
SciApps: a Bioinformatics Workflow Platform Powered by XSEDE
and CyVerse

Liya Wang
Cold Spring Harbor Laboratory

Cold Spring Harbor, NY
USA

wangli@cshl.edu

Peter Van Buren
Cold Spring Harbor Laboratory

Cold Spring Harbor, NY
USA

vanburen@cshl.edu

Zhenyuan Lu
Cold Spring Harbor Laboratory

Cold Spring Harbor, NY
USA

luj@cshl.edu

Doreen Ware
Cold Spring Harbor Laboratory

Cold Spring Harbor, NY
USDA ARS, USA
ware@cshl.edu

ABSTRACT
SciApps1, a lightweight bioinformatics workflow system powered
by the CyVerse infrastructure, uses the Agave Science API to
manage the entire cycle of analysis jobs between XSEDE HPC
and the CyVerse Data Store. SciApps provides a graphical user
interface for job submission, workflow creation, and management
of both jobs and workflows. Each reproducible workflow, along
with all inputs and results, is retrievable with a unique ID.

CCS CONCEPTS
 Information systems → Data management systems; computing
platforms Software and its engineering → 3-tier architectures

KEYWORDS
CyVerse, Agave science API, workflow, cloud computing,
infrastructure, science gateway

ACM Reference format:
L. Wang, Z. Lu, P. Van Buren, and D. Ware. 2018. SciApps: a
Bioinformatics Workflow Platform Powered by XSEDE and CyVerse. In
Proceedings of PEARC18, Pittsburgh, PA, USA, July 22-26, 2018, 7
pages. https://doi.org/10.1145/3219104.3219109

1 https://de.sciapps.org

© 2018 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the United States Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

PEARC '18, July 22–26, 2018, Pittsburgh, PA, USA
© 2018 Association for Computing Machinery
ACM ISBN 978-1-4503-6446-1/18/07…$15.00
https://doi.org/10.1145/3219104.3219109

1 INTRODUCTION
CyVerse [1], which is funded by the National Science Foundation
(NSF), aims to provide life scientists with a powerful
computational infrastructure to handle big datasets and complex
analyses, thereby enabling data-driven discovery. The foundation
of the CyVerse infrastructure is the iRODS [2]-based Data Store,
which provides users great flexibility and control over their data.
The CyVerse Discovery Environment (DE) [3] provides a
graphical interface for sophisticated data management, along with
hundreds of curated applications that run on either CyVerse
Condor cluster [4] or XSEDE resources [5] at the Texas
Advanced Computing Center (TACC). The XSEDE resources are
leveraged through the Agave Science API [6], which virtualizes
TACC clusters as execution systems and the Data Store as a
storage system. To date, CyVerse has supported ~50,000 users in
management and analysis of more than 2.5 petabytes (PB) of data.

To enhance support for complex analysis of big data with
CyVerse and XSEDE, and fully utilize the modular Agave apps
developed by the CyVerse project and its community members,
we developed SciApps [7], a workflow management system, to
chain these apps into automated workflows. Like the DE, SciApps
handles the interaction between XSEDE and the Data Store for
each analysis, but also has several enhanced features: a graphical
user interface for building, modifying, and sharing scientific
workflows; automation of individual Agave app submissions; and
a graphical workflow diagram for visualizing real-time job status
and relationships among individual analysis steps.

Comparing with SciApps (www.sciapps.org) that utilizes a local
federation system [8], in this work, we have developed SciApps2
(de.sciapps.org) that operates entirely in the cloud. It uses the
CyVerse Data Store for data storage and management, XSEDE for
computing, and CyVerse Data Common (DC) landing pages for

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3219104.3219109&domain=pdf&date_stamp=2018-07-22

PEARC18, July 2018, Pittsburgh, PA USA L. Wang et al.

2

displaying data and metadata (http://datacommons.cyverse.org/).
For both platforms, workflows can now be shared with an URL
containing the unique workflow ID. SciApps2 also supports
MaizeCODE, an NSF-funded project aimed at creating a
comprehensive reference encyclopedia for maize. Through
SciApps2’ ready-to-use platform, breeders and plant scientists can
easily reproduce the MaizeCODE analysis, use the results from
any step to perform downstream analysis, apply the same
workflow to new datasets, or extend a workflow with new
analyses.

Figure 1: Components of SciApps and connections to cloud-
based systems through the Agave Science API.

2 BACKGROUND

2.1 CyVerse Platforms
CyVerse has several platforms to support various types of data
analysis. Analysis with DE or SciApps is submitted using
important modular components called applications or apps. In the
following sections, we will briefly discuss how apps are built with
Agave and integrated into DE. In addition to these app-based
platforms, CyVerse also developed Atmosphere [9], a cloud
computing platform for command-line savvy users.

