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Abstract

We address online learning in complex auction settings, such as sponsored search auctions,
where the value of the bidder is unknown to her, evolving in an arbitrary manner and observed
only if the bidder wins an allocation. We leverage the structure of the utility of the bidder and
the partial feedback that bidders typically receive in auctions, in order to provide algorithms with
regret rates against the best fixed bid in hindsight, that are exponentially faster in convergence
in terms of dependence on the action space, than what would have been derived by applying
a generic bandit algorithm and almost equivalent to what would have been achieved in the
full information setting. Our results are enabled by analyzing a new online learning setting
with outcome-based feedback, which generalizes learning with feedback graphs. We provide
an online learning algorithm for this setting, of independent interest, with regret that grows
only logarithmically with the number of actions and linearly only in the number of potential
outcomes (the latter being very small in most auction settings). Last but not least, we show
that our algorithm outperforms the bandit approach experimentally1 and that this performance
is robust to dropping some of our theoretical assumptions or introducing noise in the feedback
that the bidder receives.

1 Introduction

A standard assumption in the majority of the literature on auction theory and mechanism design
is that participants that arrive in the market have a clear assessment of their valuation for the
goods at sale. This assumption might seem acceptable in small markets with infrequent auction
occurrences and amplitude of time for participants to do market research on the goods. However,
it is an assumption that is severely violated in the context of the digital economy.

In settings like online advertisement auctions or eBay auctions, bidders participate very fre-
quently in auctions that they have very little knowledge about the good at sale, e.g. the value
produced by a user clicking on an ad. It is unreasonable, therefore, to believe that the participant
has a clear picture of this value. However, the inability to pre-assess the value of the good before
arriving to the market is alleviated by the fact that due to the large volume of auctions in the
digital economy, participants can employ learning-by-doing approaches.

In this paper we address exactly the question of how would you learn to bid approximately
optimally in a repeated auction setting where you do not know your value for the good at sale and
where that value could potentially be changing over time. The setting of learning in auctions with
an unknown value poses an interesting interplay between exploration and exploitation that is not
standard in the online learning literature: in order for the bidder to get feedback on her value she

1Our code is publicly available on github.
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has to bid high enough to win the good with higher probability and hence, receive some information
about that underlying value. However, the latter requires paying a higher price. Thus, there is an
inherent trade-off between value-learning and cost. The main point of this paper is to address the
problem of learning how to bid in such unknown valuation settings with partial win-only feedback,
so as to minimize the regret with respect to the best fixed bid in hindsight.

On one extreme, one can treat the problem as a Multi-Armed Bandit (MAB) problem, where
each possible bid that the bidder could submit (e.g. any multiple of a cent between 0 and some
upper bound on her value) is treated as an arm. Then, standard MAB algorithms (see e.g. [14])
can achieve regret rates that scale linearly with the number of such discrete bids. The latter can
be very slow and does not leverage the structure of utilities and the form of partial feedback that
arises in online auction markets. Recently, the authors in [42] addressed learning with such type
of partial feedback in the context of repeated single-item second-price auctions. However, their
approach does not address more complex auctions and is tailored to the second-price auction.

Our Contributions. Our first main contribution is to introduce a novel online learning setting
with partial feedback, which we denote learning with outcome-based feedback and which could be of
independent interest. We show that our setting captures online learning in many repeated auction
scenarios including all types of single-item auctions, value-per-click sponsored search auctions,
value-per-impression sponsored search auctions and multi-item auctions.

Our setting generalizes the setting of learning with feedback graphs [35, 4], in a way that is
crucial for applying it to the auction settings of interest. At a high level, the setting is defined as
follows: The learner chooses an action b ∈ B (e.g. a bid in an auction). The adversary chooses
an allocation function xt, that maps an action to a distribution over a set of potential outcomes O
(e.g. the probability of getting a click) and a reward function rt that maps an action-outcome pair
to a reward (utility conditional on getting a click with a bid of b). Then, an outcome ot is chosen
based on distribution xt(b) and a reward rt(b, ot) is observed. The learner also gets to observe the
function xt and the reward function rt(·, ot) for the realized outcome ot (i.e. in our auction setting:
she learns the probability of a click, the expected payment as a function of her bid and, if she gets
clicked, her value).

Our second main contribution is an algorithm which we call WIN-EXP, which achieves regret

O
(√

T |O| log(|B|)
)

. The latter is inherently better than the generic multi-armed bandit regret

of O
(√

T |B|
)

, since in most of our applications |O| will be a small constant (e.g. |O| = 2 in

sponsored search) and takes advantage of the particular feedback structure. Our algorithm is a
variant of the EXP3 algorithm [8], with a carefully crafted unbiased estimate of the utility of each
action, which has lower variance than the unbiased estimate used in the standard EXP3 algorithm.
This result could also be of independent interest and applicable beyond learning in auction settings.
Our approach is similar to the importance weighted sampling approach used in EXP3 so as to
construct unbiased estimates of the utility of each possible action. Our main technical insight is
how to incorporate the allocation function feedback that the bidder receives to construct unbiased
estimates with small variance, leading to dependence only in the number of outcomes and not the
number of actions. As we discuss in the related work, despite the several similarities, our setting
has differences with existing partial feedback online learning settings, such as learning with experts
[8], learning with feedback graphs [35, 4] and contextual bandits [2].

This setting engulfs learning in many auctions of interest where bidders learn their value for
a good only when they win the good and where the good which is allocated to the bidder is
determined by some randomized allocation function. For instance, when applied to the case of
single-item first-price, second-price or all-pay auctions, our setting corresponds to the case where
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the bidders observe their value for the item auctioned at each iteration only when they win the item.
Moreover, after every iteration, they observe the critical bid they would have needed to submit to
win (for instance, by observing the bids of others or the clearing price). The latter is typically the
case in most government auctions or in auction settings similar to eBay.

Our flagship application is that of value-per-click sponsored search auctions. These are auctions
were bidders repeatedly bid in an auction for a slot in a keyword impression on a search engine.
The complexity of the sponsored search ecosystem and the large volume of repeated auctions has
given rise to a plethora of automated bidding tools (see e.g. [43]) and has made sponsored search
an interesting arena for automated learning agents. Our framework captures the fact that in
this setting the bidders observe their value for a click only when they get clicked. Moreover, it
assumes that the bidders also observe the average probability of click and the average cost per
click for any bid they could have submitted. The latter is exactly the type of feedback that the
automated bidding tools can receive via the use of bid simulators offered by both major search
engines [24, 25, 26, 38]. In Figure 1 we portray example interfaces from these tools, where we see
that the bidders can observe exactly these allocation and payment curves assumed by our outcome-
based-feedback formulation. Not using this information seems unreasonable and a waste of available
information. Our work shows how one can utilize this partial feedback given by the auction systems
to provide improved learning guarantees over what would have been achieved if one took a fully
bandit approach. In the experimental section, we also show that our approach outperforms that of
the bandit one even if the allocation and payment curves provided by the system have some error
that could stem from errors in the machine learning models used in the calculation of these curves
by the search engines. Hence, even when these curves are not fully reliable, our approach can offer
improvements in the learning rate.

Figure 1: Example interfaces of bid simulators of two major search engines, Google Adwords (left) and
BingAds (right), that enables learning the allocation and the payment function. (sources [41, 33])

We also extend our results to cases where the space of actions is a continuum (e.g. all bids in
an interval [0, 1]). We show that in many auction settings, under appropriate assumptions on the

utility functions, a regret of O
(√

T log(T )
)

can be achieved by simply discretizing the action space

to a sufficiently small uniform grid and running our WIN-EXP algorithm. This result encompasses
the results of [42] for second price auctions, learning in first-price and all-pay auctions, as well as
learning in sponsored search with smoothness assumptions on the utility function. We also show
how smoothness of the utility can easily arise due to the inherent randomness that exists in the
mechanism run in sponsored search.

Finally, we provide two further extensions: switching regret and feedback-graphs over outcomes.
The former adapts our algorithm to achieve good regret against a sequence of bids rather than a
fixed bid, which has implications on the faster convergence to approximate efficiency of the out-
come (price of anarchy). Feedback graphs address the idea that in many cases the learner could
be receiving information about other items other than the item he won (through correlations in
the values for these items). This essentially corresponds to adding a feedback graph over outcomes
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and when outcome ot is chosen, then the learner learns the reward function rt(·, o) for all neigh-
boring outcomes o in the feedback graph. We provide improved results that mainly depend on the
dependence number of the graph rather than the number of possible outcomes.

Related Work. Our work lies on the intersection of two main areas: No regret learning in Game
Theory and Mechanism Design and Contextual Bandits.

No regret learning in Game Theory and Mechanism Design. No regret learning has received a
lot of attention in the Game Theory and Mechanism Design literature [18]. Most of the existing
literature, however, focuses on the problem from the side of the auctioneer, who tries to maximize
revenue through repeated rounds without knowing a priori the valuations of the bidders [5, 6, 12,
13, 16, 20, 21, 29, 36, 39, 37, 23, 32]. These works are centered around different auction formats
like the sponsored search ad auctions, the pricing of inventory and the single-item auctions. Our
work is mostly related to Weed et al. [42], who adopt the point of view of the bidders in repeated
second-price auctions and who also analyze the case where the true valuation of the item is revealed
to the bidders only when they win the item. Their setting falls into the family of settings for which
our novel and generic WIN-EXP algorithm produces good regret bounds and as a result, we are
able to fully retrieve the regret that their algorithms yield, up to a tiny increase in the constants.
Hence, we give an easier way to recover their results. Closely related to our work are the works of
[22] and [9]. Dikkala and Tardos [22] analyzes a setting where bidders have to experiment in order
to learn their valuations, and show that the seller can increase revenue by offering an initial credit
to them, in order to give them incentives to experiment. Balseiro and Gur [9] introduce a family of
dynamic bidding strategies in repeated second-price auctions, where advertisers adjust their bids
throughout the campaign. They analyze both regret minimization and market stability. There
are two key differences to our setting; first, Balseiro and Gur consider the case where the goal of
the bidders is the expediture rate in a way that guarantees that the available campaign budget
will be spent in an optimal pacing way and second, because of their target being the expenditure
rate at every timestep t, they assume that the bidders get information about the value of the slot
being auctioned and based on this information they decide how to adjust their bid. Moreover,
several works analyze the properties of auctions when bidders adopt a no-regret learning strategy
[11, 15, 40]. None of these works, however, addresses the question of learning more efficiently in
the unknown valuation model and either invokes generic MAB algorithms or develops tailored full
information algorithms when the bidder knows his value. Another line of research takes a Bayesian
approach to learning in repeated auctions and makes large market assumptions, analyzing learning
to bid with an unknown value under a Mean Field Equilibrium condition [1, 28, 10]2.

