
Container solutions for HPC Systems: A Case Study of Using
Shifter on Blue Waters

Maxim Belkin
University of Illinois at
Urbana-Champaign

National Center for Supercomputing
Applications

Urbana, IL, USA
mbelkin@illinois.edu

Roland Haas
University of Illinois at
Urbana-Champaign

National Center for Supercomputing
Applications

Urbana, IL, USA
rhaas@illinois.edu

Galen Wesley Arnold
University of Illinois at
Urbana-Champaign

National Center for Supercomputing
Applications

Urbana, IL, USA
gwarnold@illinois.edu

Hon Wai Leong
National Center for Supercomputing

Applications
University of Illinois at
Urbana-Champaign
Urbana, IL, USA

hwleong@illinois.edu

Eliu A. Huerta
National Center for Supercomputing

Applications
Department of Astronomy
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
elihu@illinois.edu

David Lesny
Department of Physics
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
ddl@illinois.edu

Mark Neubauer
Department of Physics
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
msn@illinois.edu

ABSTRACT
Software container solutions have revolutionized application devel-
opment approaches by enabling lightweight platform abstractions
within the so-called “containers.” Several solutions are being ac-
tively developed in attempts to bring the benefits of containers to
high-performance computing systems with their stringent secu-
rity demands on the one hand and fundamental resource sharing
requirements on the other.

In this paper, we discuss the benefits and short-comings of such
solutions when deployed on real HPC systems and applied to pro-
duction scientific applications.We highlight use cases that are either
enabled by or significantly benefit from such solutions. We discuss
the efforts by HPC system administrators and support staff to sup-
port users of these type of workloads on HPC systems not initially
designed with these workloads in mind focusing on NCSA’s Blue
Waters system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6446-1/18/07. . . $15.00
https://doi.org/10.1145/3219104.3219145

CCS CONCEPTS
• Computing methodologies→Massively parallel and high-
performance simulations; • Software and its engineering→
Virtualmachines; •Applied computing→Astronomy; Physics;

KEYWORDS
Petascale, Reproducibility, Data Science
ACM Reference Format:
Maxim Belkin, Roland Haas, Galen Wesley Arnold, Hon Wai Leong, Eliu A.
Huerta, David Lesny, and Mark Neubauer. 2018. Container solutions for
HPC Systems: A Case Study of Using Shifter on Blue Waters. In PEARC ’18:
Practice and Experience in Advanced Research Computing, July 22–26, 2018,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3219104.3219145

THE RISE OF CONTAINERS
The enormous growth of computing resources has forever changed
the landscape and pathways of modern science by equipping re-
searchers with the apparatus that is impossible to realize experimen-
tally. The great examples are data- and compute-enabled machine
and deep learning algorithms that control self-driving cars; precise
in silico studies of complete virus capsids that further our under-
standing of their pathogenic pathways; and the fascinating studies
of gravitational waves that resonate around our Universe.

This growth of computing resources has been multi-directional:
they increased in their availability, performance, and assortment. A
typical computer today is equipped with Graphics Processing Units

1

https://doi.org/10.1145/3219104.3219145
https://doi.org/10.1145/3219104.3219145
https://doi.org/10.1145/3219104.3219145
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3219104.3219145&domain=pdf&date_stamp=2018-07-22

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA M. Belkin et al.

(sometimes combined with Central Processing Units), abundant
Random Access Memory, hard drives that can store Tera bytes of
data, and many other, often highly specialized, hardware. Super-
computers, the high-performance computing (HPC) resources that
drive modern science, have additional levels of complication with
their stringent security demands, fundamental resource sharing
requirements, and many specialized libraries that enable use of the
underlying hardware at its peak performance.

Variations in hardware and software stacks across leadership-
class computing facilities have raised a great deal of concern among
researchers with the most prominent one being reproducibility of
computational studies. To ensure reproducibility, it is critical to
use portable software stacks that can be seamlessly deployed on
different computing facilities with their specific architectures. This
need has driven the development of software solutions that abstract
the underlying hardware away from the software. Today’s most
popular examples include container solutions like Docker, virtual
machine solutions such as VirtualBox and VMWare Workstation,
and others. These solutions differ in levels at which abstractions
take place (hardware, OS, etc.), abstracted and required resources,
as well as all auxiliary tools that together comprise their ecosystems.
In this article we focus on a container solution for HPC systems:
Shifter .

In addition to facilitating the use of complex software stacks
within the HPC community, containers have also played a central
role in a new wave of innovation that has fused HPC with high-
throughput computing (HTC)—a computing environment that de-
livers a large amount of computing power over extended periods of
time. A number of large scientific collaborations have made use of
containers to run computationally demanding HTC-type workflows
using HPC resources.

