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ABSTRACT
Open OnDemand supports Interactive HPC web applications en-
abling the interactive and distributed environments for Jupyter and
RStudio running on an HPC cluster. These web applications provide
a simple user-interface for building and submitting the batch job
responsible for launching the interactive environment as well as
proxying the connection between the user’s browser and the web
server running on the cluster. Support for distributive computing
through a Jupyter notebook and RStudio session is provided by an
Apache Spark cluster launched concurrently in standalone mode
on the allocated nodes within the batch job. Alternatively, users
can directly use the corresponding MPI bindings for either R or
Python.

This paper describes the design of Interactive HPC web applica-
tions on an Open OnDemand deployment for launching and con-
necting to Jupyter notebooks and RStudio sessions as well as the
architecture and software required for supporting Jupyter, RStudio,
and Apache Spark on the corresponding HPC cluster. Singularity
can be leveraged for packaging and portability of this architecture
across HPC clusters. This paper also discusses the challenges en-
countered in providing interactive access to HPC resources that are
in need of general solutions.

CCS CONCEPTS
• Software and its engineering→Client-server architectures;
• Information systems → Web interfaces; • Human-centered
computing→Web-based interaction; • Security and privacy→

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6446-1/18/07. . . $15.00
https://doi.org/10.1145/3219104.3219149

Access control; Distributed systems security; • Computer systems
organization → Client-server architectures;

KEYWORDS
Open OnDemand, High Performance Computing, Interactive, Web
platform, Jupyter, RStudio, Spark, OSC

ACM Reference Format:
Jeremy W. Nicklas, Doug Johnson, Shameema Oottikkal, Eric Franz, Brian
McMichael, Alan Chalker, and David E. Hudak. 2018. Supporting distributed,
interactive Jupyter and RStudio in a scheduled HPC environment with Spark
using Open OnDemand. In PEARC ’18: Practice and Experience in Advanced
Research Computing, July 22–26, 2018, Pittsburgh, PA, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3219104.3219149

1 INTRODUCTION
Researchers want to apply large-scale computation to new disci-
plines and with new tools. Meeting the needs of these communities
require features not readily supported on today’s HPC clusters, like
web user interfaces and interactive access to applications. However,
HPC clusters are a cornerstone of large-capacity research com-
puting and leveraging these existing investments is cost-effective
relative to replicating dedicated environments. Open OnDemand
is an open source software project providing web, graphical and
interactive access for HPC clusters [5] that is based on the Ohio
Supercomputer Center’s (OSC) original OnDemand portal [4]. More
than just an "out-of-the-box" solution for existing cluster services,
the authors envision OnDemand as a platform that can be devel-
oped upon to provide new capabilities on existing HPC clusters.
In this paper, we describe interactive applications in OnDemand
for big data processing with Apache Spark [21] accessed via either
Jupyter [6] or RStudio [14].

One of the goals of the Open OnDemand project is to make it
easier for HPC users to access HPC resources with the intention to
lower the barrier of entry into HPC computing for new users as well
as improve the productivity of current HPC users. A user will only
need a locally installed browser to access the OnDemand portal
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and its provided web applications. Users are not required to install
any other third-party software beyond this. The OnDemand portal
provides a web interface for file management, job management and
monitoring, launching and connecting to interactive jobs, as well as
command line shell access for everything else. One of the benefits
of OnDemand over a traditional web service is that all the web
applications are running as the user. This allows for accounting
and security by relying on the implicit user space provided by the
Linux kernel.

The OnDemand portal comes with a set of core applications
built using Ruby and the OnDemand AppKit library as well as
Node.js and WebSocket technology. These applications include the
Dashboard App, Shell App, Files App, File Editor App, Active Jobs
App, and the Job Composer App. A few of these web applications
leverage the OnDemand AppKit library which provides a plug-in
friendly resource manager adapter. This library extends the capa-
bilities of the web application by providing a generic interface to a
multitude of supported resource managers: Torque, Slurm, LSF, and
PBS Pro. The Dashboard in particular makes use of the OnDemand
AppKit library to create and maintain interactive jobs, a job that
launches a web application server on a node in the cluster that the
user can connect back to and interact with (e.g., a Jupyter Note-
book server) in their browser. A system administrator can create
an Interactive App that the Dashboard serves by supplying a set
of custom YAML configuration files that describe the app and how
it is submitted as well as a template of shell scripts that are run
within the job.