2.2 Agave App
To build an Agave app, users either need to have their own
XSEDE allocation or can be added to CyVerse’s allocation.
Subsequently, each user can create a private virtual execution
system to test the app they have built. To run an app, users need to
create a wrapper template that calls the executable code, which
can be pre-built binaries or Singularity images [10]; the latter is
preferable for tools that have complicated dependencies. An app
JSON file is required to define the execution system, the storage
system, the path to the wrapper script, inputs, parameters, and
outputs, along with other metadata describing the app. The
wrapper script (or template file) is needed to pass the inputs and
parameters from the app JSON to the tool, and to execute the tool.
After testing, users can share the app with either selected users or

the public by contacting the CyVerse team. More details on
building Agave apps are available online:
https://cyverse.github.io/cyverse-sdk/docs/cyversesdk.html

2.3 DE App
Both DE and SciApps can automatically render a web-based app
form from the Agave app JSON file. In addition, DE supports
Docker-based app integration. First, users need to create a
Dockerfile, a text document that contains all the commands a user
can call on the command line to assemble an image. For DE app
integration, the Dockerfile is expected to include commands for
downloading required packages for a particular tool from reliable
online resources, installing them, and defining an ENTRYPOINT
that will allow the Docker image to be run like an executable. The
user can then build and test the Docker image with the Dockerfile.
If the test is successful, the user can request installation of the
Dockerized tool in DE and create the app interface in DE. After
testing, the app can also be shared with either selected users or the
public.

3 ARCHITECTURE
The architecture of SciApps is shown in Fig. 1. Both platforms
consist of a web interface for executing apps and building
workflows, a workflow engine to streamline and automate job
submissions, a storage system, a computing system, and a web
server for various visualization services. While SciApps is
optimized to handle the analysis of large-scale datasets locally
with a CyVerse federation system at CSHL [8], SciApps2 is
scaled by leveraging cloud resources for storage and computing.
Both platforms share the same design of front-end interface and
workflow construction. Therefore, in following sections, we will
use SciApps instead of SciApps2 to describe the platform.

3.1 Web Interface
The SciApps web interface has four areas, head navigation menu
and three panels below it, as shown in Fig. 2. Apps in the left
panel are categorized according to the EDAM ontology [11].
Apps are also searchable by names. The app form is loaded in the
main panel with default (or previously used) inputs and
parameters (if reloaded from the history panel), and once
submitted, the analysis/job history is displayed in the history
panel, which can be selected to build a workflow.

All app categories are closed by default, as shown in Fig. 2. The
app search function is interactive: when any letters are typed into
the search box, categories with a matched app or apps will be
expanded with matches. Clicking on an app will bring up the app
form in the main panel, along with a short description of the app
below the app form. For each job in the History panel, there are
three icons next to the job name: from left to right, a checkbox for
adding the job into a workflow, an info icon for a popup window
with detailed job information, and a reload icon for loading the
app form with the same inputs and parameters. The History panel

SciApps: a Bioinformatics Workflow Platform Powered by XSEDE
and CyVerse PEARC18, July 2018, Pittsburg, PA USA

 3

only displays outputs predefined in the JSON file of the app, as
shown for step 1, 3, 4 in Fig. 2 (expanded upon clicking on job
name). If the user aims to build a workflow, these predefined
outputs can be used as inputs for subsequent analysis tasks. For
further explanation, check Section 4: Implementation, below.

With no jobs displaying in the History panel, the info message on
the top of the panel prompts users to start testing with a public
workflow. When loading a workflow (public or private), all job
histories will be loaded into the History panel (as shown in Fig.
2), and app forms with parameters used in the workflow will be
loaded into the main panel in sequential order (not shown). The
message is also automatically changed to prompt users to build a
workflow by selecting two or more jobs when the History panel is
not empty (for example see Fig. 2). Clicking on the link
embedded in the info message (or from the top bar, “Workflow”
then “Build a Workflow”) will bring up the workflow builder
page in the main panel. For convenience, the user has the option
to select or deselect all jobs from the History panel. Completed
jobs can be saved as ‘pseudo’ workflows if the user wants to load
them later (and/or add more steps) to build a real workflow. If the
user wants to start building a new workflow, simply refreshing the
browser window will clear out the history panel with new jobs.
More details can be found in the platform guide
(https://www.sciapps.org/page/help).

