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ABSTRACT 

Neural1 networks have been used to solve different types of large 

data related problems in many different fields. This project takes a 

novel approach to solving the Navier-Stokes Equations for 

turbulence by training a neural network using Bayesian Cluster 

and SOM neighbor weighting to map ionospheric velocity fields 

based on 3-dimensional inputs. Parameters used in this problem 

included the velocity, Reynold’s number, Prandtl number, and 

temperature. In this project data was obtained from Johns-

Hopkins University to train the neural network using MATLAB. 

The neural network was able to map the velocity fields within a 

67% accuracy of the validation data used. Further studies will 

focus on higher accuracy and solving further non-linear 

differential equations using convolutional neural networks. 
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1 INTRODUCTION 

Modeling the dynamics of non-linear fluid flow has been difficult 

to achieve with current technologies. A small portion of research 
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in fluid dynamics has been devoted to modeling different types of 

fluid flows through computer simulations. This is known as CFD, 

or Computational Fluid Dynamics. Utilizing the ability of 

computers to achieve more efficient computation, simulations of 

annealing, civil engineering, and weather predictions have been 

created using Computational Fluid Dynamics [1]. CFD has grown 

in its ability to accurately model fluid flow and predict paths of 

the fluid being modeled, however, the complexity of the systems 

being observed bely a certain amount of inaccuracy within the 

models.  Recently researchers in the field of fluid dynamics have 

been looking at neural networks and their ability to solve complex 

problems quickly. The most commonly used model to date has 

been the Feed Forward Neural Network [2]. This model takes 

several inputs then feeds the information forward through hidden 

layers and produces an output. In order to optimize the output, the 

network uses a technique known as backpropagation.  This 

technique changes the weights of certain “neural pathways” to 

make them impactful to the final output. Neural Networks have 

been used sparingly in CFD, because of the non-linear nature of 

the Navier-Stokes equations. This complexity obviates the use of 

basic feed-forward neural networks within CFD. Therefore, there 

have been strides taken to increase the complexity of space in 

which neural networks can work [3], including Bayesian Cluster 

Neural Networks, and Self-Organized Mapping (SOM) Neural 

Networks, which were applied in this research. 

2 EXPERIMENTAL AND COMPUTATIONAL 

DETAILS 

2.1 Bayesian Cluster Neural Networks 

Feed Forward Neural Networks work by using training data sets 

fed through hidden layers, then backpropagated to reweight. After 

the network has been trained, a validation set will be used as proof 

of the accuracy and test data sets can be run through the model. 

This process allows the Neural Network to not overfit the data it 

was initially given. Bayesian Cluster Neural Networks work in a 

similar fashion, but instead of having one connection between 

nodes, the weights can be changed in between the hidden layers. 

This allows the Bayesian Cluster Neural Networks to change in a 

non-linear fashion, according to variance in the system. This 

model takes a longer time for the computer to process but 

produces a more accurate result. Both the Bayesian Cluster 
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method and the SOM neighbor-weighting model utilize this 

cluster mapping method to format a result. 

2.2 SOM Neighbor-Weighting 

The final product produced for the research took a two-tiered 

approach. First, the Bayesian Cluster model was implemented 

then to solidify the accuracy of the output SOM feature mapping 

was applied. 

     Self-Organized Map Neighbour-weighting, or Feature 

Mapping, namely the Kohonen method [4] was used to analyse the 

final product produced by the data sets, after using the Bayesian 

Cluster method. This method weights nodes based on the 

likelihood that they are close to the predicted value, and produces 

features based on a large amount of ‘hits’ for that specific feature. 

     This is a common technique used in facial recognition, because 

it produces peak nodes on prominent features such as a nose, or 

high cheekbones. For this research the neural network was 

optimized to recognize the highest Reynold’s number, or highest 

amount of ‘turbulence’ within the system. The results of which 

can be seen in the results section of this paper.  

2.3 Data Set Acquisition 

Ionospheric data was taken from the Johns-Hopkins Atmospheric 

Data Center [5] and processed via MATLAB [6]. The data was 

extracted at fixed points in time, which allowed for the data to be 

analyzed without the time component. The Navier-Stokes 

Equations become significantly more complex when solved over 

time and were not within the scope of the research. 