Two popular scientific web applications that OSC OnDemand
supports is Jupyter Notebook and RStudio Server. The Jupyter Note-
book is an interactive web based notebook that supports Python,
among many other languages. It has a rich input interface that
integrates code development, documentation, and visualization
to implement a Read-Eval-Print Loop (REPL) interface. Similarly,
RStudio Server provides an integrated development environment
web application with support for running and debugging programs
written in R. Both of these have been ported and installed on OSC
OnDemand as Interactive Apps since April 2017. Since then the
Jupyter Notebook App has been launched 782 times from 182 dif-
ferent OSC users and the RStudio Server App has been launched
1,337 times from 162 users. Both of these Interactive Apps are also
hosted on OnDemand installations at 5 different institutions. OSC
OnDemand recently added a Jupyter with Spark Interactive App
in November 2017 that has since been launched 97 times by 41
different OSC users. The Jupyter with Spark Interactive App was
also featured in a workshop hosted at the University of Cincinnati
in March 2018 where all the attendees were able to simultaneously
launch and work with their own Jupyter and Spark instances on
the OSC cluster in their browsers.

Figure 1 shows an example of the Jupyter with Spark Interac-
tive App hosted on OSC’s OnDemand portal. The user fills in the
configurable requisite information for the Interactive App: project
to be charged, number of hours to run job, number of requested
nodes, etc. The Interactive App then submits a job that launches
a Spark cluster and Jupyter Notebook server. The user is able to
connect to the Jupyter Notebook server in their browser when the
job starts. The Dashboard is responsible for submitting and manag-
ing the Interactive App’s job as well as to generate the HTML link

Figure 1: A screenshot of the Jupyter + Spark InteractiveApp
hosted on OSC OnDemand

that the user clicks on to establish the connection back to the web
application server running in the job. A key feature of the OnDe-
mand portal is that it provides a reverse proxy to securely bridge
the connection between the client browser and the applications
running on the HPC compute nodes. This eliminates the need for
an HPC user to setup an SSH tunnel to establish this connection.

In a naive deployment both the Jupyter and RStudio web appli-
cation servers are setup by default to listen on a high numbered
network port on the loopback interface. The application server runs
as the user that started the server with no authentication enabled,
and the user connects locally from their web browser. While local
deployment of the application server is simple, integration in a
multi-user HPC environment is difficult. Both Jupyter and RStudio
support authentication and execution as the authenticated user, but
integration with HPC resource managers do not exist out of the box.
Furthermore, extending these application servers for distributed
execution presents additional challenges. The languages supported
by these application servers support a variety of parallel execution
frameworks such as the message passing interface (MPI) and Spark,
but supporting these further complicates the integration of the
application servers into an HPC environment.

It should also be noted that although VNC is not necessarily
a web application server and browser client, it can leverage web-
sockify [12] for its web application server and noVNC [11] for
its browser-based VNC client. The websockify tool translates the
front-facing WebSocket traffic to the normal socket traffic that the
VNC server expects. This extends Interactive App support to in-
clude X11-client applications that can be normally run within a
VNC session. OSC’s OnDemand portal currently offers a variety of
Linux desktops as well as ANSYS Workbench, Abaqus, COMSOL,
MATLAB, and ParaView.

In the following sections we will describe how Open OnDe-
mand supports secure end-to-end communication from a client
web browser to serial and parallel HPC jobs executing a Jupyter
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Notebook or RStudio Server with a dedicated Spark cluster running
in Standalone mode.

2 RELATEDWORK
A number of HPC centers have implemented web-based interac-
tive computing environments for their HPC resources. Texas Ad-
vanced Computing Center’s (TACC) visualization portal includes
a web-based VNC application, providing enhanced security and
portability and enabling users to start a desktop session from any
browser [17]. TACC’s visualization portal also offers interactive,
web-based Jupyter Notebook and RStudio integration. Advanced
Research Computing Technology Service of University of Michi-
gan also provides Jupyter and RStudio integration through a web
portal [8]. Minnesota Supercomputing Institute offers an interac-
tive computing environment for Jupyter through a web portal as
well [10]. Microsoft’s Azure HD insight offers Spark integrated
with Jupyter and R server to interactively analyse Big Data on a
web platform [9]. The Amazon EMR data processing cluster allows
users to create a JupyterHub interface to Spark to process and vi-
sualize data on the web [22]. It also offers an RStudio interface to
Spark [23]. Google’s Cloud Dataproc allows users to integrate the
Spark engine with Jupyter and RStudio [13].