Learning with partial feedback. Our work is also related to the literature in learning with partial
feedback [2, 14]. To establish this connection we observe that the policies and the actions in
contextual bandit terminology translate into discrete bids and groups of bids for which we learn the
rewards in our work. The difference between these two is the fact that for each action in contextual
bandits we get a single reward, whereas for our setting we observe a group of rewards; one for
each action in the group. Moreover, the fact that we allow for randomized outcomes adds extra
complication, non existent in contextual bandits. In addition, our work is closely related to the
literature in online learning with feedback graphs [3, 4, 19, 35]. In fact, we propose a new setting in
online learning, namely, learning with outcome-based feedback, which is a generalization of learning
with feedback graphs and is essential when applied to a variety of auctions which include sponsored
search, single-item second-price, single-item first-price and single-item all-pay auctions. Moreover,

2No-regret learning is complementary and orthogonal to the mean field approach, as it does not impose any
stationarity assumption on the evolution of valuations of the bidder or the behavior of his opponents.
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the fact that the learner only learns the probability of each outcome and not the actual realization
of the randomness, is similar in nature to a feedback graph setting, but where the bidder does not
observe the whole graph. Rather, she observes a distribution over feedback graphs and for each
bid she learns with what probability each feedback graph would arise. For concreteness, consider
the case of sponsored search and suppose for now that the bidder gets even more information than
what we assume and also observes the bids of her opponents. She still does not observe whether she
would get a click if she falls on the slot below but only the probability with which she would get a
click in the slot below. If she could observe whether she would still get a click in the slot below, then
we could in principle construct a feedback graph that would say that for all bids were the bidder
gets a slot her reward is revealed, and for every bid that she does not get a click, her reward is not
revealed. However, this is not the structure that we have and essentially this corresponds to the
case where the feedback graph is not revealed, as analyzed in [19] and for which no improvement
over the full bandit feedback is possible. However, we show that this impossibility is amended by
the fact that the learner observes the probability of a click and hence for each possible bid, she
observes the probability with which each feedback graph would have happened. This is enough for
a low variance unbiased estimate.

2 Learning in Auctions without Knowing your Value

For simplicity of exposition, we start with a simple single-dimensional mechanism design setting,
but our results extend to multi-dimensional (multi-item) mechanisms, as we will see in Section 4.
Let n be the number of bidders. Each bidder has a value vi ∈ [0, 1] per-unit of a good and submits
a bid bi ∈ B, where B is a discrete set of bids (e.g. a uniform ε-grid of [0, 1]). Given the bid profile
of all bidders, the auction allocates a unit of the good to the bidders. The allocation rule for bidder
i is given by Xi(bi, b−i). Moreover, the mechanism defines a per-unit payment function Pi(bi, b−i) ∈
[0, 1]. The overall utility of the bidder is quasi-linear, i.e. ui(bi, b−i) = (vi − Pi(bi, b−i)) ·Xi(bi, b−i).

Online Learning with Partial Feedback. The bidders participate in this mechanism repeat-
edly. At each iteration, each bidder has some value vit and submits a bid bit. The mechanism
has some time-varying allocation function Xit(·, ·) and payment function Pit(·, ·). We assume that
the bidder does not know her value vit, nor the bids of her opponents b−i,t, nor the allocation and
payment functions, before submitting a bid.

At the end of each iteration, she gets an item with probability Xit(bit, b−i,t) and observes
her value vit for the item only when she gets one 3. Moreover, we assume that she gets to ob-
serve her allocation and payment functions for that iteration, i.e. she gets to observe two func-
tions xit(·) = Xit(·, b−i,t) and pit(·) = Pit(·, b−i,t). Finally, she receives utility (vit − pit(bit)) ·
1{item is allocated to her} or in other words expected utility uit(bit) = (vit − pit(bit)) · xit(bit).
Given that we focus on learning from the perspective of a single bidder we will drop the index i from
all notation and instead write, xt(·), pt(·), ut(·), vt, etc. The goal of the bidder is to achieve small ex-

pected regret with respect to any fixed bid in hindsight: R(T ) = supb∗∈B E
[∑T

t=1 (ut(b
∗)− ut(bt))

]
≤

o(T ).

3E.g. in sponsored search, the good allocated is the probability of getting clicked, and you only observe your value
if you get clicked.
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3 Abstraction: Learning with Win-Only Feedback

Let us abstract the learner’s problem to a setting that could be of interest beyond auction settings.

Learning with Win-Only Feedback. Every day a learner picks an action bt from a finite
set B. The adversary chooses a reward function rt : B → [−1, 1] and an allocation function
xt : B → [0, 1]. The learner wins a reward rt(b) with probability xt(b). Let ut(b) = rt(b)xt(b) be
the learner’s expected utility from action b. After each iteration, if she won the reward then she
learns the whole reward function rt(·), while she always learns the allocation function xt(·).

Can the learner achieve regret O(
√
T log(|B|)) rather than bandit-feedback regret O(

√
T |B|)?

In the case of the auction learning problem, the reward function rt(b) takes the parametric form
rt(b) = vt − pt(b) and the learner needs to learn vt and pt(·) at the end of each iteration, when she
wins the item. This is in line with the feedback structure we described in the previous section.

We consider the following adaptation of the EXP3 algorithm with unbiased estimates based
on the information received. It is notationally useful throughout the section to denote with At
the event of winning a reward at time t. Then, we can write: Pr[At|bt = b] = xt(b) and Pr[At] =∑

b∈B πt(b)xt(b), where with πt(·) we denote the multinomial distribution from which bid b is drawn.
With this notation we define our WIN-EXP algorithm in Algorithm 1. We note here that our
generic family of the WIN-EXP algorithms can be parametrized by the step-size η, the estimate
of the utility ũt that the learner gets at each round and the feedback structure that she receives.

Algorithm 1 WIN-EXP algorithm for learning with win-only feedback

Let π1(b) = 1
|B| for all b ∈ B (i.e. the uniform distribution over bids), η =

√
2 log(|B|)

5T
for each iteration t do

Draw a bid bt from the multinomial distribution based on πt(·)
Observe xt(·) and if reward is won also observe rt(·)
Compute estimate of utility:

If reward is won ũt(b) = (rt(b)−1)Pr[At|bt=b]
Pr[At]

; otherwise, ũt(b) = −Pr[¬At|bt=b]
Pr[¬At] .

Update πt(·) as in Exponential Weights Update: ∀b ∈ B : πt+1(b) ∝ πt(b) · exp {η · ũt(b)}

Bounding the Regret. We first bound the first and second moment of the unbiased estimates
built at each iteration in the WIN-EXP algorithm.

Lemma 3.1. At each iteration t, for any action b ∈ B, the random variable ũt(b) is an unbiased
estimate of the true expected utility ut(b), i.e.: ∀b ∈ B : E [ũt(b)] = ut(b) − 1 and has expected

second moment bounded by: ∀b ∈ B : E
[
(ũt(b))

2
]
≤ 4Pr[At|bt=b]

Pr[At]
+ Pr[¬At|bt=b]

Pr[¬At] .

Proof. Let At denote the event that the reward was won. We have:

E [ũt(b)] = E
[

(rt(b)− 1) · Pr[At|bt = b]

Pr[At]
1{At} −

Pr[¬At|bt = b]

Pr[¬At]
1{¬At}

]
= (rt(b)− 1)Pr[At|bt = b]− Pr[¬At|bt = b]

= rt(b)Pr[At|bt = b]− 1 = ut(b)− 1
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Similarly for the second moment:

E
[
ũt(b)

2
]

= E

[
(rt(b)− 1)2 · Pr[At|bt = b]2

Pr[At]2
1{At}+

Pr[¬At|bt = b]2

Pr[¬At]2
1{¬At}

]

=
(rt(b)− 1)2 · Pr[At|bt = b]2

Pr[At]
+

Pr[¬At|bt = b]2

Pr[¬At]
≤ 4Pr[At|bt = b]

Pr[At]
+

Pr[¬At|bt = b]

Pr[¬At]

where the last inequality holds since rt(·) ∈ [−1, 1] and xt(·) ∈ [0, 1].

We are now ready to prove our main theorem:

Theorem 3.2 (Regret of WIN-EXP). The regret of the WIN-EXP algorithm with the aforemen-

tioned unbiased estimates and step size

√
2 log(|B|)

5T is: 4
√
T log(|B|).

Proof. Observe that regret with respect to utilities ut(·) is equal to regret with respect to the
translated utilities ut(·)−1. We use the fact that the exponential weights update with an unbiased
estimate ũt(·) ≤ 0 of the true utilities, achieves expected regret of the form4:

R(T ) ≤ η

2

T∑
t=1

∑
b∈B

πt(b) · E
[
(ũt(b))

2
]

+
1

η
log(|B|)

Invoking the bound on the second moment by Lemma 3.1, we get:

R(T ) ≤ η

2

T∑
t=1

∑
b∈B

πt(b) ·
(

4Pr[At|bt = b]

Pr[At]
+

Pr[¬At|bt = b]

Pr[¬At]

)
+

1

η
log(|B|) ≤ 5

2
ηT +

1

η
log(|B|)

Picking η =

√
2 log(|B|)

5T , we get the theorem.

4 Beyond Binary Outcomes: Outcome-Based Feedback

In the win-only feedback framework there were two possible outcomes that could happen: either
you win the reward or not. We now consider a more general problem, where there are more than
two outcomes and you learn your reward function for the outcome you won. Moreover, the outcome
that you won is also a probabilistic function of your action. The proofs for the results presented in
this section can be found in Appendix B.

