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We show how frictions and continuous transfers jointly affect equilibria in a model
of matching in trading networks. Our model incorporates distortionary frictions such
as transaction taxes and commissions. When contracts are fully substitutable for firms,
competitive equilibria exist and coincide with outcomes that satisfy a cooperative solu-
tion concept called trail stability. However, competitive equilibria are generally neither
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1. INTRODUCTION

INTERDEPENDENCE AND SPECIALIZATION OF PRODUCTION are central features of the
modern economy. Many firms have complex, bilateral relationships with dozens of buy-
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ers and suppliers. The terms of these relationships are typically encoded in discrete con-
tracts that specify goods traded or services rendered, delivery dates, penalties for non-
completion, and, of course, prices. Models of matching with contracts, inspired by Gale
and Shapley (1962), elegantly capture discrete interactions in highly differentiated mar-
kets with heterogeneous agents (Crawford and Knoer (1981), Kelso and Crawford (1982),
Roth (1984), Hatfield and Milgrom (2005)). We focus on matching in trading networks in
order to represent complex production linkages in the economy.

Trading networks can suffer from distortionary frictions, such as transaction taxes and
broker commissions. Distortionary frictions introduce wedges between payments and re-
ceipts and therefore make utility imperfectly transferable between agents. Despite the
practical relevance of distortionary frictions, most previous models of matching in trad-
ing networks with continuous prices assume that utility is perfectly transferable between
agents (Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013)).

In this paper, we develop a theory of trading networks in which there are continuous
transfers between agents but distortionary frictions make utility imperfectly transferable.
We establish two results. First, we provide sufficient conditions for the existence of com-
petitive equilibria that apply in the presence of discrete contracts and distortionary fric-
tions. Second, we show that there is an equivalence between competitive equilibrium and
an intuitive cooperative solution concept. Our equivalence result is in the spirit of Au-
mann (1964) but holds for fixed, finite markets and applies in the presence of frictions.
Therefore, as we will argue, our equivalence result provides new cooperative foundations
for competitive equilibrium and competitive foundations for the cooperative solution con-
cept that we consider.

To model trading networks, we follow Hatfield et al. (2013) and Hatfield, Kominers,
Nichifor, Ostrovsky, and Westkamp (2018) and assume that agents interact via an ex-
ogenously specified set of bilateral trades. A trade specifies who is trading, what good or
service is being traded, and any non-pecuniary parameters of exchange. Trades also have
directions that correspond to the flow of goods: upstream trades represent purchases and
downstream trades represent sales (Ostrovsky (2008)). In a market outcome, transfers
are made for every realized trade, encapsulating the role of money in the economy. An
outcome is summarized by a set of realized contracts, each of which specifies a trade and
a price.

To model distortionary frictions, we introduce a novel ingredient to the trading network
framework. Specifically, we allow agents to place different values on transfers associated
to different trades in order to capture wedges between payments and receipts. This fea-
ture allows our model to capture frictions such as transaction taxes and commissions.

Our first main result provides sufficient conditions for the existence of competitive equi-
libria. The key condition for existence is that preferences over contracts are fully substi-
tutable (Ostrovsky (2008), Hatfield and Kominers (2012), Hatfield et al. (2013))—that
is, that upstream (resp. downstream) trades are grossly substitutable for each other, and
that upstream and downstream trades are grossly complementary to one another. Full
substitutability can be regarded as the requirement that the goods that flow in trades are
grossly substitutable (Baldwin and Klemperer (2019), Hatfield, Kominers, Nichifor, Os-
trovsky, and Westkamp (2019)). We show that full substitutability and a mild regularity
condition together ensure that competitive equilibria exist in our model.1

1As Hatfield and Kominers (2012) (resp. Hatfield et al. (2013)) showed, full substitutability is necessary in
a maximal domain sense for the existence of equilibria in trading networks with discrete and bounded prices
(resp. with transferable utility).
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To relate the competitive and cooperative approaches to the analysis of markets with
frictions, we first explore cooperative interpretations of competitive equilibria. Standard
solution concepts in matching theory are stability (in the sense of Hatfield et al. (2013))—
which requires that there is no group of firms that can commit to recontracting among
themselves (while possibly dropping some existing contracts)—and the core. However,
we show that in the presence of frictions, competitive equilibrium outcomes are generally
neither stable nor in the core. Moreover, stable outcomes do not exist in general even
when contracts are fully substitutable.

Therefore, we use a different cooperative solution concept to analyze trading networks
with frictions. An outcome is trail-stable if it is immune to sequential deviations in which
a firm that receives an upstream (resp. downstream) contract offer can either accept the
offer outright or make an additional downstream (resp. upstream) contract offer (Fleiner,
Jankó, Tamura, and Teytelboym (2018)). Trail stability is an extension of Gale and Shap-
ley’s (1962) pairwise stability property to trading networks. We show that competitive
equilibrium outcomes are always trail-stable. In particular, trail-stable outcomes exist
even in the presence of frictions whenever competitive equilibria exist.

Trail stability also has a competitive interpretation. We show that trail-stable outcomes
can be supported by competitive equilibrium prices under full substitutability and regu-
larity conditions. As an outcome is a set of realized contracts, it only specifies the prices
of realized trades. Hence, the crucial part of the proof is to construct equilibrium prices
for unrealized trades as well. Our results show that trail-stable outcomes are essentially
equivalent to competitive equilibria—even in the presence of frictions.

From an applied perspective, our model may be of interest to structural econometri-
cians. Recent work on estimation in matching markets with transfers has focused on fric-
tionless trading networks (Fox (2017, 2018), Fox, Hsu, and Yang (2018)) and two-sided
markets with frictions (Cherchye, Demuynck, De Rock, and Vermeulen (2017), Galichon,
Kominers, and Weber (2019)). Our model allows for both frictions and interconnected-
ness, which are both key features of markets such as the real estate market. Structural
methods based on our model would allow an econometrician to partially identify pref-
erences by assuming that the observed market outcome is trail-stable—or, equivalently,
obtained from a competitive equilibrium.

Most previous models of matching in trading networks imposed significant additional
conditions on the structure of the trading network, the space of contracts, or preferences.
Ostrovsky (2008), Westkamp (2010), and Hatfield and Kominers (2012) derived existence
and structural results for acyclic networks, which cannot contain “horizontal” trade be-
tween intermediaries. Hatfield et al. (2018), Fleiner et al. (2018), and Adachi (2017) ex-
tended the analysis of Ostrovsky (2008) to general trading networks. However, Ostrovsky
(2008), Westkamp (2010), Hatfield and Kominers (2012), and Fleiner et al. (2018) all as-
sumed that there are finitely many contracts—ruling out continuous or unbounded prices
and precluding comparisons with competitive equilibrium. Hatfield et al. (2013) consid-
ered general trading networks with continuous prices and technological constraints, but
assumed that utility is perfectly transferable—ruling out both distortionary frictions and
income effects.2  Hatfield et al. (2018) introduced continuous prices into discrete models
of matching in trading networks—allowing for technological constraints and without as-
suming that utility is transferable. Our model specializes that of Hatfield et al. (2018) to
accommodate an analysis of competitive equilibria. Hatfield et al. (2018) also analyzed

2Hatfield et al. (2013) allowed for fixed transaction costs, such as shipping costs and lump-sum transaction
taxes, but not for proportional transaction taxes and commissions.
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the properties of stable outcomes—which do not generally exist in our model even when
competitive equilibria exist. In contrast, we focus on the existence of trail-stable outcomes
and their relationship to competitive equilibria.

Our work also builds on large literatures on one-to-one and many-to-one matching with
imperfectly transferable utility (see, e.g., Dupuy, Galichon, Jaffe, and Kominers (2017)
and Galichon et al. (2019)). The source of imperfect transferability—that is, whether it
is due to frictions or income effects—is irrelevant in both one-to-one and many-to-one
matching. In our model, on the other hand, frictions can cause trail-stable outcomes and
competitive equilibria to be Pareto-inefficient, while income effects do not give rise to
Pareto inefficiency.

More broadly, our paper builds on a rich literature on competitive equilibrium with in-
divisible goods. In that literature, it is typically assumed that utility is perfectly transferable
(see, e.g., Gul and Stacchetti (1999), Sun and Yang (2006), and Baldwin and Klemperer
(2019)), ruling out both distortionary frictions and income effects. Danilov, Koshevoy,
and Murota (2001) showed that competitive equilibria exist for certain classes of prefer-
ences with complementarities and income effects, but they ruled out frictions. We assume
a substitutability condition, but allow for both frictions and income effects.

This paper proceeds as follows. Section 2 introduces the model. Section 3 explains how
our model captures frictions and describes leading examples. Section 4 presents sufficient
conditions for the existence of competitive equilibria. Section 5 defines trail stability and
relates it to competitive equilibrium. Section 6 describes how competitive equilibrium
and trail stability relate to other cooperative solution concepts. (We present the details
of these relationships in Appendix E in the Supplemental Material (Fleiner, Jagadeesan,
Jankó, and Teytelboym (2019)).) Section 7 is a conclusion. Appendix A formulates equiv-
alent definitions of full substitutability that we use in the proofs of our main results. (We
prove that the definitions are equivalent in Appendix D in the Supplemental Material.)
Appendices B and C contain the proofs of the results in the text.

2. MODEL

Our model is based on that of Hatfield et al. (2018) but requires that prices be contin-
uous and unbounded.

2.1. Firms and Contracts

There is a finite set F of firms and a finite setΩ of trades. Each tradeω ∈Ω is associated
to a buyer b(ω) ∈ F and a seller s(ω) ∈ F . Trades specify what is being exchanged as well
as any non-pecuniary contract terms (Hatfield et al. (2013)).

A contract is a pair (ω�pω) that consists of a trade ω and a price pω ∈ R for ω. Thus,
the set of contracts is X =Ω×R. For a set of contracts Y ⊆X , we let

τ(Y)= {
ω ∈Ω ∣∣ (ω�pω) ∈ Y for some pω

}
denote the set of trades that are associated to contracts in Y . An outcome is a set Y ⊆X
of contracts such that each trade is associated with at most one price in Y—formally,
|τ(Y)| = |Y |.

Given a set Ξ ⊆Ω of trades and a firm f ∈ F , let Ξ→f denote the set of trades in Ξ in
which f acts as a buyer, let Ξf→ denote the set of trades in Ξ in which f acts as a seller,
and let Ξf =Ξ→f ∪Ξf→ denote the set of trades in Ξ in which f is involved (as either
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a buyer or as a seller). For a set Y ⊆X of contracts, we define subsets Y→f , Yf→, and Yf
analogously.

An arrangement is a pair [Ξ;p] of a set of trades Ξ ⊆ Ω and a price vector p ∈ RΩ.
Given an arrangement [Ξ;p], we define an associated outcome κ([Ξ;p])⊆X by

κ
([Ξ;p]) = {

(ω�pω)
∣∣ω ∈Ξ}

�

That is, κ([Ξ;p]) is the outcome at which the trades in Ξ are realized at the prices given
by p. Unlike outcomes, arrangements specify prices even for unrealized trades.

2.2. Utility Functions and Transfers

Each firm’s utility depends only on the trades that involve the firm and on the transfers
that it receives. Formally, firm f has a utility function uf :P(Ωf )×RΩf → R∪ {−∞}.3

Three features of our specification of utility functions are worth highlighting. First, the
utility function depends on the entire vector of transfers (as opposed to merely on net
transfers). Hence, we allow firms to place different marginal values on transfers associ-
ated to different trades; as we show in Section 3, this feature allows our model to capture
distortionary frictions. Second, we allow the utility function to take value −∞ to cap-
ture technological constraints (Hatfield et al. (2013)). Specifically, we set uf (Ξ� t)= −∞
for all transfer vectors t if the set Ξ of trades is technologically infeasible for f . Last,
while utility depends on the transfers associated to unrealized trades, firms do not receive
transfers for unrealized trades in market outcomes.

