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Abstract

Society uses the following game to decide on the supply of a public good.

Each agent can choose whether or not to contribute to the good. Contri-

butions are collected and the good is supplied whenever total contributions

exceed a threshold. We study the case where the public good is excludable,

agents have a common value and each agent receives a private signal about

the common value. This game models a standard crowdfunding setting as

it is executed in popular crowdfunding platforms such as Kickstarter and

Indiegogo. We study how well crowdfunding performs from the firm’s per-

spective, in terms of market penetration, and how it performs from the

perspective of society, in terms of efficiency.

This work is supported by the National Science Foundation, under grant CNS-

0435060, grant CCR-0325197 and grant EN-CS-0329609.

1 Introduction

The evolution of the ‘sharing economy’ has made it possible for the general public

to invest in early-stage innovative and economically risky projects and products. In

2015 the total funds raised via this innovative form of funding, commonly referred
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to as Crowdfunding, already exceeded 34 Billion Dollars and it is by all means the

largest growing avenue for funding new products. Such funding may take the form

of a capital investment, peer-to-peer loans, early purchase of goods, typically in a

nascent and undeveloped stage and new innovative investment structures such as

initial coin offerings.

In traditional funding avenues, the power to decide which projects to support

and which products would prevail was often endowed to small committees of ex-

perts. In the private sector, banks and private equity funds would endow such

decisions to their investment committee while in the public sector such decisions

would often be taken by a small group of civil servants and public officials. Crowd-

funding essentially revokes the power of such small teams and endows the funding

decision to the crowd with the basic premise that the crowd is smarter than any

small team of experts. The goal of this paper is to study how well the wisdom of

the crowd performs in the context of funding decisions.

Inspired by popular crowdfunding platforms such as ‘Kickstarter’ and ‘In-

diegogo’ we introduce a simple game of incomplete information, which we dub

the Crowdfunding game. A firm who want to propose a new product offers the

the following game to its potential customer base: The firm posts a price for its

product and, in addition, sets a revenue goal.1 The product is at a nascent stage

and so its true value is yet unknown. Potential customers may have some private

information regarding the value of the product. Based on this information the

customers choose whether or not to buy the product at the posted price (here-

inafter we refer to this action as a contribution). If the total contributions pledged

in the campaign exceed the revenue goal then contributions are collected and the

firm supplies the product to the contributors. Otherwise contributions are not

collected.

As crowdfunding campaigns are often associated with early stage products,

when the demand is unknown, they serve a few objectives. From the firm’s per-

spective the goal of the crowdfunding campaign is to raise funds in order to develop

the product. Equally as important, the campaign serves to raise awareness to the

product and so it serves as a means to penetrate the market and provide expo-

sure to a critical mass of early adopters. From society’s point of view it serves

to aggregate the information from the crowd and so it serves as an institution to

tunnel funds to the viable products. Ideally, crowdfunding campaigns will deny

funds from low value products and projects while guaranteeing the support to high

1In reality the firms typically propose more than a single variant of the product alongside a

menu of posted prices.
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value products and projects.

Thus, we associate with each game two indices - a (market) Participation Index

which is associated with how well do campaigns perform in terms of attracting

contributors, and a Correctness Index that is associated with how well do cam-

paigns harness the wisdom of the crowd to support the high quality products while

denying funds to the low quality ones.

More technically, the Crowdfunding Game is a game of incomplete information

played among a population of n potential contributors. The common value of the

product, v, is unknown and players have some private information about this

value. A player must decide whether or not to buy the product at some posted

price, τ (‘contribute’). If a player contributes and the total number of contributors

exceeds some preset threshold, B, then her utility is v − τ .2 Otherwise it is zero.

In particular foregoing the contribution opportunity entails a utility of zero. The

two measures of success for a crowdfunding game that we study are:

• The correctness index of a game is defined as the probability that the game

ends up doing the correct thing. That is, the probability the product be

funded when its value is high or is rejected when its value is low. The

correctness index measures how well the crowdfunding aggregates the private

information from the buyers in order to make sure the firm pursues the

product only when it is viable.

• The market penetration index is the expected number of buyers provided

that the product is supplied, i.e, the threshold is surpassed. This number

serves as a proxy for success of the campaign as a means to attract further

investments.

Our proposed crowdfunding game is a stylized model for how crowdfunding

actually takes place in reality. One obvious limitation of the current model is

that it comprises of a simultaneous move game, whereas in reality campaigns are

executed over a period of time and agents have the option to wait for others

(possibly more informed) agents to make a pledge before they commit. This,

however, is not a major drawback of the model as it has been noticed empirically

that the majority of contributions made by unaffiliated players (no family and

friends) take place just before the campaign’s deadline (see [10]).

