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Abstract

A sequence of recent studies show that even in the simple setting of a single seller
and a single buyer with additive, independent valuations over m items, the revenue-
maximizing mechanism is prohibitively complex. This problem has been addressed
using two main approaches:

• Approximation: the best of two simple mechanisms (sell each item separately, or sell
all the items as one bundle) gives 1/6 of the optimal revenue [BILW14].

• Enhanced competition: running the simple VCG mechanism with additional m buy-
ers extracts at least the optimal revenue in the original market [EFF+17a].

Both approaches, however, suffer from severe drawbacks: On the one hand, losing 83%
of the revenue is hardly acceptable in any application. On the other hand, attracting a
linear number of new buyers may be prohibitive. Our main result is that by combining
the two approaches one can achieve the best of both worlds. Specifically, for any
constant ǫ one can obtain a (1 − ǫ) fraction of the optimal revenue by running simple
mechanisms — either selling each item separately or selling all items as a single bundle
— with substantially fewer additional buyers: logarithmic, constant, or even none in
some cases.
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1 Introduction

The scenario of a buyer with an additive, independent valuation over m items has become
the paradigmatic setting for studying optimal (revenue-maximizing) mechanisms. In this
setting, the buyer’s valuation is drawn from a distributionD that is known to the seller, and
the seller wishes to design a selling mechanism that extracts as much revenue as possible.

By now it is well known that the optimal mechanism requires randomization [HN13],
infinite, uncountable menus [DDT16], is non-monotone [HR12], and computationally in-
tractable [DDT14]1. Thus it is mostly interesting as a theoretic benchmark to which one
can compare more plausible mechanisms (much like the way an offline optimum serves as
a benchmark in online settings). In recent years, two main approaches have been taken
with respect to this challenge, both of which proposed simple mechanisms and measured
their performance against the theoretic optimum:

The first line of work approaches this problem through the lens of approximation
[CHK07, CHMS10, KW12, HN12, LY13, BILW14, CMS15, Yao15, RW15, BDHS15, MS15,
CDW16, CZ17, CM16, EFF+17b, Yao17]. In particular, the breakthrough result of [BILW14]
shows that the better of two simple mechanisms — selling each item separately or selling
all items together in a grand bundle — obtains at least 1/6 (but at most 1/2 [Rub16]) of
the optimal revenue.

While a constant factor approximation algorithm may sound appealing to an algorithm
designer, losing 83% (or even 50%) of the revenue is simply unacceptable. Indeed, it
will be difficult to convince a merchant who hopes to make $10K in revenue to sell her
merchandise by a mechanism that would guarantee her $1.7K.2 On the other hand, a seller
might be willing to compromise on optimality if guaranteed 99% of the optimal revenue.
(For example, merchants around the world pay small fees to credit card companies in return
for simple selling mechanisms). We therefore believe that the most interesting agenda here
should be obtaining 99% of the optimal revenue. (More generally, we are interested in
mechanisms whose revenue is arbitrarily close to optimum; i.e., (1 − ε)-fraction of the
optimal revenue for any constant ε.)

The second approach is to enhance the competition for the merchandise by increasing
the population of potential buyers [BK96, RTCY15, EFF+17a, LP18]. The state of the
art for additive buyers is by Eden et al. [EFF+17a], who showed that adding m additional
buyers is sufficient to recover the original optimal revenue with a simple mechanism. It is
also known that at least Ω(logm) additional buyers are required to achieve this benchmark.
This result from [EFF+17a] generalizes the seminal work of Bulow and Klemperer [BK96]
who showed that for a market with a single item, under a regularity assumption, running
the second price auction with one additional buyer extracts at least as much revenue as

1Similar undesired properties have been observed with respect to the optimal mechanism in additional
related (multi-dimensional) models, e.g., unit-demand buyers [BCKW10, CDO+15, CDP+14, RC98]

2There are still many great reasons to study constant-factor approximations in mechanism design; see,
e.g., [Har13] for an excellent discussion.
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the original optimal revenue. However, when m is large, adding m additional buyers may
be prohibitive. We therefore believe that the most interesting question here is whether the
linear dependence on m is necessary.

To summarize, the “optimal” benchmark is intractable. The approximation approach
is stuck at a 1/6-approximation (forfeiting 83% of potential revenue). And if we wish
to follow the enhanced competition approach, the best known bound on the number of
additional buyers is linear in the number of items. Have we reached a dead end?

1.1 Our Contribution

We show that one can combine the two approaches (of approximation and enhanced com-
petition) in a way that achieves the best of both worlds. We establish a host of results for
various settings, but they all convey one theme: in order to obtain revenue that is very
close to optimum, there is no need to recruit a linear number (in m) of additional buyers;
that is:

Main take away (informal): A seller can obtain 99% of the optimal revenue in a simple
mechanism (selling each item separately or selling all items together in a singe bundle)
with substantially fewer additional buyers — logarithmic (in m), constant, or even none
in some cases.

All of our results apply to the paradigmatic scenario of a seller who sells m items to
a single buyer with additive, independent valuations over the items, with a known prior.
Some of our results extend to the more general scenario of n i.i.d. buyers, namely where
buyers’ values are drawn independently according to the same distribution. The induced
product distribution is then denoted by D. Our first set of results consider the simple
mechanism that sells each item separately.

Theorem 1.1. For every constant ε > 0, selling each item separately to O(logm) i.i.d. buy-
ers extracts at least (1− ε)-fraction of the optimal revenue achievable by a single buyer.

This result improves upon the O(m) bound shown in [EFF+17a], at the loss of ε fraction
in revenue. In fact, this result can be extended even to a setting with n i.i.d. buyers and
m items, as follows:

Theorem 1.2. (implies Theorem 1.1) For a setting with n i.i.d. buyers and m items, for
every constant ε > 0, selling each item separately achieves at least (1 − ε)-fraction of the
optimal revenue if we increase the number of buyers by a factor of O(log(2 +m/n)), and
this is tight up to constant factors. Moreover, if m = o(n), then selling each item separately
achieves (1− ε)-fraction of the optimal revenue even with no additional buyers.

Theorem 1.2 essentially fully characterizes (up to constant factors) the number of ad-
ditional buyers necessary for achieving (1 − ε) of the optimal revenue. In particular, we
consider three different regimes of m and n: For m = ω(n) we prove that increasing the
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number of buyers by a factor of O(log(m/n)) is both necessary (Theorem 6.1) and suffi-
cient (Theorem 5.1). For m = Θ(n), our new lower bound implies that the previous results
of [EFF+17a] (who showed that a linear number of additional buyer suffice) are essentially
tight. Finally, for m = o(n), we show that no additional buyers are necessary (Theo-
rem 7.1). We note that our lower bound generalizes the special case of Ω(logm)-factor for
the case of a single buyer in [EFF+17a] 3.

Let us return to the single buyer setting. Theorem 1.2 implies that we can recover
(1 − ε)-fraction of the optimal revenue by adding O(logm) buyers. However, one may
argue that for a large value of m, O(logm) is still too large. We address this issue by
showing that the better of selling items separately and selling the grand bundle requires
only a constant number of additional buyers4.

Theorem 1.3. For every constant ε > 0, the better of selling each item separately and
selling the grand bundle, to a constant number of i.i.d. buyers, extracts at least (1 − ε)-
fraction of the optimal revenue achievable from one buyer.

Up until now, we concentrated on prior-dependent mechanisms; namely, mechanisms
that use the knowledge of the distribution of values. Our work, however, contributes also
to the literature on prior-independent mechanisms. As in previous literature on prior-
independent mechanisms, to achieve any meaningful result, we assume that the underlying
single-dimensional distributions are regular (note that this does not generally imply regu-
larity of the grand bundle’s distribution). Since bidders are additive, the prior-independent
VCG mechanism simply runs the second price auction for each item simultaneously. Thus,
Theorem 1.2 combined with the original result of Bulow and Klemperer [BK96] immedi-
ately implies the following corollary:

Corollary 1.4. If D is a product of regular distributions, then for every constant ε > 0,
running the VCG mechanism with a factor O(log(2 + m/n)) increase in the number of
buyers (and with no additional buyers in the case of m = o(n)) extracts at least (1 − ε)-
fraction of the original optimal revenue.

It would be highly desirable to obtain such an analog to Theorem 1.3. An immediate
barrier, however, is that the seller must know in advance whether to sell the items separately
or sell the grand bundle. How can the seller determine which one of these mechanisms to
run in the absence of a prior? This barrier is overcome by the surprising result that when D
is a product of regular distributions, the seller never needs to sell items separately; selling
the grand bundle is always the “correct” strategy:

Theorem 1.5. If D is a product of regular distributions, then for every constant ε > 0,
selling the grand bundle in a second price auction to a constant number of i.i.d. additive
buyers extracts at least (1− ε)-fraction of the optimal revenue achievable from one buyer.

3The lower bound in [EFF+17a] was proven for mechanisms that target 100% of the optimal revenue,
but it can be easily extended to mechanisms that target 99% or any constant fraction.

4There is no contradiction to the Ω(logm) lower bound, which applies only for selling items separately.

5



1.2 Relation to work on approximate revenue maximization

As already mentioned, our work is related to and inspired by a long line of research that
aims at understanding what fraction of the optimal revenue can be guaranteed with simple
mechanisms (without adding buyers), including [LY13, BILW14, GK16] and references
therein. It is interesting to note that obtaining a 0.99-approximation to the optimal revenue
with k additional buyers has implications on approximation results without additional
buyers. In particular, if one can obtain a 0.99-approximation to the optimal revenue using
mechanismM with k additional buyers, then, by revenue submodularity, this immediately
implies a 0.99/(k+1)-approximation of the optimal revenue with a single buyer. Hence, our
Theorem 1.1 implies the result of [LY13] that selling each item separately is an Ω(1/ logm)-
approximation of the optimal revenue. Similarly, our Theorem 1.3 implies the main result
of [BILW14] that the better of selling separately and selling the grand bundle yields a
constant fraction of the optimal revenue. Of course, the reverse implication is not true,
since the seller only has a single copy of each item to allocate to all buyers. Therefore,
while our analysis builds on the techniques of [LY13, BILW14], it is significantly more
challenging.

Recently, Goldner and Karlin [GK16] built on the result of Babaioff et al. [BILW14],
and showed that for regular distributions, the prior-independent mechanism which sells
either each item separately or the grand bundle, and sets the price according to a single
sample from the valuations distribution, obtains a constant fraction of the optimal revenue.
As a corollary of our Theorem 1.5, we can obtain the following qualitative strengthening
of [GK16, Corollary 2] for the case of a single buyer:

Corollary 1.6. If D is a product of regular distributions, taking a single sample of the
value of the grand bundle and selling the grand bundle for that price (to a single buyer)
extracts at least Ω(1) fraction of the optimal revenue.

For the special case where the single-dimensional distributions satisfy the monotone
hazard rate (MHR) condition 5, Cai and Huang [CH13] gave a PTAS for the revenue
maximizing auction. En route to obtaining their computational result, they prove the
following structural lemma, which holds even for heterogeneous buyers. 99% of the optimal
revenue can be obtained by one of the following simple mechanisms: (i) selling every item
separately; or (ii) selling all but a constant number of items via a VCG-like mechanism.
In other words, they show that when the single-dimensional distributions satisfy the MHR
condition, no additional buyers are necessary to obtain 99% of the optimal revenue with
mechanisms that are simple (in the above sense). Moreover, inspired by [CD11], they
show that for MHR distributions, when the number of buyers is larger than some constant,
selling items separately obtains 99% of the social welfare. (In contrast, note that for regular

5Roughly speaking, MHR distribution (a special case of regular distributions) has a tail that is thinner
than that of an exponential distribution.
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distributions the ratio of social welfare to revenue may be unbounded, even when adding
any number of buyers.)

2 Model

We consider a setting in which a monopolist seller sells a set [m] = {1, 2, . . . ,m} of heteroge-
neous items to n additive buyers. Buyer i’s value is additive if there exist values vi1, . . . , v

i
m

such that buyer i’s value for a set of items A is
∑

j∈A vij . The seller does not know the
buyers’ values, but knows the distribution from which they are sampled. For every item
j, the value of each agent i for item j is independently sampled from a single-dimensional
distribution Dj.

A mechanism is given by a pair of an allocation function π, and a payment function p.
The mechanism receives a valuation profile v = {vij}i,j as input. Based on v, the allocation
function determines the (possibly random) allocation of items to buyers, and the payment
function determines the payment pi of every buyer i. Buyers are quasi-linear; namely,
buyer i’s utility from a mechanism that allocates her each item j with probability πi

j and

charges her a payment pi is
∑

j π
i
j · vij − pi.

A mechanism is Bayesian Individually Rational (BIR) if every buyer’s expected utility
(over the randomness of the mechanism and other buyers’ values, assuming they are drawn
from ×jDj) is non-negative. A mechanism is Bayesian Incentive Compatible (BIC) if ev-
ery buyer’s expected utility is maximized when the buyer reports her valuation truthfully.
Throughout the paper, a BIR-BIC mechanism is termed a truthful mechanism. The ex-
pected revenue of a truthful mechanism is E

[∑

i p
i(v)

]
, where for every buyer i and item

j buyer i’s value for item j is drawn independently from Dj . The optimal revenue is the
optimal6 expected revenue among all truthful mechanisms.

For any single dimensional distribution D and any q ∈ [0, 1], we assume w.l.o.g. that
there exists v(q) ∈ R such that Prx∼D[x ≥ v(q)] = q. When the distribution is continuous
this is true by the intermediate value theorem. When the distribution has point masses, we
can smooth it with an infinitesimal perturbation; see e.g., [RW15] for a formal discussion.
We note that when D is regular, the perturbed distribution may not be regular. However,
it will not be hard to see that our proof in Section 9 will also work with distributions that
are infinitesimally-close to regular distributions.

3 Overview of Proofs

Our techniques build upon the now-standard approach for approximately optimal revenue
analysis: Separately reason about revenue contribution from rare events of extremely high

6In general for distributions of infinite support, the optimum revenue may not be achieved by any
mechanism (i.e. it is the supremum of all revenues achievable by truthful mechanisms). This is not so
important for our purposes since we are only trying to approximate the optimum.
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value (“tail” events), and revenue contribution from lower values (“core” events). This
approach is made formal via the core-tail decomposition framework of Li and Yao [LY13].
Separation between core and tail events is done by setting a cutoff for each item, and
then proving a “core-tail decomposition” lemma that upper bounds the optimal revenue
by the sum of total value from core events in which items are below their cutoffs (a.k.a.
contribution from the core), and the total revenue from tail events in which items are above
their cutoffs (a.k.a. contribution from the tail).

For approximation results, the next step would typically be to show that simple mecha-
nisms approximate both the contribution from the core and the tail, hence the best simple
mechanism approximates the optimal revenue. However, when targeting 99% of the opti-
mal revenue, even if one shows that simple mechanisms fully recover the contribution from
the core and the tail, it does not yet imply that simple mechanisms recover the sum of the
contributions. Hence this approach alone cannot yield better than a 1/2-approximation.
Instead, we carefully set the cutoffs so that the contribution from the core is almost fully
recovered using simple mechanisms with either O(1) buyers (Theorems 1.3 and 1.5) or
O(logm) buyers (Theorem 1.2), and the contribution from the tail is only a tiny fraction
of the revenue from simple mechanisms with O(1) buyers.

Before delving into the specificities of each result, we provide a few general notes about
the tail and the core.

Tail Since tail events are rare, they are approximately “separable” across items and
across buyers. First, since the probability of two or more items in the tail of any buyer
is low, the revenue contribution from tail items is roughly “separable” across items, i.e.,
approximating revenue contribution of tail events by the revenue contribution from selling
items separately loses only a moderate factor. Furthermore, each buyer is likely to have
tail valuations for disjoint subsets of items (“separability across buyers”). Thus in an
enhanced competition setting with more buyers we can simultaneously serve all of them,
quickly increasing the revenue.

Core Since the value of core items is bounded, a concentration bound typically suggests
a near-optimal grand bundle price whenever the sum of item values is significantly larger
than the revenue from selling items separately.

In what follows we elaborate on cases where interesting artifacts arise in the analysis.
We use Rev, SRev, and BRev to denote the optimal revenue from any mechanism, the
optimal revenue from selling each item separately, and the optimal revenue from selling
the grand bundle, respectively.

Theorem 1.3 (max{SRev,BRev}) An optimistic approach for proving Theorem 1.3
would use the same cutoff for all items, and apply a concentration bound (Chebyshev’s
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inequality) to suggest a bundle price that almost fully recovers the contribution from the
core with constant probability, then improve this probability to almost 1 by considering
additional buyers. Unfortunately, such strong concentration does not hold in general: a
small number of items may still exhibit a large variance, even inside the core. To overcome
this challenge, we separate the set of items to items that exceed their cutoffs with constant
probability, which we call “high items”, and the remaining we call “low items”. We then
use a concentration bound only for the sum of low items to get a good bundle price for the
low items. We set the cutoff so that the number of high items is a constant, hence with
probability close to 1, one of our additional O(1) buyers simultaneously exceeds the cutoff
of all the “high items”. We conclude that BRev with O(1) buyers recovers almost all of
the contribution from the core with probability almost 1. The proof appears in Section 8.