     CFD modelling focuses on the ability to predict a fluid flow 

through time and utilizes the Navier-Stokes Equations to better 

understand turbulence within the system [7]. The data acquired 

from Johns-Hopkins University was a snapshot of the fluid flow 

within one specific section of time and did not consider the flow 

between the times the data was accessioned. This is not to say that 

the model produced in this research would not be able to 

eventually model the fluid flow through time, but that the 

predictions produced are not time dependent, and are to be 

considered instantaneous.  

2.4 The Navier-Stokes Equations 

2.4.1 Format. The Navier-Stokes Equations, shown in Fig. 1, are 

incredibly complex, and not well understood. The basic format of 

the Navier-Stokes equation utilizes the several different variables 

to produce a model of fluid flow with the dependence on 

turbulence which was not included in the previous Euler models 

[1]. 

 

Figure 1: Navier-Stokes Equations in the cartesian coordinate 

system, as well as the continuity equation 

The variables used in the Navier-Stokes equations include 

Reynold’s number, Prandtl number, velocity in each direction, 

pressure, temperature, and the dependence of each of these 

through time [8]. When applying the Neural network, each of 

these variables was an input and was weighted across 10 hidden 

layers.  

2.4.2 Managing the Input Values. The number of values taken 

was large enough to optimize the data within the means of the 

Navier-Stokes equations. Because there is a high dependence of 

each parameter in the Navier-Stokes Equation to all other 

parameters, the optimization of the output was best achieved when 

culled to a smaller data set manageable for a single processor. 

Further research will be focused on larger data sets and 

parameterization. When utilizing the SOM model, the data was 

specifically parameterized to focus on high-Reynold’s number 

areas allowing the computer to be able to process the large 

number of data points taken from each direction within the 

velocity fields (Fig. 2). 

 

 

Figure 2: A velocity field of one of the test data sets used to 

train the neural networks. 

3 RESULTS AND DISCUSSION 

3.1 Bayesian Cluster Output 

The results for the Bayesian Cluster Model were inconclusive 

based on the 496 epochs out of 500 that were run. Both models 

utilized the method of 70% training, 15% validation, and 15% 

test. This means that out of the data used, which included 4096 

inputs, 2867 were used to train the model and 614 were used in 

validation and testing.  The model produced a steady state until 

the final epochs where the mu values increased severely and could 

no longer continue running through the model. This result can be 

seen in Fig. 3 and 4 below, which documents the output of each of 

the epochs according to the iterations run.   
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Figure 3: The steady state of the Bayesian Cluster model. 

Note, at the tail end of the mu plot the value increases 

drastically. This caused the neural network to not be able to 

produce a viable output. 

 

Figure 4: Output elements based on the training and test data 

sets.  

Fig. 4 shows the output for the training and test sets within the 

Bayesian Cluster model. Given the large number of data points 

and the high amount of parameterization that the neural network 

was attempting to achieve, this model was not able to validate the 

output, and/or over-parameterized the model and could not find an 

optimal state. The network was able to cluster the outputs initially, 

allowing them to be more easily used in the second tier of the 

neural network model.  

3.2 SOM Output 

The data taken from the Bayesian Cluster model was then used as 

the initial input of the SOM portion of the neural network. This 

was an initial novel approach to solve the over-parameterization 

of the Bayesian Cluster output set and recreate velocity fields 

utilizing the Reynold’s number as the strongest feature.  

 

Figure 5: SOM Feature map produced for the X direction. 

 

Figure 6: SOM Feature map produced for the Y direction. 

 

Figure 7: SOM Feature map produced for the Z direction.  
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The velocity Field outputs for the SOM neighbor-weighting 

model were not easily concatenable and produced in three 

different figures to show the correlation between the produced 

velocity fields and the test data set (Fig. 8). The size of the data 

sets hindered the ability for the model to be tested multiple times, 

which is further discussed in the conclusions section, however the 

two-tier model managed to achieve an accuracy of .67, to that of 

the validation sets. 

 

 

Figure 8: Visual representation of the data used to validate the 

SOM neighbor-weighted model.  