3 INTERACTIVE HPCWEB SERVERS
A few of the problems an administrator faces when deploying a
web application server are listed as follows:

• restricting access of the application server to only verified
and allowed users

• maintaining secure communication between the user’s browser
and the application server

These are typically handled by launching the application server
on a security hardened machine listening on the loopback interface
to a high numbered port (> 1024). A reverse proxy server is then
exposed to the public network that handles the HTTP over SSL
traffic and proxies it back to the local application server. Authen-
tication can also be handled by the reverse proxy server or at the
application server layer.

By starting the application server on the loopback interface it
limits all incoming connections to within the local machine. A
security hardened machine will have a much smaller surface of
vulnerability leaving external access to the application server only
through the reverse proxy server. This not only allows for the
authentication layer to be placed at either the reverse proxy or
application server, but also allows for the encrypted SSL layer to be
handled by the reverse proxy. This is beneficial as setting up SSL
certificates for a web application can be difficult if at all possible.

If a user at an HPC center wishes to start up a web application
server within a batch job or from a login node they will lose the
benefits of a security hardened machine and the reverse proxy
server acting as the gatekeeper. Historically, the secure connection
to the application server is established by setting up an SSH tunnel
through the login node from the user’s local machine to the appli-
cation server running within the HPC center’s internal network.
The user is then expected to navigate in their browser to the port
on their local machine they used to establish the SSH tunnel with.
This can lead to issues where HTTP redirects and cookie domains

point to the host and port of the machine the application server
is running on rather than the client’s localhost and port that the
SSH tunnel is listening on. This also does not resolve the issue with
restricting access to just the owner of the application server.

For the case of starting a web application server on the login node
the benefits of listening on the loopback interface are nonexistent
as all users on that node will be able to connect to the application
server. Starting a web application server on the loopback inter-
face from within a batch job on a compute node requires that the
compute node be security hardened and allow only SSH access
for just the owner of that job. Even with this restriction there are
still many possible security concerns with this model as previous
user processes may not have been properly cleaned or some other
service running on the node allows user access. In short, the appli-
cation server will need to provide some form of authentication and
session management to restrict access to just the owner. We will
discuss the authentication layers provided within Jupyter Notebook
in section 3.2 and RStudio Server in section 3.3.

3.1 OnDemand Reverse Proxy
The OnDemand portal comes with a dynamic reverse proxy that is
disabled by default but can be enabled by a system administrator.
Once enabled the OnDemand portal can proxy the secure HTTP
over SSL traffic from the user’s browser to any configured web
resource within the HPC center’s internal network. The reverse
proxy takes advantage of the authentication layer provided by the
OnDemand portal to restrict access to only verified HPC users. After
a user successfully authenticates with OnDemand he or she can
then utilize the reverse proxy to communicate with an application
server listening within the internal network. This is functionally
equivalent to the SSH tunnel discussed previously.

The reverse proxy packaged in OnDemand is also responsible for
rewriting the URLs that may appear in redirect and cookie headers.
This is essential in any reverse proxy to avoid bypassing the reverse
proxy. This is an issue when using an SSH tunnel to securely proxy
HTTP traffic inside an HPC center’s internal network.

A drawback of the OnDemand reverse proxy is that the infor-
mation about the host and port to proxy the request to needs to
be included in each HTTP request sent to the OnDemand portal.
This is due to the stateless nature of web services and in particular
the OnDemand dynamic reverse proxy. This is not an issue for SSH
tunnels as the host and port is originally supplied when establishing
the SSH tunnel and remains static thereafter.

The solution taken by the OnDemand portal is to require the
host and port to be specified within the path of the URL request.
The URL specification for the OnDemand dynamic reverse proxy is
given as:
https://example.com[/handler][/host][/port][/path]

where handler defines which reverse proxy handler to use, host
and port define the application server to proxy the request to, and
path is the URL path consumed by the application server. The
OnDemand dynamic reverse proxy accepts two types of reverse
proxy handlers /node and /rnode that describe how the URL path
is constructed and consumed by the application server.

