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ABSTRACT
The Sequence Read Archive (SRA), the world’s largest database of
sequences, hosts approximately 10 petabases (1016 bp) of sequence
data and is growing at the alarming rate of 10 TB per day. Yet
this rich trove of data is inaccessible to most researchers: searching
through the SRA requires large storage and computing facilities that
are beyond the capacity of most laboratories. Enabling scientists
to analyze existing sequence data will provide insight into ecology,
medicine, and industrial applications. In this project we specifi-
cally focus on metagenomic sequences (whole community data sets
from different environments). We are developing a set of tools to
enable biologists to mine the metagenomes in the SRA using the
NSF-funded cloud computing resources, Jetstream and Wrangler.
We have developed a proof-of-principle pipeline to demonstrate
the feasibility of the approach. We are leveraging our existing in-
frastructure to enable all scientists to access the SRA metagenomes
regardless of their computational ability and are working to create
a stable pipeline with a science gateway portal that is accessible to
all researchers.
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1 INTRODUCTION
A rapid drop in the cost of sequencing DNA - from roughly $10,000
dollars per Mbp in October of 2001 to less than $0.01 today - has
fueled the rapid growth of the SRA from 1010 bases in March 2007
to 1016 today with no sign of slowing [4] This mass of data is the
result of an international collaboration between the DNAData Bank
of Japan, European Bioinformatics Institute, and National Center
for Biotechnology Information [5]. Despite creating the world’s
largest database of raw sequencing data, efforts to analyze the data
have lagged far behind its growth, leaving a trove of unanalyzed
biological data and the opportunity for big data experiments that
would be preventatively expensive even with lower sequencing
costs.

Data in the SRA is organized into studies, each of which contains
one or more samples. Each sample has one or more experiments,
and each experiment has one or more runs. At the time of writing
there were 2,445,782 experiments and 2,776,555 runs in the SRA
(approximately 80% of experiments have an only a single run). The
genomics community established this database to enable sharing
of the data, but the computational barrier to searching this data
leaves the it separated from the people most qualified to analyze it.

Though there are many types of genomic data within the SRA,
this project focuses on metagenomic datasets because these con-
tain many different organisms and can attract a wider interest of
questions compared to single organism runs. There are two popu-
lar metagenomics approaches: First, Amplicon sequencing where
a single piece of DNA (e.g. the 16S gene from bacteria or COX1
gene from eukaryotes) are amplified from the mixed DNA of many
organisms, and sequencing that en masse. These studies provide a
taxonomic profile of an environment and are less computationally
demanding, but only provide information about which organisms
are present and are incapable of detecting any viruses that may
be in the sample. The second type of study, whole shotgun (WGS)
metagenomics, is where random samples of the genomes in the
environment are sequenced, usually without amplification, and re-
sults in a mixture of all the DNA in the sample [10]. The analysis of
those samples is computationally intensive but provides a detailed
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view of the organisms in the environment and the biochemistry
being performed by those organisms [10]. These studies give a
holistic understanding of bacterial and viral communities never
before possible.

Over the last decade, metagenomics sequencing has focused
on understanding the role of microbes in the environment and
reconstructing genomes out of environmental sequences. With the
growth of the SRA, we can begin to approach metagenomics in
a new way. Instead of asking what genomes or metabolisms are
found in a particular environment, we can ask what environments
contain a gene, protein, genome or metabolism of interest using
the abundance of random sequences from diverse environments in
the SRA. This massive volume of data can also be used to identify
genes that are conserved across environments, or environments
that are hotspots of microbial or gene diversification.

However, this kind of computational approach to microbial ecol-
ogy requires large compute and storage capabilities, which are
beyond the reach of most biologists. The WGS projects in the SRA
are accumulating at roughly 3,000 runs per month (averaged from
June 2016 to June 2017), and the combined WGS data sets exceeds
100TB of data [4].