We assume that uf (Ξ� t) is continuous in t and that

t ≤ t ′ =⇒ uf (Ξ� t)≤ uf (Ξ� t ′)
with equality if and only if uf (Ξ� t) = −∞, so transfers are relevant to firms whenever
a set of trades is feasible. We also assume that uf (∅�0) ∈ R, so autarky is feasible. The
transferable utility trading network model of Hatfield et al. (2013) is recovered when

uf (Ξ� t)= vf (Ξ)+
∑
ω∈Ωf

tω (1)

for some valuation function vf :P(Ωf )→ R∪ {−∞}.
To analyze competitive equilibria, we need to consider firms’ demands for trades at any

given price vector. Prices give rise to transfers in the following manner. Firms receive no
transfer for a trade if they do not agree to the trade. Firms receive transfers equal to the
prices of any realized sales (downstream trades) and pay transfers equal to the prices of
any realized purchases (upstream trades). Maximizing utility at a price vector p ∈ RΩf

gives rise to a collection of sets of demanded trades

Df(p)= arg max
Ξ⊆Ωf

uf
(
Ξ�

(
pΞf→� (−p)Ξ→f

�0Ωf \Ξ
))
�

Thus, Df is the demand correspondence of firm f .
As is typical in matching theory, we also need to consider firms’ choices from sets of

available contracts. Given a firm f and an outcome Y ⊆ Xf , the utility of Y for f is

3We write P(Z) for the power set of a set Z.
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Uf(Y) = uf (τ(Y)� tf (Y)), where tf (Y)ω is the transfer associated with trade ω in Y .4
We define the choice correspondence Cf :P(Xf )⇒P(Xf ) by

Cf(Y)= arg max
outcomes Z⊆Y

Uf (Z)�

Since prices are continuous, firms may be indifferent between certain outcomes, so the
choice correspondence is generally multi-valued.

2.3. Competitive Equilibrium

In a competitive equilibrium, firms act as price-takers and all markets clear. Here, the
market for a trade clears at a specified price if the trade is either demanded by both the
buyer and the seller or it is demanded by neither. Therefore, in a competitive equilibrium,
buyers and sellers demand the same sets of trades at the prices that they face. As in
Hatfield et al. (2013), in order to fully specify a competitive equilibrium, we need to assign
prices to all trades—including ones that are not realized.

DEFINITION 1: An arrangement [Ξ;p] is a competitive equilibrium if Ξf ∈Df(pΩf ) for
all f .

As interchangeable trades with different counterparties can be priced differently, our
competitive equilibria can have personalized prices (as in Hatfield et al. (2013)).5 We call
an outcome A a competitive equilibrium outcome if A= κ([Ξ;p]) for some competitive
equilibrium [Ξ;p].

3. DISTORTIONARY FRICTIONS

In our model, firms may value transfers from different trades differently, so a unit of
tω might be worth less to the firm than a unit of tω′ .6 This feature allows our model to
capture (in a reduced form) distortionary frictions such as variable transaction taxes and
commissions. This section illustrates exactly how our model can capture transaction taxes
and how they can in turn affect competitive equilibria.

3.1. Capturing Transaction Taxes

Suppose, for example, that λ proportion of every transfer must be paid to the govern-
ment as a tax. We assume that the recipient of the transfer pays the transaction tax—this

4Formally, we define a vector tf (Y) ∈R
f by letting

tf (Y)ω =

⎧⎪⎨⎪⎩
0 if ω /∈ τ(Y)�
pω if (ω�pω) ∈ Yf→�
−pω if (ω�pω) ∈ Y→f

for each trade ω ∈
f .
5For example, trades of the same good with different counterparties can have different prices in a competi-

tive equilibrium.
6That is, firms can have different marginal rates of substitution between transfers associated to different

trades.
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assumption is without loss of generality. Thus, the net-of-tax transfer received or paid by
a firm for a trade ω is

Tω(tω)=
{
(1 − λ)tω if tω ≥ 0�
tω if tω < 0�

(2)

where tω is the gross transfer (Dupuy et al. (2017)). Hence, when tω ≥ 0, the firm is a
recipient of the transfer and receives (1 − λ)tω; when tω < 0, the firm is a payer and
pays |tω| in full. As a result, if firm f has quasilinear preferences and valuation function
vf :P(Ωf )→ R∪ {−∞}, then the utility function uf is

uf (Ξ� t)= vf (Ξ)+
∑
ω∈Ωf

Tω(tω)� (3)

When λ < 1 and vf (∅) ∈ R, the utility function uf satisfies our conditions on preferences
(i.e., it is continuous and satisfies the requisite monotonicity condition). Note that trans-
action taxes make utility imperfectly transferable even if preferences are quasilinear.7

We can model transaction taxes similarly even in the presence of income effects. If firm
f has utility function ûf before taxes, then the net-of-tax utility function is

uf (Ξ� t)= ûf (Ξ� (Tω(tω))ω∈Ωf
)
� (4)

More generally, our framework can capture nonlinear transaction taxes and subsidies.
If a tax of Λω(tω) must be paid on a transfer of size tω ≥ 0 for trade ω, then we can take
the net-of-tax transfer function Tω to be

Tω(tω)=
{
tω −Λω(tω) if tω ≥ 0�
tω if tω < 0�

in (4) to define the net-of-tax utility function. The case of Λω(tω)= λtω recovers the pro-
portional transaction tax discussed above. If ûf is continuous and satisfies the requisite
monotonicity condition and marginal tax rates are strictly less than 1,8 then uf is con-
tinuous and satisfies the requisite monotonicity condition as well. It is straightforward to
extend the definition of Tω to capture direction-dependent transaction taxes.

Commissions that comprise a fraction of sale prices (such as real estate commissions)
can be straightforwardly represented as transaction taxes. More generally, as our frame-
work allows for imperfectly transferable utility, it can capture settings in which there is
a complex set of feasible surplus distributions between counterparties (Galichon et al.
(2019)).9 For sake of simplicity, we focus on transaction taxes as the source of imperfect
transferability in our leading examples.

3.2. Leading Examples

We now illustrate how distortionary frictions can affect competitive equilibria. The first
example considers a cyclic economy in which firms have quasilinear preferences and trans-

7We thank a referee for this observation.
8Formally, we require that Λω be continuous, that Λω(0) = 0, and that x2 −Λω(x2) < x1 −Λω(x1) for all

x1 > x2 > 0 to ensure that the utility functions satisfy the requisite monotonicity condition.
9For example, as Galichon et al. (2019) showed, matching models with imperfectly transferable utility can

capture the “collective” model of intra-household bargaining (Chiappori (1988)).



1640 FLEINER, JAGADEESAN, JANKÓ, AND TEYTELBOYM

f1

ζ

��

f2

ψ

��
f1

ζ

��

ζ′

��

f2

ψ

��

f3

(a) Example 1. (b) Example 2.

FIGURE 1.—Trades in Examples 1 and 2. Arrows point from sellers to buyers.

action taxes are incorporated as discussed in Section 3.1. We show that competitive equi-
libria can be Pareto-inefficient and hence that competitive equilibrium outcomes are gen-
erally not in the core.

EXAMPLE 1—A Pareto-Inefficient Competitive Equilibrium: As depicted in Fig-
ure 1(a), there are two firms, f1 and f2, which interact via two trades. There is a propor-
tional transaction tax of λ = 10%. The firms share the same quasilinear utility function
(see (2) and (3)) with valuation v= vf1 = vf2 defined by

v(∅)= 0�

v
({ζ�ψ}) = 10�

v
({ζ}) = v({ψ}) = −∞�

There are two sets of trades that can be supported in competitive equilibria: namely,
∅ and {ζ�ψ}. For example, the arrangement [{ζ�ψ};p] is a competitive equilibrium
if −100 ≤ pζ = pψ ≤ 100, and the arrangement [∅;p] is a competitive equilibrium if
pζ = pψ ≥ 100 or pζ = pψ ≤ −100.10 The competitive equilibria that support the autarky
outcome are all Pareto-inefficient.11

In contrast, in markets without transaction taxes or other distortionary frictions, com-
petitive equilibria are in the core (and hence Pareto-efficient).

The second example shows that adding an outside option for f1 to Example 1 can shut
down trade between f1 and f2 due to pecuniary externalities. In the context of Examples 1
and 2, adding an outside option can cause prices to become extreme, inducing heavy
trading losses (due to taxes) that shut down the market.

EXAMPLE 2—An Outside Option That Shuts Down a Market: As depicted in Fig-
ure 1(b), there are three firms, f1, f2, and f3, which interact via three trades. There is
a proportional transaction tax of λ = 10%. The firms have quasilinear utility functions

10In general, the arrangement [{ζ�ψ};p] is a competitive equilibrium if and only if

min{pζ�0�9pζ} + min{−pψ�−0�9pψ} ≥ −10 and min{−pζ�−0�9pζ} + min{pψ�0�9pψ} ≥ −10�

Similarly, the arrangement [∅;p] is a competitive equilibrium if and only if

min{pζ�0�9pζ} + min{−pψ�−0�9pψ} ≤ −10 and min{−pζ�−0�9pζ} + min{pψ�0�9pψ} ≤ −10�

11The Pareto inefficiency in Example 1 persists even if tax revenue is remitted back to firms in the market,
as f1 and f2 fail to realize any of the potential gains from trade at the autarky outcome.
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(see (2) and (3)), where we let vfi denote the valuation of firm fi. We let vfi(∅)= 0 for all
firms. Extending Example 1, firm f1’s valuation is defined by

vf1
({ζ�ψ}) = vf1

({
ζ ′�ψ

}) = 10�

vf1
({ζ}) = vf1

({
ζ ′}) = vf1

({ψ}) = −∞�

vf1
({
ζ�ζ ′}) = vf1

({
ζ�ζ ′�ψ

}) = −∞�

As in Example 1, firm f2’s valuation is defined by

vf2
({ζ�ψ}) = 10�

vf2
({ζ}) = vf2

({ψ}) = −∞�

Firm f3’s valuation is defined by vf3({ζ ′})= 300.
Trade ζ ′ cannot be realized in equilibrium due to the technological constraints of f1

and f2.12 Hence, we must have that pζ′ ≥ 300 in every competitive equilibrium, as f3 must
weakly prefer ∅ over {ζ ′} in equilibrium. For trade to occur, f1 would have to prefer ζ
over ζ ′, and so we would have that pζ ≥ pζ′ ≥ 300. With 10% taxation and pζ ≥ 300, at
least $30 in taxes would have to be paid if ζ were realized. But $30 exceeds the gains from
trade between f1 and f2, so trade cannot occur in any competitive equilibrium despite the
presence of gains from trade. An example of a competitive equilibrium is [∅;p], where
pζ = pψ = pζ′ = 350. Thus, introducing an outside option that is not used in equilibrium
can shut down a market when there are distortionary frictions.

In contrast, without transaction taxes, adding an outside option cannot cause competi-
tive equilibria to become Pareto-inefficient (by the First Welfare Theorem).