2Alternatively, one can set the threshold in terms of contributions pledged and not in terms

of the number of contributors. We chose the latter form as it seems that market traction often

plays a more important role than actual revenues.
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The crowdfunding game is sufficiently simple and abstract to serve as a model

for the formation of institutions. For example, consider the evolution of multi-

national institutions (e.g., the UN’s International Court of Justice in Hague, the

Kyoto Protocol or the Geneva Conventions) where these institutions form only if

supported by sufficiently many nations and serve the supporting nations only. In

a similar vein, the formation of industry standards can be modeled as a Crowd-

funding game.

1.1 Main findings

Our first result establishes the existence of a symmetric, non-trivial equilibrium in

crowdfunding games. It turns out that, for some parameter combinations, such an

equilibrium necessarily exists while for others it is guaranteed to exist only when

the crowd is large enough. Once this has been established we turn to study the

consequences of such symmetric equilibria of large crowdfunding games in terms

of both aforementioned two success measures:

• We provide a tight bound on the correctness index which is strictly less

than one. Thus, no matter how the campaign goal is set, full information

aggregation cannot be guaranteed. We compare this with the efficiency

guarantees of majority voting implied by Condorcet Jury Theorem.

• We provide a bound on the penetration index and we show that by setting

the champaign goal optimally the resulting market penetration is higher

than the prior.

Our analysis is typically done for three distinct cases:

• Games in which the price is cheap, and players contribute regardless of their

personal signal.

• Games with moderate prices where the only (symmetric) equilibrium is one

in which players with a high signal surely contribute while those with a low

signal either decline or take a mixed strategy whereby they contribute at a

positive probability, strictly less than one; and

• Games with expensive prices where, for sufficiently low thresholds, the only

(symmetric) equilibrium is one in which players with a low signal opt-out

and players with a high signal play a mixed strategy.
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In addition to the aforementioned theoretical results we present some computa-

tional results that pertain to symmetric equilibria in moderate size crowdfunding

games. Inspired by related empirical research we focus on games with around

100− 1000 players, which is a realstic estimate for real-world crowdfunding cam-

paigns. By and large the computations corroborate that our theoretical findings

in the asymptotic analysis prevail in moderate size games.

1.2 Related Literature

The lion’s share of the literature on crowdfunding takes an empirical approach

according. In this context, one can divide the relevant literature into two strands.

One strand uses crowdfunding data to calibrate parameters of some complex sys-

tems to match the date best (e.g., [11],[5], and [18]). In contrast with our model,

the laws of motion for the underlying models in these papers are not derived from

strategic analysis of the players and so they are not the result of any equilibrium

analysis.3

In another strand of the relevant empirical literature, data from online crowd-

funding platforms is summarized statistically and some overarching observations

are made on such campaigns, often in the context of additional variables such as

culture and geography (e.g., Hemer [7]). Three of these observations are worth

noting in the context of our work: Yum et al. [19] argue that firms use the crowd-

funding platform as a means for information gathering. Mollick [14] observes that

most crowdfunding campaigns reach extreme results. Either, the number of con-

tributors to a campaign is small or it is over subscribed. The same author uses a

survey of over 47, 000 contributors to conclude that about 9 percent of successful

campaigns never deliver ([15]).

Recent empirical papers ([9], [10]) study data from 14, 704 “Kickstarter” cam-

paigns held between 2012 and 2014 and provide new insights into crowdfunding

campaigns: (1) The magnitude of contributions is greater in the first and last week

of a campaign’s time span yielding a “U-shape” pattern over time. This U-shape

is seen both in successful and failed campaigns (by ‘failure’ we mean a campaign

for which the contributions fell short of the threshold). (2) In most cases, failed

campaigns fail by a large margin while successful ones succeed only by a thread.

(3) Once the campaign goal is reached, the rate of contributions decreases signifi-

cantly. In [9], the authors go on and provide a behavioral model that is compatible

3For example, Yang et al [18] assume that the the decision of every agent is determined by

the historic success rate of previous projects.
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with the data, but does not assume agents are rational (or common knowledge

thereof). For example, in the proposed model agents are over confident of their

influence on the campaign outcome, an observations that is often inconsistent with

equilibrium analysis and common knowledge of rationality.

[10] examines the U-shape contributions pattern and find that the early backers

are not necessarily playing to maximize their value as they primarily belong to the

social circle of the entrepreneur (friends and family). On the other hand, most of

the activity of unaffiliated backers takes place at the very end of the campaign.

Cating this observation onto our model suggests that our crowdfunding game

should be thought of as a model of the final stage of the campaign, when value-

maximizing agents take action.