Theorem 1.5 (BRev, regular distributions) Single dimensional regular distributions
are appealing since they have a “small tail” property. While the grand bundle distribution
need not be regular even when the individual item distributions are, we show that the
underlying regularity of the individual items still maintains some well behaved properties
that we can exploit. Specifically, we can set cutoffs so that in the resulting core-tail
decomposition, the contribution from the tail is significantly smaller than the contribution
from the core. This is important since we are only allowed to sell the grand bundle, while
the tail is typically covered by selling items separately.

It is now left to guarantee that the core is almost fully recovered. The challenge is that a
small number of outlier items may have very large variance, ruining the naive concentration
bound argument. (In Theorem 1.3 we sometimes sold the outliers separately, but here we
are only allowed to sell the grand bundle.) We show that given a large (but still constant)
number of additional buyers, two of them are likely to have high values simultaneously for
all of the outlier items. We can then use a concentration bound to suggest a good price
for the remaining items, so that VCG on the grand bundle gives high revenue. The proof
appears in Section 9.

Theorem 1.2 (SRev), m = ω(n) regime Instead of a concentration bound for the
grand bundle (which is irrelevant when considering SRev) we further separate the contri-
bution from the core to the contributions from lower and higher values. We then show that
the contributions of lower values to the core can be almost fully recovered with probability
almost 1 by SRev with O(n · log(m/n)) buyers, while the contributions of higher values
to the core form only a tiny fraction of the revenue that can be extracted by SRev with
O(n · log(m/n)) buyers. The proof appears in Section 5.

Theorem 1.2 (SRev), m = o(n) regime We show that selling each item separately
achieves 99% of the optimal auction without adding any buyers at all. Proving this result
requires yet new ideas. The intuition is simple: with so many buyers, we can afford to set
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the cutoff much higher – so high that most buyers have at most one item in the tail –
while the contribution from the core can be almost fully recovered by selling each item to
a tiny fraction of the buyers. Therefore, we can set aside a small subset of special buyers,
and offer the items at high (tail) prices to all other buyers; we can then recover the rest
of the revenue by auctioning the items not previously sold to the special buyers. (Note
that this mechanism is for analysis purposes only — once we establish guarantees for any
mechanism for selling items separately, we can use Myerson’s optimal mechanism for selling
items separately.) This part of the analysis also takes into account the probability that an
item was sold in tail events.

Formalizing the above intuition is quite subtle. With high probability, there are still
some buyers with multiple items in the tail – and each of those items has many other buyers
whose valuations are in the tail, etc. Thus even after the core-tail decomposition, we have
to reason about a multiple buyer, multiple item setting. To cope with this difficulty, we
consider a bipartite graph of buyers and items, where we draw an edge {i, j} whenever buyer
i’s value of item j is in the tail. We then argue that we can analyze the revenue from each
connected component separately. In particular, while there are, w.h.p., large components
in the graph (with ω(1) buyers and items), we use simple ideas from percolation theory to
bound the expected size of each connected component. The proof appears in Section 7.

4 Preliminaries

A monopolist seller sells a set [m] = {1, 2, . . . ,m} of heterogeneous items to n additive
buyers. We assume the seller is able to attract more buyers. An additive buyer i that
values each item j at vi

j values a set of items A at
∑

j∈A vi
j . For a set of items A ⊆ [m], let

Ā = [m] \ A. We use vi
A = {vi

j}j∈A, therefore vi = (vi
A,v

i
Ā
). Also, we use vj = {vi

j}i∈[n],
and more generally, for a set S ⊆ [n]× [m], we use vS = {vi

j}(i,j)∈S and v−S = {vi
j}(i,j)6∈S .

Every buyer i is quasi-linear, i.e., in a randomized outcome that allocates item j to buyer
i with probability πi

j, and charges a payment pi, i’s utility is
∑

j π
i
j · vi

j − pi. The seller

does not know vi
j, but has a prior-distribution Dj with density fj for each item j, i.e., vi

j

is drawn from Dj . Let D = ×j∈[m]Dj . Therefore, in a setting with n i.i.d. buyers, each
drawn from D, the prior distribution is Dn7.

Let M be a truthful mechanism, i.e., Bayesian Individually Rational (BIR)8 and
Bayesian Incentive Compatible (BIC)9, with an allocation function π and a payment func-
tion p, i.e., given the submitted bids v, each buyer i is allocated item j with probability
πi
j(v) and pays pi(v). Let RevM(·) be mechanismM’s expected revenue, e.g., RevM(Dh)

is mechanism M’s expected revenue from h buyers, where each buyer’s valuation vi is

7By Dn we mean the product distribution ×i∈[n]D.
8A mechanism is Bayesian Individually Rational (BIR) if every buyer’s expected utility is non-negative.
9A mechanism is Bayesian Incentive Compatible (BIC) if every buyer’s expected utility (over the random-

ness of M and the other buyers’ values according to the prior distribution) is maximized by truth-telling.
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drawn i.i.d. from D, i.e., RevM(Dh) = Ev←Dh

[
∑

i∈[h] p
i(v)

]

. Let Rev(·) be the opti-

mal expected revenue by any truthful mechanism, e.g., Rev(Dh) is the optimal expected
revenue by any truthful mechanism for h i.i.d. buyers drawn from D. Similarly, SRev(·)
is the optimal expected revenue when selling the items separately, and BRev(·) is the
optimal expected revenue when selling all items in a bundle. Let Val(·) be the expected
value of the optimal allocation. Since we consider additive, independently drawn buyers,

Val(Dh) =
∑

j E

[

maxi∈[h] v
i
j

]

.

For a single dimensional distribution D, and a number p ∈ [0, 1], let Revp(·) denote
the revenue of an optimal mechanism, among all truthful mechanisms that sell with ex-
ante probability of at most p, i.e., mechanisms with allocation function π that satisfies

Ev

[∑

i π
i(v)

]
≤ p.

Throughout the analysis, for h that is not an integer, we slightly abuse notation and
use, e.g., Dh instead of D⌈h⌉ to denote the product distribution ×i∈⌈h⌉D. For a random
variable X drawn from distribution D, we use Rev(X) and Rev(D) interchangeably (and
similarly for SRev,BRev, etc.). Also, let I [E ] be the indicator random variable that equals
1 when event E occurs, and 0 otherwise.

Finally, we will use the following previously shown lemma.

Lemma 4.1. [BILW14] For any n ·m dimensional distribution D (i.e., n buyers and m
items), Rev(D) ≤ n ·m · SRev(D).

4.1 Lemmas for single dimensional distributions.

We recall and develop tools for our analysis in the remaining sections. Let v be drawn
from a single dimensional distribution D (i.e., v ← D), and consider some cutoff T ∈ R.

Lemma 4.2. [HN12] Rev(v|v > T ) = Rev(v·I[v>T ])
Pr[v>T ] .

Lemma 4.3. [LY13] Let γ > 0. Then Pr [v > γ ·Rev(D)] ≤ 1
γ .

Let Var(D) denote the variance of D.

Lemma 4.4. [LY13] Let γ > 0, and supposed that both Rev(D) ≤ γ and that the support
of D is in [0, tγ]. Then Var(D) ≤ (2t− 1)γ2.

The following lemma shows that for δ > 0 that is not too small, the optimal revenue
from ⌈1/δ⌉ i.i.d. buyers drawn from D is at least a 1/(2δ) factor larger than the optimal
revenue that can be extracted from a buyer with value distributed according to v ·I [v > T ].
This lemma will be used to bound the contribution (both to the core and tail) of higher
values.

Lemma 4.5. Suppose that δ ≥ 2 · Pr [v > T ]. Then Rev(v · I [v > T ]) ≤ 2δ ·Rev(D1/δ).
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Proof. Since v · I [v > T ] is single-dimensional, there exists a price π ≥ T that extracts
the optimal revenue, i.e., π · Pr [v > π] = π ·Pr [v · I [v > T ] > π] = Rev(v · I [v > T ]). For
every i ∈ [δ−1], let vi be drawn from D. Therefore, Rev(D1/δ) ≥ π ·Pr

[
maxi∈[δ−1] v

i > π
]
.

By Bonferroni inequalities (the inclusion-exclusion principle),

Pr

[

max
i∈[δ−1]

vi > π

]

≥ δ−1 · Pr [v > π]−
(
δ−1

2

)

· Pr [v > π]2 ≥ (1− 1
4 ) · δ

−1 · Pr [v > π] ,

where the last inequality follows by the lemma’s condition: 1/2 ≥ δ−1 · Pr [v > T ] ≥
δ−1 · Pr [v > π]. Therefore, we conclude that Rev(D1/δ) ≥ (43 · δ)−1 · π · Pr [v > π] =
(43 · δ)−1Rev(v · I [v > T ]). For ease of exposition, we relax the 4/3 to 2.

The following lemma will be used to cover the contribution of values from the core.

Lemma 4.6. Let Tα satisfy Prv←D [v > Tα] ≥ α. For any h ≥ 1,

Rev(Dh) ≥ (1− e−α·h) · Tα.

Proof.

Rev(Dh) ≥Tα · Pr
[

max
i∈[h]

vi > Tα
]

=Tα · (1− Pr [v ≤ Tα]h)
≥Tα · (1− (1− α)h)

≥Tα · (1− e−α·h)

The following lemma is a specified analog to Lemma 4.6 that bounds the contribution
from values in the core using the second price auction, and its proof is similar to the proof
of Lemma 4.6. Let RevVCG denote the revenue from the second price auction.

Lemma 4.7. Let Tα satisfy Prv←D [v > Tα] ≥ α. For any h ≥ 1,

RevVCG

(

D2h
)

≥ (1− e−α·h)2 · Tα

12



Proof.

RevVCG(D2h) ≥Tα · Pr
[
∃i, j ∈ [2h], i 6= j : vi, vj > Tα

]

≥Tα · Pr
[

max
i∈[h]

vi > Tα,max
j∈[h]

vj > Tα
]

=Tα ·
(

1− Pr [v ≤ Tα]h
)2

=Tα ·
(

1− (1− Pr [v > Tα])h
)2

≥Tα ·
(

1− (1− α)h
)2

≥Tα · (1− e−α·h)2

4.1.1 Regular distributions.

For ease of exposition, we assume D has a density f and is strictly increasing. Nevertheless,
our results extend to arbitrary regular distributions. A distribution D with density f is
regular if v − (1−D(v)) /f(v) is non-decreasing in v. Our analysis is done in quantile
space, which is defined below.

Definition 4.8. (Quantiles, demand curve, and revenue curve.)

• Let q(v) = Prx←D [x ≤ v] = D(v) be the quantile of v.

• Let V (q) = v for which D(v) = q, i.e., V (q) = D−1(q) is the demand curve of D.

• Let rev(q) = (1− q) ·V (q), i.e., the revenue from the posted price V (q) that sells w.p.
1− q.

Observe that V is increasing in q. By change of variables, the expected value v can be
computed as follows: 10

E [v] =
∫∞
0 vf(v)dv =

∫ 1
0 V (q)dq = Eq←U [0,1] [V (q)]. The following

lemma is a well known characterization of regular distributions.

Lemma 4.9. [Mye81] A distribution D is regular if and only if rev(q) is concave, i.e., for
every α, β, γ ∈ [0, 1], it holds that rev(γ · α+ (1− γ)β) ≥ γ · rev(α) + (1− γ) · rev(β).

The following corollary is the only way we use regularity (and is only used to prove
Lemma 4.11).

Corollary 4.10. If D is regular and 0 ≤ β ≤ α ≤ 1, then rev(β) ≥ α · rev(β) ≥ β · rev(α).
10By v = V (q), we get dv = V ′(q)dq = [D−1]′(q) = 1

f(D−1(q))
= 1

f(V (q))
, so vf(v)dv = V (q) f(V (q))

f(V (q))
dq

13



Proof. rev(β) = rev(βα · α+ (1− β
α) · 0) ≥

β
α · rev(α) + (1− β

α) · rev(0) ≥
β
α · rev(α)

The following lemma shows that if the probability of exceeding the cutoff T is ε, then
T is a price that provides a 1− ε approximation to the optimal revenue from the random
variable v · I [v > T ].
Lemma 4.11. For a cutoff T = V (1−ε), it holds that rev(1−ε) ≥ (1−ε)·Rev(v·I [v > T ]).
Proof. Since v · I [v > T ] is single-dimensional, there exists a price π ≥ T that achieves the
optimal expected revenue for this random variable. Let β satisfy π = V (1 − β), then we
have Rev(v ·I [v > T ]) = rev(1−β). Since π ≥ T , we get that V (1−β) ≥ T = V (1−ε). By
monotonicity of V we have 1−β ≥ 1−ε, and by Corollary 4.10 rev(1−ε) ≥ (1−ε)rev(1−β),
as required.

The following lemma relates the contribution from the core to the contribution from
the tail.

Lemma 4.12. For a cutoff T = V (1 − ε1), for every 0 < ε2 < 1 and k ∈ N such that
ε1 · ε−k2 < 1 it holds that:

E
v←D

[v · I [v ≤ T ]] ≥ k · (1− ε2) · (1− ε1 · ε−k2 )Rev(v · I [v > T ])

Proof. First observe that Ev←D [v · I [v ≤ T ]] = Eq←U [0,1] [V (q) · I [q ≤ 1− ε1]]. By seg-
menting the expectation over [0, 1 − ε1] we get

E
q←U [0,1]

[V (q) · I [q ≤ 1− ε1]] ≥
k−1∑

ℓ=0

E

[

V (q) · I
[

1− ε1 · ε−(ℓ+1)
2 < q ≤ 1− ε · ε−ℓ2

]]

≥
k−1∑

ℓ=0

(

ε1 · ε−(ℓ+1)
2 − ε1 · ε−ℓ2

)

V (1− ε1 · ε−(ℓ+1)
2 )

=(1− ε2)

k−1∑

ℓ=0

ε1 · ε−(ℓ+1)
2 · V (1− ε1 · ε−(ℓ+1)

2 )

=(1− ε2)

k∑

ℓ=1

rev(1− ε1 · ε−ℓ2 )

In the first inequality we reduce values in [0, 1− ε1 · εk2 ] to 0. The second inequality follows
by monotonicity of V . The fact that ε1 · ε−k2 ≥ ε1 · ε−ℓ2 ≥ ε1 for every ℓ, combined with
Lemma 4.11 implies that rev(1−ε1 ·ε−k2 ) ≥ (1−ε1 ·ε−ℓ2 )Rev(v ·I [v > T ]), which completes
the proof:

E
v←D

[v · I [v ≤ T ]] ≥ (1− ε2) · k · (1− ε1 · ε−k2 )Rev(v · I [v > T ]).
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4.1.2 Mechanisms with restricted probability of sale.

We describe optimal single item mechanisms with restricted probability of sale. The lemmas
established in this section are used in Section 7. In particular, we formally show that a
naive generalization of Myerson’s optimal auction for the unrestricted case is also optimal
for the restricted case.

Fix a number p ∈ [0, 1] and x i.i.d. buyers, each buyer i with value vi drawn from a
single dimensional distribution D. A mechanism with allocation function π that satisfies

Ev

[
∑

i∈[x] π
i(v)

]

≤ p, is said to sell with ex-ante probability of at most p.

Recall that by Myerson’s theory, a mechanism with allocation rule π and payment p is
truthful if and only if each buyer i’s allocation rule πi is monotone, and buyer i’s payment

function is fully determined by πi via the equality pi(v) = vi · πi(v) −
∫
v
i

z=0 π
i(z,v−i)dz.

Furthermore, Myerson defines virtual value functions11 ϕD : supp(D)→ R for single dimen-
sional distributions D (we henceforth drop the superscript D). The virtual value function
is particularly useful because one can re-amortize the expected payment to a term that
uses the virtual value functions, and this term can be optimized point wise. This becomes
apparent in Myerson’s payment identity:

Lemma 4.13. [Mye81] (Payment identity) In every truthful mechanism with allocation
function π and payment function p, for every buyer i it holds that E

[
ϕ(vi) · πi(v)

]
=

E

[
pi(v)

]

A regular distribution is a distribution whose corresponding virtual value function ϕ
is monotone. For irregular distributions, Myerson defines yet another transformation that
transforms the virtual value function to an ironed virtual value function ϕ̄ (the details
are not so important for our application; for more details see e.g., [Mye81, Har13]). The
key point is that ironed virtual value functions are always monotone, and furthermore,
maintain the following property:

Theorem 4.14. ([Har13, Theorem 3.12]) For every truthful mechanism with allocation
function π, for every buyer i, E

[
ϕ(vi) · πi(v)

]
≤ E

[
ϕ̄(vi) · πi(v)

]
, with equality if πi(·,v−i)

is constant on ironed intervals.

In order to construct the optimal mechanism with restricted probability of sale, we will
need the following definitions. Let v∗ = maxi∈[x] v

i, and let S = {y ≥ 0 : Pr[ϕ̄(v∗) ≥ y] ≤
p} and φ = inf S.