4. EXISTENCE OF COMPETITIVE EQUILIBRIA

Because trades are indivisible, competitive equilibria need not exist in our model with-
out further assumptions on preferences. The key condition for our existence result is full
substitutability (Hatfield et al. (2013)).13

Intuitively, full substitutability requires that every firm view its upstream trades as gross
substitutes for each other, its downstream trades as gross substitutes for each other, and its
upstream and downstream trades as gross complements for one another.14 More precisely,
full substitutability requires that expansions in the set of upstream (resp. downstream)
options and contractions in the set of downstream (resp. upstream) options only make
upstream (resp. downstream) contracts less attractive and downstream (resp. upstream)
contracts more attractive for a firm.

12To see why, note that if ζ ′ is realized, then ψ must be realized and ζ cannot be realized (due to f1’s
preferences). But f2’s preferences require that ζ be realized whenever ψ is realized.

13Full substitutability generalizes gross substitutability (Kelso and Crawford (1982), Gul and Stacchetti
(1999)). We use the choice-language full substitutability condition introduced by Hatfield et al. (2013), which
extends the same-side substitutability and cross-side complementarity conditions of Ostrovsky (2008) to choice
correspondences.

14Section IIB in Hatfield et al. (2013) provides a detailed discussion of the full substitutability condition in
the context of trading networks with transferable utility. For example, full substitutability rules out comple-
mentarities between inputs.
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ASSUMPTION 1—Full Substitutability (FS)—Hatfield et al. (2013): For all f ∈ F and all
finite sets of contracts Y�Y ′ ⊆ Xf with Yf→ ⊆ Y ′

f→ and Y→f ⊇ Y ′
→f , if Cf(Y) = {Z} and

Cf(Y ′)= {Z′}, then we have that Z′ ∩Yf→ ⊆Z and that Z ∩Y ′
→f ⊆Z′.

Technically, we impose the full substitutability condition only on sets of contracts from
which a firm’s utility-maximizing choice is unique. In Appendix A, we show that full sub-
stitutability is equivalent to a substitutability property that deals with indifferences more
explicitly and to the weak quasisubmodularity of the indirect utility function (in a sense
similar to Hatfield, Jagadeesan, and Kominers (2019)).15

Hatfield et al. (2013) also needed to assume that firms’ valuations of sets of trades are
never +∞ to ensure that competitive equilibria exist. We impose a similar condition that
is adapted to settings in which utility is not perfectly transferable. Our condition requires
that the compensating variations of moving from autarky to trade be bounded below—
that is, that no set of trades be so desirable that it is preferred to autarky at any level of
net transfers. This condition is satisfied in transferable utility economies when valuations
are bounded above.

ASSUMPTION 2—Bounded Compensating Variations (BCV): For all f ∈ F , we have

inf
(Ξ�t)|uf (Ξ�t)≥uf (∅�0)

∑
ω∈Ωf

tω >−∞�

BCV requires that net transfers
∑

ω∈Ωf tω be bounded below over all transfer vectors
t that are acceptable alongside any set Ξ of trades. If a firm is willing to accept some
set of trades alongside arbitrarily negative net transfers, then BCV fails. BCV is a weak
assumption that is likely to be satisfied in any real-world economy.16 In particular, BCV is
satisfied in Examples 1 and 2. Note that BCV allows for technological constraints, in that
it permits sets of trades to be so undesirable to a firm that they remain less desirable than
autarky regardless of how much the firm receives in net transfers.

Competitive equilibria may not exist under FS if BCV is not satisfied.

EXAMPLE 3—Competitive Equilibria Need Not Exist Under FS Alone: Consider two
firms, b and s, and one trade ω between them with s(ω)= s and b(ω)= b. Suppose that
s is not willing to sell ω at any (finite) price, but b would buy ω at any (finite) price.
Note that the market does not clear at any price—b always demands ω and s never de-
mands ω. The issue is that the variation needed to compensate b for going from autarky
to trade is −∞. If b’s compensating variation were −p, then autarky could be sustained
in equilibrium at any price above p.

On the other hand, FS and BCV together ensure that competitive equilibria exist.

15Our equivalence results are analogues of those in Hatfield et al. (2019) but apply even in environments
with non-quasilinear utility functions. Just as several proofs in Hatfield et al. (2013) use the equivalence be-
tween the definitions of full substitutability proposed by Hatfield et al. (2019), several of our proofs use the
equivalence between the definitions of full substitutability introduced in Appendix A.

16If transfers are denominated in different currencies, then BCV may only be satisfied after redenomination.
For example, suppose that some trades are denominated in dollars and others in pounds, and that £1 = $2. If
there are no transaction taxes, then firms will be willing to sustain a −$3M transfer alongside a £2M transfer for
allM > 0—a violation of BCV. But BCV can be satisfied if the pound-denominated trades are redenominated
in dollars.
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THEOREM 1: Under FS and BCV, competitive equilibria exist.

Theorem 1 generalizes the existence results of Kelso and Crawford (1982) and Hatfield
et al. (2013). Unlike Kelso and Crawford (1982), we allow for a trading network structure.
Unlike Hatfield et al. (2013), we allow utility to be imperfectly transferable between firms.

Our proof of Theorem 1 proceeds in three steps. First, we modify firms’ preferences to
bound their willingness to pay for trades. Second, we use BCV to show that every com-
petitive equilibrium in the modified economy is in fact a competitive equilibrium in the
original economy. Third, we use FS to construct a competitive equilibrium in the modified
economy and complete the proof. Our overall strategy is similar to the strategy that Hat-
field et al. (2013) employed to prove their existence result (Theorem 1 in Hatfield et al.
(2013)). However, our arguments for the first and second steps are novel—we cannot ap-
ply the corresponding reasoning from Hatfield et al. (2013) because utility is imperfectly
transferable in our model.

We now describe each of the steps in the proof of Theorem 1 in more detail.

Step 1: We construct a modified economy by giving all firms options to execute all trades
at very undesirable prices. Specifically, we give every firm the option to execute any trade
by paying a cost of Π. (We choose the value of Π in Step 2.) Hence, firms have bounded
willingness to pay for all trades in the modified economy (in a sense that we make precise
in Section 5.4). We show that introducing these options preserves full substitutability.

Hatfield et al. (2013) applied a related—but not analogous—transformation in the
proof of their existence result. Specifically, Hatfield et al. (2013) gave firms both the op-
tion to execute a trade by paying a cost of Π and the option to dispose of an undesired
trade for a cost of Π. However, the Hatfield et al. (2013) approach does not generally
preserve full substitutability when forms of transfer are imperfectly substitutable.

Step 2: Using BCV, we choose Π to ensure that all competitive equilibria in the mod-
ified economy are in fact competitive equilibria in the original economy. Specifically, we
set

Π = 1 −
∑
f∈F

inf
(Ξ�t)|uf (Ξ�t)≥uf (∅�0)

∑
ω∈Ωf

tω�

which is finite due to BCV. With this choice of Π, firms do not use the options to execute
trades in any competitive equilibrium in the modified economy. Indeed,Π exceeds the to-
tal surplus in the economy, and hence if an option were used in a competitive equilibrium,
then some firm would have to be worse off in the equilibrium than under autarky.

In contrast, Hatfield et al. (2013) chose Π to be greater than the sum of the maximum
absolute values of all firms’ valuations. We cannot apply this approach directly because
firms’ preferences cannot generally be described by valuations of bundles of trades in our
model.

Step 3: To complete the proof, we show that competitive equilibria exist in the modi-
fied economy. Our argument for this step follows familiar arguments from Crawford and
Knoer (1981) and Kelso and Crawford (1982). Specifically, we discretize prices and use
a generalized Deferred Acceptance algorithm (Ostrovsky (2008), Hatfield and Kominers
(2012), Fleiner et al. (2018)) to show the existence of approximate equilibria in the mod-
ified economy, and then take limits to obtain a competitive equilibrium. This argument
rests crucially on the fact (from Step 1) that in the modified economy, full substitutability
is satisfied and firms have bounded willingness to pay for trades.
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5. COMPETITIVE EQUILIBRIUM AND TRAIL STABILITY

We now study the relationships between competitive equilibria and cooperative solu-
tion concepts from matching theory. Instead of assuming that firms are price-takers, we
allow firms to recontract while keeping or dropping existing contracts.

A common restriction in cooperative solution concepts in the matching literature is
individual rationality, which requires that no firm want to unilaterally drop any realized
contract.

DEFINITION 2—Roth (1984), Hatfield et al. (2013): An outcome A⊆X is individually
rational if Af ∈ Cf(Af ) for all f ∈ F .

5.1. Instability of Competitive Equilibrium

One cooperative solution concept in the matching literature is stability (Roth (1984),
Hatfield and Milgrom (2005), Hatfield and Kominers (2012)). At a stable outcome, there
is no block—that is, no group of firms that can commit to recontracting among themselves
while being free to drop any contracts. Hatfield et al. (2013) extended the definition of
stability to settings with indifferences.

DEFINITION 3—Hatfield et al. (2013): A non-empty set of contracts Z ⊆X \A blocks
an outcome A if, for all f ∈ F and Y ∈ Cf(Af ∪Zf), we have that Zf ⊆ Y . An outcome
is stable if it is individually rational and unblocked.

Unfortunately, competitive equilibria may be unstable in the presence of frictions;
moreover, stable outcomes need not exist even when competitive equilibria do.

EXAMPLE 4—Stable Outcomes Need Not Exist When Competitive Equilibria Exist:
Consider the trading network from Example 2. We claim that there are no stable out-
comes. Indeed, note that the autarky outcome—which is the unique competitive equilib-
rium outcome—is unstable because it is blocked by trade between f1 and f2. Note also
that f1 and f3 cannot trade in any individually rational outcome due to the technological
constraints faced by f1 and f2.

On the other hand, every individually rational outcome that involves trade between f1

and f2 is blocked by trade between f1 and f3. To see why, note that trade ζ cannot be
realized at any price greater than $200 in an individually rational outcome, as the surplus
generated by trade between f1 and f2 is only $20 and making a transfer of more than
$200 requires paying a transaction tax of more than $20. But every outcome in which
the trade ζ is realized at a price of at most $200 is blocked by any contract (ζ ′�pζ′) with
200<pζ′ < 300.17

Given the non-existence of stable outcomes and the instability of competitive equilibria,
stability may be too stringent of a solution concept in general networks. We therefore turn
to another cooperative solution concept.

17An alternative proof that no stable outcomes exist can be given using one of our results—Theorem E.1 in
the Supplemental Material—which guarantees that all stable outcomes are competitive equilibrium outcomes
under FS and BCV. Indeed, note that the autarky outcome is not stable. However, any stable outcome must
be a competitive equilibrium outcome by Theorem E.1, and we showed in Example 2 that trade does not occur
in any competitive equilibrium.
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5.2. Trail Stability

Trail stability is an extension of pairwise stability (in the sense of Gale and Shapley
(1962)) to trading networks (Fleiner et al. (2018)). A trail is a sequence of contracts such
that the buyer of each contract in the sequence (except for the last) is the seller of the next
contract. A trail may involve a firm more than once and can begin and end with contracts
that involve the same firm.

DEFINITION 4: A sequence of contracts (x1� � � � � xn) is a trail if b(xi) = s(xi+1) for all
1 ≤ i≤ n− 1.

Trail-stable outcomes are immune to sequential deviations called locally blocking trails.
A locally blocking trail begins with a firm f1 offering a sale contract z1 that it wishes to sign
given its existing contracts, possibly while dropping some existing contracts. The buyer f2

may accept the offered contract z1 while dropping some of its existing contracts, in which
case a locally blocking trail is formed. The buyer may also hold the proposal z1 and offer
an additional sale contract z2 to the original proposer or to another firm. This trail of
linked offers z1� � � � � zn continues until a firm fn+1 accepts an offered contract zn without
offering another sale contract, in which case a locally blocking trail is formed.18

Our formal definition of trail stability extends the definition given by Fleiner et al.
(2018) to settings with indifferences.