Game theoretical models have been used to study a variety of aspects of crowd-

funding. Strausz [17] studies the vulnerability of crowd-funding platforms to en-

trepreneurial moral hazard. In contrast with our model the firm has the informa-

tional advantage and may seek to embezzle part of the funds. The paper offers

an efficient mechanism to circumvent this issue. Chemla and Tinn [4] compare

two common crowdfunding mechanisms - “All-or-Nothing (AoN)” and “Keep-it-

All (KiA)”. In AoN, as in our model, funds are collected only if a pre-determined

threshold is reached. In the KiA mechanism this threshold is set to zero. The pa-

per shows that AoN dominates KiA in terms of efficiency and is less vulnerable to

moral hazard. Kumar et al [8] study the competition between two means for fund

raising - crowdfunding and loans. They go on and show the connection between

the cost of capital, the level of price discrimination in the crowdfunding campaign

and the efficiency of the final allocation.

Finally, Alaei, Malekian and Mostagir [2], consider a model of crowdfunding

where buyers with private valuations take actions sequentially. Whereas their

model is not strategic, and players follow some ad-hoc ‘natural’ strategy, their

conclusion supports the main finding in Mollick [14]. Namely, crowdfunding cam-

paigns most often end in one of two extreme outcomes, they either attract a few

contributors or are oversubscribed.

Somewhat related to our model is the line of research on the Condorcet model.

In the standard model, similar to the crowdfunding game, players have a state

dependant common value with some private information and ea player can take

one of two actions (‘vote’). The Condorcet Jury theorem argues that the majority

rule will aggregate information. In other words it will result in the correct decision

if voters vote naively (‘truthfully’) and the population is large enough (this is no

more than the law of large numbers). Austen-Smith and Banks [3] challenge
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this premise by noting that naive voting is not necessarily rational. Mclennan [13]

provides an alternative framework where Condorcet’s asymptotic efficiency results

hold in equilibrium. In contrast with the Condorcet Jury theorem and Mclennan’s

result the crowdfunding game need not aggregate information fully and could lead

to an inefficient outcome, even in large populations.

The paper is organized as follows. In Section 2 we present the Crowdfunding

game and our first result regarding existence and uniqueness of an equilibrium. In

section 3 we present our asymptotic results for the Crowdfunding game, related

to large markets. In Section 4 we provide some calculations for the outcome of

such games in smaller markets. We conclude in Section 6 and suggest some future

avenues of further investigation.

2 The Crowdfunding Game

A crowdfunding game is a game of incomplete information played among a pop-

ulation of n potential contributors (or players). An unknown state of nature

ω ∈ Ω = {H,L} is drawn with prior probabilities (µ, 1−µ), respectively. In state

ω the common value of the product is vω. Conditional on the realized state ω,

a private signal si ∈ Si = {h, l} is drawn independently for every player i. We

assume p = Pr(si = h|ω = H) = Pr(si = l|ω = L) > 0.5. Each player i has a

binary action set, Ai = {0, 1}, with ai = 1 representing a decision to contribute.

A contribution can be seen, in fact, as a commitment to buy the product at some

pre-set price, τ , if it is eventually supplied. The action ai = 0 represents a decision

to opt-out and not to contribute. The utility of every player i ∈ N is defined as

follows

ui(ai, a−i, ω) =



















vH − τ if ai = 1 and
∑n

j=1 aj ≥ B and ω = H

vL − τ if ai = 1 and
∑n

j=1 aj ≥ B and ω = L

0 otherwise

. (1)

In words, whenever player i chooses to opt-out, she receives a utility of zero. If

she chooses to contribute, then her utility is determined by the total number of

contributors. If less than B players contributed then the product is not supplied

and her utility is zero. If the number of contributions exceeds B then her utility is

determined by the state of nature and equals vH−τ in state H and vL−τ in state

L. Hereinafter we assume, without loss of generality, that 0 = vL < τ < vH = 1

and denote the corresponding game by Γ(n,B, µ, p, τ).
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A strategy for player i is a mapping σi : Si → ∆Ai. For simplicity we identify

σi(s) with the probability that player i assigns to the action 1 (‘contribute’),

conditional on receiving signal s. A strategy profile is called symmetric if σi = σj

for all players i, j ∈ N .

The distribution over the states of nature and the corresponding vector of

signals, coupled with a strategy profile, σ, induce a probability distribution over

the players’ actions profile. A strategy profile σ forms a Bayes-Nash equilibrium

if

Eσ(ui(σi(si), σ−i(s−i))) ≥ Eσ(ui(ai, σ−i(s−i))) ∀i, ∀si ∈ Si, ∀ai ∈ Ai,

where the expectation is taken w.r.t to the aforementioned probability distribution.