2 EXPERIMENTAL AND COMPUTATIONAL
DETAILS

2.1 Searching the SRA Examples
2.1.1 Investigating a newly discovered bacteriophage. In 2014

Edwards and colleagues published the description of an 100 kb
bacteriophage, a virus that infects Bacteroides, named crAssphage
[9]. Previously this phage has been found in approximately half
of the human intestinal metagenomics samples tested (n = 59). A
heuristic approach was developed to expand this search and screen
all WGS metagenome data sets within the SRA (screening 100,000
reads from each run) and used that approach to search the entire
SRA for crAssphage. The full details of the approach can be found
at https://github.com/linsalrob/SearchSRA.

The virus was found to be present in 10,260 runs as shown in Fig.
1. This figure demonstrates that some regions of the crAssphage
genome are highly conserved (darker blue) while other regions are
less well conserved (lighter blue). In particular, there are two genes
that appear to be missing in most crAssphage genomes (the two
lighter bands at 30kb). The presence/absence of these genes suggests
a fundamental process in the evolution of this phage, which would
not have been identified without the ability to investigate across
many unique SRA datasets.

2.1.2 Methane Cycle Proteins. In a similar scan, the SRA was
searched for two enzymes: particulate methane monooxygenase
(PMO) and methyl-coenzyme M reductase (MCR) that are criti-
cal elements of the biological methane cycle [7]. RAPSearch2 [20]
was used to compare 221 PMO and MCR protein sequences to
the nucleotide sequences in the SRA. Using ten Jetstream [17][19]
computes all SRA metagenomes were searched for the protein se-
quences in two days’ time. As expected, many of the metagenomes
did not have any similar sequences, but 9,149 metagenomes had at
least one similarity with an expected value of 105 or lower. Mapping
those sequences against the PMO and MCR sequences identified

Figure 1: Coverage of the crAssphage genome (x axis, posi-
tion in bp) in 10,260 metagenomes (y axis). The coverage is
based on log10(counts) as shown in the scale bar at right.

variants of those enzymes. As evidence of the validity of this com-
putational approach, the two runs with the highest number of hits
were from samples where the investigators had specifically hunted
MCR sequences by PCR (SRA runs SRR398144 and SRR2046417).

2.2 XSEDE Resources
Computational resources used for the searchers comes from two
XSEDE resources: Jetstream [17] and Wrangler [11]. Both are co-
located at both Indiana University (IU) and Texas Advanced Com-
puting Center (TACC) but are two very different types of resources.
The former is an OpenStack based compute cloud, while the latter
is a data analysis system with a large flash based storage system.
The resources where chosen because Jetstream can provide the elas-
ticity required for a portal with a varying workload, VMs can be
added automatically to meet the active user request, and Wrangler
provides the required I/O to search the large amount of SRA data.

2.2.1 Cloud Autoscaling with HTCondor. Inside the Jetstream
cluster, user search requests are handled by HTCondor [18], which
is a high throughput computing system well suited for handling
workloads of this type - large amount of single or small number
of threads applications. When users submit a new search, the list
of runs to be searched is checked against the SRA runs available
on Wrangler. Missing SRAs are logged, while available SRA IDs
are grouped together into HTCondor jobs. The jobs are added to a
DAGMan workflow [8] (Fig. 2), with a top-level job indexing the
reference genome, and a final local job to package up the results
for final delivery to the user. The DAGMan workflow is submitted
to the HTCondor queue on the service virtual machine [1][2].

To serve submitted searches, Jetstream virtual machines are auto-
scaled based on the demand. The auto-scaler is implemented using
OpenStack’s shade library, which is a simple high-level Python
module for interacting with OpenStack based clouds [3]. Every 5
minutes, a cron job checks for pending jobs in the HTCondor queue.
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Figure 2: Structure of the HTCondor DAGMan graph.