The first reverse proxy handler is accessed with the URL path
segment /node. This instructs the reverse proxy to construct a
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URL path that is identical to the original URL path when sending
the request to the application server running on the back-end. For
example, when navigating to:
https://example.com/node/node01/8080/index.hml

the OnDemand reverse proxy constructs and makes the following
URL request:
http://node01:8080/node/node01/8080/index.html

to access the application server. Note that the URL paths are identi-
cal in both requests. This is used by application servers that can be
configured under a sub-URI, e.g., Jupyter Notebook server.

The second reverse proxy handler is accessed with the URL path
segment /rnode. This instructs the reverse proxy to construct a URL
path that is stripped of the preceding reverse proxy information
when sending the request to the application server running on the
back-end. For example, when navigating to:
https://example.com/rnode/node01/8080/index.html

the OnDemand reverse proxy constructs and makes the following
URL request:
http://node01:8080/index.hml

to access the application server. Note that the preceding component
of the original URL path consumed by the reverse proxy (/rnode/
node01/8080) is stripped away in the request consumed by the
application server. This is used by application servers that use
relative URL links and not absolute file paths when linking to pages
or pointing to assets and images, e.g., RStudio Server.

Figure 2 outlines the steps that occur right after the web ap-
plication server starts within the batch job (on a compute node)
that was previously submitted by the Dashboard App up until the
user establishes a connection to the application server through the
OnDemand reverse proxy. The connection information containing
the host and port is output to a file on a shared file system immedi-
ately after the application server is successfully started. Behind the
scenes the Dashboard App reads this connection information and
generates an HTML link when the user browses to the Dashboard.
This link contains the URL path with the reverse proxy handler that
the web application server supports as well as the corresponding
host and port to proxy the request to. Finally, the user’s browser
is redirected to the OnDemand dynamic reverse proxy when the
user clicks the link in the Dashboard and establishes a connection
with the web application server running on the compute node. The
Dashboard only facilitates this connection and is not necessary
after the connection has been established.

By incorporating the reverse proxy information into the URL
path OnDemand is constrained by the variety of possible web appli-
cation servers it can support. In our experience though this hasn’t
been a limiting factor with any of the web application servers we
have currently worked with: Jupyter Notebook server, RStudio
Server, COMSOL Server, Shiny Server, and noVNC+websockify.

The OnDemand reverse proxy much like an SSH tunnel only es-
tablishes the connection between the client and the web application
server running on the internal HPC network. It does not prevent
other HPC users from also connecting to your web application
server. Therefore, a developer of an Interactive App should be fully
aware that the web application server started in the job will need
its own authentication layer to restrict access to the process owner.

Figure 2: A diagram outlining the steps taken from when a
user’s application server launches in a batch job until the
user establishes a connection with the application server
through the OnDemand reverse proxy.

3.2 Jupyter Notebook
The Jupyter Notebook server uses a two-process kernel architecture
that decouples the Notebook server process from the kernel process
that performs the evaluation in the REPL environment. This allows
us to decouple the Jupyter Notebook installation from the various
Python installations on the HPC cluster. Therefore, updating the
Jupyter Notebook software and its dependencies won’t break or
alter the highly-optimized scientific Python libraries managed by
the HPC Scientific Applications team.

A separate installation of Python 3 and Jupyter Notebook can ex-
ist in an isolated directory such as /usr/local/python3-notebook.
A Jupyter Notebook server is launched fromwithin a batch job using
a custom dynamically generated configuration file. The Notebook
configuration file at a minimum needs to specify the port to listen
on, the randomly generated hashed password used for authentica-
tion, the sub-URI that the OnDemand reverse proxy will use, and
to disable the browser that is by default launched when a Notebook
server is started. Further configuration options can be supplied to
simplify the connection process between the user and the Notebook
server.

The user will then be able to connect to the Jupyter Notebook
server by visiting the following OnDemand URL:
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https://example.com/node[/host][/port]/

where host is the host of the first node allocated to the batch job
and port is the port the Jupyter Notebook server is listening on.
The user will then be prompted for the password specified in the
Notebook configuration file keeping the server secure from other
HPC users. Upon successful authentication the user will then be
able to create new notebooks from a list of available kernels.