Note that if φ ∈ S, then it must be that φ = 0 or that Pr[ϕ̄(v∗) ≥ φ] = p. 12

Otherwise, it must be that Pr[ϕ̄(v∗) > φ] ≤ p, 13 but Pr[ϕ̄(v∗) ≥ φ] > p, i.e, Pr[ϕ̄(v∗) =
φ] = Pr[ϕ̄(v∗) ≥ φ]− Pr[ϕ̄(v∗) > φ] > 0.

11When D has a density f , its virtual value function is defined by ϕ(v) = v −
1−D(v)
f(v)

. See e.g., [Elk07,

CDW16] for the general case.
12Otherwise Pr[ϕ̄(v∗) ≥ φ] = p− ǫ but for every 0 < a < φ we have Pr[φ > ϕ̄(v∗) ≥ a] > ǫ.
13Otherwise Pr[ϕ̄(v∗) > φ] = p+ ǫ but for every a > φ we have Pr[a > ϕ̄(v∗) > φ] ≥ ǫ.
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Consider the mechanism M that sells a single item to x buyers as follows. If φ ∈ S,
the mechanism allocates the item to a random buyer i among those with ϕ̄(vi) = ϕ̄(v∗)
whenever ϕ̄(v∗) ≥ φ, and otherwise does not allocate.

If φ 6∈ S, then the mechanism allocates the item to a random buyer i among those
with ϕ̄(vi) = ϕ̄(v∗) whenever ϕ̄(v∗) > φ, and whenever ϕ̄(v∗) = φ the mechanism draws

a Bernoulli random variable that equals 1 w.p. p−Pr[ϕ̄(v∗)>φ]
Pr[ϕ̄(v∗)=φ] , and if the variable equals 1

the mechanism allocates to a random buyer i among those with ϕ̄(vi) = φ.

Lemma 4.15. For x i.i.d. buyers drawn from a single dimensional distribution D, and
p, φ,v∗ as above, the mechanismM described above sells with ex-ante probability of at most
p, and extracts expected revenue of:

E [ϕ̄(v∗) · I[ϕ̄(v∗) > φ]] + φ · (p− Pr[ϕ̄(v∗) > φ]) .

Moreover, every buyer contributes the same amount of expected revenue.

Proof. By definition of the mechanism M, all the allocation rules depend on values of
ϕ̄, which implies that they are constant on ironed intervals, and since buyers are drawn
from the same distribution, every buyer i contributes the same amount of expected ironed
virtual surplus E

[
ϕ̄(vi) · πi(v)

]
, which, by Theorem 4.14 and Myerson’s payment identity,

14 is also the contribution to the mechanism’s expected revenue.
Whenever φ ∈ S, we saw that φ = 0 or Pr[ϕ̄(v∗) ≥ φ] = p. The mechanism’s ironed

virtual surplus in this case is exactly

E [ϕ̄(v∗) · I[ϕ̄(v∗) ≥ φ]] = E [ϕ̄(v∗) · I[ϕ̄(v∗) > φ]] + φ · Pr[ϕ̄(v∗) = φ].

If φ = 0, the statement holds, and if Pr[ϕ̄(v∗) ≥ φ] = p, then

p− Pr[ϕ̄(v∗) > φ] = Pr[ϕ̄(v∗) ≥ φ]− Pr[ϕ̄(v∗) > φ] = Pr[ϕ̄(v∗) = φ]

as required.
Whenever φ 6∈ S, the mechanism’s ironed virtual surplus is exactly

E [ϕ̄(v∗) · I[ϕ̄(v∗) > φ]] + Pr[ϕ̄(v∗) = φ] · p− Pr[ϕ̄(v∗) > φ]

Pr[ϕ̄(v∗) = φ]
· φ.

As required.

We are now ready to prove the optimality of M among mechanisms with restricted
probability of sale.

14For more details, see e.g. [Har13, Equation (3.3)].
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Lemma 4.16. For D,x, p as above, the mechanism M above is a revenue maximizing
mechanism among all truthful mechanisms that sell to x i.i.d. buyers drawn from D with
ex-ante probability of at most p, i.e., Revp(D

x) = RevM(Dx).

Proof. Let vi ← D for all i ∈ [x]. Note that since the buyers are all drawn from D, they
all have the same virtual function and ironed virtual function.

Fix a truthful mechanism M′ that sells w.p. at most p. Let πi(v) be its allocation
function for buyer i. By Myerson’s theory, M′ is truthful if and only if πi is monotone
w.r.t. vi for every buyer i. Clearly, if πi(v) > 0 for some ϕ(vi) < 0, setting πi(v) = 0
whenever ϕ(vi) < 0 does not increase the ex-ante probability of sale, and does not decrease
the expected virtual surplus, and maintains monotonicity of πi(·,v−i). Therefore, we may
consider w.l.o.g. only mechanisms with πi(v) = 0 for all ϕ(vi) < 0, i.e., mechanisms that
count only non-negative virtual surplus.

RevM′(Dx) = E
v




∑

i∈[x]
ϕ(vi) · πi(v)



 ≤ E
v




∑

i∈[x]
ϕ̄(vi) · πi(v)



 ≤ E
v



ϕ̄(v∗) ·
∑

i∈[x]
πi(v)



 .

Where the first equality is Myerson’s payment identity, and the first inequality holds by

Theorem 4.14. Let π̂ = E

[
∑

i∈[x] π
i(v)

]

, i.e., the total probability of sale of mechanism

M′. We know that π̂ ≤ p. Recall that by definition of φ, it holds that Pr[ϕ̄(v∗) > φ] ≤ p.
Observe that

E



ϕ̄(v∗) ·
∑

i∈[x]
πi(v)



 ≤ E [ϕ̄(v∗) · I[ϕ̄(v∗) > φ]] + φ · (p− Pr[ϕ̄(v∗) > φ]) ,

because the former counts non-negative values of ϕ̄(v∗) that accumulate to at most p mass,
while the latter counts all the highest values of max{ϕ̄(v∗), 0}, that accumulate to p mass.
The proof follows by Lemma 4.15.

Corollary 4.17. Let 0 ≤ δ < 1. Then Revp(D
x) ≤ 1

1−δRevp(D
(1−δ)·x)

Proof. LetM be the mechanism considered in Lemma 4.15 for x buyers drawn i.i.d. from
D. Let p = E

[
pi
M(v)

]
be the expected payment of a buyer in M. Fix some δ ∈ [0, 1],

and consider the mechanism Mδ that sells a single item to an arbitrary set of (1 − δ) · x
buyers by sampling the remaining δ · x buyers i.i.d. from D, and by executing Mp with
the buyers’ bids and the samples. Truthfulness ofMδ follows by truthfulness ofM. The
revenue fromMδ is (1− δ)x ·p, and its ex-ante probability of sale is at most p. Therefore,

RevM(Dx) = x · p = (1− δ)x · p+ δx · p = RevMδ
(D(1−δ)x) + δ ·RevM(Dx)
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Therefore by rearranging we get that

Revp(D
x) = RevM(Dx) =

1

1− δ
RevMδ

(D(1−δ)x) ≤ 1

1− δ
Revp(D

(1−δ)x)

As required.

Lemma 4.18. Revp(D
k) is non-decreasing in k.

Proof. Fix some k > t, and consider the mechanismM′ for k buyers that selects a set of
t buyers, and executes the mechanism M considered in Lemma 4.15 for t buyers drawn
i.i.d. from D, only on these t buyers, and completely ignores the rest. By independence
across buyers,M′ extracts exactly the same revenue asM, and sells with the same proba-
bility, i.e., RevM′(Dk) = RevM(Dt) = Revp(D

t). Therefore, Revp(D
t) = RevM′(Dk) ≤

Revp(D
k) as required.

Lemma 4.19. Fix a cutoff T . Let v← Dn. Let D̂ denote the distribution of vi|(vi > T )
for every buyer i. Then for every k ≤ n and p ∈ [0, 1].

Revp

(

D̂k
)

≤ Revp(D
n)

Pr[|{i : vi > T }| ≥ k]

Proof. Consider the following n buyers mechanismM′. The mechanismM′ first receives
bids, and in the first step removes all bids that are at most T , and remains with some
k′ ≤ n buyers. In the second step M′ executes the mechanism M from Lemma 4.15 for
k′ buyers drawn i.i.d. from D̂. For every buyer, the participation rule (value more than
T ) is monotone, and every mechanism from Lemma 4.15 has a monotone allocation rule,
thereforeM′ has a monotone allocation rule, and thus is truthful. Also, in the second step
M′ always executes a mechanism that sells with ex-ante probability at most p, henceM′
also sells with ex-ante probability at most p.

Let A′ = {i : vi > T }. Denote by R′ the revenue ofM′ where every vi is drawn from
D, conditioned on the event |A′| ≥ k. Conditioned on A′, the revenue of the mechanism
M′ is by definition exactly that ofM from Lemma 4.15 for |A′| buyers drawn i.i.d. from

D̂, which, by Lemma 4.16 equals Revp

(

D̂|A
′|
)

. Therefore by law of total expectation,

R′ = E

[

RevM′(v)

∣
∣
∣
∣
k ≤

∣
∣A′
∣
∣

]

= E

[

E

[

Revp

(

D̂|A
′|
)
∣
∣
∣
∣
A′, k ≤

∣
∣A′
∣
∣

] ∣
∣
∣
∣
A′
]

≥ Revp

(

D̂k
)

Where the inequality follows by monotonicity w.r.t. the number of buyers (Lemma 4.18).
Finally, observe that

R′ = E
v

[

RevM′(v)

∣
∣
∣
∣
k ≤

∣
∣A′
∣
∣

]

≤ Ev [RevM′(v)]

Pr [k ≤ |A′|] =
RevM′(Dn)

Pr [k ≤ |A′|] ≤
Revp(D

n)

Pr [k ≤ |A′|]
The last inequality follows by that M′ sells with probability at most p. This completes
the proof.
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4.2 Partition of the support.

Recall that for every buyer i and item j, vi
j ← Dj , and that D = ×j∈[m]Dj . Every item j

is assigned a cutoff Tj. If the value of an item is greater than its cutoff (i.e., vi
j > Tj) then

it is said to be in the tail w.r.t. vi, and otherwise it is in the core w.r.t vi.
For a set of items A, let DA be the distribution D conditioned on A being exactly

the set of items in the tail. Let pA be the probability of A being exactly the set of items

in the tail, i.e., pA =
∏

j∈APr
[

vi
j > Tj

]

·∏j 6∈A Pr
[

vi
j ≤ Tj

]

. Let DA
C (resp., DA

T ) be the

distribution DA restricted to just items in the core (resp., tail).
For every buyer i consider some Ai ⊆ [m], and let A = {Ai}i∈[n]. Let A represent the

event that for every i it holds that Ai is exactly the set of items that are in the tail with
respect to buyer i’s valuation, i.e., for every item j ∈ Ai it holds that vi

j > Tj, and for every

j 6∈ Ai it holds that vi
j ≤ Tj. Denote by pA the probability of event A, i.e., pA =

∏

i pAi ,

and let DA be the distribution Dn conditioned on the event A, i.e., DA = ×i∈[n]DA
i
.

The following lemma appeared previously and is included for completeness.

Lemma 4.20. [HN12] (Sub-domain stitching) Let L = {A : ∀i,Ai ⊆ [m]} be all possible
A. Then

Rev(Dn) ≤
∑

A∈L
pA ·Rev(DA)

Proof. LetM be the optimal mechanism for n i.i.d. buyers with values v drawn from Dn.
Then RevM(Dn) =

∑

A∈L pA ·RevM(DA). Taking the optimal mechanism for DA only
increases the right-most sum.

5 Many Items: SRev with O(n · log m
n ) Buyers

In this section we prove that for m ≫ n, increasing the number of buyers by a factor of
O(log(m/n)) suffices to recover 99% of the optimal revenue by selling the items separately.

Theorem 5.1 (Theorem 1.2, case m≫ n). For any constant ε > 0 there exists a constant
δ = δ(ε) > 0 such that whenever m ≥ 2n/δ,

(1− ε)Rev(Dn) ≤ SRev

(

D
n·log m

n
δ

)

This implies the following corollary for the special case of a single buyer:

Corollary 5.2 (Theorem 1.1). For any constant ε > 0 there exists a constant δ(ε) > 0
such that whenever m ≥ 2/δ:

(1− ε)Rev(D) ≤ SRev

(

D log m
δ

)
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Proof outline

We first partition the domain of the valuations distribution into sub-domains (using the
Subdomain Stiching Lemma (Lemma 4.20)). We henceforth condition on the event (or
sub-domain) A that describes which items are in the tail or core for which buyer (we still
don’t know their values within the tail/core).

We now describe a “marginal mechanism lemma” (Lemma 5.3) that shows that the
optimal revenue from DA, is bounded by the sum of expected item values in the core in
event A, plus the revenue from selling to each buyer the items that are in her tail in event
A (conditioned on them being in the tail). This implies a core-tail decomposition lemma
(Lemma 5.4) that bounds the optimal revenue using two terms: the core and tail.

We bound the tail in Section 5.2. In Lemma 5.5 we show that the tail is bounded by the
revenue from selling items separately and using only prices that are higher than the cutoffs.
Since the probability that two buyers are interested in the same item at a high price is
extremely low, the supply constraint is hardly restricting. Therefore when we increase the
number of buyers, the revenue increases almost linearly. This is used in Lemma 5.6 that
shows that the tail is a tiny fraction of the revenue after multiplying the number of buyers
by a (large) constant.

We bound the core in Section 5.3. We separate the core into regions of lower values
and higher values. Lower values are upper bounded by a maximum of two cutoffs, and are
handled in two lemmata (5.7 and 5.8).

In Lemma 5.10 we bound the contribution from “higher” values (still in the core).
First, we observe that they lie in a bounded region: bounded from above since they are
in the core, and bounded from below since we handle low values separately. We use this
property to show that their expected value is at most O(log(m/n))-factor larger than the
revenue from selling each item separately at “higher” prices. Now, similarly to the tail,
since at high prices buyers are likely to want disjoint sets of items, the above revenue scales
almost linearly when increasing the number of buyers. Therefore, multiplying the number
of buyers by O(log(m/n)) suffices to extract revenue much larger than the contribution
from high values.

Finally, we complete the proof in Section 5.4 by combining the core-tail decomposition
with the above arguments.

5.1 Core-tail decomposition.

The following lemma may be seen as a generalization of Lemma 24 in [HN12] for n > 1 buy-
ers. In [HN12], the authors note that the proof of their Lemma 24 implies a generalization
for n > 1, by considering for each item the maximal value among all buyers’ values. This
method still allows to partition the support of Dn to only 2m subsets (according to the set
of items that have a maximal value above the cutoff). We show a more fine-grained gen-
eralization that partitions the support of Dn to 2m·n subsets, thereby leading to a tighter

20



analysis.
Recall that for some Ai, DAi

T is the distribution D conditioned on Ai being exactly the
set of items in the tail, restricted only to the items in the tail (Ai).

Lemma 5.3. (Marginal Mechanism on Sub-Domain) For A as above,

Rev
(
DA
)
≤
∑

j∈[m]

E
v←Dn

[

max
i:j 6∈Ai

vi
j

∣
∣
∣
∣
A
]

+
∑

i∈[n]
Rev

(

DAi

T

)

Proof. LetM be an optimal n buyer mechanism for buyers that are drawn from DA, i.e.,

RevM(DA) = Rev
(
DA
)
. (1)

Let pi(·) be buyer i’s payment function in mechanism M, and let πi
j(·) be buyer i’s allo-

cation function for item j in mechanismM. Consider the following one buyer mechanism
Mi for buyer i, with valuation vi ← DAi

. For each ℓ 6= i sample (privately) vℓ ← DAℓ
, and

executeM with the buyer i’s submitted bids and the samples v−i = {vℓ}ℓ 6=i. Truthfulness
ofMi follows by thatM is truthful. By independence across buyers we have that

RevMi(DAi

) = E
v−i

[

E
vi

[

pi(vi,v−i)

∣
∣
∣
∣
v−i
]]

= E
v←DA

[
pi(v)

]
. (2)

By linearity of expectation and Equation (1) we have that:

∑

i∈[n]
RevMi

(DAi

) = E
v←DA




∑

i∈[n]
pi(v)



 = Rev
(
DA
)
. (3)

Fix some i ∈ [n], and some Ai ⊆ [m].
Consider the following single buyer mechanism M(Ai) for selling only items in Ai:

first (publicly) sample values vi
Āi

= {vij}j∈Āi according to the distribution DAi

C . Then

solicit from the buyer values for the items vi
Ai = {vij}j∈Ai . Finally, feed mechanism Mi

the valuation vi = (vi
Ai ,v

i
Āi
). Let πi

j be the probability that Mi allocates item j to the

buyer, and let pi be the buyer’s payment. Allocate each item j ∈ Ai with probability πi
j ,

and charge a payment of pi −∑j∈Āi πi
j · vi

j . Truthfulness ofM(Ai) follows by thatMi is
truthful.