Learning with Outcome-Based Feedback. Every day a learner picks an action bt from a
finite set B. There is a set of payoff-relevant outcomes O. The adversary chooses a reward function
rt : B × O → [−1, 1], which maps an action and an outcome to a reward and he also chooses an
allocation function xt : B → ∆(O), which maps an action to a distribution over the outcomes.
Let xt(b, o) be the probability of outcome o under action b. An outcome ot ∈ O is chosen based
on distribution xt(bt). The learner wins reward rt(bt, ot) and observes the whole outcome-specific
reward function rt(·, ot). She always learns the allocation function xt(·) after the iteration. Let
ut(b) =

∑
o∈O rt(b, o) · xt(b, o) be the expected utility from action b.

We consider the following adaptation of the EXP3 algorithm with unbiased estimates based
on the information received. It is notationally useful throughout the section to consider ot as

4A detailed proof of this claim can be found in Appendix G.
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the random variable of the outcome chosen at time t. Then, we can write: Prt[ot|b] = xt(b, ot)
and Prt[ot] =

∑
b∈B πt(b)Prt[ot|b] =

∑
b∈B πt(b) · xt(b, ot). With this notation and based on the

feedback structure, we define our WIN-EXP algorithm for learning with outcome-based feedback
in Algorithm 2.

Theorem 4.1 (Regret of WIN-EXP with outcome-based feedback). The regret of Algorithm 2

with ũt(b) = (rt(b,ot)−1)Prt[ot|b]
Prt[ot]

and step size
√

log(|B|)
2T |O| is: 2

√
2T |O| log(|B|).

Algorithm 2 WIN-EXP algorithm for learning with outcome-based feedback

Let π1(b) = 1
|B| for all b ∈ B (i.e. the uniform distribution over bids), η =

√
log(|B|)
2T |O|

for each iteration t do
Draw an action bt from the multinomial distribution based on πt(·)
Observe xt(·), observe chosen outcome ot and associated reward function rt(·, ot)
Compute estimate of utility:

ũt(b) =
(rt(b, ot)− 1)Prt[ot|b]

Prt[ot]
(1)

Update πt(·) based on the Exponential Weights Update:

∀b ∈ B : πt+1(b) ∝ πt(b) · exp {η · ũt(b)} (2)

Applications to Learning in Auctions. We now present a series of applications of the main
result of this section to several learning in auction settings, even beyond single-item or single-
dimensional ones.

Example 4.2 (Second-price auction). Suppose that the mechanism ran at each iteration is just the
second price auction. Then, we know that the allocation function Xi(bi, b−i) is simply of the form:
1{bi ≥ maxj 6=i bj} and the payment function is simply the second highest bid. In this case, observing
the allocation and payment functions at the end of the auction boils down to observing the highest
other bid. In fact, in this case we have a trivial setting where the bidder gets an allocation of either
0 or 1 and if we let Bt = maxj 6=i bjt, then the unbiased estimate of the utility takes the simpler

form (assuming the bidder always loses in case of ties) of: if bt > Bt : ũt(b) = (vit−Bt−1)1{b>Bt}∑
b′>Bt

πt(b′)

and ũt(b) = 1{b≤Bt}∑
b′≤Bt

πt(b′)
in any other case. Our main theorem gives regret 4

√
T log(|B|). We note

that this theorem recovers exactly the results of Weed et al. [42], by using as B a uniform 1/∆o

discretization of the bidding space, for an appropriately defined constant ∆o (see Appendix B.1 for
an exact comparison of the results).

Example 4.3 (Value-per-click auctions). This is a variant of the binary outcome case analyzed in
Section 3, where O = {A,¬A}, i.e. get clicked or not. Hence, |O| = 2, and rt(b, A) = vt − pt(b),
while rt(b,¬A) = 0. Our main theorem gives regret 4

√
T log(|B|).

Example 4.4 (Unit-demand multi-item auctions). Consider the case of K items at an auction
where the bidder has value vk for only one item k. Given a bid b, the mechanism defines a probability
distribution over the items that the bidder will be allocated and also defines a payment function,
which depends on the bid of the bidder and the item allocated. When a bidder gets allocated an
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item k she gets to observe her value vkt for that item. Thus, the set of outcomes is equal to
O = {1, . . . ,K+1}, with outcome K+1 associated with not getting any item. The rewards are also
of the form: rt(b, k) = vkt − pt(b, k) for some payment function pt(b, k) dependent on the auction
format. Our main theorem then gives regret 2

√
2(K + 1)T log(|B|).

4.1 Batch Rewards Per-Iteration and Sponsored Search Auctions

We now consider the case of sponsored search auctions, where the learner participates in multiple
auctions per-iteration. At each of these auctions she has a chance to win and get feedback on
her value. To this end, we abstract the learning with win-only feedback setting to a setting where
multiple rewards are awarded per-iteration. The allocation function remains the same throughout
the iteration but the reward functions can change.

Outcome-Based Feedback with Batch Rewards. Every iteration t is associated with a set
of reward contests It. The learner picks an action bt, which is used at all reward contests. For each
τ ∈ It the adversary picks an outcome specific reward function rτ : B×O → [−1, 1]. Moreover, the
adversary chooses an allocation function xt : B → ∆(O), which is not τ -dependent. At each τ , an
outcome oτ is chosen based on distribution xt(bt) and independently. The learner receives reward
rτ (bt, oτ ) from that contest. The overall realized utility from that iteration is the average reward:

1
|It|
∑

τ∈It rτ (bt, oτ ), while the expected utility from any bid b is: ut(b) = 1
|It|
∑

τ∈It
∑

o∈O rτ (b, o) ·
xt(b, o). We assume that at the end of each iteration the learner receives as feedback the average
reward function conditional on each realized outcome, i.e. if we let Ito = {τ ∈ It : oτ = o}, then the
learner learns the function: Qt(b, o) = 1

|Ito|
∑

τ∈Ito rτ (b, o) (with the convention that Qt(b, o) = 0 if

|Ito| = 0) as well as the realized frequencies ft(o) = |Ito|
|It| for all outcomes o.

With this at hand we can define the batch-analogue of our unbiased estimates of the previous
section. To avoid any confusion we define: Prt[o|b] = xt(b, o) and Prt[o] =

∑
b∈B πt(b)Prt[o|b], to

denote that these probabilities only depend on t and not on τ . The estimate of the utility will be:

ũt(b) =
∑
o∈O

Prt [o|b]
Prt[o]

ft(o) (Qt(b, o)− 1) (3)

We show the full algorithm with outcome-based batch-reward feedback in Algorithm 4.

Algorithm 3 WIN-EXP algorithm for learning with outcome-based batch-reward feedback

Let π1(b) = 1
|B| for all b ∈ B (i.e. the uniform distribution over bids), η =

√
log(|B|)
2T |O|

for each iteration t do
Draw an action bt from the multinomial distribution based on πt(·)
Observe xt(·), chosen outcomes oτ ,∀τ ∈ It, average reward function conditional on each

realized outcome Qt(b, o) and the realized frequencies for each outcome ft(o) = |Ito|
|It| .

Compute estimate of utility:

ũt(b) =
∑
o∈O

Prt [o|b]
Prt[o]

ft(o) (Qt(b, o)− 1) (4)

Update πt(·) based on the Exponential Weights Update:

∀b ∈ B : πt+1(b) ∝ πt(b) · exp {η · ũt(b)} (5)
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Corollary 4.4.1. The WIN-EXP algorithm with the latter unbiased utility estimates and step

size
√

log(|B|)
2T |O| , achieves regret in the outcome-based feedback with batch rewards setting at most:

2
√

2T |O| log(|B|).

It is also interesting to note that the same result holds if instead of using ft(o) in the expected
utility (Equation (10)), we used its mean value, which is xt(o, bt) = Prt[o|bt]. This would not
change any of the derivations above. The nice property of this alternative is that the learner does
not need to learn the realized fraction of each outcome, but only the expected fraction of each
outcome. This is already contained in the function xt(·, ·), which we assumed was given to the
learner at the end of each iteration. Thus, with these new estimates, the learner does not need to
observe ft(o). In Appendix C we also discuss the case where different periods can have different
number of rewards and how to extend our estimate to that case. The batch rewards setting finds
an interesting application in the case of learning in sponsored search, as we describe below.

Example 4.5 (Sponsored Search). In the case of sponsored search auctions, the latter boils down
to learning the average value v̂ = 1

#clicks

∑
clicks vclick for the clicks that were generated, as well as

the cost-per-click function pt(b), which is assumed to be constant throughout the period t. Given
these quantities, the learner can compute: Q(b, A) = v̂−pt(b) and Q(b,¬A) = 0. An advertiser can
keep track of the traffic generated by a search engine ad and hence, can keep track of the number of
clicks from the search engine and the value generated by each of these clicks (conversion). Thus,
she can estimate v̂. Moreover, she can elicit the probability of click (aka click-through-rate or CTR)
curves xt(·) and the cost-per-click (CPC) curves pt(·) over relatively small periods of time of about
a few days. See for instance the Adwords bid simulator tools offered by Google [24, 25, 26, 38]5.
Thus, with these at hand we can apply our batch reward outcome based feedback algorithm and get
regret that does not grow linearly with |B|, but only as 4

√
T log (|B|). Our main assumption is

that the expected CTR and CPC curves during this relatively small period of a few days remains
approximately constant. The latter holds if the distribution of click-through-rates does not change
within these days and if the bids of opponent bidders also do not significantly change. This is
a reasonable assumption when feedback can be elicited relatively frequently, which is the case in
practice.

5 Continuous Actions with Piecewise-Lipschitz Rewards

Until now we only considered discrete action spaces. In this section, we extend our discussion to
continuous ones; that is, we allow the action of each bidder to lie in a continuous action space B
(e.g. a uniform interval in [0, 1]). To assist us in our analysis, we are going to use the discretization

result in [31] 6. For what follows in this section, let R(T,B) = supb∗∈B E
[∑T

t=1 (ut(b
∗)− ut(bt))

]
be the regret of the bidder, after T rounds with respect to an action space B. Moreover, for any
pairs of action spaces B and B we let: DE(B,B) = supb∈B

∑T
t=1 ut(b)− supb′∈B

∑T
t=1 ut(b

′), denote
the discretization error incurred by optimizing over B instead of B. The proofs of this section can
be found in Appendix E.