In this paper, we showcase a number of efforts that have suc-
cessfully harnessed the unique computing capabilities of the Blue
Waters supercomputer, the NSF-supported, leadership-class super-
computer operated by National Center for Supercomputing Appli-
cations (NCSA), to enable scientific discovery. We focus on efforts
that have been spearheaded by researchers at NCSA and the Univer-
sity of Illinois at Urbana-Champaign [7, 17]. These efforts provide
just a glimpse of the wide spectrum of applications in which con-
tainers help advance fundamental science: from the discovery of
gravitational waves from the collision of two neutron stars with
the LIGO and Virgo detectors [1], to the study of the fundamental
building blocks of nature and their interactions with CERN’s Large
Hadron Collider (LHC).

SHIFTER ON BLUEWATERS
Shifter [3] is a container solution that is designed specifically for
HPC systems and which enables hardware abstraction at the OS
level. Figure 1 illustrates the workflow of a typical Shifter v16.08.3
job on the Blue Waters supercomputer.

It is extremely easy to get started using Shifter as all one has to do
is provide an additional generic resource request: -l gres=shifter16,
either on the command line or in a job batch script. This PBS direc-
tive is mandatory for any Shifter job on Blue Waters as it instructs

Launch job

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node

Prologue

Shifter

Conversion

UDI

Docker
+

Site

Lustre

Prologue

/dev/loop0
Pull image

Local
store

UDI

Job

Epilogue
Unload UDIRequests

Docker image

Requests
Docker image

Image
Gateway

Docker
Hub

Workload
Manager

Shifter CLI

Application
in a container

User@Login Host
submits a job...

with
-v UDI=image:tag

without
-v UDI=image:tag

(squashfs)

Figure 1: Architecture of Shifter implementation on Blue
Waters

system’s workload manager to execute special prologue and epi-
logue scripts before and after job execution in order to set up and
tear down the container environment on all compute nodes.

The other immediate advantage of Shifter is that it can work with
Docker images—one of the most popular container formats—out of
the box. There are two ways to specify which container to use in a
batch job: either as a PBS directive -v UDI=<image:tag> or as an ar-
gument --image=<image:tag>to the shifter command provided
by Shifter . In both cases, image corresponds to repository/imagename
on Docker Hub.

When UDI is specified as a PBS directive, the prologue script
communicates with the Shifter image gateway to check that the
image exists and download it if it does not. The image gateway
then applies site-specific environment changes to the image and
converts it into a squashfs-formatted image file, typically referred to
as User Defined Image, or UDI. The prologue script then proceeds
to mount the UDI on all compute nodes allocated to the job. The
UDI image file is stored on the Lustre file system and subsequent
jobs requesting the same image can use it without repeating all
of the above steps. Upon completion of such as job, the epilogue
script unmounts the UDI from the compute nodes and performs site-
specific procedures necessary to properly clean up the environment
on compute nodes. Both, site-specific environment changes to the
downloaded image and cleanup procedures are specified by the
system administrators.

The alternative way to specify UDI is by supplying it as an argu-
ment to the --image flag of the shifter command. In combination
with Blue Waters’ Application Level Placement Scheduler (ALPS)
task launcher, to run an application within a container environment
one can use the following command:
$ aprun -b -- shifter --image=<image:tag> --

<application>

The shifter command above initiates a series of operations which
are similar to those executed by the prologue script of the work-
load manager. However, it not only provides the option to select
container environment “on-the-fly,” but also allows Shifter users to
use several different images within the same job! This method is
arguably best suited for single-task applications. For containerized
MPI applications it is still recommended to use PBS directives to
set up the container environment on all compute nodes.

2

Container solutions for HPC systems PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

The core image gateway manager of Shifter is designed as a
RESTful service. It is written in Python language and depends on
multiple software components:

Flask - A Python-based framework that provides a RESTful API
as an interfacing layer between user requests and the underlying
image gateway. The use of RESTful API replaces local Docker en-
gine as a gateway for users to request containers from a Docker
registry.

MongoDB - A distributed database to store metadata of available
container images and their operational status: whether the image
is still being downloaded, its conversion status, its readiness to use,
or any failure encountered.

Celery - A Python-based asynchronous and distributed task
queueing system to service user requests. Celery provides better
scalability for multiple requests through queueing and dispatch to
a distributed pool of workers.

Munge - An authentication service for creating and validating
credentials, designed to be highly-scalable, which is ideal for high-
performance computing environment. Shifter uses Munge to au-
thenticate user requests from clients to the gateway manager.

Redis - An in-memory data structure store, used as a database,
cache and message broker to support Celery’s functionality. It cap-
tures the operational state of the Shifter image gateway service
to allow live reconfiguration of Shifter (service restart) without
interrupting any current operations.