3.3 Analysis of Model Accuracy 

As discussed previously, this research took a unique approach to 

modeling the flow of a fluid using the Navier-Stokes equations. 

The application of the two different models of neural network 

allowed for a higher accuracy rate to be achieved using the 

Reynold’s number as the most important feature. Other 

parameters could have been used as the main feature used in the 

SOM model and would achieve different results depending on the 

parameter used. The two-tiered approach used in this research 

achieved an accuracy rate of .67, using the six training sets fed 

through the Neural Network. Improvements that could be made to 

this research include a larger amount of validation sets, parallel 

processing and validation through time. However, due to a time 

and resource limitation this research was only validated using one 

set of data. To achieve a higher accuracy and trust in the model 

output the two-tier set up should be run multiple times, while 

achieving similar results.  

4 CONCLUSIONS 

In summary, the ability for neural networks to solve the reproduce 

an accurate model of fluid flow within a finite space was 

reproduced using a two-tier approach to Neural Networks that has 

not previously been attempted. Computational Fluid Dynamics 

researchers have tried to accurately recreate fluid flow over time 

using different models and have not been able to achieve a 

reproducible turbulence model. The Bayesian Cluster and the 

SOM feature neural network models used in tandem were able to 

reproduce velocity fields within a 67% accuracy of the actual 

output. This model of the Navier-Stokes equations was not the 

most accurate model produced it can be expanded upon to 

produce a higher optimization, even given the complexity of the 

problem. This model can be expanded to other non-linear 

differential equation models or can be organized to attain a higher 

accuracy within this model itself. The research presented here 

took a novel approach to solving a complex non-linear problem 

and was able to produce accurate feature maps. The model will be 

expounded upon to produce a higher accuracy, with the utilization 

of more processors and higher parameterization.  

ACKNOWLEDGMENTS 

This research was made possible by Johns-Hopkins University 

Computational Fluid Dynamics data sets, without which the 

models could not have been created. Also, a special thanks to Dr. 

Daniel Mayo and Dr. Justin Oelgoetz who helped in the 

explanation and understanding of neural networks. 

REFERENCES 
[1] I.E. Lagaris, A. Likas, and D. I. Fotiadis. 1998. Artificial neural networks for 

solving ordinary and partial differential equations. IEEE Trans Neural Netw 9, 5 

(Sep 1998), 987–1000. DOI: https://doi.org/10.1109/72.712178 

[2] Sohrab Effati and Morteza Pakdaman. 2010. Artificial neural network approach 

for solving fuzzy differential equations. Inf Sci 180, 8 (April 2010), 1434–1457. 

DOI: https://doi.org/10.1016/j.ins.2009.12.016 

[3] M. Baymani, S. Effati, H. Niazmand, and A. Kerayechian. 2015. Artificial 

neural network method for solving the Naivier-Stokes equations. Neural Comput 

& Applic 26, 4, (May 2015), 765-773. DOI: https://doi.org/10.1007/s00521-014-

1762-2 

[4] F. Murtagh and M. Hernández-Pajares. 1995. The Kohonen self-organizing map 

method: An Assessment. Journal of Classification 12, 2, (Sep. 1995), 165-190. 

DOI: https://doi.org/10.1007/BF03040854 

[5] Johns-Hopkins University. 2018. Johns Hopkins Turbulence Databases. (Feb. 

2018). Retrieved February 10, 2018 from http://turbulence.pha.jhu.edu/ 

[6] MathWorks. 2018. Neural Network Toolbox: User's Guide (R2018a). (Feb. 

2018). Retrieved February 15, 2018 from 

https://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf 

[7] Vic Christianto and Florentin Smarandache. 2008. An exact mapping from 

Navier–Stokes Equation to Schrodinger Equation via Riccati Equation. Prog 

Phys 1, 1, (Jan. 2008), 38–39.  

[8] G. K. Batchelor. 2000. An Introduction to Fluid Dynamics (Cambridge 

Mathematical Library). Cambridge University Press, Cambridge. DOI: 

https://doi.org/10.1017/CBO9780511800955 

 

https://doi.org/10.1007/s00521-014-1762-2
https://doi.org/10.1007/s00521-014-1762-2
https://doi.org/10.1017/CBO9780511800955