Kernels can be generated for each of the available Python mod-
ules hosted by the HPC cluster as well as for various other languages
that support iPython kernels (e.g., Julia). The Jupyter Notebook ker-
nel spec is serialized in a JSON format that provides a kernel name,
the language of the kernel, a list of command line arguments used
to start the kernel, and a dictionary of environment variables set
for the kernel. For each of the modules installed on the HPC cluster
a custom kernel spec is generated that points to a correspond-
ing wrapper script. The wrapper script is responsible for loading
the given HPC cluster module environment before launching the
system-installed kernel executable. A user can now leverage the
optimized Python scientific libraries installed on the HPC cluster
from within their Jupyter Notebook server.

3.3 RStudio Server
RStudio Server decouples the web server component (rserver pro-
cess) from the individual R sessions (rsession processes) by main-
taining them as separate processes. The rserver process is respon-
sible for serving the login page and starting the rsession process.
It is also responsible for routing the traffic from the web browser
to the running session. These two processes communicate over a
Unix domain socket using JSON messages. The rsession process
is responsible for loading R as a library and making calls to this
library when needed to evaluate R expressions.

RStudio Server is typically run as a privileged user. When a user
accesses RStudio Server in their browser they will be prompted for
their local username and password. RStudio Server is integrated
with PAM for user authentication by default and after a user suc-
cessfully authenticates it will start an rsession process as the
authenticated user. All further web traffic from the authenticated
user will be proxied to the user’s rsession process. This workflow
is difficult to port to a per-user server workflow running on an HPC
cluster.

The first complication is that RStudio Server will write its state
to the common location /tmp/rstudio-server. This introduces
file ownership and permission issues when multiple users start
rserver processes. Even if an HPC cluster only allows a single
user on a compute node, it is not guaranteed the previous user
properly cleaned up these state files. There are two solutions cur-
rently employed to solve this issue. The first is using the PRoot
tool [19] which provides a user-space implementation of mount
--bind by relying on ptrace. A fake bind mount can be created for
the rserver process by launching it with:

proot -b "$(mktemp -d):/tmp" rserver [OPTIONS]

Using PRoot may incur a performance penalty during I/O opera-
tions. An alternative solution is to leverage containers, in particular
Singularity [7], to isolate the /tmp directory from the host file sys-
tem. A Singularity image can be provided with both R and RStudio

Server installed under it. To keep the image portable the HPC clus-
ter’s R packages would be installed and maintained on the host
file system and a bind mount would be performed to include them
within the Singularity container. This would allow for the HPC
cluster’s optimized scientific R libraries to be decoupled from the
Singularity image.

Another complication is the lack of privileges a user has to use
PAM authentication. This is resolved by supplying a custom au-
thentication script that is called by the rserver process during the
authentication operation. RStudio Server allows you to supply a
PAM helper script that can be used for authenticating a user. This
script is called with the username as the first and only argument
and the password piped from standard input. RStudio Server treats
it as a successful authentication if the script returns a zero exit sta-
tus and a failed authentication otherwise. It is trivial to write a shell
script that compares a user supplied password to a randomly gener-
ated password written to a secure file or saved as an environment
variable.

RStudio Server is meant to be run as a privileged system user
that starts an rsession process for each authenticated user. In
doing so it sanitizes the environment for security purposes when
forking the rsession process. This is problematic for the per-user
RStudio Server model as we’d like to keep the same environment
in the rsession process as was set when launching rserver as
the user. This is especially so for the case when we integrate Spark
with RStudio discussed in section 4.2. This can be resolved with a
wrapper script around the rsession executable that re-invokes the
same environment used to launch rserver. The custom wrapper
script is provided as a command line argument when launching the
rserver executable.

The user is then able to connect to the RStudio Server by visiting
the following OnDemand URL:
https://example.com/rnode[/host][/port]/

where host is the host of the first node allocated to the batch job and
port is the port the RStudio Server is listening on. The user will then
be prompted to enter their username and the password that was
generated in the batch script when starting up the RStudio Server.
Upon successful authentication the user will then be presented with
a web-based IDE and an R REPL workspace in their browser.

4 PARALLELIZE INTERACTIVE HPC APPS
WITH SPARK

A Spark cluster is most easily launched in Standalone cluster mode
within a batch job running as a user. This has the fewest moving
parts and doesn’t require privilege escalation. Deploying Spark in
Standalone mode consists of a single Standalone Master process
that manages the resources for the Spark Standalone cluster. It
also consists of one or more Standalone Worker processes that are
connected back to the Master. Standalone mode is just one of the
many cluster modes that Spark supports.