When compared to its previous version [8], Shifter v16.08.3 fea-
tures improved functionality and performance. Yet, just like the
predecessor, it still introduces a noticeable overhead for system
administrators who are responsible for its back-end operation be-
cause it relies on a number of very different components working
seamlessly and with no interruptions. Without a doubt, it is much
harder to troubleshoot an issue that involves Shifter as its root cause
may not come from the tool itself but from one of its dependencies.

During the production use of Shifter on Blue Waters, the follow-
ing issues have been encountered:

1. Stale “PENDING” state. When downloading containers from
Docker registry, the status would stay in “PENDING” state indef-
initely until its metadata is manually deleted from MongoDB’s
database. This usually happens when a user aborts the download
of a large container from the Docker registry before the download
completes.

2. False “READY” state. Status of a container image would indicate
“READY”, even though Shifter has, in fact, failed tomount the UDI on
the compute nodes due to the unfinished download of the employed
container image. The troublesome UDI file has to be removed from
the storage and Docker image has to be re-downloaded.

3. Persistent out-of-memory issue on gateway host. There was an
incident when the gateway manager caused the gateway host to
run out of memory and, consequently, go down because multiple
threads were downloading the same image from the Docker registry.
Upon rebooting the host and restarting all of the services required
by Shifter , multiple threads resumed their downloads leading to
repeated failures. Subsequent restarts did not produce expected
results. The solution was to remove the Redis dump DB file.

4. Failure to mount UDI when Munge is not running. Munge is
crucial for Shifter to function properly. A compute node that does

not have Munge service running would not be able to authenticate
with the Shifter image gateway and thus would fail to mount a UDI.

5. Failing to run at scale. The major challenge that we had to
address on Blue Waters was to make Shifter jobs run at scale. The
issue was caused by the bottleneck in getgrouplist and getgrgid
functions that Shifter uses to set up the containers on compute
nodes. These two functions query local passwd and group files
and LDAP. Because Blue Waters does not store regular user and
group information in passwd and group files, Shifter was trying
to get the gids of the executing user from LDAP. For jobs with a
large node count this step results in a large number of concurrent
requests being sent to the underlying LDAP server. As a result, not
all requests receive a response from the server. To work around this
issue, we had to turn on the Name Service Cache Daemon (NSCD)
service on all compute nodes allocated to Shifter jobs. The NSCD
service caches LDAP entries on the compute nodes and, therefore,
enables their fast lookup.

MPI APPLICATIONS IN SHIFTER JOBS
MPI is a performance-critical component of and de facto the stan-
dard for writing applications that run at scale. Therefore, for sys-
tems like Blue Waters it is crucial to understand the overhead that
applications within Shifter UDIs have to pay in order to run on mul-
tiple nodes. To estimate this overhead, we compared Shifter to the
Cray Linux Environment (CLE) using the OSU Micro-Benchmarks.

A selection of representative benchmarks were run: MPI_Bcast,
MPI_Reduce, MPI_AlltoAll, and MPI_AlltoAllv. Tests were per-
formed on 64 and 1024 ranks, that correspond to 4 and 64 compute
nodes on Blue Waters, correspondingly, see Figure 2. Employed
Shifter image was based on clean Centos 7 Docker image, with
MPICH v3.2 and OSU Micro-Benchmarks v5.3.2 installed from
source. Our results suggest that MPI performance in CLE and Shifter
is statistically the same. This stunning result is not surprising, how-
ever, because Shifter is able to use the Cray MPI low level commu-
nication libraries through the MPICH ABI compatibility initiative.

We set up MPI benchmarks in a way that made Shifter the only
component that could significantly affect the results. In particular,
the binaries were built with tools provided by the GNU Program-
ming environment on Blue Waters (PrgEnv-gnu) for the CLE tests,
and with mpicc that calls GNU compilers in the Shifter UDI that
was based on Centos7 Docker image. Tests were run from the same
batch job, minimizing the effect of node placement and Gemini
network paths on the obtained results as much as possible. Only
the variable network traffic that is associated with the production
machine and that we don’t have control over could have impacted
the results. Because the results were obtained from the same jobs,
we’re confident that they are valid and reproducible.