A decision to scale up is based on 3 metrics: the number of existing
virtual machines running jobs, the number of total pending jobs
and the number of jobs that have been in queue for more than 15
minutes.

To quickly scale up for new searches, the auto-scaler is slightly
more aggressive when starting from an empty cluster by only con-
sidering the total number of pending jobs. Once there are 3 or
more virtual machines running, the auto-scaler switches to only
considering the "old" jobs. The reason is to not oversubscribe - if
jobs go into the queue and are served quickly, there’s likely no
need for additional resources. Currently, the total number of virtual
machines are limited to 20, but the auto-scaler is under constant
development and the scaling decision logic and limits will likely
change as more users are added to the system.

2.2.2 Wrangler Integration. Metagenomes that are classified as
WGSmetagenomes (regardless of the environment fromwhich they
come) are mirrored to a local system and staged for comparisons.
Each month, the incremental new data is downloaded to Wrangler
and used to provide direct access to the data for Jetstream users.

In parallel with the mirroring, 100,000 reads used in the pre-
screening comparison are extracted and staged, integrating the new
datasets into the existing pipeline. The entire data set will be saved
for subsequent comparisons as required. Over the course of this
project this process will be automated so that all data is automati-
cally updated monthly. This automatic pipeline will be released in
common workflow language, so others may automatically mirror
components of the SRA.

The Wrangler directory is directly mounted by the Jetstream vir-
tual machines using a dedicated OpenStack network and NFS. Each
virtual machine has two network interfaces: one for the general
communication between the virtual machines and the internet, and
one for the special address space and route required for communi-
cation with Wrangler. The latter was configured by the Jetstream
and Wrangler administrators. When booting the virtual machine
and attaching the two networks, the default route and hostname

Figure 3: Searching SRA Gateway, Apache Airavata Middle-
ware & Computational Resources.

came from the main network connection, and the default route
provided by the Wrangler network is. This was accomplished by
custom "enter" and "exit" scripts for the DHCP client on the virtual
machines. For example, in the "enter" script, the default route is ig-
nored based on the DHCP provided IP address. Both the auto-scaler
and the search workflows codes are available on Github [1][2].

2.3 Science Gateway and Jetstream
2.3.1 Searching SRA Gateway with Apache Airavata. The Search-

ing SRA science gateway uses Science Gateway Platform as a Ser-
vice [16] (https://scigap.org/).

The SciGaP platform provides gateway services via Apache Aira-
vata [13] middleware. The Searching SRA gateway requires user
identity, accounts, authorization, and the ability to access XSEDE
cloud computational resources Jetstream and Wrangler for com-
putations and user data management as core features from hosted
Apache Airavata middleware. Fig. 3 depicts the components of the
Apache Airavata and its functional interactions with the gateway
instance and computing resource. The hosted Apache Airavata (Sci-
GaP platform) used for the Search SRA gateway is multi-tenanted
and manages multiple science gateways.

2.3.2 User Accounts & Gateway Access. Newly created Search-
ing SRA gateway user accounts require administrator approval
for the user to access Searching SRA software. When user cre-
ates an account, they are in an "access pending" state; once the
gateway administrator approves the account user will become a
"gateway-user" who can launch Searching SRA jobs. The gateway’s
roles also support users with administrative privileges; restricted
administrative privileges allow users to have read-only access to
administrator views [14]. All these gateway users except for ones
in pending state can submit jobs on XSEDE Jetstream cluster. The
admin user has the authorization to control metadata for accessing
Jetstream and running the Searching SRA application, to manage
users, and to monitor and access all user experiments information.
For authentication and authorization searching SRA gateway uses
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Figure 4: Interface and required fields for submitting a scan.

https://www.keycloak.org/ [6], the open source identity and access
management solution.

