning
R[l/q] + (Rlu/n] + Q[l/q])q + Qu/ning
R[l/ql + Ql/glq + (Rlu/n] + Qlu/nln)q
=14+ uq.

Therefore, ¢ = (z, +"",y;+"q) is an element of P,, so that P, C P,. .

The proof that P,. & P, uses Lemma 4.2 in a way that is similar to the use of Lemma
4.1 above. The details are left to the reader. O

We summarize this section with the following theorem.

TueoreM 4.6. Let C1 and C2 be distinct M G-control systems and let p be an output link
of C1 and q an input link of C2. Then the system obtained by connecting links p and q can

be represented by an MGCS.
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5. Networks of Control Systems

In Sections 2-4 we have completely characterized the effect of connecting a single-output
link to a single-input link. We now show how these results can be used to solve the more
general problem of analyzing a network of several control systems interconnected by
means of several pairs of links.

We first note that the general problem can immediately be reduced to analyzing the
effect; of connecting several output links to several input links of the same system. To see
this, consider an arbitrary network of control systems. The interconnection pattern of the
network can be represented by an undirected graph I' = (V,E) where the elements of the
vertex set V correspond to the control systems in the network and there is an edge in E
connecting two vertices iff their corresponding control systems are connected through a
pair of links. Let T = (V,E’) be a spanning tree for T' and consider the subnetwork
formed by connecting only those pairs of links that correspond to edges in E'. Using
Theorem 4.6, it is easy to see that if each of the component systems is represented by an
MGCOCS, then there is an MGCS C which represents the behavior of this subnetwork.
Hence each edge of T that isnot in 7T (i.e. edges in E — E’) corresponds to the connection
of two links of the system. Therefore, the problem of determining whether or not the
behavior of a network of control systems can be represented by an MGCS has been reduced
to analyzing the effect of making those connections which correspod to edges in E — E’.

We represent the effect of conneeting several pairs of links of the same ACS by means of
the following marked graph.

Definitron. Let G, = (T, , P, , M,) be the behavior graph of an MGCS C and let f be a
one-to-one function from a nonempty subset X of the set of output links of C into the set
of input hinks of C. Then G, denotes the marked graph (T;, P;, M;) where
(1) Tf = TC 3
(2) Pf = (P. — {(ry ,05"), (a)’ 17‘31+1) Ip € X,f(p) =¢q and j 2> 0})

o Vi ), (6 a)’) [p € 2, f(p) = ¢ and j 2> 0}, and
@ByM,=M.NP,.
Hence G, represents the behavior of the system obtained by connecting link p to link
f(p) forall pin X.

We have seen in Section 3 that if the connection of an input and an output link of the
same MGCS produces a system that cannot be modeled as an MGCS, then this new sys-
tem contains deadlock. We now show that this deadlock cannot be removed by connecting
additional pairs of links.

Prorosition 5.1. Let X be a nonempty set of output links and f a one-to-one function
Sfrom X into the set of input links of an MGCS C = (G,a,L). Then forallpn L and 3 > 0,
either there 1s a path in Gy from 1’ (arlp) 10 a,°(riis,) or the vertex a,’(r1ip)) is dead in Gy .

Proor. The proof is by induction on | X |.

Basis step. If | X | = 1, then this proposition follows immediately from Corollary 3.3.

Induction step. Assume that the lemma holds for all sets of output links with n ele-
ments and let X be a set of output links such that | X | = n + 1. Let g € X and X' =
X - {q}. Let f be any 1-1 function from X into the set of input links of € and let f be the
restriction of f to X’. By the induction hypothesis, either there is a path 7 in G;’ from
75’ t0 @y’ | or an infinite, marker-free path 7 in Gy directed into a,’ , for all p in L. i

If 7 existsin G, and is also a path in G, then there is a path from r,’ to a,”in Gy .
Assume that 7 exists in G, but thereisno pathin G, fromr,’to a,” . Thenforsome! > 0,
either
(1) (v ,af) isan edge on 7 and there is a path from @, to a,” but none from e to ag
inG,, or
(2) (@} 7+65) is an edge on 7 and there is a path from r}i5 to a,’ but none from aj to
i in Gy . ) ~ )

Similarly, if 7 existsin G and is also a path in Gy, then a,” is dead in G, . If 7 exists in
G, but is not a path in G, , then thereisan ! > 0 such that either
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(3) _(rql ,a¢ ) is an edge on 7 and there is a path from a,’ to a,’ but none from r;' to a;
in Gy, or

(4) (a}@ 71t) isan edge on 7 and there is a path from a,’ to a,’ but none from aj, to
77 in Gy .