Figure 2: SciApps web interface showing a four-step RNA-Seq
quantification workflow loaded in the history panel, the app
form of the first step loaded in the main panel, the results
from step 1, 3, and 4 clicked and expanded in the history
panel, and step 3 and 4 selected to build a new workflow.

3.2 Authentication
To grant access to multiple cloud-based systems, SciApps adopts
the CyVerse Central Authentication Service (CAS) for
authorization. When a user logs in, they are directed to the
CyVerse user portal to enter their username and password, and are
then redirected to SciApps if successfully authenticated. Through
authentication, the CyVerse username is captured by SciApps, for
two reasons: first, it will be used to direct SciApps to the sci_data
folder of the user that logged in; and second, once an analysis job

is submitted, the job is shared with the user through the Agave
API. If necessary, users can check the detailed job information
through Agave’s CyVerse SDK (https://cyverse.github.io/cyverse-
sdk). Sharing is needed here because SciApps2 uses a designated
CyVerse user account (a superuser) to execute apps and
workflows. The superuser also gains full access to each user’s
sci_data folder once the folder is created, either manually or
automatically when users enable their SciApps service from the
CyVerse user portal.

SciApps adopts a platform-centric approach by designating a
superuser to manage the entire analysis cycle. The major
advantage of such an approach, in contrast to a user-centric
approach in which each login user is in charge of everything, is
that it greatly simplifies the management of apps, systems,
analysis jobs, inputs, and workflows. For example, when user A
wants to share a workflow with user B, the only thing they need to
share is a workflow URL; there is no need to grant user B
permissions to any workflow components, such as apps, systems
where the apps are defined to execute, analysis jobs, or user A’s
sci_data folder. User B can load the workflow in SciApps for
execution through the superuser, who has gained accesses to all of
the workflow components either through sharing (apps, systems,
sci_data folder) or being the owner (of all analysis jobs).

For security reasons, workflows and related output data are
protected with randomly generated ids or folder names, therefore
only the superuser and the owner of workflows can access them.
However, users need to realize that, when a workflow is shared,
there is no additional authentication required to access all data
associated with the workflow.

3.3 Automated Workflows
When users submit an analysis task, the job history is recorded in
the History panel, and a workflow can be built by selecting two or
more jobs using the checkboxes (Fig. 2). The input/output
relationships among individual tasks are built by tracing the origin
of intermediate output, which is available in the job history
metadata of the Agave API. Once built, a graphic workflow
diagram is shown for verification. After visual inspection, users
can choose to save the workflow.

The workflow diagram is interactive. The user can click on both
data and app nodes to check related metadata and full names of
apps and data files (long names are truncated in the diagram). For
a running workflow, the diagram provides real-time job status
updates through automatic updating the color of the app node.
Alternatively, the status of an individual job can be accessed by
clicking on the info icon. SciApps workflows are implemented as
directed acyclic graphs. The execution of a step is only dependent
on the availability of its required input(s), making it possible to
exploit parallelism.

PEARC18, July 2018, Pittsburgh, PA USA L. Wang et al.

4

SciApps supports management of both workflows and analysis
jobs. On the ‘My Jobs’ page, analysis jobs are listed with name,
submit time, end time, and status. All jobs are searchable by
names and can be deleted or loaded into the History panel to build
workflows. On the ‘My Workflows’ page, completed or running
workflows are listed with names and descriptions, and are
searchable by name, description, and workflow ID. Four
operations are supported for workflows: loading the workflow to
re-run, visualizing the workflow diagram directly, obtaining a link
containing the workflow ID for sharing the workflow, and
deleting the workflow from the user’s account. Both loading and
visualizing will load jobs into the History panel if they are not yet
loaded, but the visualizing operation will not load the app forms.

4 IMPLEMENTATION
The back end of SciApps was built using Perl and MySQL
database, and the front-end was built with React, an open-source
JavaScript library. The workflow engine uses the MySQL
database to track job status and perform the submission of a job
once its inputs are ready. Most components of the SciApps web
interface are rendered from JSON data, and the schemas of all
JSON data are custom-designed for fast rendering or easy sharing.
One exception to this is the app JSON schema, which is inherited
from the Agave API. In addition to defining inputs and parameters
for rendering the app form, the app JSON specifies the execution
system where the app will be executed. This makes it possible for
SciApps to submit jobs to both local and cloud-based systems. To
add a new app, storage, or execution system, the user can follow
the CyVerse SDK tutorial (https://github.com/cyverse/cyverse-
sdk). The workflow diagram was built using Mermaid
(https://knsv.github.io/mermaid/) and modified for reflecting real-
time job status via dynamically changing colors. The latter
information is acquired through Agave API’s Webhook
notification for jobs, which is also used to automatically update
the MySQL database and execute multi-step workflows.