2.3.3 Searching Against SRA. The searching SRA gateway users
and gateway administrators can create, execute, monitor, share,
and manage computational experiments. Experiments are created
in the gateway to submit search jobs in to the Jetstream cluster.
Fig. 4 depicts the interface for experiment creation. Using this in-
terface, gateway users can upload search IDs or select search IDs
file available in Jetstream to submit searching jobs into Jetstream.
In order to make the interface user-friendly the interface is made
simple, and users are only required to provide the required data
files. The gateway decides where the computation runs as well as
the properties in terms of nodes, CPUs and wall-time required for
the computation. Once the search against the SRA is completed,
users can download output data directly from Jetstream through
the gateway. Users also have the option of sharing their work with
other gateway users. As part of managing their experiments, users
can cancel running experiments and clone existing and execute
new experiments on Jetstream. Experiments can be searched us-
ing "Experiment Browse" interfaces, and searches can be filtered
by creation date, application, experiment name, and description.
Experiments are grouped in to Projects. Projects are shareable with
other users similarly to experiments [15].

2.3.4 Monitoring Job Progress. Once an experiment is created
and launched in the gateway, and the corresponding job is sub-
mitted to Jetstream, both the owner of the experiment (gateway
user) and any gateway administrator can monitor the status. The
experiment status can be monitored in two ways. One option is
for the gateway users to provide their email address during experi-
ment creation to receive messages at job start and end. The other
option is to view the status in the "Experiment Summary" interface
(Fig. 5), once the experiment is launched, the experiment summary

Figure 5: Experiment Summary fields shown to users.

interface is automatically refreshed to show the real-time status
of the job submitted into the Jetstream. Regular users can moni-
tor experiments owned by them and shared with them by other
gateway users. Gateway administrators can monitor all gateway
experiments using the Experiment Statistics page (Fig. 6) in the
Admin Dashboard. This interface allows the gateway administrator
to view the status of all experiments and job submissions.

2.3.5 Gateway Administration. The Admin Dashboard is the
workspace for the gateway administrators. All the administrator
features mentioned earlier are available through the Admin Dash-
board. Apart fromwhat is already discussed, the dashboard provides
a notification feature, extensive user interfaces for managing gate-
way configurations required for compute resources and storage
resources connectivity, and tools for managing credentials through
Credential Store [12] for secure compute resource communications.
Gateway notifications are for messages related to gateway opera-
tions, application availability and for and news related to Jetstream
and Wrangler. In the Searching SRA gateway, administrators need
to configure information required to connect to Jetstream to sub-
mit search jobs. These configurations include adding Jetstream
login name, scratch location, preferred job submission protocol,
and allocation project number. Similarly, Credential Store is used
to generate an SSH credential token and key pair to be used in
compute resource and storage resource communications.
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Figure 6: Dashboard for Admin Users.

Figure 7: Average time spent on each task for 87,702 SRA
metagenomes sampled for 10,000, 100,000, and 1,000,000
reads.

3 RESULTS AND DISCUSSION
3.1 Timing Results

3.1.1 Extracting vs scanning metagenomes. Without the high
capacity storage provided by Wrangler, extracting SRA datasets
becomes too time consuming to sample thousands or even hundreds
of data sets. When runs are downloaded from the SRA, they are
initially in a sparse file format (.sra) and must be extracted to the
more common FASTQ format before they can be searched. Ignoring
the time required to download the data sets (which can exceed 100
TB), the majority of the time spent analysing each run is extracting
the data sets into the FASTQ format. Fig. 7 compares the average
time spent per run on 3 different tasks: extracting the FASTQ file,
searching for crAssphage with Bowtie2, and searching for P2 phage
with Bowtie2. Scans for two different phages were included to
compare the effect of genome size on Bowtie2 search time. Despite
crAssphage having a genome almost three times as large as P2
(97kb vs 33kb), the search times differed by less than 2%.

File extraction is the most time expensive task by a large margin,
consuming 95%, 92%, and 87% of the total time per run for 10,000,

Figure 8: Typical CPU usage for worker VM during a search.

Figure 9: Typical read rate for worker VM during a search.