Conditioned on a fixed private sample v−i of mechanismMi, the revenue ofM(Ai) is
the expected payment over the samples vi

Āi
← DAi

C and buyer i’s private values vi
Ai ← DA

i

T

for items in Ai.

E
vi

¯
Ai



 E
vi

Ai



pi(vi,v−i)−
∑

j∈Āi

πi
j(v

i,v−i) · vi
j





∣
∣
∣
∣
vi
Āi



 = E

vi←DAi



pi(v) −
∑

j∈Āi

πi
j(v) · vi

j



 ,
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where the equality follows by independence across items. Therefore, by taking expectation
over v−i ← ×ℓ 6=iDA

ℓ
, we get that the expected revenue ofM(Ai) from a buyer vi ← DAi

is

RevM(Ai)(DA
i

T ) = E
v−i



E
vi



pi(v) −
∑

j∈Āi

πi
j(v) · vi

j





∣
∣
∣
∣
v−i



 = E
v←DA



pi(v)−
∑

j∈Āi

πi
j(v) · vi

j



 ,

where the last equality follows by independence across buyers. Therefore by linearity of
expectation and Equation (2) we get that

RevM(Ai)(DA
i

T ) = RevMi(DAi

)− E
v←DA




∑

j∈Āi

πi
j(v) · vi

j



 .

Summing over all i ∈ [n], by Equation (3) we get that

∑

i∈[n]
RevM(Ai)(DA

i

T ) = Rev
(
DA
)
− E

v←DA




∑

i∈[n]

∑

j∈Āi

πi
j(v) · vi

j



 .

For each item j and any buyers valuation profile v it holds that
∑

i π
i
j(v) ≤ 1. Therefore by

reorganizing the above and replacing the revenue of mechanism M(Ai) with the optimal
mechanism for the distribution DAi

T we get that

Rev
(
DA
)
≤
∑

j∈[m]

E
v←DA

[

max
i:j∈Āi

vi
j

]

+
∑

i∈[n]
Rev(DAi

T ),

as required.

The following core-tail decomposition upper bounds the optimal revenue from n buyers.
In contrast to the decomposition in [BILW14], our decomposition provides a tail that relates
to single buyer settings.

To simplify notation, once cutoffs Tj are fixed for every j, we use DTail to denote the
product distribution of the random variables {vj · I [vj > Tj]}j∈[m], and DCore to denote
the product distribution of the random variables {vj · I [vj ≤ Tj]}j∈[m], where vj ← Dj for
every j.

Lemma 5.4. (Core-tail decomposition)

Rev(Dn) ≤ Val(Dn
Core) + n ·

∑

A⊆[m]

pA ·Rev(DA
T )
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Proof. By Lemma 4.20 and Lemma 5.3 We immediately get:

Rev(Dn) ≤
∑

A∈L
pA
∑

j∈[m]

E
v←Dn

[

max
i:j 6∈Ai

vij

∣
∣
∣
∣
A
]

+
∑

A∈L
pA
∑

i∈[n]
Rev

(

DAi

T

)

. (4)

Observe that by reordering of the right-most summations and independence across buyers,
we get that,

∑

A∈L
pA
∑

i∈[n]
Rev

(

DAi

T

)

=
∑

i∈[n]

∑

A⊆[m]

pA ·Rev(DA
T ) = n ·

∑

A⊆[m]

pA ·Rev(DA
T ).

Observe also that maxi:j 6∈Ai vi
j = maxi∈[n]{vi

j · I
[

vi
j ≤ Tj

]

}, therefore, by the law of

total expectation, the left-most summations in Equation (4) equals (after reordering)

∑

j∈[m]

E
v←Dn

[

max
i∈[n]
{vij · I

[
vi
j ≤ Tj

]
}
]

= Val(Dn
Core).

Cutoff setting. For every item j fix Tj to be so that Prvj←Dj
[vj > Tj] = m−1.

5.2 Tail

The main lemma of this section is Lemma 5.6 which states that the contribution from the
tail is a tiny fraction of the revenue from SRev with n ·C buyers where C is some constant.
Lemma 5.5 shows (in the spirit of Proposition 1 in [BILW14]) that we can approximately
recover the tail of one buyer (

∑

A⊆[m] pA ·Rev(DA
T )) by selling items separately, only using

prices that are higher than the cutoffs. Recall that DTail is the product distribution of
the random variables {vj · I [vj > Tj]}j∈[m], and therefore SRev(DTail) =

∑

j∈[m]Rev(vj ·
I [vj > Tj]).

Lemma 5.5.
∑

A⊆[m] pA ·Rev(DA
T ) ≤ 2 · SRev(DTail)
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Proof. The following holds:

∑

A

pARev(DA
T ) ≤

∑

A

pA · |A| · SRev(DA
T ) (Lemma 4.1)

=
∑

A

pA · |A| ·
∑

j∈A
Rev(vj |vj > Tj) (definition of SRev)

=
∑

A

pA · |A| ·
∑

j∈A

Rev(vj · I [vj > Tj])
Pr [vj > Tj]

(Lemma 4.2)

=
∑

A

∑

j∈A
|A| · pA

Pr [vj > Tj]
·Rev(vj · I [vj > Tj])

=
∑

j∈[m]

Rev(vj · I [vj > Tj])

︸ ︷︷ ︸

=SRev(DTail)

·
∑

A:A∋j
|A| · pA

Pr [vj > Tj]
︸ ︷︷ ︸

≤2

Observe that the rightmost sum is the expected size of the set in the tail, conditioned
on j being in the tail, i.e., 1 +

∑

k 6=j Pr[vk > Tk] = 1 + m−1
m (by definition of Tk) . The

result follows by the definition of DTail and SRev’s additivity across items.

We are now ready to show that SRev with n ·C buyers (where C is a constant) extracts
much more revenue than the contribution from the tail.

Lemma 5.6. Let δ ≥ 2n/m. Then

n ·
∑

A⊆[m]

pARev(DA
T ) ≤ 4 · δ · SRev(Dn/δ)

Proof. By lemma 5.5:
∑

A pARev(DA
T ) ≤ 2·SRev(DTail) = 2·∑j∈[m]Rev(vj ·I [vj > Tj]).

Also, as we consider the case where δ/n ≥ 2/m = 2 ·Pr[vj > Tj], we can apply Lemma 4.5

to each j and get Rev(vj · I [vj > Tj]) ≤ 2δ
n · Rev(D

n/δ
j ). Summing over all j completes

the proof.

5.3 Core

For ease of exposition, let v∗j denote the random variable v∗j = maxi∈[n]{vi
j · I

[

vi
j ≤ Tj

]

}
where vi

j ← Dj for each i ∈ [n]. In this section we upper bound the core Val(Dn
Core

) =
∑

j∈[m] E

[

v∗j

]

.
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Cutoff setting in the core. Fix some constant ε1 ≤ 1. For each item j, set T ′j so

that Prv←Dj

[

v > T ′j
]

= ε1
n·log m

n
, and set T ′′j = max{ n

m · Tj,T ′j }. In order to bound the

contribution from the core, for each item we separate to “tiny values” (at most n
mTj), “low

values” (at most T ′j ), and “higher values” (above max{ n
m · Tj,T ′j }).

In the following we bound the contribution of values that are at most T ′′j , we provide
separate bounds for tiny values (Section 5.3.1) and low values (Section 5.3.2).

5.3.1 Tiny values in core

We show in Lemma 5.7 that “tiny values” contribute a tiny fraction of the revenue that is
achievable by increasing the number of buyers by a constant factor.

Lemma 5.7. Let δ ≥ 2n/m. Then for each item j

n

m
Tj ≤ 2δ ·Rev(D

n/δ
j )

Proof. Observe that

n

m
Tj = n · Tj · Pr

vi
j←Dj

[
vi
j > Tj

]
≤ n ·Rev(vi

j · I
[
vi
j > Tj

]
).

By Lemma 4.5 for any δ/n ≥ 2/m it holds that Rev(vi
j · I[vi

j > Tj ]) ≤ 2δ
n · Rev(D

n/δ
j ),

which completes the proof.

5.3.2 Low values in core

In Lemma 5.8 we show that the contribution of “lower values” to the core can be almost
completely covered by the revenue that is achievable by increasing the number of buyers
by a factor of O(log m

n ).

Lemma 5.8. Let δ < ε1. Then for each item j

T ′j ≤ (1− e−
ε1
δ )−1 ·Rev

(

D
n·log(m

n )/δ
j

)

Proof. Directly by applying Lemma 4.6 to the cutoff T ′j .

Putting the last two lemmas together,

Corollary 5.9. Let 2n/m ≤ δ ≤ min{1/2, ε1}. Then for each item j

T ′′j ≤ (1− e−
ε1
δ )−1 ·Rev

(

D
n·log(m

n )/δ
j

)

Proof. Since 2δ ≤ 1, Lemma 5.8 always gives a weaker upper bound than Lemma 5.7. The
result follows by the definition of T ′′j and Lemmata 5.7 and 5.8.
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5.3.3 High values in core

Lemma 5.10 shows that “higher values” in the core contribute a tiny fraction of the revenue
that is achievable by increasing the number of buyers by a factor of O(log m

n ).

Lemma 5.10. Let δ < 2ε1. Then for each j

E

[
v∗j · I

[
v∗j > T ′′j

]]
≤ 8 · ε1 ·Rev

(

D
n·log m

n
δ

j

)

.

Proof. First observe that since v∗j ≤ Tj, computing the expectation gives

E

[
v∗j · I

[
v∗j > T ′′j

]]
=

∫ T ′′
j

0
Pr
[
v∗j · I

[
v∗j > T ′′j

]
≥ y

]
dy +

∫ Tj

T ′′
j

Pr
[
v∗j > y

]
dy

= T ′′j · Pr
[
v∗j > T ′′j

]
+

∫ Tj

T ′′
j

Pr
[
v∗j > y

]
dy

≤ Rev(v∗j · I
[
v∗j > T ′′j

]
) +

∫ Tj

T ′′
j

Pr
[
v∗j > y

]
dy.

To upper bound the left-most term, let π∗ ≥ T ′′j be the price for which π∗ · Pr[v∗j > π∗] =

Rev(v∗j · I
[

v∗j > T ′′j
]

), and let v ← Dj. By union bound, we get that,

π∗ · Pr[v∗j > π∗] ≤
∑

i∈[n]
π∗ · Pr[vi

j · I
[
vi
j ≤ Tj

]
> π∗] ≤ n ·Rev(v · I

[
T ′′j < v ≤ Tj

]
).

To upper bound the right-most term, let π ≥ T ′′j be the price for which

π · Pr
[
v · I

[
T ′′j < v ≤ Tj

]]
= Rev(v · I

[
T ′′j < v ≤ Tj

]
)

observe that by union bound (recall that v∗j = maxi∈[n]{vi
j · I

[

vi
j ≤ Tj

]

}),
∫ Tj

T ′′
j

Pr
[
v∗j > y

]
dy ≤ n ·

∫ Tj

T ′′
j

Pr [v · I [v ≤ Tj] > y] dy

= n ·
∫ Tj

T ′′
j

y · Pr [v · I [v ≤ Tj] > y]

y
dy

≤ n · π · Pr
[
v · I

[
T ′′j < v ≤ Tj

]
> π

]
∫ Tj

T ′′
j

1

y
dy

Since T ′′j ≥ n
mTj, it holds that

∫ Tj
T ′′
j

1
ydy ≤

∫ Tj
n
m
Tj

1
ydy = log

(
m
n

)
, we conclude that

E

[
v∗j · I

[
v∗j > T ′′j

]]
≤ n ·

(

1 + log
(m

n

))

·Rev(v · I
[
T ′′j < v ≤ Tj

]
)
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And also Rev(v · I
[

T ′′j < v ≤ Tj
]

) ≤ Rev(v · I
[

v > T ′′j
]

) by single dimensional revenue

monotonicity.

Since T ′′j ≥ T ′j it holds that Pr
[

v > T ′′j
]

≤ Pr
[

v > T ′j
]

= ε1
n·log m

n

. Therefore by applying

Lemma 4.5 with δ′ = 2 · ε1
n log m

n

we obtain:

Rev(v · I
[
v > T ′′j

]
) ≤ 4 · ε1

n log m
n

·Rev

(

D

n log m
n

2·ε1
j

)

≤ 4 · ε1
n log m

n

·Rev

(

D
n log m

n
δ

j

)

Where the last inequality follows from the fact that adding more buyers does not decrease
revenue. Combining the above we get that:

E

[
v∗j · I

[
v∗j > T ′′j

]]
≤ n ·

(

1 + log
(m

n

))

·Rev(v · I
[
v > T ′′j

]
)

≤ 2 · n · log
(m

n

)

· 4 · ε1
n log m

n

·Rev

(

D
n log m

n
δ

j

)

= 8 · ε1 ·Rev

(

D
n log m

n
δ

j

)

5.3.4 Total contribution from core

We are now ready to bound the contribution from the core. Let ε2 be so that 1 + ε2 =
(1− e−

ε1
δ )−1.

Lemma 5.11. Let 2n/m ≤ δ ≤ min{1/2, ε1}. Then

Val(Dn
Core) ≤ (1 + ε2 + 8 · ε1) · SRev

(

D
n·log m

n
δ

)

Proof. It holds that

Val(Dn
Core) =

∑

j∈[m]

E

[
v∗j
]
≤
∑

j∈[m]

T ′′j + E

[
v∗j · I

[
v∗j > T ′′j

]]

≤
∑

j∈[m]

(1 + ε2) ·Rev

(

D
n·log m

n
δ

j

)

+ 8 · ε1 ·Rev

(

D
n·log m

n
δ

j

)

,

where the last inequality follows by corollary 5.9 and Lemma 5.10. The assertion now

follows by observing that the last expression equals (1 + ε2 + 8 · ε1) · SRev

(

D
n·log m

n
δ

)

by

the definition of SRev.
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5.4 Proof of Theorem 5.1

Proof of Theorem 5.1. The result follows by combining the core-tail decomposition lemma (5.4)
with Lemmas 5.11 and 5.6 for some constant δ such that 2n/m ≤ δ ≤ min{1/2, ε1}:

Rev(Dn) ≤ Val(Dn
Core) + n ·

∑

A⊆[m]

pA ·Rev(DA
T )

≤ (1 + ε2 + 8 · ε1 + 4 · δ) SRev

(

D
n·log m

n
δ

)

6 Matching Lower Bound for Many Items

In this section we prove that for a setting with m = Ω(n), even with O
(
n · ln m

n

)
buyers,

selling separately still may only be a tiny fraction of the optimal revenue with n buyers,
thus Theorem 5.1 is tight.

Theorem 6.1. Let m = Ω(n). There exists a distribution D so that for every ε > 0 there
exists some δ > 0 so that

SRev(Dδ·n·ln m
n ) ≤ ε ·Rev(Dn).

Proof. Denote each buyer i’s value for item j is by vi
j. The equal revenue distribution

(denoted by ER) on the support [1,M ] is defined by ER(x) = Prv[v ≤ x] = 1 − 1
x for

x < M and Prv[v ≤ M ] = 1, so, Prv[v = M ] = 1
M . Let ER = ×j∈[m]ER, i.e., v

i
j ← ER

for every i ∈ [n], j ∈ [m]. Note that E

[

vi
j

]

=
∫M
1

x
x2dx + 1 = lnM + 1, and Var(vi

j) ≤
∫M
1

x2

x2dx + M2

M ≤ 2M . For any price p ∈ [1,M ], the same revenue of 1 is obtained
(p ·Pr[v > p] = p · (1− (1− 1

p)) = 1). Therefore, combined with Corollary 4.17 we conclude
that

SRev(ERδ·n·ln(m
n )) = m·Rev

(

ERδ·n·ln(m
n )
)

≤ δ·m·n·ln
(m

n

)

·Rev(ER) = δ·m·n·ln
(m

n

)

.