Irrespective of the Spark deployment mode, a standalone applica-
tion (e.g., the Python Notebook) will construct a SparkContext that
becomes the driver program that connects to the Spark resource
manager and requests resources. The resource manager launches
executors on the workers that then register themselves back with
the driver program. Depending on the actions and transformations
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taken in the user application, tasks are then sent to the executors
where they are evaluated and returned to the driver program.When
the driver program exits all executors will be terminated and the
cluster resources will be released.

A few of the issues encountered with launching Spark in Stan-
dalone mode from within a batch job include: starting the Worker
processes so that they are managed by the HPC cluster resource
manager, securing the Spark communication protocols, and secur-
ing the Spark Web UI.

The Spark Standalone cluster mode launch scripts included in
the Spark installation are not sufficient to launch the Master and
Worker processes within a batch job on an HPC cluster. Instead the
Master process is explicitly started within the batch script and the
script is blocked until theMaster process is running and listening on
the desired port. A wrapper script to launch theWorker processes is
then dynamically generated with the connection information from
the Master process and the commands to load them in an identical
software environment. The HPC cluster resource manager’s under-
lying tool (e.g., pbsdsh for PBS and srun for Slurm) is then used
to distribute and call the Worker wrapper script on the allocated
nodes. This allows the Worker processes to be properly managed
by the HPC cluster’s resource manager.

Spark can be configured to secure the communication protocol
via a shared secret. This is randomly generated early on in the batch
job and is written to a secure Spark properties file. The path to this
Spark properties file is passed as a command line argument when
starting the Master process, Worker process, and constructing the
SparkContext within the user application. The Spark Web UI can
also be secured through the use of javax.servlet filters.

After a Spark Standalone cluster is started, the given user appli-
cation is then started and a SparkContext with details about the
Master process is constructed within the application. Both Python
and R support constructing a SparkContext and connecting to
a Spark cluster. We describe how to do this for both the Jupyter
Notebook server in section 4.1 and RStudio Server in section 4.2.

4.1 Jupyter with Spark
After the Spark cluster is started a Jupyter Notebook server is con-
figured and launched in a very similar fashion to the discussion in
section 3.2. The difference being that the Spark state is now encap-
sulated within the Python wrapper script that is launched by the
custom Jupyter Notebook kernel. Previously we used these custom
kernels and corresponding wrapper scripts to load the software
environment provided by the HPC cluster before launching the
kernel executable. Now a custom kernel and wrapper script will be
generated that also includes the required SparkContext informa-
tion as well as the path to a Python startup script provided by the
Spark installation. Figure 3 outlines the workflow of a batch job that
launches both a Spark Standalone cluster and Jupyter Notebook
server that connects to it.

The Python wrapper script needs to load the same software
environment that the Spark Worker processes are running under
so that the driver uses the same same software package and li-
braries as the executors. The environment variables PYTHONPATH
and PYTHONSTARTUP are defined to point to the necessary Python
libraries and startup script respectively that are provided under

Get host, find available port, and generate random password

Create Jupyter Notebook configuration file

Wait until Jupyter
Notebook server is running

Create connection file
that the Dashboard uses
to generate HTML link:

host: node01
port: 8080
password: ......

Spark Initialization

Create Spark properties file

Get available port for Spark Master

Wait until Spark
Master is running

Launch Spark
Master process

Create Spark Worker wrapper script

Launch Spark
Worker [node01]

Launch Spark
Worker [node ...]

Jupyter Initialization

Create Python wrapper script with SparkContext

Create corresponding custom Jupyter kernel JSON file

Launch Jupyter Notebook server

Clean up

Figure 3: An activity diagram for a job script generated and
submitted by the Dashboard App that launches a Spark clus-
ter in Standalone mode on a set of nodes as well as a Jupyter
Notebook server that the user can connect to through the
OnDemand reverse proxy.

the Spark installation location. The pyspark-shell process and its
corresponding command line arguments, which must include the
Spark properties file that contains the shared secret, are set in the
PYSPARK_SUBMIT_ARGS environment variable. This environment
variable contains all the necessary connection information used
to setup a SparkContext to our Spark cluster running within the
batch job.