I/O PERFORMANCE IN SHIFTER JOBS
Performance of read and write operations is crucial for the HTC
type of applications that deal with lots of data. To see if Shifter
imposes any input/output (I/O) overhead, we ran the IOR MPI I/O
benchmark (https://github.com/hpc/ior, commit aa604c1) using
16 nodes and 7 cores for reading and writing operations on each
node. Blue Waters runs the IOR benchmark on a regular schedule
using the Jenkins testing infrastructure. To make the comparison

3

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA M. Belkin et al.
Ti

m
e,

 µ
s

Message size, bytes

 107

 106

 105

 104

 103

 102

 10 106 105 104 103 102 1

a CLE
MPI_Alltoall

MPI_Alltoallv

Shi�er

 0

 1

 2

 3

 4

 0 200 400 600 800 1000 1200

b

Ti
m

e,
 m

s

Message size, kilobytes

CLE
MPI_Bcast

MPI_Reduce

Shi�er

Figure 2: Comparison of OSU micro benchmarks’ results
measuring MPI performance in Shifter and Cray’s native
Linux Environment on BlueWaters using 64 compute nodes
and 1,024 MPI Ranks. (a) MPI_Alltoall and MPI_Alltoallv.
(b) MPI_Bcast and MPI_Reduce.

between the tests meaningful, we used the same input and node
layout in our Shifter tests. Our results suggest, that there is no
substantial differences between I/O performance in the native Cray
Linux Environment (Jenkins test case) and the Shifter case, see
Figure 3.

START-UP TIME OF SHIFTER JOBS
Shifter enables many new types of applications take advantage of
HPC resources. As such, one may expect untraditional for HPC
usage patterns to emerge. For example, starting production simu-
lations or different stages of analysis from within a Shifter image
multiple times within a job. To help users with such applications
better utilize HPC resources, we analyzed the start-up time of Shifter
jobs for User-Defined Images of two sizes: 36 MB and 1.7 GB. The
results are shown in Figure 4.

We investigated how start-up time of a Shifter job depends on
the number of nodes used by the job that exploits only 1 processor
on each node. In our tests, we started Shifter jobs in two different
ways: 1. by specifying UDI at the time the job was submitted, and
2. by specifying UDI as an argument to the shifter command. All
of our tests suggest that start-up time of a Shifter job is practically
independent of the size of the User-Defined Image! However, we
find that for jobs using less than 256 nodes, the dependence of

7.5

8.0

8.5

IO
R

 R
ea

d,
 G

B/
s

Benchmark number
0 10 20 30

2.5

3.0

3.5

IO
R

 W
rit

e,
 G

B/
s

Cray Linux Environment
Shifter

Cray Linux Environment
Shifter

Figure 3: Comparison of IOR benchmark results of IO per-
formance in Shifter and Cray’s native Linux Environment
on BlueWaters using 16 compute nodes and 7 cores for read-
ing and writing operations on each node.

the start-up time on node count is sublinear, beyond 256 nodes
the dependence becomes linear, and beyond 2,048 – superlinear,
see Figure 4 a.

We also studied the dependence of Shifter job start-up time on
the number of MPI processes used on each node. All of these tests
were performed using 80 compute nodes. And again, we find start-
up time to be practically independent of the size of the User-Defined
Image we use. However, we find that when we specify UDI at the
timewe submitted the job, aprun calls take the same amount of time
regardless of the number of processes on each node we request.
This behavior is opposite of what we observe when we specify
UDI as an argument to the shifter command. This observation
suggests that if multiple calls to applications within the same UDI
are necessary in a single job, it is advisable to specify UDI at the
time the job is submitted.

CODES USING SHIFTER ON BLUEWATERS
Shifter was added to Blue Waters system in September of 2016 and
was first used in a production simulation in January of 2017 by
the ATLAS project to analyze data from the CERN’s Large Hadron
Collider [11]. The science teamworkedwith the BlueWaters project
to set up and test Shifter . The tested version of Shifter was then
officially presented in a monthly user call in February of 2017 [2].

In order to learn about the codes that benefit from Shifter on
Blue Waters, we collected information about its usage by analysing
accounting records for the period from September, 2016 to March,
2017. In our analysis we did not include the simulations that ran for
less than 1 hour. Interestingly enough, however, we found no signif-
icant difference in the distribution of codes when using a 5 minute

4

Container solutions for HPC systems PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

2 4 8 16 32 64 128 256 512 1024 2048 4096

Nodes

2

4

8

16

32

64

128

256

Jo
b

st
ar

t-u
p

tim
e,

 s 1.7 GB
CLI

36 MB

prologue

ppn = 1

1 2 4 8 16

processes per node (ppn)

4

8

16

32

64

Jo
b

st
ar

t-u
p

tim
e,

 s 1.7 GB
CLI

36 MB

prologue

80 nodes

a

b

Figure 4: Start-up time of Shifter jobs on BlueWaters. (a) De-
pendence of a Shifter job start-up time on the number of
nodes. Start-up time is found to be practically independent
of the way we specify which UDI to use in a job and the
size of that image. (b) Dependence of the start-up time of
a Shifter job that uses 80 nodes on the number of MPI pro-
cesses used on each node. When UDI is specified at the time
the job is submitted, job start-up time does not change when
with the number of MPI processes used on each node!