Consider the mechanism that orders the buyers (arbitrarily), and offers each buyer in
her turn to purchase her favorite bundle of size m

4·n at price π.
Fix a buyer i (for simplicity of presentation we henceforth omit i from vi

j). Let B be
the set of available items upon buyer i’s arrival. Note that B ≥ m/2. Item j is said to be
“large” if vj > n. Let Ij be the indicator r.v. that equals 1 when item j is large. This
occurs w.p. 1

n . Therefore, the expected number of large items is B
n . Also, the probability

that there are at most m
4·n large items is, by Chernoff bounds:

Pr[
∑

j∈[B]

Ij ≤
m

4 · n ] ≤ Pr[
∑

j∈[B]

Ij ≤
B

2n
] ≤ exp

(

− B

8 · n

)

≤ exp
(

− m

16 · n
)
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Let B denote the event that
∑

j∈B Ij >
m
4n , i.e., there are more than m

4n large items. Then

B occurs w.p. at least 1− exp
(
− m

16·n
)
. Let C denote all subsets of B of size m

4n . Then the
expected revenue contribution from buyer i is at least:

E



π · I[∃S ∈ C :
∑

j∈S
vj ≥ π]



 ≥
(

1− e−
m

16·n

)

· π · Pr



∃S ∈ C :
∑

j∈S
vj ≥ π

∣
∣
∣
∣
B



 (5)

let L be the set of all the subsets of B that are of size more than m
4n . For each A ∈ L, let

pA be the probability that A is exactly the set of large items, and let A′ be a subset of A
of size m

4n (say, the m
4n items with the lowest index). By the law of total probability

Pr



∃S ⊆ B :
∑

j∈S
vj ≥ π

∣
∣
∣
∣
B



 =
∑

A∈L
Pr



∃S ⊆ B :
∑

j∈S
vj ≥ π

∣
∣
∣
∣
A



 · pA

≥
∑

A∈L
Pr




∑

j∈A′

vj ≥ π

∣
∣
∣
∣
A



 · pA (6)

Using the notation vj = vj|(vj > n), we have that Pr

[
∑

j∈A′ vj ≥ π

∣
∣
∣
∣
A

]

= Pr[
∑

j∈A′ vj ≥

π]. The expectation of vj is E [vj|vj ≥ n] = n·
(∫M

n
1
xdx+ 1

)

= n·
(
ln M

n + 1
)
, and therefore

the expectation of m
4n such items is m

4 ·
(
ln M

n + 1
)
. The variance of vj is

Var(vj) = E

[(

vj − n ·
(

ln
M

n
+ 1

))2

|vj ≥ n

]

= n ·
(
∫ M

n

(
x− n ·

(
ln M

n + 1
))2

x2
dx+

(
M − n ·

(
ln M

n + 1
))2

M

)

≤ n ·
(
∫ n·(ln M

n
+1)

n

(
x− n ·

(
ln M

n + 1
))2

x2
dx+

(
∫ M

n·(ln M
n
+1)

(
x− n ·

(
ln M

n + 1
))2

x2
dx

)

+M

)

≤ n ·
((

n ·
(

ln
M

n

))2

·
(

1

n
− 1

n ·
(
ln M

n + 1
)

)

+M +M

)

≤ n2 ·
(

ln
M

n

)2

+ 2Mn

Therefore, the variance of the sum of m
4n such items is at most m

4 · n ·
(
ln M

n

)2
+ 2Mm.

By Chebychev,

Pr




∑

j∈A′

vj ≤
m

8
·
(

ln
M

n
+ 1

)


 ≤ 4 ·
(

m
4 · n ·

(
ln M

n

)2
+ 2Mm

(
m
4 ·
(
ln M

n + 1
))2

)

≤ 4 ·
(

4n

m
+

2Mm
(
m
4 · ln M

n

)2

)
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Combining with Equations (5) and (6), we get that for π = m
8 ·
(
ln M

n + 1
)
, the contribution

of buyer i is at least

(

1− exp
(

− m

16 · n
))

·
(

1−
(

16n

m
+

8Mm
(
m
4 · ln M

n

)2

))

· m
8
· ln M

n
.

Now set M = m, and note that for some (universal) constant c, if m ≥ c ·n then the above
(that lower bounds the revenue contribution from buyer i) is at least m

16 · ln m
n . Hence

the revenue from the above mechanism is at least m·n
16 · ln m

n , while selling separately to
δ · n · ln m

n buyers extracts at most δ · n ·m · ln
(
m
n

)
, which completes the proof.

7 Many Buyers: SRev with No Additional Buyers

In this section we show that adding more buyers is not required for a number of buyers n
that is sufficiently larger than the number of items m. Specifically, we prove the following
theorem:

Theorem 7.1 (Theorem 1.2, case n≫ m). For any constant ε > 0 there exists a constant
δ(ε) > 0 such that whenever n ≥ m

δ :

(1− ε)Rev (Dn) ≤ SRev (Dn)

7.0.1 Proof outline - a tale of three tails

We first partition the domain of the valuation distributions into sub-domains, using the
Subdomain Stiching Lemma (Lemma 4.20). In our analysis, we condition on the event (or
sub-domain) A that describes which items are in the tail or core for which buyer (we still
don’t know their values within the tail/core). For each event we define a bipartite graph
with buyer-nodes [n] and item-nodes [m], where an edge {i, j} between buyer i and item
j exists if and only if item j is in buyer i’s tail. Crucially, the revenue is separable across
connected components (because in different connected components, disjoint sets of buyers
are interested in disjoint sets of items).

We now establish a “marginal mechanism lemma” (Lemma 7.2) that shows that the
optimal revenue from DA is bounded from above by the sum of expected item values in
the core in event A, plus the revenue from selling items in each connected component to
the buyers in that connected component (conditioned on them being in the tail).

For a connected component that contains only one item (i.e., the buyers in this con-
nected component have only this item in their tails), the lemma provides an even tighter
bound. Namely, we can restrict attention to mechanisms that sell the item to buyers in
the connected component with probability at most p, where p is the upper bound on the
ex-ante probability that the optimal mechanism (for event A) sells this item. Then, with
probability 1 − p we can resell the item to other buyers. Essentially, this means that we
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can use most buyers and some items to (almost) recover the contribution from the tail,
and then use the rest of the buyers and items to (almost) recover the contribution from the
core. Note that while we partition the buyers in advance, the partitioning of the items is
only done after seeing which items are bought by the first subset of buyers. Note also that
the mechanism of partitioning the buyers is for analysis purpose only: once we establish
that it achieves a good revenue by selling each item separately, we can only improve the
revenue by running Myerson’s optimal mechanism.

Since we consider a setting with many buyers, the expected number of buyers that have
a specific item in their tail (henceforth termed interested buyers) is concentrated. This
implies a core-tail decomposition lemma (Lemma 7.4) that bounds the optimal revenue
using four terms: one core, and three tails. The three tails are (1) the contribution from
selling item j whenever the number of interested buyers does not exceed the expected
number of interested buyers by much, (2) the contribution from selling item j whenever
the number of interested buyers does exceed the expected number of interested buyers by a
significant constant, and (3) the contribution from selling items in connected components
with at least two items.

We bound the three tails in Section 7.4.
In Lemma 7.6 we show that the first tail is almost completely recovered by the revenue

from selling items separately to all but a small fraction of the buyers, and restricting the
ex-ante probability of sale as described above. Note that the tail is not fully recovered,
but this is a sufficient guarantee due to the probability of sale restriction (see above). In
particular, the items can be resold to other buyers with sufficiently high probability.

In Lemma 7.7 we show that the second tail is a tiny fraction of the revenue from selling
items separately. This is done by arguing that the event where the number of interested
buyers significantly exceeds the expectation is extremely rare.

In Lemma 7.11 we show that the third tail is also a tiny fraction of the revenue from
selling items separately. This part is more involved, since we need to bound the expected
size of a connected component, as well as some of the higher moments. Here we use some
simple ideas from percolation theory. See Subsection 7.5 for details.

Finally, we conclude the proof in Section 7.6 by integrating the above arguments into
the core-tail decomposition.

7.1 The item-buyer bipartite graph

We adopt all the notation from Section 4.2, and introduce some more notation. For a single
dimensional distribution v ← D and cutoff T , let D̂ denote the distribution of v|v > T . Fix
an event A as described in Section 4.2. Consider the bipartite graph HA = ([n], [m], E[A])
over buyers and items. The set of edges is defined to be E[A] = {{i, j} : j ∈ Ai}, i.e.,
for each item j in the tail of i, (vi

j > Tj) there exists an edge {i, j}. For each node k, let

A[k] denote k’s neighbors in HA, i.e., for an item j ∈ [m], A[j] = {i : j ∈ Ai}, and for a
buyer i ∈ [n], A[i] = Ai. Note that HA is a random graph where each edge {i, j} exists
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independently w.p. Pr
[

vi
j > Tj

]

. Let PA be the partition of the graph HA to connected

components. For a connected component X ∈ PA, let Xn = X ∩ [n] be the nodes in X
associated with buyers, and similarly Xm = X ∩ [m] are the nodes in X associated with
items. For a connected component X ∈ PA, let DX

T be the product distribution over the
buyers Xn, where each buyer i has only values vi

j for items j in A[i], and each such vi
j is

drawn from the conditional distribution D̂j , i.e., D
X
T = ×i∈XnD

A[i]
T .

7.2 Core-tail decomposition.

We introduce a new “marginal mechanism” lemma (Lemma 7.2) that is suitable for the
case n ≫ m. Fix some A as in Section 4.2, and let M be an optimal mechanism w.r.t.
DA, i.e.,

RevM(DA) = Rev(DA).

Let π be the mechanism’s allocation function, and let π̄j =
∑

i∈A[j] Ev←DA

[

πi
j(v)

]

. Recall

that for a connected component X ∈ PA, Xn = X ∩ [n] and similarly Xm = X ∩ [m]. Also,
recall that D̂j is the distribution of the random variable v ← Dj conditioned on v > Tj.

Lemma 7.2. (Marginal Mechanism on Sub-Domain) Fix A, and let π̄ be as above. Let
PA2 be all the connected components X in PA so that |Xm| ≥ 2. Then

Rev(DA) ≤
∑

j∈[m]

(

Revπ̄j

(

D̂
|A[j]|
j

)

+ Tj · (1− π̄j)
)

+
∑

X∈PA
2

Rev(DX
T )

I.e., the revenue from DA is bounded by the revenue from selling items separately to buyers
in the tail at π̄j ex-ante probability of sale per item j, plus the contribution to the core - the
cutoff values times the ex-ante probability of being in the core (1 − π̄j) - plus the revenue
from connected components with more than one item.

Proof. Recall that mechanismM is so that RevM(DA) = Rev(DA), and πi
j(·) is buyer i’s

allocation function for item j in mechanism M. Let pi(·) be buyer i’s payment function
in mechanism M. Recall that for a set S ⊆ [n] × [m], we use vS = {vi

j}(i,j)∈S and

v−S = {vi
j}(i,j)6∈S . Let Si = {{i, j} : j ∈ A[i]}.

Consider the mechanismMA that allows buyer i to purchase only the items in A[i], and
performs as follows: first the mechanism samples v̂← DA, reports to each buyer i only the
values {v̂i

j}j 6∈A[i], and solicits bids vSi . Then the mechanism simulates M with the bids

(vA, v̂−A) , ({vSi}i, {v̂−Si}i), while refunding each buyer i by
∑

j 6∈A[i] π
i
j(vA, v̂−A) · v̂i

j .
From each buyer i’s perspective, each other buyer t’s values and samples are drawn from
DA

t
. Also, the report v̂i

j 6∈A[i] is drawn from DAi

C . Therefore, buyer i’s expected payment
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for submitting vSi is:

pi
A(vSi) = E

v̂←DA



pi(vSi , v̂−Si)−
∑

j 6∈A[i]
πi
j(vSi , v̂−Si) · v̂i

j



 ,

and each item j ∈ A[i] is allocated to i w.p. Ev̂←DA

[

πi
j(vSi , v̂−Si)

]

. Truthfulness ofMA
follows by that M is truthful. By independence across items and buyers, the revenue of
MA is

RevMA
(DA) = E

v←DA




∑

i∈[n]
pi
A(vSi)



 = RevM(DA)− E
v←DA




∑

i

∑

j 6∈A[i]
πi
j(v) · vi

j





Note that j 6∈ A[i] implies that vi
j ≤ Tj and mechanismMA sells each item j w.p. at most

π̄j, therefore

E
v←DA




∑

i

∑

j 6∈A[i]
πi
j(v) · vi

j



 ≤
∑

j∈[m]

Tj ·
∑

i 6∈A[j]
E

v←DA

[
πi
j(v)

]
≤
∑

j∈[m]

Tj · (1− π̄j) (7)

Fix a connected component X ∈ PA. Recall that the mechanism MA allows a buyer
i ∈ Xn to purchase only the items in A[i] ⊆ Xm. Consider the mechanism MX that
sells only to buyers in Xn and allows each buyer i ∈ Xn to purchase only items from
A[i], by (privately) sampling v̂ ← DA and executing MA with the bids of the buyers in
Xn, and with the samples {v̂i}i 6∈Xn

. Then this mechanism’s revenue is RevMX
(DX

T ) =

Ev←DA

[∑

i∈Xn
pi
A(vSi)

]
, and since connected components {X} form a partition {Xn} over

the buyers, we get that

RevMA
(DA) =

∑

X∈PA

RevMX
(DX

T ),

Let PA1 be all the connected components X ∈ PA so that |Xm| = 1. For every X ∈ PA1 ,
MX sells the single item j that is in Xm to the buyers A[j], therefore

RevMX
(DX

T ) = RevMX

(

D̂
|A[j]|
j

)

≤ Revπ̄j

(

D̂
|A[j]|
j

)

,

Therefore,

Rev(DA) ≤
∑

X∈PA
1

RevMX
(DX

T ) +
∑

X∈PA
2

RevMX
(DX

T ) +
∑

j∈[m]

Tj · (1− π̄j)

≤
∑

j∈[m]

(

Revπ̄j

(

D̂
|A[j]|
j

)

+ Tj · (1− π̄j)
)

+
∑

X∈PA
2

Rev(DX
T )
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The first inequality is by Equation 7. The second inequality is by summing over all j ∈ [m]
and not just items in PA1 , and by upper bounding the revenue ofMX for X ∈ PA2 by the
optimal revenue for the same setting, i.e., RevMX

(DX
T ) ≤ Rev(DX

T ). This completes the
proof

Recall that given v ← Dj , we use D̂j to denote the distribution of v|v > Tj. The
following lemma upper bounds the revenue from k buyers with values that are conditioned
to be in the tail, with the revenue of more buyers from the original distribution (i.e.,
without conditioning on tail item values).

Lemma 7.3. For item j and cutoff Tj, let δ = 2 ·Prv←Dj
[v > Tj]. Then for any k ≤ 1/δ,

Rev

(

D̂k
j

)

≤ 4 · k ·Rev(D
1/δ
j )

Proof. Chaining Corollary 4.17, Lemma 4.2, and Lemma 4.5 gives

Rev

(

D̂k
j

)

≤ k ·Rev

(

D̂j

)

=
2k ·Rev(v · I[v > Tj])

δ
≤ 4 · δ · k ·Rev

(
D1/δ

)

δ
,

as required.

We repeat the notation used in the following core-tail decomposition lemma. For a
single dimensional distribution v ← D and cutoff T , let D̂ denote the distribution of
v|(v > T ). Recall that every realization of v ← Dn is in some event A. Then A[j] is the
set of buyers that have item j is in their tail. Xj denotes the connected component that
contains item j in the graph defined in Section 7.1 (the event A will be understood from
the context). For a connected component X, we use Xn = X∩[n] and Xm = X∩[m]. Also,

π̄j =
∑

i∈A[j] Ev←DA

[

πi
j(v)

]

where π is the allocation function of an optimal mechanism

w.r.t. DA.

Lemma 7.4. (Core-tail decomposition) For cutoffs Tj so that Prv←Dj
[v > Tj] ≥ 1/(2n),

and a cutoff T ∗

Rev (Dn) ≤
∑

j∈[m]

Tj · E [1− π̄j] Core

+
∑

j∈[m]

E

[

Revπ̄j

(

D̂
|A[j]|
j

)

· I [|A[j]| ≤ T ∗]
]

Tail 1

+ 4 ·
∑

j∈[m]

Rev
(
Dn

j

)
· E [|A[j]| · I [|A[j]| > T ∗]] Tail 2

+ 4 ·
∑

j∈[m]

Rev
(
Dn

j

)
· E
[∣
∣Xj

m

∣
∣ ·
∣
∣Xj

n

∣
∣
2 · I[

∣
∣Xj

m

∣
∣ ≥ 2]

]

Tail 3
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Proof. Chaining Lemma 4.20 and Lemma 7.2 gives

Rev (Dn) ≤
∑

j∈[m]

E [Tj · (1− π̄j)]

+ E




∑

j∈[m]

Revπ̄j

(

D̂
|A[j]|
j

)





+ E




∑

X∈PA
2

Rev(DX
T )



 .

For every j, Lemma 7.3 with k = |A[j]|, combined with the assumption that 2Prv←Dj
[v > Tj] ≥

1/n gives

Rev

(

D̂
|A[j]|
j

)

≤ 4 · |A[j]| ·Rev(Dn
j ). (8)

Also, by Lemma 4.1 it holds that Rev(DX
T ) ≤ |Xm| · |Xn| · SRev(DX

T ), therefore

SRev(DX
T ) =

∑

j∈Xm

Rev

(

D̂
|A[j]|
j

)

≤
∑

j∈Xm

4 · |A[j]| ·Rev(Dn
j )

and after applying Inequality (8) to cases when |A[j]| ≤ T ∗ we get that

Rev (Dn) ≤
∑

j∈[m]

Tj · E [1− π̄j ]

+
∑

j∈[m]

E

[(

Revπ̄j

(

D̂
|A[j]|
j

)

· I [|A[j]| ≤ T ∗]
)]

+
∑

j∈[m]

E

[
4 · |A[j]| ·Rev(Dn

j ) · I [|A[j]| > T ∗]
]

+ E




∑

X∈PA
2

|Xm| · |Xn| ·
∑

j∈Xm

4 · |A[j]| ·Rev(Dn
j )



 .