5One could argue that the CTRs that the bidder gets in this case are not accurate enough. Nevertheless, even
if they have random perturbations, we show in our experimental results that for reasonable noise assumptions,
WIN-EXP is preferrable compared to EXP3.

6Kleinberg [31] discuss the uniform discretization of continuum-armed bandits and Kleinberg et al. [30] extend
the results for the case of Lipschitz-armed bandits.
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Lemma 5.1. ([31, 30]) Let B be a continuous action space and B a discretization of B. Then:

R(T,B) ≤ R(T,B) +DE(B,B)

Observe now that in the setting of Weed et al. [42] the discretization error was: DE(B,B) = 0
if ε < ∆o, as we discussed in Section 4 and that was the key that allowed us to recover this result,
without adding an extra εT in the regret of the bidder. To achieve that, we construct the following
general class of utility functions:

Definition 5.2 (∆o-Piecewise Lipschitz Average Utilities). A learning setting with action space
B = [0, 1]d, is said to have ∆o-Piecewise Lipschitz Cumulative Utilities if the average utility function
1
T

∑T
t=1 ut(b) satisfies the following conditions: the bidding space [0, 1]d is divided into d-dimensional

cubes with edge length at least ∆o and within each cube the utility is L-Lipschitz with respect to the
`∞ norm. Moreover, for any boundary point there exists a sequence of non-boundary points whose
limit cumulative utility is at least as large as the cumulative utility of the boundary point.

Lemma 5.3 (Discretization Error for Piecewise Lipschitz). Let B = [0, 1]d be a continuous action
space and B a uniform ε-grid of [0, 1]d, such that ε < ∆o (i.e. B consists of all the points whose
coordinates are multiples of a given ε). Assume that the average utility function is ∆o-Piecewise
L-Lipschitz. Then, the discretization error of B is bounded as: DE(B,B) ≤ εLT .

If we know the Lipschitzness constant L mentioned above, the time horizon T and ∆o, then our
WIN-EXP algorithm for Outcome-Based Feedback with Batch Rewards yields regret as defined
by the following theorem. In Appendix E, we also show how to deal with unknown parameters L,
T and ∆o by applying a standard doubling trick.

Theorem 5.4. Let B = [0, 1]d be the action space as defined in our model and let B be a uniform ε-

grid of B. The WIN-EXP algorithm with unbiased estimates given by ũt(b) =
∑

o∈O
Prt[o|b]
Prt[o]

ft(o) (Qt(b, o)− 1) (6)

on B with η =
√

log(|B|)
2T |O| , ε = min

{
1
LT ,∆

o
}

achieves expected regret at most 2
√

2T |O|d log
(
max

{
1

∆o , LT
})

+

1 in the outcome-based feedback with batch rewards and ∆o-Piecewise L−Lipschitz average utilities
7.

Example 5.5 (First Price and All-Pay Auctions). Consider the case of learning in first price or
all-pay auctions. In the former, the highest bidder wins and pays her bid, while in the latter the
highest bidder wins and every bidder pays her bid whether she wins or loses. Let Bt be the highest
other bid at time t. Then the average hindsight utility of the bidder in each auction is 8:

1
T

∑T
t=1 ut(b) = 1

T

∑T
t=1 vt · 1{b > Bt} − b · 1

T

∑T
t=1 1{b > Bt} (first price)

1
T

∑T
t=1 ut(b) = 1

T

∑T
t=1 vt · 1{b > Bt} − b (all-pay)

Let ∆o be the smallest difference between the highest other bid at any two iterations t and t′ 9.
Then observe that the average utilities in this setting are ∆o-Piecewise 1-Lipschitz: Between any

7Interestingly, the above regret bound can help to retrieve two familiar expressions for the regret. First, when
L = 0 (i.e. when the function is constant within each cube), in is the case for the second price auction analyzed in

[42], R(T ) = 2
√

2dT |O| log
(

1
∆o

)
+ 1. Hence, we recover the bounds from the prior sections up to a tiny increase.

Second, when ∆o → ∞, then we have functions that are L-Lipschitz in the whole space B and the regret bound that
we retrieve is: R(T ) = 2

√
2dT |O| log (LT ) + 1, which is of the type achieved in continuous lipschitz bandit settings.

8For simplicity, we assume the bidder loses in case of ties, though we can handle arbitrary random tie-breaking
rules.

9This is an analogue of the ∆o used by [42] in second price auctions.
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two highest other bids, the average allocation, 1
T

∑T
t=1 vt ·1{b > Bt}, of the bidder remains constant

and the only thing that changes is his payment which grows linearly. Hence, the derivative at any
bid between any two such highest other bids is upper bounded by 1. Hence, by applying Theorem 5.4,
our WIN-EXP algorithm with a uniform discretization on a ε-grid, for ε = min

{
∆o, 1

T

}
, achieves

regret 4
√
T log

(
max

{
1

∆o , T
})

)+1, where we used that |O| = 2 and d = 1 for any of these auctions.

5.1 Sponsored Search with Lipschitz Utilities

In this subsection, we extend our analysis of learning in the sponsored search auction model (Ex-
ample 4.5) to the continuous bid space case, i.e., each bidder can submit a bid b ∈ [0, 1]. As a
reminder, the utility function is: ut(b) = xt(b)(v̂t − pt(b)), where b ∈ [0, 1], v̂t ∈ [0, 1] is the average
value for the clicks at iteration t, xt(·) is the CTR curve and pt(·) is the CPC curve. These curves
are implicitly formed by running some form of a Generalized Second Price auction (GSP) at each
iteration to determine the allocation and payment rules. As we show in this subsection, the form of
the GSP ran in reality gives rise to Lipschitz utilities, under some minimal assumptions. Therefore,
we can apply the results in Section 5 to get regret bounds even with respect to the continuous bid
space B = [0, 1] 10. We begin by providing a brief description of the type of Generalized Second
Price auction ran in practice.

Definition 5.6 (Weighted-GSP). Each bidder i is assigned a quality score si ∈ [0, 1]. Bidders
are ranked according to their score-weighted bid si · bi, typically called the rank-score. Every bidder
whose rank-score does not pass a reserve r is discarded. Bidders are allocated slots in decreasing
order of rank-score. Each bidder is charged per-click the lowest bid she could have submitted and
maintained the same slot. Hence, if a bidder i is allocated a slot k and ρk+1 is the rank-score of the
bidder in slot k+ 1, then she is charged ρk+1/si per-click. We denote with Ui(b, s, r), the utility of
bidder i under a bid profile b and score profile s.

The quality scores are typically highly random, dependent on the features of the ad and the user
that is currently viewing the page. Hence, a reasonable modeling assumption is that the scores si at
each auction are drawn i.i.d. from some distribution with CDF Fi. We now show that if the CDF
Fi is Lipschitz (i.e. admits a bounded density), then the utilities of the bidders are also Lipschitz.

Theorem 5.7 (Lipschitzness of the utility of Weighted GSP). Suppose that the score si of each
bidder i in a weighted GSP is drawn independently from a distribution with an L−Lipschitz CDF
Fi. Then, the expected utility ui(bi,b−i, r) = Es [Ui(bi,b−i, s, r)] is 2nL

r −Lipschitz wrt bi.

Thus, we see that when the quality scores in sponsored search are drawn from L-Lipschitz
CDFs Fi,∀i ∈ n and the reserve is lower bounded by δ > 0, then the utilities are 2nL

δ -Lipschitz and
we can achieve good regret bounds by using the WIN-EXP algorithm with batch rewards, with
action space B being a uniform ε-grid, ε = δ

2nLT and unbiased estimates given by Equation (13)
or Equation (3). In the case of sponsored search the second unbiased estimate takes the following
simple form:

ũt(b) = xt(b)·xt(bt)∑
b′∈B πt(b

′)xt(b′)
(v̂t − pt(b)− 1)− (1−xt(b))·(1−xt(bt))∑

b′∈B πt(b
′)(1−xt(b′)) (7)

where v̂t is the average value from the clicks that happened during iteration t, xt(·) is the CTR
curve, bt is the realized bid that the bidder submitted and πt(·) is the distribution over discretized
bids of the algorithm at that iteration. We can then apply Theorem 5.4 to get the following
guarantee:

10The aforementioned Lipschitzness is also reinforced by real world data sets from Microsoft’s sponsored search
auction system.
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Corollary 5.7.1. The WIN-EXP algorithm run on a uniform ε-grid with ε = δ
2nLT , step size√

log(1/ε)
4T and unbiased estimates given by Equation (13) or Equation (3), when applied to the

sponsored search auction setting with quality scores drawn independently from distributions with

L-Lipschitz CDFs, achieves regret at most: 4
√
T log

(
2nLT
δ

)
+ 1.

6 Further Extensions

In this section, we discuss an extension to switching regret and the implications on Price of Anarchy
and one to the feedback graphs setting.

6.1 Switching Regret and Implications for Price of Anarchy

We show below that our results can be extended to capture the case where, instead of having just
one optimal bid b∗, there is a sequence of C ≥ 1 switches in the optimal bids. Using the results
presented in [27] and adapting them for our setting we get the following corollary (with proof in
Appendix F).

Corollary 6.0.1. Let C ≥ 0 be the number of times that the optimal bid b∗ ∈ B switches in a
horizon of T rounds. Then, using Algorithm 2 in [27] with A ≡WIN-EXP and any α ∈ (0, 1) we

can achieve expected switching regret at most: O

(√
(C + 1)2 (2 + 1

α

)
2d|O|T log

(
max

{
LT, 1

∆o

}))
This result has implications on the price of anarchy (PoA) of auctions. In the case of sponsored
search where bidders’ valuations are changing over time adversarially but non-adaptively, our result
shows that if the valuation does not change more than C times, we can compete with any bid that is
a function of the value of the bidder at each iteration, with regret rate given by the latter theorem.
Therefore, by standard PoA arguments [34], this would imply convergence to an approximately
efficient outcome at a faster rate than bandit regret rates.