“cutoff” instead. Figure 5 shows the distribution of node-hours con-
sumed by different codes during the analyzed period. As is clear
from Figure 5 the majority of the node-hours used with Shifter were
consumed by ATLAS, NANOGrav, and LIGO projects. All of them are
HTC codes that employ a large number of short and independent
tasks that represent a trivially parallelizable workload. On HPC
systems like Blue Waters, such codes typically use the so-called
“pilot jobs” [9] that reserve compute nodes and aggregate them to
a large shared compute pool of the HTC workflow manager. All
three codes employ HTCondor [16] as the workflow manager and
scale well to a large number of nodes. This scalability is achieved
by using multiple pilot jobs to allow the workflow manager to re-
lease compute nodes when there are not enough tasks to utilize
all provided resources. PySCF, QWalk, and QuantumEspresso rep-
resent “traditional” MPI-based HPC codes that utilize all allocated
compute nodes and, therefore, benefit from the Shifter’s ability to
support MPI from within the containers. Finally, PowerGRID [4]
is a modern, multi-GPU MPI code for reconstructing images ob-
tained with the Magnetic Resonance Imaging technique. Figure 6
shows the distribution of node-hours used each month among the
codes. As can be seen from Figure 6, Shifter has not been used
continuously by any single code or science group on Blue Waters.

115.0 kNH

31.5 kNH

4.87 kNH

140.0 kNH

10.0 kNH
13.2 kNH

2.91 kNH

ATLAS

NANOGrav

PowerGRID

LIGO

PySCF
QWalk�antumEspresso

Figure 5: Thousands of node-hours consumed by different
codes using Shifter in the period 2016/09 – 2017/03. Of the
codes shown, ATLAS, NANOGrav, and LIGO are well established
high throughput computing workflows. PySCF, QWalk and
QuantumEspresso are traditionalHPC codes that employMPI
to achieve parallelization. PowerGRID is a GPU-enabled MPI
code that can employ multiple GPUs on the compute nodes.

 20

 60

 100

 140

 180

2017-01

2017-03

2017-06

2017-08

2017-09

2017-10

2018-03

N
od

e-
ho

ur
s

us
ed

 [k
N

H
]

QuantumEspresso

QWalk

PySCF

LIGO

PowerGRID

NANOGrav

ATLAS

Figure 6: Node-hours used by Shifter-enabled codes on
Blue Waters since 2016. The three early adopters—ATLAS,
NANOGrav, and LIGO—employ typical forHTCworkflowswith
multiple pilot jobs and HTCondor serving as the main work-
flow mananger. PySCF, QWalk and QuantumEspresso are tradi-
tional for HPC computational physics and chemistry codes.
PowerGRID is a new MPI- and GPU-enabled code for MRI im-
age reconstruction.

For codes such as NANOGrav and LIGO, this is due to the nature of
their discrete analysis “Campaigns” during which collected data
is analysed. Codes such as PowerGRID are still in the early stages
of exploring the capabilities of Shifter . A follow-up study is neces-
sary to determine if the observed non-continuous usage pattern is
typical for applications that use Shifter .

Finally, Table 1 shows the number of nodes used by different ap-
plications on Blue Waters. As one can see from Table 1, most Shifter

5

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA M. Belkin et al.

Table 1: Top science applications and projects that use
Shifter on BlueWaters. Columns show the number of nodes
used in a typical job (Nodes), number of jobs ran (Frequency),
and the total charge for the jobs (Node-Hours). The top three
science projects that consumed the most resources while us-
ing Shifter are LIGO, ATLAS, and NANOGrav.

Code Nodes Frequency Node-Hours

LIGO 10 8 1, 990
LIGO 50 5 2, 650
LIGO 100 1 1, 070
LIGO 500 1 6, 030
LIGO 5, 000 4 127, 000
ATLAS 16 311 115, 000
NANOGrav 1 1, 485 28, 500
NANOGrav 100 2 3, 010
PowerGRID 800 1 4, 870
PySCF 1 419 10, 000
QWalk 1 1, 138 13, 200
QuantumEspresso 2 422 2, 910

jobs are small (16 nodes or less) with only LIGO and PowerGRID at-
tempting to scale up to larger node counts. This can be understood
considering that available HTC tasks may not be sufficient to keep
thousands of cores busy. Yet, an HPC system can not release just a
fraction of nodes that are part of a job. This is the main reason for
using multiple pilot jobs that can be terminated when necessary.
The optimal size and number of pilot jobs depends on multiple
factors such as the latency of the HPC scheduler, the length of
each task, the backlog of available tasks in the workflow manager,
and the “cost” of having idle nodes. Therefore, exploratory HTC
runs use many small pilot jobs to determine the optimum quanti-
ties while only a few large pilot jobs are then used for production
simulations, analysis, and testing.