DEFINITION 5: A trail (z1� � � � � zn) ∈ (X \A)n locally blocks an outcome A if:
• z1 ∈ Y \A for all Y ∈ Cf1(Af1 ∪ {z1}), where f1 = s(z1);
• for 1 ≤ i ≤ n− 1, we have that {zi� zi+1} ⊆ Y \A for all Y ∈ Cfi+1(Afi+1 ∪ {zi� zi+1}),

where fi+1 = b(zi)= s(zi+1); and
• zn ∈ Y \A for all Y ∈ Cfn+1(Afn+1 ∪ {zn}), where fn+1 = b(zn).

Such a trail is called a locally blocking trail. An outcome is trail-stable if it is individually
rational and there is no locally blocking trail.

A trail locally blocks an individually rational outcome if, at each point at which a trail
passes through a firm, the firm would like the one or two contracts that are available to
it locally in the trail (when given access to the existing contracts). Intuitively, one should
think of contracts in a locally blocking trail as being proposed via telephone by a manager
at one firm to a manager at another (Fleiner et al. (2018)). If the sequence of phone
conversations returns to a firm, a different manager (e.g., one from another division)
answers the phone and considers the latest offer. Her decisions are independent of the
offers received and made by other managers. Any manager’s unilateral decision to accept
an offered contract completes a locally blocking trail.

5.3. A Cooperative Interpretation of Competitive Equilibria

The main result of this section provides a cooperative interpretation of competitive
equilibrium that holds even in the presence of frictions.

THEOREM 2: Every competitive equilibrium outcome is trail-stable.

18Note that locally blocking trails can also develop in the reverse direction, with firms making offers to buy
instead of offers to sell.
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Theorem 2 implies that firms cannot improve upon competitive equilibrium outcomes
by deviating along trails. In light of Theorem 2, every prediction of our model that holds
in all trail-stable outcomes must also hold in all competitive equilibria.

To understand the intuition behind Theorem 2, consider any competitive equilibrium
and any trail. In order for sellers to want to propose the contracts in the trail, the prices
of all trades in the trail must be greater than their equilibrium prices. But the last buyer
will only accept an offer if the price in the last contract is lower than the equilibrium price
of the corresponding trade. Hence, there cannot be any locally blocking trails. The proof
of Theorem 2 simply formalizes the preceding intuition.

As distortionary frictions can make competitive equilibria Pareto-inefficient, trail-
stable outcomes can also be Pareto-inefficient in light of Theorem 2—despite being de-
fined cooperatively.19

EXAMPLE 5—A Pareto-Inefficient Trail-Stable Outcome: Consider the autarky out-
come in the trading network from Example 1. As the autarky outcome is a competitive
equilibrium outcome, it must be trail-stable by Theorem 2.

More concretely, we show that there are no locally blocking trails for the autarky
outcome. Consider an arbitrary trail (z1� � � � � zn). By construction, we must either have
that z1 = (ζ�pζ) or that z1 = (ψ�pψ). In the former case, note that f1 = s(z1) and
that ∅ ∈ Cf1({z1}) because f1 is unwilling to trade ζ on its own—at any price. Hence,
(z1� � � � � zn) cannot be a locally blocking trail. Analogous logic applies if z1 = (ψ�pψ),
because f2 is unwilling to execute ψ on its own. Alternatively, one could note that nei-
ther firm would be willing to accept a purchase (downstream) contract on its own, so
∅ ∈ Cb(zn)({zn}) holds for all contracts zn.

But the autarky outcome is Pareto-inefficient because there are gains from trade be-
tween f1 and f2. This Pareto inefficiency arises in Example 2 as well.

Theorems 1 and 2 yield sufficient conditions for the existence of trail-stable outcomes:
trail-stable outcomes exist under our conditions for the existence of competitive equilib-
ria.20

COROLLARY 1: Under FS and BCV, trail-stable outcomes exist.

5.4. A Competitive Interpretation of Trail Stability

We now develop a competitive interpretation of trail stability. Formally, we say that an
outcome A lifts to a competitive equilibrium if A is a competitive equilibrium outcome—
that is, if A can be supported by competitive equilibrium prices. As an outcome specifies
prices only for the realized trades, the non-trivial part of lifting an outcome to a competi-
tive equilibrium is constructing equilibrium prices for the unrealized trades.

Hatfield et al. (2013) showed that stable outcomes need not lift to competitive equi-
libria if FS is not satisfied. Using an example from Hatfield et al. (2013), we show that
trail-stable outcomes do not generally lift to competitive equilibria either when FS is not
satisfied—even when frictions and technological constraints are absent.

19As Blair (1988) showed, (pairwise) stable outcomes can be Pareto-inefficient even in two-sided many-to-
many matching markets.

20Corollary 1 is a version of Theorem 1 in Fleiner et al. (2018)—which generalizes Theorem 1 in Ostrovsky
(2008) from supply chains to general networks—for settings with prices that are continuous and potentially
unbounded.
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f1
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FIGURE 2.—Trading in Example 6. Arrows point from sellers to buyers.

EXAMPLE 6—Trail-Stable Outcomes Need Not Lift to Competitive Equilibria Without
FS: Our example follows Example 1 in Hatfield et al. (2013). As depicted in Figure 2,
there are two firms, f1 and f2, which interact via two trades. There are no taxes. The firms
have quasilinear utility functions (see (1)) with valuation functions defined by

vf1(∅)= vf2(∅)= 0�

vf1
({ζ}) = vf1

({ψ}) = vf1
({ζ�ψ}) = −4�

vf2
({ζ}) = vf2

({ψ}) = vf2
({ζ�ψ}) = 3�

Hatfield et al. (2013) showed that the autarky outcome is stable. We claim that the
autarky outcome is also trail-stable. Indeed, as all trails consist of single contracts, we
only need to show that there are no blocks that consist of one contract. Note that the
seller, f1, is only willing to offer a sale contract at a price above $4, while the buyer, f2,
would not accept a single purchase contract at any price above $3. Hence, there are no
blocks that consist of single contracts.

However, the autarky outcome does not lift to a competitive equilibrium, as Hatfield
et al. (2013) showed. To see why, consider any arrangement [∅;p]. If ∅ ∈Df2(p), we must
have that pζ�pψ ≥ 3. But it follows that pζ +pψ > 4, so ∅ /∈Df1(p).

Note that FS is not satisfied in this example because f1 regards the two trades—which
are both sales for f1—as complements.

It turns out that FS is generally not sufficient for trail-stable outcomes to lift to compet-
itive equilibria. Indeed, the following example shows that trail-stable outcomes may not
lift to competitive equilibria even when FS and BCV are satisfied.

EXAMPLE 7—Trail-Stable Outcomes Need Not Lift to Competitive Equilibria Under
FS and BCV: Consider the trading network from Example 1, but suppose that there are
no transaction taxes (λ= 0%). The argument from Example 5 shows that no trail locally
blocks the autarky outcome, and hence the autarky outcome is trail-stable. As there are
gains from trade, the autarky outcome is Pareto-inefficient. However, as utility is per-
fectly transferable, all competitive equilibrium outcomes are Pareto-efficient (by the First
Welfare Theorem). In particular, the autarky outcome cannot lift to a competitive equi-
librium.

In Example 7, both firms face hard technological constraints: they are unwilling to ex-
ecute any trade individually at any finite price, but would like to complete both trades
together. The autarky outcome is trail-stable because neither the buyer nor the seller is
willing to offer to buy or sell a single trade at any finite price.

To ensure that trail-stable outcomes lift to a competitive equilibrium, we impose a dif-
ferent regularity condition from BCV. Intuitively, we require that firms have bounded
willingness to pay for each trade.



1648 FLEINER, JAGADEESAN, JANKÓ, AND TEYTELBOYM

ASSUMPTION 3—Bounded Willingness to Pay—BWP: There exists M such that for all
firms f ∈ F and all finite sets of contracts Y�Z ⊆Xf with Z ∈Cf(Y):

• If (ω�pω) ∈Z→f , then pω <M .
• If (ω�pω) ∈Zf→, then pω >−M .

BWP requires that no firm be willing to pay M or more for any trade—that is, that no
firm be willing to buy any trade at a price M or more or sell any trade at a price −M or
less. Note that BWP rules out many forms of technological constraints, including ones that
are permitted under BCV and by Hatfield et al. (2013). In particular, BWP does not allow
a firm to require a particular input in order to produce an output, as such constraints
would make a firm willing to pay arbitrarily high prices for the input if the firm were
able to procure arbitrarily high prices for the output. However, BWP allows for capacity
constraints, as they never make trades desirable at extremely unfavorable prices.

BWP helps ensure that trail-stable outcomes lift to competitive equilibria.21

THEOREM 3: Under FS and BWP, trail-stable outcomes lift to competitive equilibria.

Theorem 3 provides a competitive interpretation of trail stability: every trail-stable out-
come is consistent with price-taking equilibrium behavior by all firms (at least under FS
and BWP). In light of Theorem 3, every prediction of our model that holds in all compet-
itive equilibria must also hold in all trail-stable outcomes.

To prove Theorem 3, we adapt Kelso and Crawford’s (1982) argument showing that sta-
ble outcomes are competitive equilibrium outcomes in two-sided many-to-one matching
markets to our trading network setting. Kelso and Crawford (1982, p. 1487) set the prices
of unrealized trades at the highest levels at which their sellers remain (weakly) unwilling
to supply the trades given the prices of other trades.22 In two-sided many-to-one matching
markets, the prices at which unit-demand sellers are willing to supply trades depend only
on the prices of realized trades. The difficulty in extending Kelso and Crawford’s argu-
ment is that, in trading networks, the prices at which sellers are willing to supply trades
also depend on the prices of unrealized complementary input trades (which in turn need
to be constructed in the course of the proof ).

We therefore determine whether a seller s(z) desires a contract z jointly with a trail of
proposals that terminates in an input contract for s(z) that is complementary to z. More
precisely, we consider trails in which sellers are willing to propose each contract (when
given access to the preceding contract in the trail) but where the last contract z in the
trail may not be acceptable to its buyer b(z). We call such a trail locally semi-blocking,
as it would be locally blocking if z were desirable to b(z).23 Note that in two-sided mar-
kets, the locally semi-blocking trails are simply the trails that consist of a single contract
that is desirable to its seller. Therefore, analogously to Kelso and Crawford (1982), we
set the price of an unrealized trade to be the highest price at which it does not appear
in any locally semi-blocking trail. We then replace infinite prices by large, finite values

21Despite the fact that BWP is not satisfied in Examples 1 and 2, trail-stable outcomes lift to competitive
equilibria in both examples. Thus, BWP is sufficient but not necessary for trail-stable outcomes to lift to com-
petitive equilibria.

22Stability ensures that buyers are (weakly) unwilling to demand the unrealized trades at the constructed
candidate equilibrium prices, as Kelso and Crawford (1982) showed.

23Fleiner et al. (2018) used the concept of locally semi-blocking trails to provide a correspondence between
trail-stable outcomes and fixed points of a generalized Deferred Acceptance algorithm in trading networks
with discrete and bounded prices.



TRADING NETWORKS WITH FRICTIONS 1649

FIGURE 3.—Summary of our results. The squiggly arrows represent existence results, the ordinary arrows
represent relationships between solution concepts, and the dashed arrows represent lifting results. We label
arrows by the hypotheses of the corresponding results. The “no frictions” condition is defined in Appendix E
in the Supplemental Material.