6.2 Feedback Graphs over Outcomes

We now extend Section 5, by assuming that there is a directed feedback graph G = (O,E) over the
outcomes. When outcome ot is chosen, the bidder observes not only the outcome specific reward
function rt(·, ot), for that outcome, but also for any outcome o in the out-neighborhood of ot in
the feedback graph, which we denote with Nout(ot). Correspondingly, we denote with N in(o) the
incoming neighborhood of o in G. Both neighborhoods include self-loops. Let Gε = (Oε, Eε) be the
sub-graph of G that contains only outcomes for which Prt[ot] ≥ ε and subsequently, let N in

ε and
Nout
ε be the in and out neighborhoods of this sub-graph.

Based on this feedback graph we construct a WIN-EXP algorithm with step-size η =
√

log(|B|)
8Tα ln

(
16|O|2T

α

) ,

utility estimate ũt(b) = 1{ot ∈ Oε}
∑

o∈Nout
ε (ot)

(rt(b,o)−1)Prt[o|b]∑
o′∈Ninε (o)

Prt[o′]
and feedback structure as described

in the previous paragraph. With these changes we can show that the regret grows as a function
of the independence number of the feedback graph, denoted with α, rather than the number of
outcomes. The full Algorithm can be found in Appendix A.

Theorem 6.1 (Regret of WIN-EXP-G). The regret of the WIN-EXP-G algorithm with step size

η =
√

log(|B|)
8Tα ln

(
16|O|2T

α

) is bounded by: R(T ) ≤ 2

√
8αT log(|B|) ln

(
16|O|2T

α

)
+ 1.
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In the case of learning in auctions, the feedback graph over outcomes can encode the possibility that
winning an item can help you uncover your value for other items. For instance, in a combinatorial
auction for m items, the reader should think of each node in the feedback graph as a bundle of items.
Then the graph encodes the fact that winning bundle o can teach you the value for all bundles
o′ ∈ Nout(o). If the feedback graph has small dependence number then a much better regret
is achieved than the dependence on

√
2m, that would have been derived by our outcome-based

feedback results of prior sections, if we treated each bundle of items separately as an outcome.

7 Experimental Results

In this section, we present our results from our comparative analysis between EXP3 and WIN-
EXP on a simulated sponsored search system that we built and which is a close proxy of the
actual sponsored search algorithms deployed in the industry. We implemented11 the weighted
GSP auction as described in definition 5.6. The auctioneer draws i.i.d rank scores that are bidder
and timestep specific; as is the case throughout our paper, here we have assumed a stochastic
auctioneer with respect to the rank scores. After bidding, the bidder will always be able to observe
the allocation function. Now, if the bidder gets allocated to a slot and she gets clicked, then, she
is able observe the value and the payment curve. Values are assumed to lie in [0, 1] and they
are obliviously adversarial. Finally, the bidders choose bids from some ε-discretized grid of [0, 1]
(in all experiments, apart from the ones comparing the regrets for different discretizations, we
use ε = 0.01) and update the probabilities of choosing each discrete bid according to EXP3 or
WIN-EXP. Regret is measured with respect to the best fixed discretized bid in hindsight.

We distinguish three cases of the bidding behavior of the rest of the bidders (apart from our
learner): i) all of them are stochastic adversaries drawing bids at random from some distribution, ii)
there is a subset of them that are bidding adaptively, by using an EXP3 online learning algorithm
and iii) there is a subset of them that are bidding adaptively but using a WINEXP online learning
algorithm (self play). Validating our theoretical claims, in all three cases, WIN-EXP outperforms
EXP3 in terms of regret. We generate the event of whether a bidder gets clicked or not as follows:
we draw a timestep specific threshold value in [0, 1] and the learner gets a click in case the CTR
of the slot she got allocated (if any) is greater than this threshold value. Note here that the choice
of a timestep specific threshold imposes monotonicity, i.e. if the learner did not get a click when
allocated to a slot with CTR xt(b), she should not be able to get a click from slots with lower CTRs.
We ran simulations with 3 different distributions of generating CTRs, so as to understand what is
the effect of different levels of click-through-rates on the variance of our regret: i) xt(b) ∼ U [0.1, 1],
ii) xt(b) ∼ U [0.3, 1] and iii) xt(b) ∼ U [0.5, 1]. Finally, we address robustness of our results to errors
in CTR estimation. For this, we add random noise to the CTRs of each slot and we report to the
learners the allocation and payment functions that correspond to the erroneous CTRs. The noise
was generated according to a normal distribution N (0, 1

m), where m could be viewed as the number
of training samples on which a machine learning algorithm was ran in order to output the CTR
estimate (m = 100, 1000, 10000).

For each of the following simulations, there are N = 20 bidders, k = 3 slots and we ran the
experiment for each round for a total of 30 times. For the simulations that correspond to adaptive
adversaries we used a = 4 adversaries. Our results for the cumulative regret are presented below.
We measured ex-post regret with respect to the realized thresholds that determine whether a bidder
gets clicked or not. Note that the solid plots correspond to the emprical mean of the regret, whereas
the opaque bands correspond to the 10-th and 90-th percentile.

11Our code is publicly available on github.
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Different discretizations. In Figure 2 we present the comparative analysis of the estimated
average regret of WIN-EXP vs EXP3 for different discretizations, ε, of the bidding space when the
learner faces adversaries that are stochastic, adaptive using EXP3 and adaptive using WINEXP. As
it was expected from the theoretical analysis, the regret of WIN-EXP, as the disretized space (|B|)
increases exponentially, remains almost unchanged compared to the regret of EXP3. In summary,
finer discretization of the bid space helps our WIN-EXP algorithm’s performance, but hurts the
performance of EXP3.

Figure 2: Regret of WIN-EXP vs EXP3 for different discretizations ε (CTR ∼ U [0.5, 1]).

Different CTR Distributions. In Figures 3, 4 and 5 we present the results of the regret per-
formance of WIN-EXP compared to EXP3, when the learner discretizes the bidding space with
ε = 0.01 and when she faces stochastic, adaptive adversaries using EXP3 and adaptive adversaries
using WINEXP, respectively. For all three cases, the estimated average regret of WIN-EXP is less
than the estimated average regret that EXP3 yields.

Figure 3: Regret of WIN-EXP vs EXP3 for different CTR distributions and stochastic adversaries, ε = 0.01.

Robustness to Noisy CTR Estimates. In Figures 6, 7, 8 we empirically tested the robustness
of our algorithm to random perturbations of the allocation function that the auctioneer presents
to the learner, for perturbations of the form N

(
0, 1

m

)
, where m could be viewed as the number of

training examples used from the auctioneer in order to derive an approximation of the allocation
curve. When the number of training samples is relatively small (m = 100) the empirical mean of
WINEXP outperforms EXP3 in terms of regret, i.e., it is more robust to such perturbations. As the
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Figure 4: Regret of WIN-EXP vs EXP3 for different CTR distributions and adaptive EXP3 adversaries,
ε = 0.01.

Figure 5: Regret of WIN-EXP vs EXP3 for different CTR distributions and adaptive WINEXP adversaries,
ε = 0.01.
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number of training samples increases, WINEXP clearly outperforms EXP3. The latter validates
one of our claims throughout the paper; namely, that even though the learner might not see the
exact allocation curve, but a randomly perturbed proxy, WIN-EXP still performs better than the
EXP3.

Figure 6: Regret of WIN-EXP vs EXP3 with noise ∼ N
(
0, 1

m

)
for stochastic adversaries, ε = 0.01.

Figure 7: Regret of WIN-EXP vs EXP3 with noise ∼ N
(
0, 1

m

)
for adaptive EXP3 adversaries, ε = 0.01.

Robustness to fully bandit feedback. In Figures 9, 10 we present the results of the regret
performance of WIN-EXP compared to EXP3, when the learner receives fully bandit feedback, i.e.,
observes only the CTR and the payment for the currently submitted bid and uses logistic regression
in order to estimate the allocation curve and linear regression in order to estimate the payment
curve. For the logistic regression, at each timestep t we used all t pairs of bids and realized CTRs,
(bt, xt(bt)), giving exponentially more weight to more recent pairs. For the linear regression, at
each timestep t we used all t pairs of bids and realized payments, (bt, pt(bt)). Figure 9 shows that
when CTRs come from a uniform distribution, WIN-EXP with fully bandit feedback constructing
the estimates with logistic and linear regression not only outperforms EXP3 in terms of regret, but
manages to approximate the regret achieved in the case that one receives the true allocation and
payment curves for both stochastic and adaptive adversaries. To portray the power of WIN-EXP
with fully bandit feedback we also ran a set of experiments where the CTRs and the rank scores
come from normal distributionsN (0.5, 0.16) and even in these cases, WIN-EXP outperforms EXP3
in terms of regret.
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Figure 8: Regret of WIN-EXP vs EXP3 with noise ∼ N
(
0, 1

m

)
for adaptive WINEXP adversaries, ε = 0.01.

Figure 9: Regret of WIN-EXP vs EXP3 for the fully bandit feedback with CTR ∼ U [0.5, 1] and ε = 0.01.
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Figure 10: Regret of WIN-EXP vs EXP3 with CTR ∼ N (0.5, 0.16) and ε = 0.01.
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8 Conclusion

We addressed learning in repeated auction scenarios were bidders do not know their valuation
for the items at sale. We formulated an online learning framework with partial feedback which
captures the information available to bidders in typical auction settings like sponsored search and
provided an algorithm which achieves almost full information regret rates. Hence, we portrayed
that not knowing your valuation is a benign form of incomplete information for learning in auctions.
Our experimental evaluation also showed that the improved learning rates are robust to violations
of our assumptions and are valid even when the information assumed is corrupted. We believe
that exploring further avenues of relaxing the informational assumptions (e.g., what if the value is
only later revealed to a bidder or is contigent upon the competitiveness of the auction) or being
more robust to erroneous information given by the auction system is an interesting future research
direction. We believe that our outcome-based learning framework can facilitate such future work.
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Appendix

A Omitted Algorithms

Essentially, the family of our WIN-EXP algorithms is parametrized by the step-size η-parameter,
the estimate of the utility that the learner gets at every timestep ũt(b) and finally, the type of
feedback that he receives after every timestep t. Clearly, both η and the estimate of the utility
depend crucially on the particular type of feedback.