ATLAS, NANOGrav, and LIGO
A lion’s share of node-hours consumed by Shifter jobs on Blue
Waters is associated with the three big state-of-the-art research
projects: ATLAS, NANOGrav, and LIGO. Availability of sufficient com-
puting resources was crucial for their Nobel prize-winning works
that detected the Higgs boson and gravitational waves in 2013 and
2017, respectively.

Because all three codes use an Open Science Grid (OSG) [12]-
derived workflow, the challenges they face and behaviour they
exhibit are very similar. Figure 7 shows a typical setup when using
Blue Waters and Shifter as a compute resource in the OSG. For
simplicity, we use LIGO as a stand-in for all three codes but the
setup is, essentially, identical for all three projects.

The LIGO Scientific Collaboration employs HTCondor to analyse
the data recorded by the LIGO detector, requiring that data from a
repository in Nebraska, USA is transferred to a computing facility
for processing. Shifter enabled LIGO collaboration to use an OSG-
ready Docker image on Blue Waters, eliminating the need to adapt
the image for each resource provider. This allowed LIGO to use an

Blue Waters

Data server

Compute node

Compute node

Compute node
Lustre

IE node

IE node

OSG
Job

supply jobs

request jobs

results

Figure 7: Interaction between an science project data reposi-
tory, the Open Science Grid and BlueWaters. Import/Export
(IE) nodes are BlueWaters’ dedicated nodes that are used for
file transfer. Figure reproduced from [7].

operating system environment which is certified by the collabora-
tion for a detection campaign and that matches the environment
found on OSG resource providers: CentOS instead of Blue Waters’
native CLE.

To register Blue Waters with the HTCondor scheduler as an OSG
site, pilot jobs had to use a modified version of the GlideinWMS [13]
tool. In the Shifter UDI based on the OSG Docker image, the tool
was immersed in an OSG-like environment and, therefore, could
download and execute the LIGO analysis code as usual.

A complication arose due to OSG using CVMFS [15] to distrib-
ute application codes like LIGO to the resource providers. Because
CVMFS relies on FUSE [6] and the latter is not supported by the OS
kernel on Blue Waters, a copy of the relevant sections of CVMFS’s
data hierarchy had to be stored on the Blue Waters’ Lustre file
system which is accessible from within the Shifter job.

Finally, analysis task required a data file of approximately 400MB
in size which was downloaded using GridFTP and XRootD trans-
port protocols [19]. With GridFTP extra care was necessary not
to overwhelm the data server because each GridFTP connection
requires a heavy-weight runtime environment to be initialized on
the data server. XRootD on the other hand is designed specifically
for OSG workflows and handles multiple transfers more gracefully.

Using this setup, Blue Waters contributed approximately 8, 000
node-hours to LIGO’s second observation campaign, temporarily
becoming the peak resource provider, and approximately 50, 000
node-hours to the ATLAS project in 2017 [10].

Future HTC codes that rely on OSG resources will definitely ben-
efit from the experiences gained and the groundwork laid by ATLAS,
NANOGrav, and LIGO on Blue Waters. With the help of Shifter , only
minimal modifications are required to enable such codes take ad-
vantage of Blue Waters, providing a new pool of compute resources
otherwise unavailable to HTC codes.

6

Container solutions for HPC systems PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

QWalk, PySCF and QuantumEspresso
QWalk [18] and PySCF [14] are an electron structure and compu-
tational physics / chemistry codes. Since QWalk uses a Quantum
Monte Carlo (QMC) method, it parallelizes trivially to refine its
predictions using additional instances of the simulation. As such,
no complex workflow manager was required and researchers were
able to develop automation framework for use with Shifter inde-
pendently.

PowerGRID
PowerGRID [4] is an MPI applications for medical magnetic reso-
nance image reconstruction that can take advantage of GPUs. It
relies on MPICH ABI compatibility to use a single executable com-
piled and dynamically linked with MPICH that runs under Cray’s
MPI stack on Blue Waters. PowerGRID employs parallelization to
process multiple snapshots in parallel using MPI to farm out tasks
to the cores available to the job. The per-rank code is parallelized
via OpenACC targeting Blue Waters’ NVIDIA Kepler GPUs. Shifter
enabled the team to build a complex software stack with multiple
compiler dependencies and CUDA support that they can deploy on a
variety of underlying hardware.