100,000 and 1,000,000 reads respectively, when searching for two
organisms. In a storage limited approach, these data sets are down-
load, extracted, scanned and deleted in a process that can take days
to weeks and offers no reusability. By storing the extracted data
sets on Wrangler, search times are reduced to a fraction of that
total time - in addition to saving time by being shared between
researchers. All datasets have been pre-processed to eliminate the
need for on-demand extraction of the sequences.

3.1.2 SRA Gateway Searches. Fig. 8 and Fig. 9 show typical CPU
metrics and the network I/O for a worker VM during a search.
In this instance, 86.5% of the CPU is busy in user space (running
Bowtie2) and 7.6% is System space (mostly waiting for data from
the Wrangler filesystem).

The network graph shows the consistent read rate with an av-
erage of 27.7 megabytes per second. These numbers, per virtual
machine, stay consistent as the auto scaling is adding and removing
virtual machines. We have not yet identified a bottleneck in the
number of virtual machines we can scale to - the scaling is currently
mostly constrained by the allocation and the default VM limits per
user in Jetstream.

3.2 Heuristic Error
SRA datasets can range in size from megabytes to tens of giga-
bytes and it is a common occurrence for a file to contain few or
no reads that map to the organism(s) being searched for. For this
reason, 100,000 reads are sampled from each dataset to determine
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if a sufficient quantity of an organism is present. This sampling
introduces a source of false negatives (not finding an organism in
a sample where it is present). The probability of a false negative
is proportional to the total number of reads in the data set and
inversely proportional to the percentage of reads belonging to the
organism. This means the data sets that least contain the search
organism are most likely to be false negatives. In this setting, false
positives are impossible given the stringent matching requirements
of Bowtie 2.

3.3 Training Future Bioinformaticians
Bioinformatics is a rapidly expanding field, and there is a strong
need to train the next generation of researchers and industry pro-
fessionals, but most classes lack the resources to introduce students
to modern bioinformatic techniques. Keeping with the increasing
demand, San Diego State University recently introduced a course
aimed at teaching bioinformatics techniques to undergraduate biol-
ogy students using the freely available data from the SRA, a gen-
erous allocation from Jetstream. The first iteration of the 16-week
course included 7 weeks of training with Unix and programs related
to searching the SRA, 3 weeks of training on available NCBI re-
sources and 6 weeks to conduct an experiment related to antibiotic
resistance or viruses. Future versions of this course aim to reduce
the amount of Unix and BASH related training biology students
must undergo and increase the time spent on data analysis and
interpretation - a goal that will benefit immensely from the SRA
Gateway.

3.4 Conclusion
The SRA Gateway, while still a work in progress, has already begun
demonstrating its usefulness to students and researchers alike by
solving two of the largest challenges when working with the SRA.
First, the web interface removes the need for users to be experienced
with Unix systems and commands before accessing SRA data and
allows researchers from all backgrounds access to efficient parallel
computing infrastructure to conduct experiments without requiring
the explicit knowledge of the infrastructure itself. This interface
also extends to students the opportunity to explore bioinformatics
by conducting novel experiments with real world data. Second,
by having the SRA datasets downloaded, extracted, preprocessed
and hosted on Wrangler, search times are reduced by over 99%.
This advantage saves the time of researches as well as computing
resources by implementing efficient job scheduling with HTCondor
and Jetstream instance autoscaling based on user demand. The final
challenge when working with the SRA is data analysis. Presently,
results from SRA searches are returned to users as a downloadable
compressed folder of Binary Alignment Map (BAM) files, however,
there are plans to introduce general data analysis to the pipeline
using Python. The SRA is constantly accumulating new data and
this vastly underutilized resource holds information relevant to
many diverse areas of biology and medicine. It is the goal of the
SRA Gateway to begin analyzing this plethora of data by removing
the computational barriers between researches and the information
contained in the SRA.
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