In this section, we present the specifics of the algorithms that we omitted from the main body
of the text, due to lack of space.

Comment A.1. A.1 Outcome based batch-reward feedback

Algorithm 4 WIN-EXP algorithm for learning with outcome-based batch-reward feedback

Let π1(b) = 1
|B| for all b ∈ B (i.e. the uniform distribution over bids), η =

√
log(|B|)
2T |O|

for each iteration t do
Draw an action bt from the multinomial distribution based on πt(·)
Observe xt(·), chosen outcomes oτ ,∀τ ∈ It, average reward function conditional on each

realized outcome Qt(b, o) and the realized frequencies for each outcome ft(o) = |Ito|
|It| .

Compute estimate of utility:

ũt(b) =
∑
o∈O

Prt [o|b]
Prt[o]

ft(o) (Qt(b, o)− 1) (8)

Update πt(·) based on the Exponential Weights Update:

∀b ∈ B : πt+1(b) ∝ πt(b) · exp {η · ũt(b)} (9)
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A.2 Outcome-based feedback graph over outcomes

Algorithm 5 WIN-EXP-G algorithm for learning with outcome-based feedback and a feedback
graph over outcomes

Let π1(b) = 1
|B| for all b ∈ B (i.e. the uniform distribution over bids), η =

√
log(|B|)

8Tα ln
(

16|O|2T
α

)
for each iteration t do

Draw an action bt ∼ πt(·), multinomial
Observe xt(·), chosen outcome ot and associated reward function rt(·, ot)
Observe and associated reward function rt(·, ·) for all neighbor outcomes N in

ε , N
out
ε

Compute estimate of utility:

ũt(b) = 1{ot ∈ Oε}
∑

o∈Nout
ε (ot)

(rt(b, o)− 1)Prt[o|b]∑
o′∈N in

ε (o) Prt[o′]
(10)

Update πt(·) based on the Exponential Weights Update:

(11)

B Omitted proofs from Section 4

We first give a lemma that bounds the moments of our utility estimate.

Lemma B.1. At each iteration t, for any action b ∈ B, the random variable ũt(b) is an unbiased
estimate of the true expected utility ut(b), i.e.: ∀b ∈ B : E [ũt(b)] = ut(b) − 1 and has expected

second moment bounded by: ∀b ∈ B : E
[
(ũt(b))

2
]
≤ 4

∑
o∈O

Prt[o|b]
Prt[o]

.

Proof of Lemma B.1. According to the notation we introduced before we have:

E [ũt(b)] = Eot
[

(rt(b, ot)− 1) · Prt[ot|b]
Prt[ot]

]
=
∑
o∈O

(rt(b, o)− 1) · Prt[o|b]
Prt[o]

Prt[o]

=
∑
o∈O

rt(b, o)Prt[o|b]− 1 = ut(b)− 1

Similarly for the second moment:

E
[
ũt(b)

2
]
≤ Eot

[
(rt(b, ot)− 1)2Prt[ot|b]2

Prt[ot]2

]
=
∑
o∈O

(rt(b, o)− 1)2Prt[o|b]2

Prt[o]2
Prt[o]

≤
∑
o∈O

4Prt[o|b]
Prt[o]

where the last inequality holds since rt(·, ·) ∈ [−1, 1].

Proof of Theorem 4.1. Observe that regret with respect to utilities ut(·) is equal to regret with
respect to the translated utilities ut(·) − 1. We use the fact that the exponential weight updates
with an unbiased estimate ũt(·) ≤ 0 of the true utilities, achieves expected regret of the form:

R(T ) ≤ η

2

T∑
t=1

∑
b∈B

πt(b) · E
[
(ũt(b))

2
]

+
1

η
log(|B|)
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For a detailed proof of the above, we refer the reader to Appendix G. Invoking the bound on the
second moment by Lemma B.1, we get:

R(T ) ≤ 2η

T∑
t=1

∑
b∈B

πt(b) ·
∑
o∈O

Prt[o|b]
Prt[o]

+
1

η
log(|B|)

= 2η
T∑
t=1

∑
o∈O

∑
b∈B

πt(b) ·
Prt[o|b]
Prt[o]

+
1

η
log(|B|)

≤ 2ηT |O|+ 1

η
log(|B|)

Picking η =
√

log(|B|)
2T |O| , we get the theorem.

B.1 Comparison with Results in Weed et al.

We note that our result in Example 4.2 also recovers the results of Weed et al. [42], who work
in the continuous bid setting (i.e. b ∈ [0, 1]). In order to describe their results, consider the grid
LT formed by the maximum bids from other bidders mt = maxj 6=i bjt for all the rounds. Let
lo = (mt,mt′) be the widest interval in LT , that contains an optimal fixed bid in hindsight and let
∆o denote its length. Weed et al. [42] provide an algorithm for learning the valuation, which yileds
regret 4

√
T log(1/∆o).

The same regret can be achieved, if we simply consider a partition of the bidding space [0, 1]
into 1

ε intervals of equal length ε, for ε < ∆o, and run our algorithm on this discretized bid space
B. If lo contains an optimal bid, then any bid b ∈ lo is also optimal in-hindsight, since all such bids
achieve the same utility. Since ∆o > ε, there must exist a discretized bid b∗ε ∈ B ∩ lo. Thus, b∗ε is
also optimal in hindsight. Hence, regret against the best fixed bid in [0, 1] is equal to regret against
the best fixed discretized bid in B. By our Theorem 4.1, the latter regret is 4

√
T log(1/ε), which

can be made arbitrarily close to the regret bound achieved by Weed et al. [42], who use a more
intricate adaptive discretization. Similar to Weed et al. [42], knowledge of ∆o can be bypassed
by instead defining ∆o as the length of the smallest interval in LT and then using the standard
doubling trick, i.e.: keep an estimate of ∆o and once this estimate is violated, divide ∆o in half
and re-start your algorithm. The latter only increases the regret by a constant factor.

C Notes on Subsection 4.1

If one is interested in optimizing the sum of utilities at each iteration rather than the average, then
if all iterations have the same number of batches |I|, this simply amounts to rescaling everything
by |I|, which would lead to an |I| blow up in the regret.

If different periods have different number of batches and Imax is the maximum number of batches
per iteration, then we can always pad the extra batches with all zero rewards. This would amount
to again multiplying the regret by Imax and would change the unbiased estimates at each period to
be scaled by the number of iterations in that period:

ũt(b) =
|It|
Imax

∑
o∈O

Prt[o|b] · Prt[o|bt]
Prt[o]

(Qt(b, o)− 1) (12)

and then we would invoke the same algorithm. This essentially puts more weight on iterations with
more auctions, so that the ”step-size” of the algorithm depends on how many auctions were run dur-
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ing that period. It is easy to see that the latter modification would lead to regret 4Imax

√
T log (|B|)

in the sponsored search auction application.

D Omitted Proofs from Section 4.1

We first prove an upper bound on the moments of our estimates used in the case of batch rewards.

Lemma D.1. At each iteration t, for any action b ∈ B, the random variable ũt(b) is an unbiased
estimate of ut(b)−1 and can actually be constructed based on the feedback that the learner receives:

∀b ∈ B : ũt(b) =
∑

o∈O
Prt[o|b]
Prt[o]

ft(o) (Qt(b, o)− 1) and has expected second moment bounded by:

∀b ∈ B : E
[
(ũt(b))

2
]
≤ 4

∑
o∈O

Prt[o|b]
Prt[o]

.

Proof of Lemma D.1. For the estimate of the utility it holds that:

ũt(b) =
1

|It|
∑
τ∈It

(rτ (b, oτ )− 1)Prt[oτ |b]
Prt[oτ ]

=
1

|It|
∑
o∈O

∑
τ∈Ito

(rτ (b, o)− 1)Prt[o|b]
Prt[o]

=
∑

o∈O:|Ito|>0

Prt[o|b]
Prt[o]

ft(o)
1

|Ito|
∑
τ∈Ito

(rτ (b, o)− 1)

=
∑
o∈O

Prt[o|b]
Prt[o]

ft(o) (Qt(b, o)− 1) (13)

From the first equation it follows along identical lines, that this is an unbiased estimate, while from
the last equation it is easy to see that this unbiased estimate can be constructed based on the
feedback that the learner receives.

Moreover, we can also bound the second moment of these estimates by a similar quantity as in
the previous section:

E[ũt(b)
2] =

∑
bt∈B

E

(∑
o∈O

Prt[o|b]
Prt[o]

ft(o) (Qt(b, o)− 1)

)2 ∣∣∣∣bt
πt(bt)

≤
∑
bt∈B

E

[∑
o∈O

(
Prt[o|b]
Prt[o]

(Qt(b, o)− 1)

)2

ft(o)

∣∣∣∣bt
]
πt(bt) (By Jensen’s inequality)

=
∑
bt∈B

∑
o∈O

(
Prt[o|b]
Prt[o]

(Qt(b, o)− 1)

)2

E[ft(o)|bt] · πt(bt)

=
∑
o∈O

(
Prt[o|b]
Prt[o]

(Qt(b, o)− 1)

)2 ∑
bt∈B

E[ft(o)|bt] · πt(bt)

=
∑
o∈O

(
Prt[o|b]
Prt[o]

(Qt(b, o)− 1)

)2

Prt[o]

≤ 4
∑
o∈O

Prt[o|b]
Prt[o]
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Then following the same techniques in Theorem 4.1, it is straightforward to conclude the proof
of the corollary.