Outlook
For all applications discussed in this paper, Shifter played a critical
role in making their execution on Blue Waters possible. But why do
we not see more examples like this? If we look closer at scientific
applications in general, we find little consistency in the way these
applications are developed. This lack of consistency leads to the use
of an array of tools and packages that make the process of building
applications even in a controlled environment provided by Docker
very difficult. Even more so, building applications in a way that
would allow them to take full advantage of the hardware provided
by leadership-class computing facilities while maintaining con-
tainer portability. Thus, despite all the benefits that Shifter brings
to the world of High-Performance & Throughput Computing, there
is still room for improvement.

CONCLUSIONS
We described the lessons learned and experiences gained while
adopting Shifter as a container solution on the Blue Waters super-
computer. We presented a thorough and up-to-date report on its
performance, functionality, issues encountered, and also the ben-
efits and new possibilities that it enables. While some challenges
remain to be solved (unsupported or chip-specific and incompatible
instructions), Shifter has already provided a long-awaited solution
that enabled the HPC community to run complex and atypical (for
HPC) software stacks. Essentially, Shifter enabled HPC centers like
Blue Waters to imitate Cloud infrastructure which is sought after
by the HTC community. Over the last year, Blue Waters users have
been steadily ramping up the utilization of Shifter . In addition to
providing seamless access to the unique computing capabilities of
Blue Waters to run HTC-tailored workflows, Shifter has provided
the means to further a wave of innovation that has fused HPC and
HTC resources to address grand computational challenges across
science domains. We have showcased recent applications of Shifter
that demonstrate the new role containers are starting to play in

maximizing the versatility and flexibility of HPC systems in ac-
celerating scientific discovery by enabling complex and modern
software stacks.

ACKNOWLEDGMENTS
This research is part of the Blue Waters sustained-petascale com-
puting project, which is supported by the National Science Foun-
dation (awards OCI-0725070 and ACI-1238993) and the State of
Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing
Applications.

We thank CERN for the very successful operation of the LHC,
as well as the support staff from ATLAS institutions without whom
ATLAS could not be operated efficiently. The crucial computing
support from all WLCG partners is acknowledged gratefully. Major
contributors of computing resources are listed in Ref [5].

The authors gladly acknowledge valuable discussions with Edgar
Fajardo, Stuart Anderson, and Peter Couvares.

REFERENCES
[1] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams,

P. Addesso, R. X. Adhikari, V. B. Adya, and et al. 2017. GW170817: Observation
of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review
Letters 119, 16, Article 161101 (Oct. 2017), 161101 pages. https://doi.org/10.1103/
PhysRevLett.119.161101

[2] Maxim Belkin. 2017. Interacting with Shifter on Blue Waters. (2017). https:
//bluewaters.ncsa.illinois.edu/documents/10157/202012/Shifter_demo.pdf

[3] R. S. Canon and D. Jacobsen. 2016. Shifter: Containers for HPC. (2016).
[4] A. Cerjanic, J. L. Holtrop, G-C. Ngo, B. Leback, G. Arnold, M. VanMoer, G. LaBelle,

J. A. Fessler, and B. P. Sutton. 2016. PowerGrid: An Open-Source Library for
Accelerated Iterative Magnetic Resonance Image Reconstruction. In Proc. Intl.
Soc. Mag. Res. Med. 525. http://indexsmart.mirasmart.com/ISMRM2016/PDFfiles/
0525.html

[5] ATLAS Collaboration. 2016. ATLAS Computing Acknowledgements 2016-2017,
ATL-GEN-PUB-2016-002, 20XX. https://cds.cern.ch/record/2202407. (2016). [On-
line from July 2016].

[6] Tejun Heo. 2017. The reference implementation of the Linux FUSE (Filesystem
in Userspace) interface. (2017). https://github.com/libfuse/libfuse/

[7] E. A. Huerta, Roland Haas, Edgar Fajardo, Daniel Katz, Stuart Anderson, Peter
Couvares, Josh Willis, Timothy Bouvet, Jeremy Enos, William T.C. Kramer, Hon
Wai Leong, and David Wheeler. 2017. BOSS-LDG: A Novel Computational
Framework that Brings Together Blue Waters, Open Science Grid, Shifter and
the LIGO Data Grid to Accelerate Gravitational Wave Discovery, In 2017 IEEE
13th International Conference on e-Science (e-Science). ArXiv e-prints. https:
//doi.org/10.1109/eScience.2017.47

[8] D. M. Jacobsen and R. S. Canon. 2015. Contain This, Unleashing Docker for HPC.
(2015).