By definition j ∈ X ∈ PA2 actually says that
∣
∣
∣X

j
m

∣
∣
∣ ≥ 2. Also, clearly A[j] ⊆ Xj

n (j’s

neighbors are in j’s connected component), therefore the proof follows by linearity of
expectation.

Cutoff setting. Fix some 0 < ε1, ε2, ε3, ε4 < 1. Throughout this section, for every item
j fix Tj to be the value for which Prv←Dj

[v > Tj] = 1
n·ε1 . Clearly the expected number of
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buyers that have item j in their tail is 1
ε1
. We set T ∗ = (1+ε2)

ε1
, i.e., we use ε2 as a deviation

from this expected size.
We will first sell items separately at high prices to a 1 − ε4 fraction of the buyers. In

this case the expected number of buyers that have item j in their tail is 1−ε4
ε1

. We will use
ε3 as a deviation from this expected size.

Whenever an item j is not sold to on of the 1 − ε4 fraction of the buyers, we will sell
the item to one of the remaining ε4 buyers at price Tj. This will suffice to to almost fully
recover the contribution from the core.

7.3 Core.

Lemma 7.5. For every item j, Tj · E [(1− π̄j)] ≤ E [(1− π̄j)]
(
1− e−ε4/ε1

)−1
Rev(Dε4·n

j )

Proof. Directly implied by Lemma 4.6.

7.4 Tail.

The following lemma essentially combines Lemma 4.19 with a concentration bound, to show
that Tail 1 can be almost fully recovered by selling items separately to a 1− ε4 fraction of
the buyers. Let ε5 = ε5(ε1, ε2, ε4, ε3) be so that 1+ ε5 =

1+ε2
(1−ε4)·(1−ε3) ·

1

1−exp
(

− (1−ε4)·ε
2
3

2·ε1

) . It

is only important to note that ε5 → 0 as ε1 → 0.

Lemma 7.6. (Tail 1). Fix an item j. For k ≤ (1+ε2)
ε1

,

Revp

(

D̂k
j

)

≤ (1 + ε5) ·Revp(D
(1−ε4)·n
j )

Proof. By Lemma 4.18, adding more buyers does not decrease revenue, i.e.,

Revp

(

D̂k
j

)

≤ Revp

(

D̂
(1+ε2)

ε1
j

)

Fix 1 − ǫ = (1 − ε4) · (1 − ε3), and fix δ = 1 − 1−ǫ
1+ε2

. We set δ so that by decreasing a

δ fraction of the buyers we remain with an amount that is under 1−ε4
ε1

, i.e., we have that
1+ε2
ε1

(1− δ) = 1−ǫ
ε1

, and that 1
1−δ = 1+ε2

1−ǫ . Therefore, by Corollary 4.17

Revp

(
(

D̂j

) (1+ε2)
ε1

)

≤ 1 + ε2
1− ǫ

·Revp

(

D̂
1−ǫ
ε1
j

)

.
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Also, observe that

Revp

(

D̂
1−ǫ
ε1
j

)

≤
Revp

(

D
(1−ε4)·n
j

)

Pr
[∣
∣
∣{i ∈ [(1− ε4) · n] : vi

j > Tj}
∣
∣
∣ ≥ 1−ǫ

ε1

] Lemma 4.19

≤
Revp

(

D
(1−ε4)·n
j

)

1− e
− (1−ε4)·ε

2
3

2·ε1

Chernoff bounds

To prove the last inequality, recall the definition of ǫ and observe that
∣
∣
∣{i : vi

j > Tj}
∣
∣
∣ is a

sum of (1 − ε4) · n i.i.d. indicators that equal 1 w.p. 1
n·ε1 . Therefore its expectation is

µ = 1−ε4
ε1

and

Pr

[
∣
∣{i : vi

j > Tj}
∣
∣ <

(1− ε4) · (1− ε3)

ε1

]

≤ e
− (1−ε4)·ε

2
3

2·ε1 ,

which completes the proof.

The following lemma shows that the coefficient of SRev(Dn) in Tail 2 tends to 0 as ε1

tends to 0. Let ε6 = 4
ε1
· exp

(

− ε22
8·ε1

)

.

Lemma 7.7. (Tail 2) Fix item j. E [|A[j]| · I [|A[j]| > T ∗]] ≤ ε6

Proof. By law of total expectation

E [|A[j]| · I [|A[j]| > T ∗]] ≤
n∑

k=T ∗

E

[

|A[j]|
∣
∣
∣
∣
|A[j]| = k

]

· Pr[|A[j]| = k]

=
n∑

k=T ∗

k · Pr[|A[j]| = k].

To apply Chernoff bounds, observe that Pr[|A[j]| ≥ k] = Pr[|A[j]| ≥ 1
ε1
(1 + ε1 · k − 1)], so
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for δ = ε1 · k − 1, and µ = 1
ε1
. We get

Pr[|A[j]| ≥ µ(1 + δ)] ≤ exp

(

− δ2

2 + δ
· µ
)

= exp

(

−(ε1 · k − 1)2

1 + ε1 · k
· 1
ε1

)

≤ exp

(

−(ε1 · k − 1)2

2 · ε1 · k
· 1
ε1

)

= exp

(

−
(k − 1

ε1
)2

2 · k

)

≤ exp

(

−(ε22 · k)2
2 · k

)

=

(

exp

(

−ε22
8

))k

.

The last inequality holds because ε2 ≤ 1 implies that 1+ε2 ≥ 1
1− ε2

2

, therefore by rearranging

k ≥ (1+ε2)
ε1
≥ 1

ε1·(1− ε2
2
)
we get k − ε2

2 · k ≥ 1
ε1
. In total

n∑

k=T ∗

k · Pr[|A[j]| = k] =

n∑

k=1

k ·
(

exp

(

−ε22
8

))k

−
T ∗
∑

k=1

k ·
(

exp

(

−ε22
8

))k

Recall that
∑t

k=1 k · zk = z 1−(t+1)zt+tzt+1

(1−z)2 . Let z = exp
(

− ε22
8

)

. Then the above equals

z
(1−z)2

(
(T ∗ + 1)zT

∗ − T ∗zT ∗+1
)
= zT

∗+1

(1−z)2 (1 + T ∗(1− z)) ≤ 2 · T ∗ · zT ∗+1. In total we get

E [|A[j]| · I [|A[j]| > T ∗]] ≤ 2 · T ∗ · exp
(

−ε22 · (1 + ε2 + ε1)

8 · ε1

)

≤ 4

ε1
· exp

(

− ε22
8 · ε1

)

7.5 The 3rd tail (a non-trivial connected component)

In the following lemmas are goal is to show that the coefficient of SRev(Dn) in Tail 3 tends
to 0 as as ε1 tends to 0. This will be proved in Lemma 7.11. We will develop the proof in
steps. Recall that for a connected component X ∈ PA, Xn = X ∩ [n] and Xm = X ∩ [m].
Lemma 7.8 upper bounds the term we wish to bound into two terms. Note that in both
terms, at a loss of a constant factor, we free ourself from the dependence on the number
of buyers that have at most one item in their tail (and are in j’s connected component).
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Lemma 7.8. For every A, let S ⊆ [n] denote the buyers i with at least two items in their

tail, i.e., A[i] ≥ 2. For every item j, let Î = I[
∣
∣
∣X

j
m

∣
∣
∣ ≥ 2], then

E

[∣
∣Xj

m

∣
∣ ·
∣
∣Xj

n

∣
∣
2 · Î
]

≤ 3

ε1
E

[(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 · Î

]

+
1

ε21
· E
[∣
∣Xj

m

∣
∣ · Î
]

Proof. For some S ⊆ [n], let Q = {Qi ∈ 2[m],
∣
∣Qi
∣
∣ ≥ 2}i∈S denote the event that A[i] = Qi

for every i ∈ S (and |A[i]| ≤ 1 for every i 6∈ S). Note that conditioned on Q, for every j, Xj
m

is fully determined – and hence, also Î (defined above) – because buyers i with |A[i]| ≤ 1
cannot change the connectivity of items. Therefore, for every item j, to upper bound

E

[∣
∣
∣X

j
m

∣
∣
∣ ·
∣
∣
∣X

j
n

∣
∣
∣

2
· Î
∣
∣
∣
∣
Q

]

it suffices to upper bound E

[∣
∣
∣X

j
n

∣
∣
∣

2
∣
∣
∣
∣
Q

]

. Fix Q, and let Sj = S∩Xj
n,

i.e., Sj are all buyers i that are in item j’s connected component and |A[i]| ≥ 2. Observe
that conditioned on Q, the set Sj is determined. Also, let Rj = E

[
|{i : A[i] = {j}}|

∣
∣Q
]
.

Then Xj
n = Sj ∪̇ {i : A[i] = {j}} which implies that

E

[
∣
∣Xj

n

∣
∣
2
∣
∣
∣
∣
Q

]

= E

[

(|Sj |+ |{A[i] = {j}}|)2
∣
∣
∣
∣
Q

]

= |Sj|2 + 2 |Sj|Rj +R2
j

And also

Rj =
∑

i 6∈S
E

[

I [A[i] = {j}]
∣
∣
∣
∣
|A[i]| ≤ 1

]

≤
∑

i∈[n]
Pr

[

A[i] = {j}
∣
∣
∣
∣
|A[i]| ≤ 1

]

=
∑

i∈[n]

1
n·ε1 ·

(

1− 1
n·ε1

)m−1

(

1− 1
n·ε1

)m
+ m

n·ε1 ·
(

1− 1
n·ε1

)m−1

≤ 1

ε1
.

Also, |Sj|2 + 2·|Sj |
ε1

+ 1
ε21
≤ 3

ε1
|Sj|2 + 1

ε21
. Taking expectation over Q, we get that

E

[∣
∣Xj

m

∣
∣ ·
∣
∣Xj

n

∣
∣
2 · Î
]

≤ E

[
∣
∣Xj

m

∣
∣ · Î

(
3

ε1
|Sj|2 +

1

ε21

)]

≤ 3

ε1
E

[(∣
∣Xj

m

∣
∣+ |Sj|

)3 · Î
]

+
1

ε21
· E
[∣
∣Xj

m

∣
∣ · Î
]

As required.

Clearly, showing that E

[(∣
∣
∣X

j
m

∣
∣
∣+
∣
∣
∣X

j
n ∩ S

∣
∣
∣

)3
]

is small implies that E
[∣
∣
∣X

j
m

∣
∣
∣

]

is small.

In Lemma 7.9 we first upper bound the latter as the proof is shorter and contains most of
the ideas to bound the former. For this, we use simple ideas from percolation theory for
bounding the size of a connected component in a random graph.
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Lemma 7.9. For every item j, E
[∣
∣
∣X

j
m

∣
∣
∣

]

≤ 1
1− m

n·ε2
1

Proof. First observe that all edges in HA are i.i.d., therefore by symmetry across buyers i

there exists x̂n , E

[∣
∣Xi

m

∣
∣
]
and by symmetry across items j there exists x̂m , E

[∣
∣
∣X

j
m

∣
∣
∣

]

.

Fix A and item j. Consider the graph H−jA = ([n], [m], E[A] \ {{i, j}}i∈[n]), i.e., the
graph HA with all edges {i, j} removed. Let Y k denote k’s connected component in in the

graph H−jA . Then
∣
∣
∣X

j
m

∣
∣
∣ ≤ 1 +

∑

i∈A[j]
∣
∣Y i

m

∣
∣ = 1 +

∑

i∈[n] I[i ∈ A[j]] ·
∣
∣Y i

m

∣
∣ because every

item k ∈ Xj
m has at least one i ∈ A[j] that is connected to it without passing through

j. By law of total expectation w.r.t. A[j], x̂m ≤ 1 +
∑

i∈[n] E

[

E

[

I[i ∈ A[j]] ·
∣
∣Y i

m

∣
∣

∣
∣
∣
∣
A[j]

]]

Observe that for every i ∈ [n], the random set Y i
m is independent of |A[j]| (because the

edges {i′, j} never appear in H−jA ). Also, for every A and every k it holds that Y k
m ⊆ Xk

m.

Therefore in total x̂m ≤ 1+ x̂n ·
∑

i∈[n] E

[

E

[

I[i ∈ A[j]]
∣
∣
∣
∣
A[j]

]]

1+ x̂n ·E [|A[j]|] , and since

E [|A[j]|] = 1
ε1

we get that

x̂m ≤ 1 +
x̂n
ε1

.

Similarly, fix A and buyer i. Consider the graph H−iA = ([n], [m], E[A] \ {{i, j}}j∈[m]),

i.e., the graph HA with all edges {i, j} removed. Now redefine Y k to denote k’s connected
component in the graph H−iA . Then

∣
∣Xi

m

∣
∣ ≤∑k∈[m] I[k ∈ A[i]] ·

∣
∣Y k

m

∣
∣ because every item in

Xi
m as at least one k ∈ A[i] that is connected to it without passing through i. By law of total

expectation x̂n ≤
∑

k∈[m] E

[

E

[
I[k ∈ A[i]] ·

∣
∣Y k

m

∣
∣
]
∣
∣
∣
∣
A[i]

]

, and observe that as before Y k
m is

independent of A[i], and Y k
m ⊆ Xk

m, therefore x̂n ≤ x̂m ·
∑

k∈[m] E

[

E

[

I[k ∈ A[i]]
∣
∣
∣
∣
|A[i]|

]]

=

x̂m · E [|A[i]|] , and since E [|A[i]|] = m
n·ε1 we get that

x̂n ≤ x̂m ·
m

n · ε1
,

and in total we conclude that x̂m ≤ 1 + x̂n

ε1
≤ 1 +

x̂m· m
n·ε1

,

ε1
, i.e.,

x̂m ≤
1

1− m
n·ε21

The more technical Lemma 7.10 handles two new challenges compared to Lemma 7.9:
(i) counting also buyers in the connected component that have at least two items in their
tail, and (ii) the random variable is raised to the power of 3. Both challenges are mostly
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technical. The first is overcome by using the same proof technique as Lemma 7.9 to bound
the number of nodes in a connected component after removing buyers with at most one
item in their tail, and the second is overcome by standard Cauchy-Schwarz arguments.

Lemma 7.10. For every A, let S ⊆ [n] denote the buyers i with at least two items in their
tail, i.e., A[i] ≥ 2. There exists a (universal) constant c so that for every item j,

E

[(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3
]

≤
1 + c · m

n·ε21
1− c · m

n·ε21

Proof. We will actually bound E

[(∣
∣
∣X

j
m

∣
∣
∣+
∣
∣
∣X

j
n ∩ S

∣
∣
∣

)4
]

.

Fix A and item j. For each A, let HA be the bipartite graph with nodes [n] and [m]
and the edges

⋃

i:|A[i]|≥2
{{i, j} : j ∈ A[i]}.

I.e., the bipartite graph that contains an edge {i, j} for every j ∈ A[i] such that |A[i]| ≥ 2.
Define A′[k] to be the neighbors of node k in HA. Let x[k] denote the number of nodes in
node k’s connected component in the graph HA.

Let H−jA denote the graph HA after removing all edges connected to j, i.e., without the
edges {{i, j}}i∈[n]. Let y[k] denote the number of nodes in node k’s connected component

in H−jA . Observe that by symmetry across items, it holds that for all items j there exists

x̂m , E

[

(x[j])4
]

and by symmetry across buyers, it holds that for all buyers i there exists

x̂n , E

[

(x[i])4
]

. Observe that with this new notation our goal is now to bound x̂m.