E Omitted Proofs from Section 5

Proof of Lemma 5.3. Let OPT = arg supb∈B
∑T

t=1 ut(b) be the best fixed action in the continuous
action space B in hindsight. Since ε < ∆o, then b∗ must belong to some d-dimensional ε-cube,
either as an interior point or as a limit of interior points, as expressed by Definition 5.2. The utility
is L-Lipschitz within this ε-cube and since ε < ∆o, each cube contains at least one point in the
discretized space B. For the case where OPT is achieved as the limit of interior points then for
every δ > 0 there exist an interior point of some cube b̃, such that

∑T
t=1 ut(b̃) ≥ OPT − δ. The

same obviously holds when OPT is achieved by an interior point. Let b̂ be the closest discretized
point to b̃ that lies in the same cube as b̃. Since ‖b̂− b̃‖∞ ≤ ε, by the Lipschitzness of the average
reward function within each cube, we get:

OPT ≤
T∑
t=1

ut(b̃) + δ ≤
T∑
t=1

ut(b̂) + δ + εLT ≤ sup
b∈B

T∑
t=1

ut(b̂) + δ + εLT

Since we can take δ as close to zero as we want, we get the lemma.

Proof of Theorem 5.4. From Lemma 5.3 we know that for ε < ∆o, the discretization error is
DE(B,B) ≤ εLT . Combining Lemma 5.1 and Corollary 4.4.1, we have

R(T,B) ≤ R(T,B) +DE(B,B) = 2
√

2T |O| log(|B|) + εLT

= 2

√
2T |O| log

(
1

εd

)
+ εLT

= 2

√
2dT |O| log

(
1

ε

)
+ εLT

= 2

√
2dT |O| log

(
max

{
LT,

1

∆o

})
+ min

{
1

LT
,∆o

}

≤ 2

√
2dT |O| log

(
max

{
LT,

1

∆o

})
+ 1

Unknown Lipschitzness constant. In Theorem 5.4 the discretization parameter ε depends on
the prior knowledge of the Lipschitzness constant, L, the number of rounds, T and the minimum
edge length of each d-dimensional cube, ∆o. In order to address the problem that in general we do
not know any of those constants a priori, we will apply a standard doubling trick ([8]) to remove
this dependence. We assume that T is upper bounded by a constant TM and similarly we also
assume that log

(
max

{
LT, 1

∆o

})
is upper bounded by a constant.

We will then initialize two bounds: BT = 1 and B∆o,LT = 1 and run the WIN-EXP algorithm

with step size
√

log(1/ε)
2BT |O| and ε = min

{
1
LT ,∆

o
}

until t ≤ BT or log
(
max

{
tL, 1

∆o

})
≤ B∆o,LT fails

to hold. If one of these discriminants fails, then we double the bound and restart the algorithm.
This modified strategy only increases the regret by a constant factor.
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Corollary E.0.1. The WIN-EXP algorithm run with the above doubling trick achieves an expected

regret bound R(T ) ≤ 25
√

2dT |O| log
(
max

{
LT, 1

∆o

})
+ 1

Proof of Corollary E.0.1. Based on the doubling trick that we described above, we divide the al-
gorithm into stages in which BT and B∆o,LT are constants. Let B∗L, and B∗∆o,LT be the val-
ues of BL and B∆,LT respectively when the algorithm terminates. There is at most a total of

log (B∗T ) + log
(
B∗∆o,LT

)
+ 1 stages in this doubling process. Since the actual expected regret is

bounded by the sum of the regret of each stage, following the result of Theorem 5.4, we have

R(T ) ≤
dlog(B∗T )e∑

i=0

⌈
log
(
B∗∆o,LT

)⌉∑
j=0

(
2
√

2d2i|O|2j
)

+ log (B∗T ) + log
(
B∗∆o,LT

)
+ 1

=

dlog(B∗T )e∑
i=0

⌈
log
(
B∗∆o,LT

)⌉∑
j=0

(
2
√

2d|O|2i · 2j
)

+ log
(
B∗TB

∗
∆o,LT

)
+ 1

=

dlog(B∗T )e∑
i=0

(√
2
)i ·


⌈
log
(
B∗∆o,LT

)⌉∑
j=0

(√
2
)j 2

√
2d|O|+ log

(
B∗TB

∗
LT,∆o

)
+ 1

=
1−
√

2
dlog(B∗T )e+1

1−
√

2
· 1−

√
2
dlog(B∗∆o,LT )e+1

1−
√

2
· 2
√

2d|O|+ log
(
B∗TB

∗
∆o,LT

)
+ 1

≤

( √
2√

2− 1

)2√
B∗TB

∗
∆o,LT · 2

√
2d|O|+ log

(
B∗TB

∗
∆o,LT

)
+ 1

=

( √
2√

2− 1

)2

· 2
√

2d|O|B∗TB∗∆o,LT + log
(
B∗TB

∗
∆o,LT

)
+ 1

≤ 25
√

2d|O|B∗TB∗∆o,LT + 1

Combining the fact that B∗T ≤ T and B∗∆o,LT ≤ log
(
max

{
LT, 1

∆o

})
as well as the above

inequalities, we complete the proof.

E.1 Omitted Proofs from Section 5.1

Proof of Theorem 5.7. Consider a bidder i. Observe that conditional on the bidder’s score si, his
utility remains constant if he is allocated the same slot. Moreover, when the slots are different,
then the difference in utilities is at most 2, since utilities lie in [−1, 1]. Moreover, because the slots
are allocated in decreasing order of rank scores, the slot allocation of a bidder is different under bi
and b′i only if there exists a bidder j, who passes the rank-score reserve (i.e. sj · bj ≥ r) and whose
rank-score sj · bj lies in the interval [si · bi, si · b′i]. Hence, conditional on si, the absolute difference
between the bidder’s expected utility when he bids bi and when he bids bi + ε, with ε > 0, is upper
bounded by:

2 · Pr [∃j 6= i s.t sj · bj ∈ [si · bi, si · (bi + ε)] and sj · bj ≥ r | si]

By a union bound the latter is at most:

2 ·
∑
j 6=i

Pr

[
sj ∈

[
sibi
bj
,
si(bi + ε)

bj

]
and sj · bj ≥ r | si

]
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Since sj ∈ [0, 1], the previous quantity is upper bounded by replacing the event sj ·bj ≥ r by bj ≥ r.
This event is independent of the scores and we can then write the above bound as:

2 ·
∑

j 6=i s.t. bj≥r
Pr

[
sj ∈

[
sibi
bj
,
si(bi + ε)

bj

] ∣∣∣si]
Since each quality score sj is drawn independently from an L-Lipschitz CDF Fj , we can further
simplify the bound by:

2 ·
∑

j 6=i s.t. bj≥r

[
Fj

(
si(bi + ε)

bj

)
− Fj

(
sibi
bj

)]
≤ 2 ·

∑
j 6=i s.t. bj≥r

L
siε

bj
≤ 2 ·

∑
j 6=i s.t. bj≥r

L
siε

r
≤ 2nL

r
ε

Since the absolute difference of utilities between these two bids is upper bounded conditional on
si, by the triangle inequality it is also upper bounded even unconditional on si, which leads to the
Lipschitz property we want: ∣∣ui(bi,b−i, r)− ui(bi + ε,b−i, r)

∣∣ ≤ 2nL

r
ε (14)

F Omitted proofs from section 6.1

F.1 Switching Regret and PoA

Proof of Corollary 6.0.1. We first observe that the results proven in [27] for a prediction algorithm
A with regret upper bounded by ρ(T ) hold also for algorithms A for which we know upper bound
of their expected regrets. Specifically, if algorithm A has an upper bound of ρ(T ) for its expected
regret, where ρ(T ) is a concave, non-decreasing, [0,+∞)→ [0,+∞) function, then Lemma 1 from
[27] holds for expected regret. With that in mind, we can directly apply the Randomized Tracking
Algorithm and get expected switching regret upper bounded by:

(C(TP ) + 1)LC(TP ),Tρ

(
T

(C(TP ) + 1)LC(TP ),T

)
+

T∑
t=1

ηt
8

+
rT
(
(C(TP ) + 1)LC(TP ),T−1 − 1

)
ηT

(15)
where TP is the switching path of the optimal bids and C(TP ) is the number of switches in the
optimal bid according to this path.

We proceed by making sure that the conditions for the upper bound of the expected regret of
WIN-EXP satisfy the conditions required by algorithm A in [27]. Indeed, the upper bound of

the expected regret of our algorithm,
√

2dT |O| log
(
max

{
LT, 1

∆o

})
+ 1, is non decreasing in T .

Also, at timestep t = 0, we incur no regret. We also apply the following slight modifications in
Algorithm 2 in [27] so as to match the nature of our problem. First, instead of computing the
expected loss at each timestep t, we will now compute the expected outcome-based utility, i.e.
ūt (πt) =

∑
b∈B πt(b)Eot [ũt(b)]. Second, instead of the cumulative loss of their algorithm A we will

now use the cumulative outcome-based expected utility of WIN-EXP, i.e. Ūt (WIN-EXP, T ) =∑C
c=0 ŪWIN-EXP(tc, tc+1), where

ŪWIN-EXP(tc, tc+1) =

tc+1−1∑
s=tc

ūs (πWIN-EXP,s(tc))
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is the cumulative outcome-based expected utility gained from our WIN-EXP algorithm in the
time interval [tc, tc+1)12 with respect to ūs for s ∈ [tc, tc+1). Now, we are computing the regret
components of [27] so as to achieve the desired result.