For an Agave app to be compatible with SciApps, its outputs,
which are optional by default, must be defined within the app
JSON files, and the output IDs must be manually appended to
output file names as prefixes in the wrapper script. The reason for
this is that output IDs are NOT passed to the wrapper script by the
Agave API, but the SciApps workflow engine needs the output ID
to build the connection between two analysis steps. The majority
of Agave apps supported by SciApps are constructed by deriving
output file names from input file names (e.g.,
prefix_inputFileName), which is done with the wrapper script of
each Agave app. Such modifications ensure that the SciApps
workflows are not only reproducible, but also reusable for
different datasets, without requiring the user to manually process
the output file names.

SciApps uses the CyVerse DC landing pages to display both
inputs and outputs. Users need to decide whether to make private
input data public or not. SciApps archives outputs into users’
sci_data folder and makes them publically available, but the data

are protected by a randomly generated job folder name. The DC
page displays both metadata and a preview of the first 8 KB of
text-based files, and also provides a link for opening the file in
CyVerse DE. If the file size is smaller than 2 GB, a direct
download link is provided; otherwise, a link is provided to
instructions for acquiring the file through either CyberDuck
(https://cyberduck.io) or icommands
(https://docs.irods.org/master/icommands/user).

Figure 3: RNA-Seq workflow showing the reference genome
and annotation file being passed to two apps,
RSEM_ref_prepare and STAR_index, to build indexes that
will speed up alignments with the STAR_align app and
quantification with the RSEM_quant app, with the color of
app node representing status of the analysis task: Pending
(yellow, not shown), Running (blue), Completed (green), or
Failed (red, not shown).

5 MAIZECODE DATA AND WORKFLOWS
The MaizeCode project will generate hundreds of experiments
aimed at identifying functional elements in the Maize Genome.
All data sets are being processed with SciApps workflows and
released to the public. As an example, Fig. 3 shows the workflow
for RNA-Seq, which uses next-generation sequencing (NGS) to
reveal the presence and quantity of RNA in a biological sample at
a given moment. The workflow uses four apps built from two
different tools: STAR [12] for alignment of short reads to the
genome, and RSEM [13] for quantifying RNA expression levels.
The metadata are attached to the input data, and the relationships
among data sets are captured by the workflow. Given a unique
workflow ID (which is attached to the input data), one can easily
check how an experiment is designed and how the data are
analyzed, and if needed reproduce the analysis using XSEDE
resources.

By design, every experiment is organized as a workflow on the
SciApps platform. For RNA-Seq, the most common type of
downstream analysis is comparing expression levels between two
experiments. This can be achieved by loading both workflows and
feeding their quantification outputs (output of RSEM_quant) to
RSEM_de, a downstream app, for differential expression analysis
(DEA). With a large number of experiments, It is critical to ensure
that all experiments are processed consistently before performing
DEA or other downstream analyses. Using SciApps not only
ensures consistency but also conveniently chains together all

SciApps: a Bioinformatics Workflow Platform Powered by XSEDE
and CyVerse PEARC18, July 2018, Pittsburg, PA USA

 5

inputs, associated metadata, results, and analysis jobs, making
both data and analysis findable, accessible, interoperable, re-
usable, and reproducible.

MaizeCode data are described with rich metadata that are attached
to raw reads before they are submitted to the NCBI Short Read
Archive (SRA) [14] via CyVerse’s SRA pipeline
(https://learning.cyverse.org/projects/sra_submission_quickstart).
Both data and metadata are searchable within CyVerse DE. As
mentioned above, users can also search workflows by name,
description, or IDs on the SciApps platform.

6 USING SCIAPPS
SciApps workflows are available to all 50,000 CyVerse users and
CyVerse account is free for all users. To develop their own
workflows, users can utilize the SciApps2 site (de.sciapps.org).
For workflow development and testing, users need to have their
own XSEDE allocation or they can contact CyVerse to be added
to CyVerse’s allocation to access over 1 million shared CPUs
from XSEDE clusters at TACC. Additionally, users can set up
their own SciApps with an XSEDE allocation or a local cluster.