Observe that x[j] ≤ 1 +
∑

i∈A′[j] y[i] because when upper bounding x[j], we count one for
j, and every node in j’s connected component is reachable via some neighbor i, without
going through an edge that touches j, and hence is counted in y[i]. Therefore,

(x[j])4 =



1 +
∑

i∈[n]
I[i ∈ A′[j]] · y[i]





4

= 1 + 4 ·
∑

i∈[n]
I[i ∈ A′[j]] · y[i]

+ 6 ·
∑

i,i′∈[n]
I[i, i′ ∈ A′[j]] · y[i] · y[i′]

+ 4 ·
∑

i,i′,i′′∈[n]
I[i, i′, i′′ ∈ A′[j]] · y[i] · y[i′] · y[i′′]

+
∑

i,i′,i′′,i′′′∈[n]
I[i, i′, i′′, i′′′ ∈ A′[j]] · y[i] · y[i′] · y[i′′] · y[i′′′]
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Taking expectation and by law of total expectation w.r.t. A′[j], we get that

x̂m ≤ 1 + 4 ·
∑

i∈[n]
E

[

E

[

I[i ∈ A′[j]] · y[i]
∣
∣
∣
∣
A′[j]

]]

+ 6 ·
∑

i,i′∈[n]
E

[

E

[

I[i, i′ ∈ A′[j]] · y[i] · y[i′]
∣
∣
∣
∣
A′[j]

]]

+ 4
∑

i,i′,i′′∈[n]
E

[

E

[

I[i, i′, i′′ ∈ A′[j]] · y[i] · y[i′] · y[i′′]
∣
∣
∣
∣
A′[j]

]]

+
∑

i,i′,i′′,i′′′∈[n]
E

[

E

[

I[i, i′, i′′, i′′′ ∈ A′[j]] · y[i] · y[i′] · y[i′′] · y[i′′′]
∣
∣
∣
∣
A′[j]

]]

Observe that for every i the random variable y[i] is independent of A′[j], hence, also
independent of I[i′ ∈ A′[j]] for all i′. Also, for every i, y[i] ≤ x[i] because i’s connected
component in H−jA is a subset of i’s connected component in HA. Therefore, we get that

x̂m ≤ 1 + 4 ·
∑

i∈[n]
E [x[i]] · E

[

E

[

I[i ∈ A′[j]]
∣
∣
∣
∣
A′[j]

]]

+ 6 ·
∑

i,i′∈[n]
E

[
x[i] · x[i′]

]
· E
[

E

[

I[i, i′ ∈ A′[j]]
∣
∣
∣
∣
A′[j]

]]

+ 4
∑

i,i′,i′′∈[n]
E

[
x[i] · x[i′] · x[i′′]

]
· E
[

E

[

I[i, i′, i′′ ∈ A′[j]]
∣
∣
∣
∣
A′[j]

]]

+
∑

i,i′,i′′,i′′′∈[n]
E

[
x[i] · x[i′] · x[i′′] · x[i′′′]

]
· E
[

E

[

I[i, i′, i′′, i′′′ ∈ A′[j]]
∣
∣
∣
∣
A′[j]

]]

(9)

Observe that by symmetry across buyers, we also have that for all buyers i there exists
x† = E

[
(x[i])2

]
. By Cauchy-Schwarz’s inequality:

E

[
x[i] · x[i′]

]
≤
√

E [(x[i])2] · E [(x[i′])2] = x† ≤ x̂n

Also, applying Cauchy-Schwarz’s inequality twice combined with Jensen’s inequality:

E

[
x[i] · x[i′] · x[i′′]

]
≤
√

E [(x[i])2 · (x[i′])2] ·
√

E [(x[i′])2]

≤
(

E

[
(x[i])4

]
· E
[
(x[i′])4

]
· E
[
(x[i′])4

]
)1/4

≤ x̂n
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And finally, by applying Cauchy-Schwarz’s inequality twice:

E

[
x[i] · x[i′] · x[i′′] · x[i′′′]

]
≤
√

E [(x[i] · x[i′])2] · E [(x[i′′] · x[i′′′])2]

≤
(

E

[
(x[i]4)

]
· E
[
(x[i′])4

]
· E
[
(x[i′′])4

]
· E
[
(x[i′′′])4

]
)1/4

= x̂n

Plugging into Inequality (9) we get:

x̂m ≤ 1 + x̂n ·
(

4E
[∣
∣A′[j]

∣
∣
]
+ 6E

[∣
∣A′[j]

∣
∣2
]

+ 4E
[∣
∣A′[j]

∣
∣3
]

+ E

[∣
∣A′[j]

∣
∣4
])

≤ 1 + 15 · x̂n · E
[∣
∣A′[j]

∣
∣4
]

Observe that applying the same argument as above, but replacing ”buyers” with
”items”, i.e., defining H−iA to be the graph HA after removing all th edges connected to
buyer i, definingA′[k] to be k’s neighbors in H−iA , and observing that x[i] ≤ 1+

∑

j∈[m] I[j ∈
A′[i]] · y[j], and applying the same argument as in Inequality 9 but using law of total ex-
pectation w.r.t. A′[i], etc., gives that

x̂n ≤ 1 + 15 · x̂m · E
[∣
∣A′[i]

∣
∣4
]

.

Therefore, in total we get that

x̂m ≤ 1 + 15 ·
(

1 + 15 · x̂m · E
[∣
∣A′[i]

∣
∣4
])

· E
[∣
∣A′[j]

∣
∣4
]

I.e.,

x̂m ≤
1 + 15 · E

[

|A′[j]|4
]

1− 15 · E
[

|A′[i]|4
]

· E
[

|A′[j]|4
] (10)

Therefore, it remains to bound E

[

|A′[j]|4
]

and E

[

|A′[i]|4
]

. Fix item j, and let I[i] =

I[j ∈ A[i]], I′[i] = I[∃k 6= j : k ∈ A[i]]. Observe that for all i, E [I[i]] = 1
n·ε1 and E [I′[i]] =

1 −
(

1− 1
n·ε1

)m−1
≤ m

n·ε1 . With this notation, it holds that |A′[j]| = ∑

i∈[n] E [I[i] · I′[i]] .

Observe that all the indicators are independent, therefore, when calculating E

[

|A′[j]|4
]

,

whenever indices are different we can take the product expectation, and whenever indices
equal we can use for every indicator I that I2 = I. Let k denote the number of indices that
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are different, then

E

[∣
∣A′[j]

∣
∣4
]

=E








∑

i∈[n]
E

[
I[i] · I′[i]

]





4



=
m

n · ε21
+

4∑

k=1

(
4

k

)(
n

k

)(
m

n2 · ε21

)k

≤ m

n · ε21
+

4∑

k=1

(
4

k

)
1

k!

(
m

n · ε21

)k

≤ m

n · ε21

(

1 +
4∑

k=1

(
4

k

)
1

k!

)

Where the last inequality is by assuming m
n·ε1 ≤ 1. A simple calculation shows that

E

[∣
∣A′[j]

∣
∣4
]

≤ 9 · m

n · ε21
Similarly, fix buyer i and redefine as follows: I[j] = I[j ∈ A[i]], I′[j] = I[∃k 6= j : k ∈

A[i]. Observe that as before (summing over items instead of buyers), we get that

E

[∣
∣A′[i]

∣
∣4
]

= E








∑

j∈[m]

E

[
I[j] · I[j′]

]





4



=
m

n · ε21
+

4∑

k=1

(
4

k

)(
m

k

)(
m

n2 · ε21

)k

≤ m

n · ε21
+

4∑

k=1

(
4

k

)
1

k!

(
m

n · ε1

)2k

≤ m

n · ε1
·
(

1

ε1
+

4∑

k=1

(
4

k

)
1

k!

)

Where the last inequality is by assuming m
n·ε1 ≤ 1. A simple calculation shows that

E

[∣
∣A′[i]

∣
∣4
]

≤ m (1 + 8 · ε1)
n · ε21

≤ 9m

n · ε21
.

Plugging into Inequality 10 we get that

x̂m ≤
1 + 135 · m

n·ε21
1− 1215 · m

n·ε21

As required.
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We are now ready to bound E

[∣
∣
∣X

j
m

∣
∣
∣ ·
∣
∣
∣X

j
n

∣
∣
∣

2
· I[
∣
∣
∣X

j
m

∣
∣
∣ ≥ 2]

]

. Let ε7 = ε7(m,n, ε1) be so

that for the universal constant c from Lemma 7.10, ε7 =
4

n·ε41
+m

n



 6·c
ε31·

(

1−c· m

n·ε2
1

) + 1

ε41·
(

1− m

n·ε2
1

)



 .

Lemma 7.11. (Tail 3) For every j:

E

[∣
∣Xj

m

∣
∣ ·
∣
∣Xj

n

∣
∣
2 · I[

∣
∣Xj

m

∣
∣ ≥ 2]

]

≤ ε7

Proof. First observe that trivially
∣
∣
∣X

j
m

∣
∣
∣ ≥ 1 for all A (because j is in its own connected

component). By Lemma 7.9 we have that E
[∣
∣
∣X

j
m

∣
∣
∣

]

≤ 1
1− m

n·ε2
1

. Furthermore Pr[
∣
∣
∣X

j
m

∣
∣
∣ = 1] =

1− Pr[∃i ∈ [n] : j, k ∈ A[i]] ≥ 1 − 1
n·ε21

, because Pr[∃i ∈ [n] : j, k ∈ A[i]] ≤∑i∈[n]
1

(n·ε1)2 =
1

n·ε21
.

Therefore,

1

1− m
n·ε21
≥ E

[∣
∣Xj

m

∣
∣
]
= E

[∣
∣Xj

m

∣
∣ · I[

∣
∣Xj

m

∣
∣ = 1]

]
+ E

[∣
∣Xj

m

∣
∣ · I[

∣
∣Xj

m

∣
∣ ≥ 2]

]

= Pr[
∣
∣Xj

m

∣
∣ = 1] + E

[∣
∣Xj

m

∣
∣ · I[

∣
∣Xj

m

∣
∣ ≥ 2]

]

≥ 1− 1

n · ε21
+ E

[∣
∣Xj

m

∣
∣ · I[

∣
∣Xj

m

∣
∣ ≥ 2]

]

Which implies that

E

[∣
∣Xj

m

∣
∣ · I[

∣
∣Xj

m

∣
∣ ≥ 2]

]
≤ 1

n · ε21
+

m
n·ε21

1− m
n·ε21

.

Similarly, by Lemma 7.10 (recall that for every A, S ⊆ [n] denotes the buyers i with
A[i] ≥ 2).

E

[(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3
]

≤
1 + c · m

n·ε21
1− c · m

n·ε21
.

and
(∣
∣
∣X

j
m

∣
∣
∣+
∣
∣
∣X

j
n ∩ S

∣
∣
∣

)3
is also trivially at least 1. Also, observe that

∣
∣
∣X

j
n ∩ S

∣
∣
∣ > 1 implies

∣
∣
∣X

j
m

∣
∣
∣ > 1, and

∣
∣
∣X

j
m

∣
∣
∣ = 1 implies

∣
∣
∣X

j
n ∩ S

∣
∣
∣ = 0. In words -

∣
∣
∣X

j
m

∣
∣
∣ +

∣
∣
∣X

j
n ∩ S

∣
∣
∣ is more than

one if and only if there exists a buyer with item j and another item in her tail, i.e.,

Pr[
∣
∣
∣X

j
m

∣
∣
∣+
∣
∣
∣X

j
n ∩ S

∣
∣
∣ = 1] = Pr[

∣
∣
∣X

j
m

∣
∣
∣ = 1] ≥ 1− 1

n·ε1 . Therefore, together with Lemma 7.10
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we conclude that for the Lemma’s constant c,

1 + c · m
n·ε21

1− c · m
n·ε21
≥E

[(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3
]

=E

[(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 · I[

∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣ = 1]

]

+ E

[(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 · I[

(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 ≥ 2]

]

=Pr[
∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣ = 1] + E

[(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 · I[

(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 ≥ 2]

]

≥ 1− 1

n · ε21
+ E

[(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 · I[

(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 ≥ 2]

]

,

which implies that

E

[(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 · I[

(∣
∣Xj

m

∣
∣+
∣
∣Xj

n ∩ S
∣
∣
)3 ≥ 2]

]

≤ 1

n · ε21
+

2c · m
n·ε21

1− c · m
n·ε21

Combined with Lemma 7.8, we conclude that

E

[∣
∣Xj

m

∣
∣ ·
∣
∣Xj

n

∣
∣
2 · I[

∣
∣Xj

m

∣
∣ ≥ 2]

]

≤ 3

ε1

(

1

n · ε21
+

2c · m
n·ε21

1− c · m
n·ε21

)

+
1

ε21
·
(

1

n · ε21
+

m
n·ε21

1− m
n·ε21

)

.

≤ 4

n · ε41
+

m

n




6 · c

ε31 ·
(

1− c · m
n·ε21

) +
1

ε41 ·
(

1− m
n·ε21

)



 .

As required.

7.6 Proof of Theorem 7.1

proof of Theorem 7.1. Combine the core-tail decomposition (Lemma 7.4) with Lemmas 7.5,
Lemma 7.6 with p = π̄j, Lemma 7.7, and Lemma 7.11 to get:

Rev (Dn) ≤
(

1− e−ε4/ε1
)−1
·
∑

j∈[m]

E [(1− π̄j)] ·Rev(Dε4·n
j )

+ (1 + ε5) ·
∑

j∈[m]

E

[

Revπ̄j
(D

(1−ε4)·n
j )

]

+ 4 · ε6 ·
∑

j∈[m]

Rev
(
Dn

j

)

+ 4 · ε7 ·
∑

j∈[m]

Rev
(
Dn

j

)
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Consider a seller that sells the items separately. Each item j is first auctioned to
(1 − ε4) · n buyers using an optimal mechanism with restricted ex-ante probability of sale
of π̄j. Whenever the mechanism does not allocate the item, the seller proceeds and sells
the item to the remaining ε4 · n buyers optimally. Clearly, the revenue of the suggested
mechanism is at least

Revπ̄j
(D

(1−ε4)·n
j ) +Rev(Dε4·n

j ) · (1− π̄j)

(it is not exactly this, as the mechanism that sells to (1 − ε4) · n buyer might sell with
ex-ante probability that is lower than π̄j, in which case the suggested mechanism will make
even more than the above.

The above mechanism, by definition, does not make more than Rev(Dn
j ) revenue,

hence,

Rev (Dn) ≤
(

max{
(

1− e−ε4/ε1
)−1

, (1 + ε5)}+ 4 · (ε6 + ε7)

)

·
∑

j∈[m]

Rev(Dn
j )

As required.

8 Single Buyer: max{SRev,BRev} with a Constant Number

of Buyers

In this section we show that the better of selling separately and selling the grand bundle
to a constant number of buyers extracts 99% of the optimal revenue. Specifically we prove
that:

Theorem 8.1. (Theorem 1.3) For any constant ε > 0 there exists a constant δ(ε) > 0
such that:

Rev(D) ≤ (1 + ε)max{SRev(D1/δ),BRev(D1/δ)}

Proof outline

We use the same core-tail decomposition as in Section 5, albeit we set the cutoffs differently
for the remaining analysis. We bound the tail in Section 8.1, in a manner similar to
Section 5.2, showing in Lemma 8.2 that the tail is a tiny fraction of the revenue from
selling items separately to a constant number of buyers. Due to the new cutoffs the analysis
slightly different.

We bound the core in Section 8.2. An optimistic approach would attempt to use the
same cutoffs as in Section 5, and hope that as in [BILW14], the variance of the sum of values
in the core is bounded by c · SRev(D)2 for some constant c. Unfortunately, their analysis
relies on the cutoffs having the same value. When items are non-identically distributed,

47



this is not the case for the cutoffs from Section 5 which have the same quantile. Luckily,
this tension is manageable by the following intuition: set the same cutoff for all items, and
see which items H exceed the cutoff with constant probability. Increase the cutoff until
the number of such items |H| is a constant. By independence, a buyer also has high values
for all items in H with constant probability, hence, a good bundle price for the remaining
items, plus a good bundle price for items in H, is a good bundle price for all items! This
intuition is made formal in two lemmata (8.3 and 8.4).

Finally, we complete the proof in Section 8.3 by combining the core-tail decomposition
with the above arguments.

Cutoff setting. Fix some ε0, ε1 ≤ 1. For each item j let cj be so that Pr [vj > cj] = ε1,
and set Tj = max{ε0 · SRev(D), cj}. We call the set of items for which the cutoff equals
ε0 · SRev(D) the set of “low items” L = {j : Tj = ε0 · SRev(D)}, and the remaining set
H = {j : Tj = cj > ε0SRev(D)} we call the set of “high items”.

8.1 Tail

The following lemma is the analog of Lemma 5.6, and similarly it shows that SRev with
a constant number of buyers can extract much more revenue than the tail (the differences
are due to the different cutoffs).

Lemma 8.2.
∑

A pARev(DA
T ) ≤ 4(1 + ε−10 )ε1 · SRev(D1/(2ε1)).

Proof. By repeating the first part of the proof of lemma 5.5 we get:

∑

A

pARev(DA
T ) ≤

∑

j∈[m]

Rev(vj · I [vj > Tj])
∑

A:A∋j
|A| pA

Pr [vj > Tj]

As in proposition 1 in [BILW14], we observe that the rightmost sum is the expected
size of the set in the tail, conditioned on j being in the tail, i.e., 1 +

∑

k 6=j Pr[vk > Tk].
For every item j, by definition of Tj and by Lemma 4.3, it holds that Pr [vj > Tj] ≤
Pr [vj > ε0 · SRev(D)] ≤ Rev(Dj)

ε0·SRev(D) . Therefore, 1 +
∑

k 6=j Pr[vk > Tk] ≤ 1 + ε−10 . Hence,
∑

A pARev(DA
T ) ≤ (1+ ε−10 )SRev(DTail). By definition of Tj, it holds that Pr [vj > Tj] ≤

ε1. Therefore by applying Lemma 4.5 with δ = 2ε1 for every j, we get that:
∑

A pARev(DA
T ) ≤

(1 + ε−10 ) · 4 · ε1
∑

j∈[m]Rev(D
1/(2ε1)
j ) as required.

8.2 Core

In this section we bound the contribution from the core. As previously mentioned, we
separate all items [m] to low items L and high items H. For low items, we consider two
cases. (1) The contribution of low items to the core is bounded by a tiny fraction of SRev.
In this case SRev with a constant number of bidders almost fully recovers the contribution
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from the core, as shown in Lemma 8.3. (2) Otherwise, a concentration bound shows that
selling all low items in a bundle can recover almost their entire contribution to the core
with a constant probability. In this case BRev with a constant number of buyers almost
fully recovers the contribution from the core, as shown in Lemma 8.4. To separate the
cases, fix some ε2 > 0. Also, let ε4 = ε4(ε1, δ) be so that 1 + ε4 = (1 − e−ε1/δ)−1. Note
that ε4 is increasing in δ.