[9] Andre Luckow, Mark Santcroos, Ole Weidner, Andre Merzky, Sharath Maddineni,
and Shantenu Jha. 2012. Towards a Common Model for Pilot-jobs. In Proceedings
of the 21st International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’12). ACM, New York, NY, USA, 123–124. https://doi.org/10.
1145/2287076.2287094

[10] Mark Neubauer. 2017. Enabling Discoveries at the LHC through Advanced Com-
putation and Machine Learning. Presented at the Blue Waters Symposium 2017.
https://bluewaters.ncsa.illinois.edu/documents/10157/244350/neubauer-lhc.pdf

[11] Mark Neubauer, Philip Chang, Rob Gardner, Dave Lesny, and Dewen Zhong.
2017. Enabling Discoveries at the Large Hadron Collider through Advanced
Computation. (2017). https://bluewaters.ncsa.illinois.edu/science-teams?page=
detail&psn=bafz

[12] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. 2007. The
open science grid. Journal of Physics: Conference Series 78, 1, 012057. https:
//doi.org/10.1088/1742-6596/78/1/012057

[13] Igor Sfiligoi, Daniel C Bradley, Burt Holzman, Parag Mhashilkar, Sanjay Padhi,
and Frank Wurthwein. 2009. The pilot way to grid resources using glideinWMS.
In Computer Science and Information Engineering, 2009 WRI World Congress on,
Vol. 2. IEEE, 428–432.

[14] Qiming Sun, Timothy C. Berkelbach, Nick S. Blunt, George H. Booth, Sheng
Guo, Zhendong Li, Junzi Liu, James D. McClain, Elvira R. Sayfutyarova, Sandeep

7

https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://bluewaters.ncsa.illinois.edu/documents/10157/202012/Shifter_demo.pdf
https://bluewaters.ncsa.illinois.edu/documents/10157/202012/Shifter_demo.pdf
http://indexsmart.mirasmart.com/ISMRM2016/PDFfiles/ 0525.html
http://indexsmart.mirasmart.com/ISMRM2016/PDFfiles/ 0525.html
https://cds.cern.ch/record/2202407
https://github.com/libfuse/libfuse/
https://doi.org/10.1109/eScience.2017.47
https://doi.org/10.1109/eScience.2017.47
https://doi.org/10.1145/2287076.2287094
https://doi.org/10.1145/2287076.2287094
https://bluewaters.ncsa.illinois.edu/documents/10157/244350/neubauer-lhc.pdf
https://bluewaters.ncsa.illinois.edu/science-teams?page=detail&psn=bafz
https://bluewaters.ncsa.illinois.edu/science-teams?page=detail&psn=bafz
https://doi.org/10.1088/1742-6596/78/1/012057
https://doi.org/10.1088/1742-6596/78/1/012057

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA M. Belkin et al.

Sharma, Sebastian Wouters, and Garnet Kin-Lic Chan. [n. d.]. PySCF: the Python-
based simulations of chemistry framework. Wiley Interdisciplinary Reviews:
Computational Molecular Science 8, 1 ([n. d.]), e1340. https://doi.org/10.1002/
wcms.1340

[15] CernVM Team. 2017. CernVM File System. (2017). https://cernvm.cern.ch/
portal/filesystem

[16] Douglas Thain, Todd Tannenbaum, andMiron Livny. 2005. Distributed computing
in practice: the Condor experience. Concurrency - Practice and Experience 17, 2-4
(2005), 323–356.

[17] S. A. Usman, A. H. Nitz, I. W. Harry, C. M. Biwer, D. A. Brown, M. Cabero, C. D.
Capano, T. Dal Canton, T. Dent, S. Fairhurst, M. S. Kehl, D. Keppel, B. Krishnan,
A. Lenon, A. Lundgren, A. B. Nielsen, L. P. Pekowsky, H. P. Pfeiffer, P. R. Saulson,
M. West, and J. L. Willis. 2016. The PyCBC search for gravitational waves from
compact binary coalescence. Classical and Quantum Gravity 33, 21, Article 215004
(Nov. 2016), 215004 pages. https://doi.org/10.1088/0264-9381/33/21/215004

[18] Lucas K. Wagner, Michal Bajdich, and Lubos Mitas. 2009. QWalk: A quantum
Monte Carlo program for electronic structure. J. Comput. Phys. 228, 9 (2009),
3390–3404. https://doi.org/10.1016/j.jcp.2009.01.017

[19] D. Weitzel, B. Bockelman, D. A. Brown, P. Couvares, F. Würthwein, and E. Fajardo
Hernandez. 2017. Data Access for LIGO on the OSG. ArXiv e-prints 1705.06202
[cs.DC] (May 2017).

8

https://doi.org/10.1002/wcms.1340
https://doi.org/10.1002/wcms.1340
https://cernvm.cern.ch/portal/filesystem
https://cernvm.cern.ch/portal/filesystem
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1016/j.jcp.2009.01.017

	Abstract
	Acknowledgments
	References