7 RELATED WORKS
SciApps’ front-end interface is designed with three panels aligned
similarly to those of the Galaxy [15] and GenePattern [16]
platforms. On the back end, SciApps is designed to be compatible
with Agave API and CyVerse CI and is flexible in regard to data
placement and mixing of local and cloud-based computing
resources. Specifically, the Agave job JSON specifies where to
retrieve the data and where to archive the results, whereas the
Agave app JSON, in addition to descriptions of each step in the
Common Workflow Language format or CWL [17], specifies
where to execute an app and how many processors and how much
RAM are needed. Therefore, although the SciApps workflow
JSON is designed with CWL in mind, it is not interoperable with
CWL. However, for single-node jobs, its possible to convert
SciApps workflows into CWL format by combining the workflow
JSON with the Agave app JSON and job JSON; however, this will
eliminate the flexibility regarding where and how to execute the
app and where the data can be placed. Another challenge is that
CWL does not yet support Singularity containers [7], which are
adopted by SciApps applications to enable simple switching
between local and cloud-based computing clusters.

To build a workflow, CyVerse DE allows the user to define an
output file name through an output parameter, and then uses the
value of the parameter to chain apps together as a workflow. This
design allows the user to manually retain the names of the original
samples. When analyzing new datasets, users need to manually
change output file names because, if the output file names are
fixed, a similar collision will occur for datasets as described above
for replicates, making it hard to reuse the same workflow on
different datasets. On the contrary, by automatically retaining the
input file names in an app’s wrapper script, SciApps workflows

can be applied to different datasets without requiring manual
changes.

In summary, SciApps automates the execution of series of Agave
apps, which is not supported by the DE. Comparing with Galaxy
and GenePattern, SciApps has the advantage of supporting mixing
both could and local computing resources in the same workflow,
which is sometimes critical for projects that need large scale
computation or collaboration.

8 CONCLUSIONS
SciApps provides a web-based workflow platform accessible to
all CyVerse users for automating the execution of modular Agave
apps on XSEDE resources. In addition to its reproducibility,
SciApps workflow can be used to organize both data and
metadata, and to process a large amount of data either remotely in
the cloud or locally; the latter has the benefit reducing the need for
cross-country data transfers.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation (DBI-
1265383 and 1445025).

REFERENCES
[1] Goff, S.A. et al. 2011. The iPlant Collaborative: Cyberinfrastructure for Plant

Biology. Frontiers in plant science. 2, (Jul. 2011), 34.
[2] Xu, H. et al. 2017. iRODS Primer 2: Integrated Rule-Oriented Data System.

Synthesis Lectures on Information Concepts, Retrieval, and Services. 9, 3
(2017), 1–131.

[3] Oliver, S.L. et al. 2013. Using the iPlant Collaborative Discovery
Environment. Current Protocols in Bioinformatics.

[4] Thain, D. et al. 2005. Distributed computing in practice: the Condor
experience. Concurrency and computation: practice & experience. 17, 2-4
(2005), 323–356.

[5] Towns, J. et al. 2014. XSEDE: Accelerating Scientific Discovery. Computing
in science & engineering. 16, 5 (2014), 62–74.

[6] Dooley, R. et al. 2012. Software-as-a-Service: The iPlant Foundation API. 5th
IEEE Workshop on Many-Task Computing on Grids and Supercomputers
(MTAGS). IEEE (2012).

[7] Wang, L. et al. 2018. SciApps: A cloud-based platform for reproducible
bioinformatics workflows. Bioinformatics (2018),
https://doi.org/10.1093/bioinformatics/bty439

[8] Wang, L. et al. 2015. Architecting a Distributed Bioinformatics Platform with
iRODS and iPlant Agave API. 2015 International Conference on
Computational Science and Computational Intelligence (CSCI) (2015).

[9] Skidmore, E. et al. 2011. iPlant atmosphere. Proceedings of the 2011 ACM
workshop on Gateway computing environments - GCE ’11 (2011).

[10] Kurtzer, G.M. et al. 2017. Singularity: Scientific containers for mobility of
compute. PloS one. 12, 5 (May 2017), e0177459.

[11] Ison, J. et al. 2013. EDAM: an ontology of bioinformatics operations, types of
data and identifiers, topics and formats. Bioinformatics . 29, 10 (May 2013),
1325–1332.

[12] Dobin, A. et al. 2012. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics . 29, 1 (2012), 15–21.

[13] Li, B. and Dewey, C.N. 2011. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC bioinformatics. 12, 1
(2011), 323.

[14] Leinonen, R. et al. 2010. The Sequence Read Archive. Nucleic acids research.
39, Database (2010), D19–D21.

[15] Giardine, B. et al. 2005. Galaxy: a platform for interactive large-scale genome
analysis. Genome research. 15, 10 (Oct. 2005), 1451–1455.

[16] Reich, M. et al. 2006. GenePattern 2.0. Nature genetics. 38, 5 (May 2006),
500–501.

[17] Common Workflow Language: 2016.
https://doi.org/10.6084%2Fm9.figshare.3115156.v2.