Lemma 8.3. If it holds that:

∑

j∈L
E

vj←Dj

[vj · I [vj ≤ Tj]] ≤ ε2 · SRev(D), (11)

then for any constant δ > 0 it holds that Val(DCore) ≤ (1 + ε2 + ε4)SRev
(
D1/δ

)
.

Proof. Given Inequality (11), it remains to bound
∑

j∈H Evj←Dj
[vj · I [vj ≤ Tj]]. Applying

Lemma 4.6 gives (1−e−ε1/δ)−1Rev(D
1/δ
j ) ≥ Tj ≥ Evj←Dj

[vj · I [vj ≤ Tj]] . Recall that DH

denotes D restricted to the items in set H. Summing over all j ∈ H we get that

(1 + ε4)SRev

(

D1/δ
)

≥ (1 + ε4)SRev

((
DH
)1/δ

)

≥
∑

j∈H
E

vj←Dj

[vj · I [vj ≤ Tj]] (12)

Combining inequalities (11) and (12) completes the proof.

The following lemma shows that when the contribution of low items to the core is
significant, then selling all items in a bundle to a constant number of buyers almost fully
recovers all the contribution from the core. Let ε5 = ε5(ε0, ε1, ε2, δ) be so that 1 + ε5 =
(

1− exp
(

−ε(ε1·ε0)
−1

1 /2δ
))−1

·
(

1− 2
√
ε0

ε2

)−1
. Note that ε5 can be made very small by

maintaining δ ≪ ε1 ≪ ε0 ≪ ε22 ≪ 1.

Lemma 8.4. If it holds that:

∑

j∈L
E

vj←Dj

[vj · I [vj ≤ Tj]] > ε2 · SRev(D) (13)

then for any 0 < δ ≤ 1,

Val(DCore) ≤ (1 + ε5)BRev

(

D1/δ
)

Proof. Recall that for a low item j, Tj = ε0 · SRev(D). For simplicity, let Rj = Rev(vj ·
I [vj ≤ Tj]). By lemma 4.4,

Var(vj · I [vj ≤ Tj]) ≤ (2
Tj
Rj
− 1) ·R2

j ≤ 2ε0SRev(D) · Rj.
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By independence across items, and as
∑

j∈LRj ≤
∑

j∈LRev(Dj) ≤ SRev(D) we get that:

Var




∑

j∈L
vj · I [vj ≤ Tj]



 =
∑

j∈L
Var (vj · I [vj ≤ Tj]) ≤ 2ε0SRev(D)

∑

j∈L
Rj ≤ 2ε0SRev(D)2

(14)

By Chebyshev’s inequality, for any ε3 > 0:

Pr




∑

j∈L
vj · I [vj ≤ Tj] ≤ (1− ε3)E




∑

j∈L
vj · I [vj ≤ Tj]







 ≤
Var

(
∑

j∈L vj · I [vj ≤ Tj]
)

ε23 · E
[
∑

j∈L vj · I [vj ≤ Tj]
]2

<
2ε0SRev(D)2

ε23ε
2
2 · SRev(D)2

=
2ε0
ε23ε

2
2

(15)

Where the second inequality follows by applying Inequality (13) to the denominator and
Inequality (14) to the numerator.

Set PL = (1 − ε3)E
[
∑

j∈L vj · I [vj ≤ Tj]
]

, and set PH =
∑

j∈H Tj. For ease of ex-

position, set ε3 =
√

4ε0
ε22

. Since vj ≥ vj · I [vj ≤ Tj] for every j, Inequality (15) implies

that Pr
[
∑

j∈L vj > PL

]

≥ 1
2 , and by definition of high items Pr[

∑

j∈H vj >
∑

j∈H Tj] ≥
∏

j∈H Pr[vj > Tj] = ε
|H|
1 . Therefore the probability that the sum of all item values exceeds

PL + PH is at least:

Pr




∑

j

vj > PL + PH



 ≥ Pr




∑

j∈L
vj > PL,

∑

j∈H
vj > PH



 ≥ 1

2
· ε|H|1

where the last inequality follows by independence across items. To bound |H|, observe
that SRev(D) ≥∑j∈H ε1 · Tj > ε1 ·

∑

j∈H ε0 · SRev(D) since we can sell every high item
at price Tj (and every low item at 0). Dividing by SRev(D) and rearranging implies that

|H| < (ε0 · ε1)−1. Since ε1 ≤ 1 we get that ε
|H|
1 ≥ ε

(ε1·ε0)−1

1 . Observe that PL + PH ≥
(1− ε3)E

[
∑

j∈[m] vj · I [vj ≤ Tj]
]

.

Apply Lemma 4.6 to the random variable of the sum
∑

j∈[m] vj , with the cutoff Tα =

(1−ε3)E
[
∑

j∈[m] vj · I [vj ≤ Tj]
]

, and the probability α = 1
2 ·ε

(ε1·ε0)−1

1 of the sum to exceed

Tα. We get that:

BRev

(

D1/δ
)

≥ (1− exp(−α/δ)) · Tα,

as required.
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8.3 Proof of Theorem 8.1

Proof of Theorem 8.1. Combining the core-tail decomposition lemma (Lemma 5.4) for n =
1 with Lemma 8.2 gives:

Rev(D) ≤ Val(DCore) + 4(1 + ε−10 )ε1 · SRev(D1/(2ε1)) (16)

Combining lemmas 8.3 and 8.4 we get that:

Val(DCore) = 1 + max{ε2 + ε4, ε5} ·max{SRev

(

D1/δ
)

,BRev

(

D1/δ
)

}. (17)

Adding buyers does not decrease revenue, therefore by combining Inequalities (16) and (17),
and taking δ < 2ε1 we get:

Rev(D) ≤
(
1 + 4(1 + ε−10 )ε1 +max{ε2 + ε4, ε5}

)
·max{SRev

(

D1/δ
)

,BRev

(

D1/δ
)

}.

Finally, we can set 4(1+ε−10 )ε1+max{ε2+ε4, ε5} ≤ ε for a sufficiently small (and constant)
δ > 0.

9 Single Buyer, Regular distributions: BVCG with a constant

number of buyers

In this section we prove the following theorem, which immediately implies Theorem 1.5.
Let BVCG be the mechanism that sells the grand bundle via the VCG mechanism.

Theorem 9.1. For any constant ε > 0, there exists a constant δ > 0 such that:

Rev(D) ≤ (1 + ε)RevBVCG(D1/δ).

Single dimensional regular distributions are appealing since they have a “well behaved
tail” property that is exploited mostly by prior-independent mechanisms. Unfortunately,
even when every vj ← Dj is regular, the grand bundle value

∑

j vj need not be regular,
except for very specific cases. We show that, as one would hope, even though

∑

j vj is
not distributed regularly by itself, the underlying regularity of each vj would still maintain
some “well behaved” properties.

We use the same core-tail decomposition as in Section 5, albeit we set the cutoffs
differently for the remaining analysis. We bound the tail in Section 9.1, in a manner
similar to Section 5.2, showing in Lemma 9.2 that the tail is bounded by a constant factor
times the revenue from selling items separately (to a single buyer) using tail prices, and in
Lemma 9.3 we use the regularity condition to show that this revenue is a tiny fraction of
the contribution from the core.

We bound the core in Section 9.2. We show in Lemma 9.4 that a concentration bound
suggests a bundle price that almost matches the contribution from the core, and sells with
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constant probability. Hence, we can show that two out of a constant number of buyers will
be willing to buy at this bundle price with probability almost 1 (i.e., the second highest
value - the revenue of VCG, is higher than the bundle price).

Finally, we complete the proof in Section 9.3 by combining the core-tail decomposition
with the above arguments.

Cutoff setting. Fix some ε0, ε1 ≤ 1. For each item j let cj be so that Pr [vj > cj] = ε1.
Fix some T > 0 to be decided later. Recall that DTail denotes the product distribution
of the random variables {vj · I [vj > Tj]}j∈[m]. If we set Tj = max{T , cj} for every item
j, then SRev

(
DTail

)
decreases as T increases. Therefore, there exists some T so that

T = ε0 · SRev
(
DTail

)
. This is the value we choose for T . Call the set of items for which

the cutoff is T the set of “low items” L = {j : Tj = T }, and call the remaining set
H = {j : Tj = cj > T } the set of “high items”.

9.1 Tail

Lemma 9.2 is an analog of Lemma 5.5 which relates the contribution from the tail to
SRev(DTail). In this section we use SRevonly for the purpose of analysis (our final
mechanism only sells the grand bundle).

Lemma 9.2.
∑

A⊆[m] pARev(DA
T ) ≤ (1 + ε−10 )SRev

(
DTail

)

Proof. Repeating the proof of lemma 5.5 gives:

∑

A

pARev(DA
T ) ≤

∑

j∈[m]

Rev(vj · I [vj > Tj])
∑

A:A∋j
|A| pA

Pr [vj > Tj]

Again, we observe that the rightmost sum is the expected size of the set in the tail, condi-
tioned on j being in the tail, i.e., 1+

∑

k 6=j Pr[vk > Tk]. Then since Tj ≥ ε0 ·SRev
(
DTail

)
,

∑

j

Pr [vj > Tj] =
∑

j

Pr
[
vj · I [vj > Tj] > ε0 · SRev

(
DTail

)]

=
∑

j

Pr

[

vj · I [vj > Tj] > Rev(vj · I [vj > Tj]) ·
ε0 · SRev

(
DTail

)

Rev(vj · I [vj > Tj])

]

≤
∑

j

Rev(vj · I [vj > Tj])
ε0 · SRev

(
DTail

)

=
1

ε0
.

Where the inequality follows by applying Lemma 4.3 to every vj · I [vj > Tj].
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In the following lemma we show that the contribution from the core is much larger than
the contribution from the tail. Thus it will be sufficient to approximate the contribution
from the core (which we do in Section 9.2). This step uses the regularity assumption. For
ease of exposition, for k that satisfies ε1 · ε−k2 < 1, let K = K(ε1, ε2, k) = k · (1− ε2) · (1−
ε1 · ε−k2 ). Note that K is almost k when ε1 ≪ εk2 ≪ 1.

Lemma 9.3. Val(DCore) ≥ K · SRev
(
DTail

)

Proof. Recall that Val(DCore) =
∑

A⊆[m] pA ·Val(DC
A) =

∑

A⊆[m] pA
∑

j∈Ā
E[vj ·I[vj≤Tj ]]

Pr[vj≤Tj ] .

By Lemma 4.12, for every j we have that E [vj · I [vj ≤ Tj]] ≥ K · Rev(vj · I [vj > Tj]),
therefore:

Val(DCore) ≥ K ·
∑

A⊆[m]

pA
∑

j∈Ā

Rev(vj · I [vj > Tj])
Pr [vj ≤ Tj]

Finally, observe that

∑

A⊆[m]

pA
∑

j∈Ā

Rev(vj · I [vj > Tj])
Pr [vj ≤ Tj]

=
∑

j∈[m]

Rev(vj · I [vj > Tj]) ·
∑

A:j∈Ā pA

Pr [vj ≤ Tj]
= SRev

(
DTail

)

because
∑

A:j∈Ā pA is the total probability of j being in the core, i.e., exactly Pr [vj ≤ Tj].

9.2 Core

As in Section 8, we separate items to high and low items, and reason about the concentra-
tion of the sum of low items. Unlike Section 8, we show that the contribution of low items
to the core is always sufficiently large.

The proof of Lemma 9.4 is as follows: a concentration bound shows that selling all low
items in a bundle can recover almost their entire contribution to the core with a constant
probability. Therefore, by adding a constant number of buyers, at least two would be
willing to buy at the suggested bundle price, with probability almost 1, and VCG for the
bundle of all items extracts at least as much revenue.

Let ε4 = ε4(ε0, ε1, ε2, δ) be so that 1+ ε4 =
(

1− exp
(

−ε(ε1·ε0)
−1

1 /2δ
))−2

· (1−√ε0)−1.
Note that ε4 can be made very small by maintaining δ ≪ ε0, ε1 ≪ 1.

Lemma 9.4. For any constant 1 ≥ δ > 0 it holds that

Val
(
DCore

)
≤ (1 + ε4)RevBVCG(D1/δ)

Proof. Let PL =
∑

j∈LEvj←Dj
[vj · I [vj ≤ Tj]], and PH =

∑

j∈H Evj←Dj
[vj · I [vj ≤ Tj]].

We will show a lower bound on BRev by analyzing the auction that sells the grand bundle
for price (1 − ε3)(PL + PH). In particular, we will show that with constant probability,
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each buyer has value at least PH for the high items, and at least PL − ε3(PL + PH) for
the low items. Therefore, for a sufficiently large but constant number of buyers, we expect
that at least one of them will buy the grand bundle for price (1− ε3)(PL + PH).

For every low item j ∈ L, recall that Tj = ε0 · SRev
(
DTail

)
. The variance on its core

values is therefore bounded by:

Var(vj · I [vj ≤ Tj]) ≤ E
vj←Dj

[
v2
j · I [vj ≤ Tj]

]
≤ E

vj←Dj

[vj · I [vj ≤ Tj]] Tj

= E
vj←Dj

[vj · I [vj ≤ Tj]] ε0 · SRev
(
DTail

)

By independence across items we get that:

Var




∑

j∈L
vj · I [vj ≤ Tj]



 =
∑

j∈L
Var (vj · I [vj ≤ Tj]) ≤ ε0SRev

(
DTail

)
· PL. (18)

By Lemma 4.12 applied to every item j we have that

PL + PH =
∑

j∈[m]

E
vj←Dj

[vj · I [vj ≤ Tj]] ≥ K · SRev
(
DTail

)
.

Combining the last two inequalities, we have that

∑

j∈L
Var(vj · I [vj ≤ Tj]) ≤ ε0 ·K−1 · PL(PL + PH). (19)

By Chebyshev’s inequality and Inequality (19),

Pr




∑

j∈L
vj · I [vj ≤ Tj] ≤ PL − ε3(PL + PH)



 ≤
Var

(
∑

j∈L vj · I [vj ≤ Tj]
)

ε23(PL + PH)2

≤ ε0 · PL(PL + PH)

K · ε23(PL + PH)2

<
ε0

ε23 ·K
(20)

For ease of exposition, set ε3 =
√
2ε0. Since vj ≥ vj · I [vj ≤ Tj] for every j, Inequality (20)

implies that

Pr




∑

j∈L
vj > PL − ε3(PL + PH)



 ≥ 1− 1

2K
≥ 1

2
. (21)
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Also, by the definition of high items:

Pr[
∑

j∈H
vj > PH ] ≥ Pr[

∑

j∈H
vj >

∑

j∈H
Tj] ≥

∏

j∈H
Pr[vj > Tj] = ε

|H|
1 > ε

(ε1·ε0)−1

1 . (22)

To show the last inequality, suppose we sell every high item at the price Tj (and every low
item at 0), then

SRev
(
DTail

)
≥
∑

j∈H
ε1 · Tj > ε1 ·

∑

j∈H
ε0 · SRev

(
DTail

)
. (23)

Dividing by SRev
(
DTail

)
and rearranging implies that |H| < (ε0 · ε1)−1.

Therefore the probability that the sum of all item values exceeds (1− ε3)(PL + PH) is
at least:

Pr




∑

j∈[m]

vj > (1− ε3)(PL + PH)



 ≥Pr




∑

j∈L
vj > PL − ε3(PL + PH),

∑

j∈H
vj > PH





=Pr




∑

j∈L
vj > PL − ε3(PL + PH)



Pr




∑

j∈H
vj > PH





≥1

2
· (ε(ε1·ε0)

−1

1 ),

where the equality follows by independence across items, and the last inequality follows
by Inequalities (21) and (22). Consider the random variable of the sum v =

∑

j∈[m] vj ,

the cutoff Tα = (1− ε3)(PL + PH) = (1− ε3)Val
(
DCore

)
, and the probability of the sum

to exceed the cutoff α = 1
2 · (ε

(ε1·ε0)−1

1 ). By Lemma 4.7 get that: RevBVCG(D2/δ) ≥
(1− exp(−2α/δ))2 · (1− ε3) ·Val

(
DCore

)
, as required.

9.3 Proof of Theorem 9.1

Proof of Theorem 9.1. Combining Lemma 9.3 with Lemma 9.2 we get that

Val(DCore) ≥
K

(1 + ε−10 )

∑

A⊆[m]

pARev(DA
T ) (24)

Combining the core-tail decomposition lemma (Lemma 5.4), Inequality (24), and Lemma 9.4
gives:

Rev(D) ≤
(

1 +
1 + ε−10

K

)

Val
(
DCore

)
≤
(

1 +
1 + ε−10

K

)

(1 + ε4)RevBVCG(D1/δ).

(25)

Note that we can increase K independently of ε0’s value, which completes the proof.
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