When a user accesses the Jupyter Notebook server they will be
able to select the custom kernel that launches this Python wrapper
script when starting a new Notebook. From within the Notebook
running this kernel they can immediately start submitting tasks
to the SparkContext through the global variable sc. The Stan-
dalone cluster mode in Spark currently only supports a simple FIFO
scheduler across applications and by default the first Notebook will
acquire all cores in the cluster. This limits you to only being able to
run one Notebook with a SparkContext at a time. After you close
this Notebook the Spark cluster resources will be released and you
can open another Notebook with a SparkContext.
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4.2 RStudio with Spark
There are two competing R packages for connecting to a running
Spark cluster: sparkR [18] and sparklyr [16]. The sparkR package
is supported by the Apache Spark software community whereas
the sparklyr package is supported by the RStudio development
community. This paper focuses on incorporating the latter into the
RStudio Server running as the user within a batch job.

As with the Jupyter Notebook server, the steps necessary when
configuring and starting the RStudio Server rserver process are
nearly identical to those discussed in section 3.3. The difference
being that the required SparkContext information will now be
encapsulated in the rsession wrapper script and a custom startup
profile script that is responsible for creating the SparkContext ob-
ject is generated. A couple disadvantages of the sparklyr package
when compared with sparkR is its lack of support with defining
the SparkContext configuration through environment variables as
well as its lack of a startup profile file that builds the SparkContext
when the rsession starts. The sparklyr package intends for the
user to define the SparkContextwithin the RStudio IDE itself. This
can be burdensome for a user whose Spark cluster running in Stan-
dalone mode is automatically launched within the batch job using
a randomly generated shared secret and port.

The rsession wrapper script can supply a subset of the Spark
shell command line arguments through the sparklyr.shell.args
environment variable, in particular the Spark properties file that
contains the shared secret. This wrapper script also sets the R_
PROFILE_USER environment variable to the dynamically generated
R startup profile file that is modeled after the file provided by the
sparkR package. This profile script is responsible for resetting the
R_PROFILE_USER environment variable to another generic startup
profile, adding sparklyr as a default loaded package, and creating
a SparkContext for the Spark cluster in a global variable named sc.
The R_PROFILE_USER needs to be reset as it will be called whenever
another R process is forked, e.g., during package installation. It is not
necessary to create a SparkContext during package installations.

When a user accesses the RStudio Server for the first time and
is provided an rsession process they will be able to immediately
begin submitting tasks to the SparkContext through the global
variable sc. The user will only be provided a single rsession pro-
cess by the rserver process. When the user closes the rsession
the Spark cluster resources are released.

5 CONCLUSIONS
In this paper, we describe interactive applications in OnDemand for
big data processing with Apache Spark accessed via either Jupyter
or RStudio. This solution leverages features provided by the On-
Demand platform for web applications interacting with cluster
schedulers and nodes. The majority of the work for this project is
the installation and configuration of the three applications (Spark,
Jupyter and RStudio) on the cluster. This shows that OnDemand can
be extended to provide new capabilities on existing HPC clusters,
giving new capabilities to researchers in a cost-effective manner.

6 FUTUREWORK AND CHALLENGES
Distributed support for Jupyter and RStudio through Open OnDe-
mand are currently limited to the Spark framework. SupportingMPI

bindings for Python using mpi4py [1–3] or Rmpi [20] for R is a log-
ical extension of our work. Challenges for supporting MPI include
ensuring compatibility between the MPI bindings and the imple-
mentations of MPI available on the system, integration with the
supported MPI job launcher, and a more complete understanding
of the how processes must be launched along with the interactive
interfaces.

Other future extensions to the work include: allowing users to
execute a notebook that was created in an interactive session in a
non-interactive batch job; support for Shiny apps [15]; giving users
more control over the launch options for the Spark cluster; support
for shared Spark clusters that are not running as part of the user’s
batch job.

A general challenge exists for supporting interactive environ-
ments at HPC centers: scheduling resources for interactive jobs
when the end user is available. This requires either keeping some
fraction of the hardware accessible for immediate scheduling for
the interactive workload, the ability for end users to request access
to resources via an advance reservation mechanism so the resources
are available when they need to perform the interactive work, or
over-subscription of resources for interactive jobs.
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