In all four cases, a proof similar to that of Lemma 5.1 can easily be constructed to show
the existence of an infinite, marker-free path in G, directed into a,' . Hence a,’ is dead in
G;. O

Corourary 5.1.  If G, contains a dead vertex, then for every link signal , of C, there is an
1 > 0 such that z,’ is a dead vertex in G; .

COROLLARY 5.2. Let X' be a nonempty subset of X, and let f be the function f restricted
to X'. Then G; contains a dead vertex whenever Gy contains a dead verte.

From Corollaries 5.1 and 5.2, we may conclude that if connecting one or more pairs of
links of an MGCS produces a system with a deadlock, then connecting additional pairs of
links can never eliminate this deadlock. Hence an arbitrary network of control systems
can be analyzed in the following way. First pick a spanning tree T = (V,E’) for the inter-
connection graph T' = (V,E) of the network. Then construct an MGCS C for the subnet-
work obtained by connecting only the pairs of links that correspond to edges in 7. Check
each pair of links that corresponds to an edge in E — E’ to see if the two links have equal
multiplicities. If not, the network contains a deadlock. Otherwise, pick an edge ein E — E’
and determine if the pair of links corresponding to e is buffered in C. If not, the network
contains a deadlock. If it is buffered, then form a new MGCS C’ by connecting the pair.
Next pick a new edgein (E — E') — {e} and check the corresponding pair of links to see if
they are buffered in C’. This procedure can obviously be repeated until either it is estab-
lished that the network contains deadlock or an MGCS representation for its behavior is
obtained.

6. Conclusion

In this paper we have completely characterized the effect of interconnecting links of MG-
control systems. It has been shown that there are two possibilities when two links are con-
nected. Either the resulting system is an MGCS or it contains deadlock. When two links
of disjoint control systems are connected, the composite system is always an MGCS. If
the two links are from the same MGCS, then the new system is an MGCS iff the links
are buffered. We now compare these results with previous work on the interconnection of
asynchronous systems.

The problem of detecting deadlock in networks of control modules has been investi-
gated by Bruno and Altman [1] and Friedman and Menon [5]. The control modules used
by Bruno and Altman were the WYE, SEQUENCE, JUNCTION, ITERATE, and
SELECT modules. They characterized the class of networks which are free of deadlock in
terms of the interconnection pattern of the network. The WYE, SEQUENCE, and
JUNCTION modules can easily be represented as MG-control systems in which the
multiphcity of every link is 1 [4]. Hence their characterization for deadlock-free networks
composed of these modules can also be derived from Theorems 3.4, 3.5, and 4.1,

Friedman and Menon consider only one type of module. It is similar to modules pro-
posed by Muller [11] in that a communication cycle on a link involves a more compli-
cated “pipelining” operation. While Bruno and Altman assume that all modules startin a
quiescent state with all links idle, Friedman and Menon allow each module to be initialized
to one of two stable states. Hence the existence of deadlock depends on the initial state of
the network as well as its topology. As a result, their characterizations of networks with
deadlock cannot be derived from the interconnection theorems of this paper. However,
given the initial state of a network of these modules, its behavior can be represented by a
marked graph. Changing the initial state corresponds to using a different initial marking
of the same graph. In this case, the detection of deadlock is equivalent to determining
whether or not the marked graph is live.
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Muller {9,10] has also considered the problem of interconnecting asynchronous systems.
He was primarily concerned with guaranteeing that the composite system display a cer-
tain type of determinacy called semimodularity. This property of systems is roughly
equivalent to safeness in marked graphs. However, if we restrict our attention to MG-
control systems in which every link has multiplicity 1, then Theorem 4.1 can be easily
derived from his basic interconnection theorem. It would appear to be more difficult to
formulate the interconnection of links with multiplicity greater than 1 and the intercon-
nection of two links of the same MGCS in terms of this more general theory. The problem
of preserving determinacy under the interconnection of systems has also been investigated
by Patil [13].
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