(using BWP) and use FS and trail stability to prove that the constructed prices are in fact
competitive equilibrium prices.24

Theorems 2 and 3 imply that competitive equilibria are essentially equivalent to trail-
stable outcomes in our model under FS and BWP.25

COROLLARY 2: Under FS and BWP, competitive equilibrium outcomes and trail-stable
outcomes exist and coincide.

Corollary 2 provides competitive foundations for trail stability and cooperative founda-
tions for competitive equilibrium: the assumption that firms coordinate on a trail-stable
outcome produces the same predictions as the assumption that firms act as price-takers
in equilibrium.

6. OTHER COOPERATIVE SOLUTION CONCEPTS

We have thus far focused on competitive equilibria and trail stability in trading net-
works with frictions. In addition to stability and trail stability, other cooperative solution
concepts for trading networks that have been proposed in the matching literature include
chain stability (Ostrovsky (2008), Hatfield et al. (2018)) and strong group stability (Hatfield
et al. (2013)). Chain stability weakens stability by only allowing firms to deviate along
blocking chains of contracts, while strong group stability strengthens stability by allowing
firms to commit to deviations that are not individually rational. In this section, we describe
the relationships between trail stability, chain stability, stability, and strong group stabil-
ity. We present the definitions and results formally in Appendix E in the Supplemental
Material. Figure 3 summarizes our results.

First, under FS, every stable or chain-stable outcome is trail-stable (see also Fleiner
et al. (2018)). Therefore, stability and chain stability are strictly stronger cooperative so-
lution concepts than trail stability under our sufficient conditions for the existence of

24Hatfield et al. (2013) took a different approach to showing that stable outcomes lift to competitive equi-
libria in their transferable utility framework (Theorem 6 in Hatfield et al. (2013)). Specifically, they exploited
the existence and efficiency of competitive equilibria in an auxiliary economy. We cannot use their approach
because frictions make competitive equilibria inefficient in general in our model.

25To derive Corollary 2 formally, we need to establish that competitive equilibria exist under FS and BWP,
as Theorem B.1 in the Appendix shows.
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competitive equilibria and trail-stable outcomes.26 Furthermore, stable and chain-stable
outcomes lift to competitive equilibria under FS and BCV. Hence, the lifting results of
Hatfield et al. (2013, 2018) continue to hold even in the presence of distortionary frictions
and income effects—unlike the existence results for stability and chain stability, which do
not generally hold in our model.27

Second, stable and chain-stable outcomes exist and coincide with trail-stable outcomes
and competitive equilibrium outcomes under FS and BCV in vertical supply chains.
Hence, the results of Ostrovsky (2008) and Hatfield and Kominers (2012) on the exis-
tence of chain-stable and stable outcomes in supply chains with discrete and bounded
prices extend to our setting—which features continuous and unbounded prices.

Finally, in trading networks without distortionary frictions, stable, chain-stable, and
strongly group stable outcomes exist and coincide with competitive equilibrium outcomes
under FS and BCV. Hence, the results of Hatfield et al. (2013, 2018) on the equivalence
between stability, chain stability, strong group stability, and competitive equilibrium per-
sist in the presence of income effects. Under FS and BWP, all of these solution concepts
are also equivalent to trail stability.

7. CONCLUSION

This paper develops a model of differentiated markets with frictions based on match-
ing in trading networks. Competitive equilibria exist in our model when trades are fully
substitutable (and mild regularity conditions are satisfied) but may be inefficient.28 In the
presence of frictions, competitive equilibria may be unstable but still essentially coincide
with trail-stable outcomes.

Taken as a whole, our results provide a relationship between competitive and coop-
erative solution concepts in differentiated markets that applies even in the presence of
frictions. Our competitive interpretation of trail stability guarantees that, as long as firms
coordinate on a trail-stable outcome, they act as if they take prices as given. Hence, even
if price-taking is not a reasonable assumption per se (e.g., in thin markets), it is actually
a consequence of a form of cooperative behavior. On the other hand, our cooperative in-
terpretation of competitive equilibrium guarantees that firms cannot improve upon equi-
librium outcomes by deviations along trails. Therefore, even if it is difficult for firms to
coordinate with each other (e.g., in thick markets), any equilibrium outcome will be trail-
stable as long as firms take prices as given. In light of our equivalence result, equilibrium
analysis can be performed using scale-independent solution concepts, even in markets
with frictions.

We conclude by leaving two open questions. First, to what extent can the condition
that firms have bounded willingness to pay for trades be relaxed while still ensuring that
trail-stable outcomes lift to competitive equilibria? Second, can externalities (as analyzed
by Pycia and Yenmez (2017) and Rostek and Yoder (2018)) be incorporated into our
analysis?

26Note, however, that stable and chain-stable outcomes are generally not trail-stable without FS.
27In Example 4, we showed that there are no stable outcomes in Example 2. Similar logic shows that there

are no chain-stable outcomes in that example either.
28Subsequent to our work, Schlegel (2019) established results on the lattice structure of the set of competi-

tive equilibria.
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APPENDIX A: AN EQUIVALENT DEFINITION OF FULL SUBSTITUTABILITY

In this appendix, we show that full substitutability is equivalent to full substitutability
including indifferences—a condition that deals with indifferences more explicitly—as well
as to the weak quasisubmodularity of the indirect utility function. We use the equivalence
between full substitutability and full substitutability including indifferences in the proof
of Theorem 3, and the equivalence between full substitutability and the weak quasisub-
modularity of the indirect utility function in the proof of Theorem 1. Our equivalence
result is a version of Theorems 2 and A.1 in Hatfield et al. (2019) that does not assume
that preferences are quasilinear.

Full substitutability including indifferences combines four conditions, which are each
similar to conditions defined in Appendix A in Hatfield et al. (2019). The first condition,
increasing price full substitutability for sales, requires that sales be substitutable to each
other and complementary to purchases as prices rise (i.e., as the set of available purchases
shrinks and the set of available sales expands). The analogous condition for purchases is
decreasing price full substitutability for purchases. We also consider two other similar condi-
tions, decreasing price full substitutability for sales and increasing price full substitutability for
purchases, which are not exactly analogous to the first two conditions due to the possibility
of income effects in our model.

ASSUMPTION A.1—Full Substitutability Including Indifferences (FSII): Let f ∈ F be a
firm and let Y�Y ′ ⊆Xf be finite sets of contracts. For all Z ∈Cf(Y):

• Increasing price full substitutability for sales (IFSS): If we have that Y→f ⊇ Y ′
→f and that

Yf→ ⊆ Y ′
f→, then there exists Z′ ∈Cf(Y ′) with Z′ ∩Yf→ ⊆Z.

• Decreasing price full substitutability for purchases (DFSP): If we have that Yf→ ⊇ Y ′
f→

and that Y→f ⊆ Y ′
→f , then there exists Z′ ∈ Cf(Y ′) with Z′ ∩Y→f ⊆Z.

For all y ∈ Y such that there exists Z ∈Cf(Y) with y ∈Z:
• Decreasing price full substitutability for sales (DFSS): If we have that Y→f ⊆ Y ′

→f and
that Yf→ ⊇ Y ′

f→ � y , then there exists Z′ ∈ Cf(Y ′) with y ∈Z′.
• Increasing price full substitutability for purchases (IFSP): If we have that Yf→ ⊆ Y ′

f→
and that Y→f ⊇ Y ′

→f � y , then there exists Z′ ∈ Cf(Y ′) with y ∈Z′.

To define our weak quasisubmodularity condition, we use infinite prices to denote un-
available trades. Formally, we define a set of prices by

Pf = (
R∪ {−∞})Ωf→ × (

R∪ {∞})Ω→f �

Firm f ’s indirect utility function V f : Pf → R is defined by

V f (p)= max
Ξ⊆Ωf

uf
(
Ξ�

(
pΞf→� (−p)Ξ→f

�0Ωf \Ξ
))
�

Recall that the indirect utility function V f is submodular if the inequality

V f (p)+ V f (q)≥ V f (p∨ q)+ V f (p∧ q)
holds for all p�q ∈ Pf . When utility functions are quasilinear, Hatfield et al. (2019)
showed that full substitutability is equivalent to the submodularity of the indirect utility
function. Without quasilinearity, full substitutability does not generally entail the submod-
ularity of the indirect utility function, as Hatfield and Kominers (2012) showed (see also
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Hatfield, Jagadeesan, and Kominers (2019)). We therefore adapt the weak quasisubmodu-
larity condition of Hatfield, Jagadeesan, and Kominers (2019) to obtain a characterization
of full substitutability in terms of the indirect utility function.29

ASSUMPTION A.2—Weak Quasisubmodularity (WQ): For all f ∈ F and p�q ∈ Pf , if
pΩf→ ≤ qΩf→ or pΩ→f

≤ qΩ→f
, then

V f (p) < V f (p∧ q) =⇒ V f (p∨ q) < V f (q)�

V f (p∨ q) > V f (q) =⇒ V f (p) > V f (p∧ q)�
(A.1)

To understand the relationship between weak quasisubmodularity and quasisubmod-
ularity, recall that quasisubmodularity (in the sense of Milgrom and Shannon (1994))
requires that (A.1) hold for all p�q ∈ Pf . Weak quasisubmodularity weakens quasisub-
modularity by only requiring that (A.1) hold for price vectors p, q with pΩf→ ≤ qΩf→ or
pΩ→f

≤ qΩ→f
.

The main result of this appendix asserts that full substitutability, full substitutability
including indifferences, and weak quasisubmodularity are all equivalent.

THEOREM A.1: The conditions FS, FSII, WQ are all equivalent.

We prove Theorem A.1 in Appendix D in the Supplemental Material.
Although Hatfield et al. (2019) ruled out income effects, Theorem A.1 is logically in-

dependent of Hatfield et al.’s analogous results (Theorems 2 and A.1 in Hatfield et al.
(2019)) as we derive weaker conclusions.

APPENDIX B: PROOF OF THEOREM 1

In the proof of Theorem 1, we need a result on the existence of competitive equilibria
under FS and BWP.

THEOREM B.1: Under FS and BWP, competitive equilibria exist.

To prove Theorem 1, we first modify utility functions so BWP is satisfied (Lemma B.1),
ensuring that our modification preserves FS (Lemma B.2). We next show that under BCV,
every competitive equilibrium in the modified economy yields a competitive equilibrium
in the original economy (Lemma B.4). We then prove Theorem B.1 and complete the
proof of Theorem 1 by combining Theorem B.1 with Lemmata B.1, B.2, and B.4.

B.1. The Modified Economy

For f ∈ F , we define a quantity

Kf = − inf
(Ξ�t)|uf (Ξ�t)≥uf (∅�0)

∑
ω∈Ωf

tω�

which is finite by BCV. Let Π ≥ 1 + ∑
f∈F Kf be an arbitrary real number.

29Hatfield, Jagadeesan, and Kominers (2019) corrected a result of Hatfield and Kominers (2012) that char-
acterizes full substitutability in terms of the indirect utility function in trading networks with discrete and
bounded prices.
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We modify the economy by giving firms the option to execute any trade for a cost ofΠ.30

Formally, for f ∈ F , we define a utility function ûf :P(Ωf )×RΩf → R∪ {−∞} by

ûf (Ξ� t)= max
Ξ⊆Ψ⊆Ωf

uf
(
Ψ�

(
tΩf \Ψ∪Ξ� (t −Π)Ψ\Ξ

))
�

The function ûf (Ξ� t) is continuous in t and satisfies the requisite monotonicity condition
from Section 2.2.