Before we show the specifics of the computation, we note here that g > 0 is a parameter of
the Tracking Regret algorithm presented by [27] and can be set a priori from the designer of the
algorithm. The complexity of g affects the computational complexity of the algorithm and there
is a tradeoff between the computational complexity and the regret of the algorithm. For our
computations here, we will set

g + 1 =

(
T

C(TP ) + 1

)α
(16)

where 0 < α < 1 is a constant. Now, we are ready to compute the components of the regret:

A = LC(TP ),T (C(TP ) + 1)RWIN-EXP

(
T

LC(TP ),T (C(TP ) + 1)

)

≤ 25

 log
(

T
C(TP )+1

)
log(g + 1)

+ 2

 (C(TP ) + 1)

√√√√2d|O| T log(g + 1) log(m)

log
(

T
C(TP )+1

)
+ 2 log(g + 1)

+ 1


= 50 ·

(
2 +

1

α

)
· (C(TP ) + 1)

√
2d|O| · α

1 + 2α
· T log(m)

≤ 50

√
1 + 2α

α
· (C(TP ) + 1)2 2d|O|T log(m)

≤ 50

√(
2 +

1

α

)
· (C + 1)2 2d|O|T log(m)

where in the second equality we have denoted log(m) = log
(
max

{
LT, 1

∆o

})
and the last inequality

comes from the fact that C is the upper bound on the number of switches that the transition path
TP can have. Moving on to the computation of the rest of the components of the regret:

B =

T∑
t=1

ηt
8
≤ 1

8

√
T log (1/ε)

2|O|
= O

(√
T

|O|

)
D = rT

(
LC(TP ),T (C(TP ) + 1)− 1

)
=

(
α+ 1

α
+ ε2

)
log T + log (1 + ε2)−

(
α+ 1

α

)
log ε2

where ε2 ∈ (0, 1) is a constant. Before we conclude, we observe that even though Corollary 1 of
[27] is stated as a high-probability ex post result, the proof uses a result from [17] (Lemma 4.1)
which also holds for the expected regret. According to [27] the switching regret is the sum of the
aforementioned A,B,D. Thus, we get the result.

F.2 Feedback Graphs over Outcomes

We first prove bounds on the moments of our unbiased estimates used in the case of a feedback
graph over outcomes.

12We clarify here that these time intervals are with respect to the switching bids.
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Lemma F.1. At each iteration t, for any action b ∈ B, the random variable ũt(b) has bias with
respect to ut(b) − 1 bounded by:

∣∣E [ũt(b)] − (ut(b) − 1)
∣∣ ≤ 2ε|O| and has expected second moment

bounded by: ∀b ∈ B : E
[
ũt(b)

2
]
≤ 4

∑
o∈Oε

Prt[o|b]∑
o′∈Ninε (o)

Prt[o′]
.

Proof of Lemma F.1. For the expected utility we have:

E [ũt(b)] = Eot

1{ot ∈ Oε} ∑
o∈Nout

ε (ot)

(rt(b, o)− 1)Prt[o|b]∑
o′∈N in

ε (o) Prt[o′]


=
∑
ot∈Oε

∑
o∈Nout

ε (ot)

(rt(b, o)− 1)Prt[o|b]∑
o′∈N in

ε (o) Prt[o′]
Prt[ot]

=
∑
o∈Oε

∑
ot∈N in

ε (o)

(rt(b, o)− 1)Prt[o|b]∑
o′∈N in

ε (o) Prt[o′]
Prt[ot]

=
∑
o∈Oε

(rt(b, o)− 1)Prt[o|b]∑
o′∈N in

ε (o) Prt[o′]

∑
ot∈N in

ε (o)

Prt[ot]

=
∑
o∈Oε

(rt(b, o)− 1)Prt[o|b]

=
∑
o∈O

(rt(b, o)− 1)Prt[o|b]−
∑
o/∈Oε

(rt(b, o)− 1)Prt[o|b]

= ut(b)− 1−
∑
o/∈Oε

(rt(b, o)− 1)Prt[o|b]

Thus, we get that the bias of ũ with respect to ut − 1 is bounded by:∣∣E [ũt(b)]− (ut(b)− 1)
∣∣ ≤ 2ε|O| (17)

Similarly for the second moment:

E
[
ũt(b)

2
]
≤ Eot

1{ot ∈ Oε} ∑
o∈Nout

ε (ot)

(rt(b, o)− 1)Prt[o|b]∑
o′∈N in

ε (o) Prt[o′]

2
=
∑
ot∈Oε

 ∑
o∈Nout

ε (ot)

(rt(b, o)− 1)Prt[o|b]∑
o′∈N in

ε (o) Prt[o′]

2

Prt[ot] (18)

Observe that the quantity inside the square:∑
o∈Nout

ε (ot)

(rt(b, o)− 1)∑
o′∈N in

ε (o) Prt[o′]
Prt[o|b]

can be thought of as an expected value of the quantity (rt(b,o)−1)∑
o′∈Ninε (o)

Prt[o′]
, were o is the random

variable and is drawn from the distribution of outcomes conditional on a bid b. Thus, by Jensen’s
inequality, the square of the latter expectation is at most the expectation of the square, i.e.: ∑

o∈Nout
ε (ot)

(rt(b, o)− 1)∑
o′∈N in

ε (o) Prt[o′]
Prt[o|b]

2

≤
∑

o∈Nout
ε (ot)

(rt(b, o)− 1)2(∑
o′∈N in

ε (o) Prt[o′]
)2 Prt[o|b]
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Combining with Equation (18), we get:

E
[
ũt(b)

2
]
≤
∑
ot∈Oε

∑
o∈Nout

ε (ot)

(rt(b, o)− 1)2(∑
o′∈N in

ε (o) Prt[o′]
)2 Prt[o|b]Prt[ot]

=
∑
o∈Oε

∑
ot∈N in

ε (o)

(rt(b, o)− 1)2(∑
o′∈N in

ε (o) Prt[o′]
)2 Prt[o|b]Prt[ot]

=
∑
o∈Oε

(rt(b, o)− 1)2(∑
o′∈N in

ε (o) Prt[o′]
)2 Prt[o|b]

∑
ot∈N in

ε (o)

Prt[ot]

=
∑
o∈Oε

(rt(b, o)− 1)2∑
o′∈N in

ε (o) Prt[o′]
Prt[o|b]

≤ 4
∑
o∈Oε

Prt[o|b]∑
o′∈N in

ε (o) Prt[o′]

where the last inequality holds since rt(·, ·) ∈ [−1, 1].

Proof of Theorem 6.1. Observe that regret with respect to utilities ut(·) is equal to regret with
respect to the translated utilities ut(·) − 1. We use the fact that the exponential weight updates
with an estimate ũt(·) ≤ 0 which has bias with respect to the true utilities, bounded by κ, achieves
expected regret of the form:

R(T ) ≤ η

2

T∑
t=1

∑
b∈B

πt(b) · E
[
ũt(b)

2
]

+
1

η
log(|B|) + 2κT

For the detailed proof of the above claim, please see Appendix G. Invoking the bound on the bias
and the second moment by Lemma F.1, we get:

R(T ) ≤ 2η

T∑
t=1

∑
b∈B

πt(b) ·
∑
o∈Oε

Prt[o|b]∑
o′∈N in

ε (o) Prt[o′]
+

1

η
log(|B|) + 4ε|O|T

= 2η
T∑
t=1

∑
o∈Oε

∑
b∈B

πt(b) ·
Prt[o|b]∑

o′∈N in
ε (o) Prt[o′]

+
1

η
log(|B|) + 4ε|O|T

= 2η
T∑
t=1

∑
o∈Oε

Pr[o]∑
o′∈N in

ε (o) Prt[o′]
+

1

η
log(|B|) + 4ε|O|T

We can now invoke Lemma 5 of [3], which states that:

Lemma F.2 ([3]). Let G = (V,E) be a directed graph with |V | = K, in which each node i ∈ V is
assigned a positive weight wi. Assume that

∑
i∈V wi ≤ 1, and that wi ≥ ε for all i ∈ V for some

constant 0 < ε < 1/2. Then ∑
i∈V

wi∑
j∈N in(i)wj

≤ 4α ln
4K

αε
(19)

where neighborhoods include self-loops and α is the independence number of the graph.
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Invoking the above lemma for the feedback graph Gε (and noting that the independence number
cannot increase by restricting to a sub-graph), we get:∑

o∈Oε

Pr[o]∑
o′∈N in

ε (o) Prt[o′]
≤ 4α ln

4|O|
αε

(20)

Thus, we get a bound on the regret of:

R(T ) ≤ 8ηα ln

(
4|O|
αε

)
T +

1

η
log(|B|) + 4ε|O|T

Picking ε = 1
4|O|T , we get:

R(T ) ≤ 8ηα ln

(
16|O|2T

α

)
T +

1

η
log(|B|) + 1

Picking η =
√

log(|B|)
8Tα ln

(
16|O|2T

α

) , we get the theorem.

G Omitted proof for the regret of the exponential weights update

Lemma G.1. The exponential weights update with an estimate ũt(·) ≤ 0 such that for any b ∈ B
and t, |E [ũt(b)]− (ut(b)− 1)| ≤ κ, achieves expected regret on the form:

R(T ) ≤ η

2

T∑
t=1

∑
b∈B

πt(b) · E
[
ũt(b)

2
]

+
1

η
log(|B|) + 2κT

Proof. Following the standard analysis of the exponential weight updates algorithm [7] and the fact

that ∀x ≤ 0, ex ≤ 1 + x+ x2

2 as well as let b∗ = arg maxb∈B E
[∑T

t=1 ut(b)
]
, we have

E

[
T∑
t=1

ũt(b
∗)

]
≤

T∑
t=1

∑
b∈B

πt(b)E [ũt(b)] +
η

2

T∑
t=1

∑
b∈B

πt(b) · E
[
ũt(b)

2
]

+
1

η
log(|B|)

≤
T∑
t=1

∑
b∈B

πt(b)(ut(b)− 1 + κ) +
η

2

T∑
t=1

∑
b∈B

πt(b) · E
[
ũt(b)

2
]

+
1

η
log(|B|)

= E

[
T∑
t=1

ut(bt)

]
+
η

2

T∑
t=1

∑
b∈B

πt(b) · E
[
ũt(b)

2
]

+
1

η
log(|B|) + κT − T

which implies that

R(T ) = E

[
T∑
t=1

ut(b
∗)

]
− E

[
T∑
t=1

ut(bt)

]
≤ E

[
T∑
t=1

ũt(b
∗)

]
− E

[
T∑
t=1

ut(bt)

]
+ κT + T

≤ η

2

T∑
t=1

∑
b∈B

πt(b) · E
[
ũt(b)

2
]

+
1

η
log(|B|) + 2κT
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Remark. Let the estimator ũt(b) be unbiased for any t and any b ∈ B, then the expected regret
is

R(T ) ≤ η

2

T∑
t=1

∑
b∈B

πt(b) · E
[
ũt(b)

2
]

+
1

η
log(|B|)
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