Consider a modified economy in which utility functions are given by ûf for f ∈ F ; we
show that BWP and FS hold in the modified economy.31 We first prove that BWP holds.

LEMMA B.1: The modified economy satisfies BWP.

PROOF: We claim that BWP holds with M = Π + 1. Let f ∈ F , let ω ∈ Ωf \ Ξ, let
Ξ ⊆Ωf , and let t ∈RΩf be such that tω = 0. Note that, for all Ψ ⊇Ξ with ω ∈Ψ , because
M >Π =Π − tω, we have that

uf
(
Ψ�

(
tΩf \Ψ∪Ξ� (t −Π)Ψ\Ξ\{ω}� (−M)ω

))
< uf

(
Ψ�

(
tΩf \Ψ∪Ξ� (t −Π)Ψ\Ξ

))
whenever uf

(
Ψ�

(
tΩf \Ψ∪Ξ� (t −Π)Ψ\Ξ\{ω}� (−M)ω

)) ∈ R. Hence, we have that

ûf
(
Ξ ∪ {ω}� (tΩf \{ω}� (−M)ω

)) = max
Ξ∪{ω}⊆Ψ⊆Ωf

uf
(
Ψ�

(
tΩf \Ψ∪Ξ� (t −Π)Ψ\Ξ\{ω}� (−M)ω

))
< max

Ξ∪{ω}⊆Ψ⊆Ωf
uf

(
Ψ�

(
tΩf \Ψ∪Ξ� (t −Π)Ψ\Ξ

))
≤ max

Ξ⊆Ψ⊆Ωf
uf

(
Ψ�

(
tΩf \Ψ∪Ξ� (t −Π)Ψ\Ξ

))
= ûf (Ξ� t)

whenever ûf
(
Ξ ∪ {ω}� (tΩf \{ω}� (−M)ω

)) ∈ R. Therefore, firm f will never choose a con-
tract (ω�pω) with pω ≥M (resp. pω ≤ −M) if ω ∈Ω→f (resp. ω ∈Ωf→). Since f , ω, Ξ,
and t were arbitrary, the claim follows. Q.E.D.

We next prove that the modified economy satisfies FS. For this part of the argument,
we use the equivalence between FS and WQ from Theorem A.1.

LEMMA B.2: Under FS, the modified economy satisfies FS.

PROOF: The proof of this claim is similar to the proof of Theorem 2 in Hatfield et al.
(2019). Let V f � V̂ f : Pf → R ∪ {−∞} denote the indirect utility functions for the utility

30Hatfield et al. (2019) showed that such trade endowments preserve full substitutability when preferences
are quasilinear (see Theorem 2 in Hatfield et al. (2019)).

31The arguments that FS and BWP hold in the modified economy apply not only for Π ≥ 1 + ∑
f∈F Kf ,

but rather for all values of Π. The lower bound on Π is used in Lemma B.4 in Appendix B.2 to ensure that
competitive equilibria in the modified economy are in fact competitive equilibria in the original economy.
Therefore, BCV is not important for constructing a modified economy in which FS and BWP hold. Rather,
BCV is crucial for constructing such a modified economy whose competitive equilibria are all competitive
equilibria in the original economy.
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functions uf and ûf , respectively. Note that, for all p ∈ Pf , we have that

V̂ f (p)= max
Ξ⊆Ωf

ûf
(
Ξ�

(
pΞf→� (−p)Ξ→f

�0Ωf \Ξ
))

= max
Ξ⊆Ωf

max
Ξ⊆Ψ⊆Ωf

uf
(
Ψ�

(
pΞf→� (−p)Ξ→f

� (−Π)Ψ\Ξ�0Ωf \Ψ
))
�

Letting �=Ψ \Ξ, we have that

V̂ f (p)= max
�⊆Ψ⊆Ωf

uf
(
Ψ�

(
pΨf→\�� (−p)Ψ→f \�� (−Π)Ψ∩��0Ωf \Ψ

))
= max

Ψ��⊆Ωf
uf

(
Ψ�

(
pΨf→\�� (−p)Ψ→f \�� (−Π)Ψ∩��0Ωf \Ψ

))
= max

�⊆Ωf
V f

(
pΩf \��Π�f→� (−Π)�→f

)
�

It follows that

V̂ f (p)= V f
(
max{p�−Π}Ωf→�min{p�Π}Ω→f

)
� (B.1)

We claim that the indirect utility function V̂ f must be weakly quasisubmodular. Let
p�q ∈ Pf and suppose that pΩf→ ≤ qΩf→ or that pΩ→f

≤ qΩ→f
. We define p′� q′ ∈ Pf by

p′ = (
max{p�−Π}Ωf→�min{p�Π}Ω→f

)
and q′ = (

max{q�−Π}Ωf→�min{q�Π}Ω→f

)
�

By construction, we have p′
ω ≤ q′

ω whenever pω ≤ qω. Hence, we have that p′
Ωf→ ≤ q′

Ωf→
or that p′

Ω→f
≤ q′

Ω→f
.

If V̂ f (p) < V̂ f (p∧ q), then (B.1) implies that

V f
(
p′) = V̂ f (p) < V̂ f (p∧ q)= V f

(
p′ ∧ q′)�

Theorem A.1 guarantees that WQ holds, and it follows that V f (p′ ∨ q′) < V f (q′). Equa-
tion (B.1) hence implies that

V̂ f (p∨ q)= V f
(
p′ ∨ q′)< V f

(
q′) = V̂ f (q)�

Hence, we have shown that V̂ f (p) < V̂ f (p∧ q) =⇒ V̂ f (p∨ q) < V̂ f (q). Similar logic
shows that V̂ f (p ∨ q) > V̂ f (q) =⇒ V̂ f (p) > V̂ f (p ∧ q). Therefore, the modified econ-
omy satisfies WQ. By Theorem A.1, the modified economy must also satisfy FS. Q.E.D.

B.2. Outcomes in the Modified Economy

This subsection shows that competitive equilibria in the modified economy give rise to
competitive equilibria in the original economy (Lemma B.4). The following lemma shows
that firm f can only produce Kf units of surplus in the modified economy and that the
options to execute trades can only be used at a social cost of Π. As will be seen in the
proof of Lemma B.4, it follows that the options to execute trades at a cost of � cannot be
used in any competitive equilibria.

LEMMA B.3: Let Ξ ⊆Ωf and t ∈ RΩf . Suppose that ûf (Ξ� t)≥ ûf (∅�0). Under BCV:
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(a) We have that
∑

ω∈Ωf tω ≥ −Kf .
(b) If uf (Ξ� t) < ûf (Ξ� t), then we have that

∑
ω∈Ωf tω ≥Π −Kf .

PROOF: Note that ûf (∅�0)≥ uf (∅�0), and hence we have that ûf (Ξ� t)≥ uf (∅�0). Let
Ξ ⊆Ψ ⊆Ωf be such that

ûf (Ξ� t)= uf (Ψ� (tΩf \Ψ∪Ξ� (t −Π)Ψ\Ξ
))
�

The definition of Kf implies that

−Kf ≤
∑

ω∈Ωf \Ψ∪Ξ
tω +

∑
ω∈Ψ\Ξ

(tω −Π)= −Π · |Ψ \Ξ| +
∑
ω∈Ωf

tω�

and hence we have that

Π · |Ψ \Ξ| −Kf ≤
∑
ω∈Ωf

tω� (B.2)

As |Ψ \Ξ| ≥ 0, Part (a) follows from (B.2). If uf (Ξ� t) < ûf (Ξ� t), then we must have
that Ψ �=Ξ. As |Ψ \Ξ| ≥ 1 must hold in this case, Part (b) follows from (B.2) as well.

Q.E.D.

We now show that competitive equilibria in the modified economy give rise to compet-
itive equilibria in the original economy.

LEMMA B.4: Under BCV, every competitive equilibrium in the modified economy is a com-
petitive equilibrium in the original economy.

PROOF: Let [Ξ;p] be a competitive equilibrium in the modified economy. For f ∈ F ,
let tf = (

pΞf→� (−p)Ξ→f
�0Ωf \Ξ

)
. Since [Ξ;p] is a competitive equilibrium in the modified

economy, we have that ûf (Ξf � t
f )≥ ûf (∅�0) for all f ∈ F . Note that∑

f∈F

∑
ω∈Ωf

tfω =
∑
f∈F

∑
ω∈Ξf

tfω =
∑
ω∈Ξ

(
ts(ω)ω + tb(ω)ω

) =
∑
ω∈Ξ
(pω −pω)= 0�

Hence, for all f ∈ F , we have that∑
ω∈Ωf

tfω = −
∑

f ′∈F\{f }

∑
ω∈Ωf ′

tf
′
ω ≤ −

∑
f ′∈F\{f }

Kf ′ ≤Π −Kf − 1<Π −Kf �

where the first inequality follows from Lemma B.3(a) and the second inequality is
due to the definition of Π. By the contrapositive of Lemma B.3(b), it follows that
uf (Ξf � t

f ) ≥ ûf (Ξf � t
f ) for all f ∈ F . As uf (Ξf � t

f ) ≤ ûf (Ξf � t
f ), we must have that

uf (Ξf � t
f )= ûf (Ξf � t

f ) for all f ∈ F .
Let f ∈ F be arbitrary. For all Ψ ⊆Ωf , we have that

uf
(
Ξf� t

f
) = ûf (Ξf� t

f
) ≥ ûf (Ψ� (pΨf→� (−p)Ψ→f

�0Ωf \Ψ
))

≥ uf (Ψ� (pΨf→� (−p)Ψ→f
�0Ωf \Ψ

))
�
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where the first inequality holds because [Ξ;p] is a competitive equilibrium in the modi-
fied economy and the second inequality holds due to the definition of ûf . It follows that
Ξf ∈Df(p). As f was arbitrary, [Ξ;p] must be a competitive equilibrium in the original
economy. Q.E.D.

B.3. Proof of Theorem B.1

Let M be as in BWP. Intuitively, we consider a grid of size ε in [−2M�2M]Ω, chosen
so there are no indifferences. We then use the Gale–Shapley operator of Hatfield and
Kominers (2012) and Fleiner et al. (2018) to produce an ε-equilibrium. Taking limits as
ε→ 0, we obtain a competitive equilibrium.

Formally, we say that a vector δ ∈ (−ε� ε)Ω is ε-regular if Df is single-valued on
[−2M�2M]Ωf ∩ (

εZΩf + δΩf
)

for all f ∈ F . The following claim asserts that the set of
regular vectors is dense.

CLAIM B.1: For all ε > 0, the set of ε-regular vectors is dense in (−ε� ε)Ω.

PROOF: For a firm f ∈ F , let

Sf =
{
p ∈RΩ

∣∣∣ ∣∣Df(pΩf )
∣∣ = 1

}
�

We claim that Sf is open and dense in RΩf . The set Sf is open because Df is upper
hemicontinuous (by Berge’s Maximum Theorem) and non-empty-valued and P(Ωf ) is
discrete. To show that Sf is dense, note that for all Ξ �=Ξ′ ⊆Ωf , the set

TΞ�Ξ′ =
{
p ∈ RΩf

∣∣∣∣∣ uf
(
Ξ�

(
pΞf→� (−p)Ξ→f

�0Ωf \Ξ
))

= uf (Ξ′�
(
pΞ′

f→� (−p)Ξ′
→f
�0Ωf \Ξ′

)) �= −∞
}

is nowhere dense. Indeed, if p ∈ TΞ�Ξ′ , then we have that

uf
(
Ξ�

(
p′
Ξf→� (−p′)Ξ→f

�0Ωf \Ξ
)) �= uf (Ξ′�

(
p′
Ξ′
f→
� (−p′)Ξ′

→f
�0Ωf \Ξ′

))
for all price vectors p′ = (

pΩ\{ω}�pω + ε) with ε > 0 and all ω ∈ (Ξ \Ξ′)∪ (Ξ′ \Ξ).
Let n= � 2M

ε
� + 1 and let T = ([−n�n] ∩ Z)Ω. Note that δ is ε-regular if δ+ εT ⊆ Sf .

For each t ∈ T , the set of vectors δ such that δ+ εt ∈ Sf is open and dense in (−ε� ε)Ω
since Sf is open and dense in RΩf . As T is finite, it follows that the set of ε-regular vectors
contains an open and dense subset of (−ε� ε)Ω. Q.E.D.

An arrangement [Ξ;p] is an ε-equilibrium if every firm f demands Ξf when given
access to all sales and to purchases inΞ at prices given by the price vector p, and to other
purchases at prices given by the price vector p+ ε.

DEFINITION B.1: An arrangement [Ξ;p] is an ε-equilibrium if p ∈ [−2M�2M]Ωf and
Ξf ∈Df(p̂f�Ξ�ε) for all f , where the price vectors p̂f�Ξ�ε ∈RΩf are defined by

p̂f�Ξ�εω =
{
pω if ω ∈Ξf or f = s(ω)�

pω + ε if ω /∈Ξf and f = b(ω)�
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The following claim shows that ε-equilibria exist.

CLAIM B.2: Under FS and BWP, there exists an ε-equilibrium for each ε ∈ (0�M).
PROOF: Let δ ∈ (−ε� ε)Ω be an ε-regular vector, which exists by Claim B.1. Consider

the sets Pω = [−2M�2M] ∩ (εZ+ δω) of prices, and let

X̂ =
⋃
ω∈Ω

({ω} ×Pω

) ⊆X�

Note that Cf is single-valued on P(X̂f ) due to the ε-regularity of δ, and hence we can
write Cf(Y)= {Cf (Y)} for Y ⊆ X̂f .

Following Hatfield and Kominers (2012), we define � :P(X̂)2 →P(X̂)2 by

�
(
XB�XS

) = (
�B

(
XB�XS

)
��S

(
XB�XS

))
�

�B
(
XB�XS

) = (
X̂ \XS

) ∪
⋃
f∈F

Cf
(
XB

→f ∪XS
f→

)
f→�

�S
(
XB�XS

) = (
X̂ \XB

) ∪
⋃
f∈F

Cf
(
XB

→f ∪XS
f→

)
→f
�

As in Fleiner (2003), Hatfield and Milgrom (2005), Hatfield and Kominers (2012), and
Fleiner et al. (2018), we order P(X̂)2 by letting (XB�XS) � (X̄B� X̄S) if XB ⊇ X̄B and
XS ⊆ X̄S . As Hatfield and Kominers (2012) and Fleiner et al. (2018) showed, � is isotone
(with respect to �) under FS. The Tarski (1955) Fixed-Point Theorem guarantees that �
has a fixed point (XB�XS).

Given f ∈ F , since (XB�XS) is a fixed point of �, we have that

XB
f→ = (

X̂f→ \XS
f→

) ∪ Cf
(
XB

→f ∪XS
f→

)
f→� (B.3)

Since Cf
(
XB

→f ∪XS
f→

)
f→ ⊆XS

f→, it follows that XB
f→ ∪XS

f→ = X̂f→. Taking unions over f ,
we have that

X̂ =
⋃
f∈F
X̂f→ =

⋃
f∈F

(
XB
f→ ∪XS

f→
) =XB ∪XS� (B.4)

Equation (B.3) also implies that

XB
f→ ∩XS

f→ = Cf
(
XB

→f ∪XS
f→

)
f→�

Similarly, we have that XB
→f ∩XS

→f = Cf
(
XB

→f ∪XS
f→

)
→f

, and it follows that(
XB ∩XS

)
f
= Cf

(
XB

→f ∪XS
f→

)
� (B.5)

Let ω ∈ Ω be arbitrary. Since ε < M , we have that maxPω > M and minPω < −M .
Hence, we have that (ω�maxPω)� (ω�minPω) /∈ XB ∩ XS due to BWP and (B.5). If
(ω�maxPω) /∈XB, then adding (ω�maxPω) to XB and removing it from XS preserves
(B.4) and (B.5) by BWP for f = s(ω). Hence, we can assume that (ω�maxPω) ∈XB \XS .
Similarly, we can assume that (ω�minPω) ∈XS \XB.
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As Pω is finite and (ω�minPω) ∈ XS , the set {p′
ω ∈ Pω | (ω�p′

ω) ∈ XS} is finite and
non-empty. Hence, we can define a price pω to be

pω = min
{
p′
ω ∈Pω

∣∣ (
ω�p′

ω

) ∈XS
}
�

We claim that [Ξ;p] is an ε-equilibrium, whereΞ = τ(XB∩XS). As (ω�maxPω) /∈XS

for all ω ∈Ω, we have that p̂f�Ξ�εω ∈ Pω for all ω ∈Ω and f ∈ F . The definition of pω also
ensures that (

ω� p̂b(ω)�Ξ�ε
ω

) ∈XB and
(
ω� p̂s(ω)�Ξ�ε

ω

) = (
ω�pω

) ∈XS

for all ω ∈Ω. It follows that(
XB ∩XS

)
f
⊆ κ([

Ωf ; p̂f�Ξ�ε
]) ⊆XB

→f ∪XS
f→

for all f ∈ F . Hence, (B.5) implies that Ξf ∈ Df
(
p̂f�Ξ�ε

)
for all f ∈ F , so [Ξ;p] is an

ε-equilibrium. Q.E.D.

As the interval [−2M�2M] is sequentially compact, Claim B.2 implies that there exists
an arrangement [Ξ;p], a sequence n1 < n2 < · · · of positive integers, and a sequence
p1�p2� � � � ∈ [−2M�2M]Ω such that [Ξ;pk] is a 1

nk
-equilibrium for all k and pk → p.

Note that p̂
f�Ξ� 1

nk
k → pΩf for all f ∈ F because 1

nk
→ 0. Because Ξf ∈Df

(
p̂
f�Ξ� 1

nk
k

)
for all k

and Df is upper hemicontinuous, it follows that Ξf ∈Df(pΩf ) for all f ∈ F . Thus, [Ξ;p]
is a competitive equilibrium.

B.4. Completion of the Proof of Theorem 1

Theorem B.1 and Lemmata B.1 and B.2 imply that the modified economy has a compet-
itive equilibrium [Ξ;p], which must be a competitive equilibrium in the original economy
by Lemma B.4.

APPENDIX C: OTHER PROOFS OMITTED FROM THE TEXT

C.1. Proof of Theorem 2

Competitive equilibrium outcomes are clearly individually rational. It remains to show
that no trail locally blocks a competitive equilibrium outcome. Let [Ξ;p] be a competitive
equilibrium and let A= κ([Ξ;p]). Suppose for the sake of deriving a contradiction that
there is a locally blocking trail (z1� � � � � zn).

Let zi = (ωi�p
′
i). Let fi = s(zi) and let fn+1 = b(zn). As z1 ∈ Y for all Y ∈ Cf1(Af1 ∪{z1})

and [Ξ;p] is a competitive equilibrium, we must have that p′
1 >pω1 . Similarly, as z2 ∈ Y

for all Y ∈ Cf2(Af2 ∪ {z1� z2}), we must have that p′
2 > pω2 . A simple inductive argument

shows that p′
n > pωn . But we have that p′

n < pωn as zn ∈ Y for all Y ∈ Cfn+1(Afn+1 ∪{zn})—
a contradiction. Hence, there cannot be any locally blocking trails.

C.2. Proof of Theorem 3

We follow the proof strategy described in Section 5.4. We begin by defining locally semi-
blocking trails following Fleiner et al. (2018).
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DEFINITION C.1: A trail (z1� � � � � zn) ∈ (X \A)n locally semi-blocks an outcome A if:
• z1 ∈ Y for all Y ∈Cf1(Af1 ∪ {z1}), where f1 = s(z1); and
• for 1 ≤ i≤ n− 1, we have that {zi� zi+1} ⊆ Y for all Y ∈ Cfi+1(Afi+1 ∪ {zi� zi+1}), where

fi+1 = b(zi)= s(zi+1).

Let A be an outcome, let Ξ = τ(A), and let M be as in BWP. We define a set32

XB = {
z ∈X ∣∣ there exists a locally semi-blocking trail (z1� � � � � zn) with zn = z}�

For ω ∈Ω, we define

pω = min
{
M� inf

(ω�p′
ω)∈XB

p′
ω

}
� (C.1)

so pω is the minimum of M and the highest price at which ω is weakly undesirable to its
seller. We prove that κ([Ξ;p])=A and that [Ξ;p] is a competitive equilibrium.

CLAIM C.1: Under BWP, if A is individually rational, then we have that κ([Ξ;p])=A.

PROOF: Suppose that (ω�p′
ω) ∈A. BWP implies that p′

ω < M . As us(ω) is strictly in-
creasing in transfers and A is individually rational, we have that (ω�p′′

ω) ∈XB if and only
if p′′

ω > p
′
ω. Hence, we have that pω = p′

ω. As τ(A)=Ξ, the claim follows. Q.E.D.

CLAIM C.2: Under FS and BWP, if A is trail-stable, then [Ξ;p] is a competitive equilib-
rium.

PROOF: Suppose for the sake of deriving a contradiction that Ξf /∈Df(pΩf ). As A is
individually rational, it follows from Claim C.1 that Ξ′ /∈Df(pΩf ) for all Ξ′ ⊆Ξf .

We first perturb prices to ensure that sellers have strict incentives to propose contracts.
Due to the upper hemicontinuity of demand, we can ensure that sufficiently small pertur-
bations of prices do not affect the property that f demands no subset ofΞf . Formally, we
define a set O of price vectors by

O= {
p′ ∈RΩf

∣∣Df(p′)∩P(Ξf )= ∅}
�

AsDf is upper hemicontinuous (by Berge’s Maximum Theorem) and P(Xf ) is discrete, O
must be an open set. Hence, O must contain an open ball of radius (|Ω|+ 1)ε around pΩf
for some ε > 0. Define a price vector q by q= (

pΞf∪Ωf→� (p+ ε)Ω→f \Ξ
)
. By construction,

we have that q ∈ O, so Df(q) ∩ P(Ξf) = ∅. Equation (C.1) ensures that (ω�qω) ∈ XB

whenever ω ∈Ω→f \Ξ is such that pω <M .
By Theorem A.1, FSII must be satisfied. To produce a contradiction, we consider the

set of trades that f could demand at price vector q that contains fewest trades outsideΞf .
Formally, let Ψ ∈Df(q)minimize |Ψ ′ \Ξ| over all Ψ ′ ∈Df(q). Consider the correspond-
ing set of contracts W = κ([Ψ ;q]). Note that W �A and W→f \A⊆XB by construction
and BWP. Because Ψ ∈Df(q), we have that W ∈ Cf(W ). Therefore, if Z ∈ Cf(W ), then
we must have that Uf(Z)=Uf(W ) and hence that τ(Z) ∈Df(q). As a result, the choice
of Ψ ensures that

Z \A=W \A for all Z ∈ Cf(W )� (C.2)

32In the fixed-point interpretation of trail-stable outcomes (Fleiner et al. (2018), Adachi (2017)), XB is the
set of contracts that are available to their buyers.
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We divide into cases based on whether f is the seller of any contracts in W \ A to
produce a contradiction.

Case 1: (W \A)f→ �= ∅. In this case, we either produce a locally blocking trail or show
that each sale in W \ A must appear in some locally semi-blocking trail. Formally, let
z ∈ Wf→ \ Af→ be arbitrary. Equation (C.2) implies that z ∈ Z for all Z ∈ Cf(W ). By
IFSS, it follows that z ∈W ′ for all W ′ ∈Cf(A∪ {z} ∪W→f ). Let W 0 ∈ Cf(A∪ {z} ∪W→f )
minimize |W ′ \A| over all W ′ ∈Cf(A∪ {z} ∪W→f ).

Let {ω} = τ({z}). As qω = pω, the trail
(
(ω�p′

ω)
)

cannot be locally semi-blocking for
any p′

ω < qω by (C.1). Hence, we must have that Af ∈ Cf(Af ∪ {z}) due to the continuity
of us(ω) in transfers. It follows that W 0

→f \A→f �= ∅. Since W→f \A⊆XB, there must exist
a locally semi-blocking trail (z1� � � � � zn) with zn ∈ W 0

→f . By DFSP, we have that zn ∈ W ′

for all W ′ ∈ Cf(Af ∪ {zn� z}). We further divide into cases based on whether there exists
W ′′ ∈Cf(Af ∪ {zn� z}) with z /∈W ′′ to derive contradictions.

Subcase 1.1: There existsW ′′ ∈Cf(Af ∪{zn� z})with z /∈W ′′. Then, the trail (z1� � � � � zn)
is locally blocking, contradicting the hypothesis that A is trail-stable.

Subcase 1.2: z ∈ W ′′ for all W ′′ ∈ Cf(Af ∪ {zn� z}). Then, (z1� � � � � zn� z) is a locally
semi-blocking trail. Since uf is continuous in transfers, there exists p′

ω < pω such that
(z1� � � � � zn� (ω�p

′
ω)) is a locally semi-blocking trail—contradicting the definition of the

price vector p from (C.1).

Case 2: (W \A)f→ = ∅. Let z ∈ W \A be arbitrary, and let (z1� � � � � zn) be a locally
semi-blocking trail with zn = z. Equation (C.2) implies that z ∈ Z for all Z ∈ Cf(W ). By
DFSP, it follows that z ∈Z for allZ ∈ Cf(Af ∪{z}). Thus, (z1� � � � � zn) is a locally blocking
trail, contradicting the hypothesis that A is trail-stable.

The cases exhaust all possibilities. We have produced contradictions in all cases, com-
pleting the proof of the claim. Q.E.D.

Claims C.1 and C.2 together imply the theorem.

C.3. Proof of Corollary 2

Competitive equilibrium outcomes exist by Theorem B.1 and are trail-stable by Theo-
rem 2. Trail-stable outcomes lift to competitive equilibria by Theorem 3.

REFERENCES

ADACHI, H. (2017): “Stable Matchings and Fixed Points in Trading Networks: A Note,” Economics Letters,
156, 65–67. [1635,1659]

AUMANN, R. J. (1964): “Markets With a Continuum of Traders,” Econometrica, 32 (1–2), 39–50. [1634]
BALDWIN, E., AND P. KLEMPERER (2019): “Understanding Preferences: ‘Demand Types,’ and the Existence of

Equilibrium With Indivisibilities,” Econometrica 87 (3), 867–932. [1634,1636]
BLAIR, C. (1988): “The Lattice Structure of the Set of Stable Matchings With Multiple Partners,” Mathematics

of Operations Research, 13 (4), 619–628. [1646]
CHERCHYE, L., T. DEMUYNCK, B. DE ROCK, AND F. VERMEULEN (2017): “Household Consumption When

the Marriage Is Stable,” American Economic Review, 107 (6), 1507–1534. [1635]
CHIAPPORI, P.-A. (1988): “Rational Household Labor Supply,” Econometrica, 56 (1), 63–90. [1639]
CRAWFORD, V. P., AND E. M. KNOER (1981): “Job Matching With Heterogeneous Firms and Workers,” Econo-

metrica, 49 (2), 437–450. [1634,1643]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Adac:17&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/aumann1964markets&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/BaKl:13&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/Blai:88&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/ChDeDeVe:17&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/chiappori1988rational&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/CrKn:81&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Adac:17&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/BaKl:13&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/Blai:88&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/ChDeDeVe:17&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/CrKn:81&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A


TRADING NETWORKS WITH FRICTIONS 1661

DANILOV, V., G. KOSHEVOY, AND K. MUROTA (2001): “Discrete Convexity and Equilibria in Economies With
Indivisible Goods and Money,” Mathematical Social Sciences, 41 (3), 251–273. [1636]

DUPUY, A., A. GALICHON, S. JAFFE, AND S. D. KOMINERS (2017): “Taxation in Matching Markets,” available
at SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3060746. [1636,1639]

FLEINER, T. (2003): “A Fixed-Point Approach to Stable Matchings and Some Applications,” Mathematics of
Operations Research, 28 (1), 103–126. [1657]

FLEINER, T., R. JAGADEESAN, Z. JANKÓ, AND A. TEYTELBOYM (2019): “Supplement to ‘Trading Networks
With Frictions’,” Econometrica Supplemental Material, 87, https://doi.org/10.3982/ECTA14159. [1636]

FLEINER, T., Z. JANKÓ, A. TAMURA, AND A. TEYTELBOYM (2018): “Trading Networks With Bilateral Con-
tracts,” available at SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2457092. [1635,1643,1645,

1646,1648,1649,1656-1659]
FOX, J. T. (2017): “Specifying a Structural Matching Game of Trading Networks With Transferable Utility,”

American Economic Review, 107 (6), 256–260. [1635]
(2018): “Estimating Matching Games With Transfers,” Quantitative Economics, 9 (1), 1–38. [1635]

FOX, J. T., D. H. HSU, AND C. YANG (2018): “Unobserved Heterogeneity in Matching Games With an Appli-
cation to Venture Capital,” Journal of Political Economy, 126 (4), 1339–1373. [1635]

GALE, D., AND L. S. SHAPLEY (1962): “College Admissions and the Stability of Marriage,” American Mathe-
matical Monthly, 69 (1), 9–15. [1634,1635,1645]

GALICHON, A., S. D. KOMINERS, AND S. WEBER (2019): “Costly Concessions: An Empirical Framework for
Matching With Imperfectly Transferable Utility,” Journal of Political Economy (forthcoming). [1635,1636,

1639]
GUL, F., AND E. STACCHETTI (1999): “Walrasian Equilibrium With Gross Substitutes,” Journal of Economic

Theory, 87 (1), 95–124. [1636,1641]
HATFIELD, J. W., AND S. D. KOMINERS (2012): “Matching in Networks With Bilateral Contracts,” American

Economic Journal: Microeconomics, 4 (1), 176–208. [1634,1635,1643,1644,1650-1652,1656,1657]
HATFIELD, J. W., AND P. MILGROM (2005): “Matching With Contracts,” American Economic Review, 95 (4),

913–935. [1634,1644,1657]
HATFIELD, J. W., R. JAGADEESAN, AND S. D. KOMINERS (2019): “Matching in Networks With Bilateral Con-

tracts: Corrigendum,” American Economic Journal: Microeconomics (forthcoming). [1642,1652]
HATFIELD, J. W., S. D. KOMINERS, A. NICHIFOR, M. OSTROVSKY, AND A. WESTKAMP (2013): “Stability and

Competitive Equilibrium in Trading Networks,” Journal of Political Economy, 121 (5), 966–1005. [1634-1638,
1641-1644,1646-1650,1652]

(2018): “Chain Stability in Trading Networks,” Working Paper. [1634-1636,1649,1650]
(2019): “Full Substitutability,” Theoretical Economics (forthcoming). [1634,1642,1651-1653]

KELSO, A. S., AND V. P. CRAWFORD (1982): “Job Matching, Coalition Formation, and Gross Substitutes,”
Econometrica, 50 (6), 1483–1504. [1634,1641,1643,1648]

MILGROM, P., AND C. SHANNON (1994): “Monotone Comparative Statics,” Econometrica, 62 (1), 157–180.
[1652]

OSTROVSKY, M. (2008): “Stability in Supply Chain Networks,” American Economic Review, 98 (3), 897–923.
[1634,1635,1641,1643,1646,1649,1650]

PYCIA, M., AND M. B. YENMEZ (2017): “Matching With Externalities,” Working Paper. [1650]
ROSTEK, M., AND N. YODER (2018): “Matching With Complementary Contracts,” available at SSRN, https:

//papers.ssrn.com/sol3/papers.cfm?abstract_id=3234080. [1650]
ROTH, A. E. (1984): “Stability and Polarization of Interests in Job Matching,” Econometrica, 52 (1), 47–58.

[1634,1644]
SCHLEGEL, J. C. (2019): “Trading Networks With General Preferences,” available at SSRN, https://papers.ssrn.

com/sol3/papers.cfm?abstract_id=3230767. [1650]
SUN, N., AND Z. YANG (2006): “Equilibria and Indivisibilities: Gross Substitutes and Complements,” Econo-

metrica, 74 (5), 1385–1402. [1636]
TARSKI, A. (1955): “A Lattice-Theoretical Fixpoint Theorem and Its Applications,” Pacific Journal of Mathe-

matics, 5 (2), 285–309. [1657]
WESTKAMP, A. (2010): “Market Structure and Matching With Contracts,” Journal of Economic Theory, 145

(5), 1724–1738. [1635]

Co-editor Joel Sobel handled this manuscript.

Manuscript received 8 February, 2016; final version accepted 15 April, 2019; available online 15 April, 2019.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/danilov2001discrete&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3060746
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/Flei:03&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
https://doi.org/10.3982/ECTA14159
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2457092
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/fox2017specifying&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/fox2017estimating&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/fox2017unobserved&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/GaSh:62&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/galichon2016costly&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/GuSt:99&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/HaKo:12&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/HaMi:05&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/HaKoNiOsWe:11&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/HaKoNiOsWe:13&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/KeCr:82&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/milgrom1994monotone&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/Ostr:08&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3234080
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/Roth:84&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3230767
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/SuYa:06&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/Tars:55&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:34/West:10&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/danilov2001discrete&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/Flei:03&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/fox2017specifying&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/fox2017estimating&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/fox2017unobserved&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/GaSh:62&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/galichon2016costly&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/GuSt:99&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/HaKo:12&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/HaMi:05&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/HaKoNiOsWe:11&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/HaKoNiOsWe:13&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/KeCr:82&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3234080
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3230767
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/SuYa:06&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/Tars:55&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:34/West:10&rfe_id=urn:sici%2F0012-9682%28201909%2987%3A5%3C1633%3ATNWF%3E2.0.CO%3B2-A

	Introduction
	Model
	Firms and Contracts
	Utility Functions and Transfers
	Competitive Equilibrium

	Distortionary Frictions
	Capturing Transaction Taxes
	Leading Examples

	Existence of Competitive Equilibria
	Competitive Equilibrium and Trail Stability
	Instability of Competitive Equilibrium
	Trail Stability
	A Cooperative Interpretation of Competitive Equilibria
	A Competitive Interpretation of Trail Stability

	Other Cooperative Solution Concepts
	Conclusion
	Appendix A: An Equivalent Deﬁnition of Full Substitutability
	Appendix B: Proof of Theorem 1
	The Modiﬁed Economy
	Outcomes in the Modiﬁed Economy
	Proof of Theorem B.1
	Completion of the Proof of Theorem 1

	Appendix C: Other Proofs Omitted From the Text
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Corollary 2

	References