One obvious equilibrium in the crowdfunding game, whenever B > 1, is one

where all players choose to opt-out, in which case the revenue goal is never met

and the product is never supplied. To avoid such equilibria we restrict attention

to equilibria for which there is a positive probability that the good be supplied:

Definition 1. A strategy profile (in particular an equilibrium strategy profile)

σ = (σ1, . . . , σi, . . . , σn) is called non-trivial if,

Prσ(
∑

i

ai ≥ B) > 0.

Our first result is related to the existence and uniqueness of non-trivial,symmetric

equilibria. We show that in any crowdfunding game, there can be at most one

such equilibrium. Furthermore, when the population is large enough, such an

equilibrium is guaranteed to exist.

Theorem 1. (1) No crowdfunding game has more than one symmetric non-trivial

Bayes-Nash equilibrium. (2) Consider the sequence {Bn}∞n=1 where limn→∞
Bn

n
= q

for some q ∈ (0, 1]. For any 4-tuple of parameters (q, µ, p, τ) there exists some N

such that for any n > N, the crowdfunding game Γ(n,Bn, µ, p, τ) has a unique

symmetric non-trivial Bayes-Nash equilibrium.

The proof of Theorem 1 is relegated to Appendix A.

2.1 Performance Measures

In the introduction we discuss the various objectives of crowdfunding campaigns.

The following two indices correspond to two of these objectives. The first is the

correctness index of a game which pertains to how well the game tunnels funds.
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The second is the participation index of a game which refers to how well does the

campaign attract contributions. Formally, let σ∗ denote the unique symmetric

non-trivial equilibrium of the game Γ(n,B, µ, p, τ). Then:

The Correctness Index is the following expectation:

θ(n,B, µ, p, τ) = µPrσ∗(c
H
n ≥ B) + (1− µ)Prσ∗(c

L
n < B) (2)

where cωn =
∑n

i=1 ai is the expected number of contributors, conditional on the

realized state ω ∈ {L,H}. The first summand captures the probability of a

correct outcome whenever the state of the world if H and ideally the product

should be supplied and the second summand captures the opposite situation. If

no such equilibrium exists then we set θ(n,B, µ, p, τ) = 0.

The Correctness index of a large crowdfunding game, associated with the pa-

rameters (µ, p, τ) is

θ(µ, p, τ) = lim
n→∞

max
B∈{1...n}

θ(n,B, µ, p, τ).

The Participation Index is the following expectation:

R(n,B, µ, p, τ) = Eσ∗
[cn

n
χ(cn ≥ B)

]

= Prσ∗(cn ≥ B)Eσ∗
[cn

n
|cn ≥ B

]

. (3)

Where cn counts the number of contributors and χ(A) is the indicator function

of the event A. If no such equilibrium exists then we set R(n,B, µ, p, τ) = 0. In

words, the Participation Index is the expected number of contributions collected

(conditional on the campaign target being met).

The Participation index of a large crowdfunding game, associated with the

parameters (µ, p, τ) is

R(µ, p, τ) = lim
n→∞

max
B∈{1...n}

R(n,B, µ, p, τ).

2.2 The role of B

The threshold B that is prevalent in many crowdfunding campaigns (often pre-

sented in terms of revenues and not in terms of contributors) plays a dual role.

From the society’s perspective, it introduces a barrier to entry, guaranteeing funds
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only to those project with sufficient public support. The underlying implicit as-

sumption is that public support will only be provided whenever the collective

wisdom assigns high probability to the state H . In addition, from the firm’s point

of view it serves to entice participants. The fact that a contribution is collected

only when the overall support is high enough offers an inherent ‘social’ insurance.

That is, when a certain participant is contemplating whether to contribute he

does not base his decision only on his private information but also on the likeli-

hood the product is good product, conditional that the threshold B is reached.

Consequently, players that are initially doubtful (those with a low signal) will also

contemplate a contribution. However, on the other hand, a high threshold may

imply lower participation even if more players contemplate a contribution. This

is because our notion of participation refers to the number of contributions that

are actually collected.

Let us now see how these arguments play out in an example.

Example 1. Consider the following symmetric 3-player crowdfunding game: Γ(n =

3, B, µ = 0.5, p = 0.75, τ = 0.5):

• We first assume a low threshold, B = 1. Such a low threshold offers no

social insurance and each contribution is necessarily collected. In this case

the expected utility of a player from contributing is Pr(ω = H|si)(1 −
τ) − Pr(ω = L|si)τ which is equal 0.25 > 0 whenever a player receives

a high signal (si = h) and −0.25 < 0 whenever he receives a low signal.

The participation index is therefore the expected proportion of high signals,

which is equal 0.5 and the correctness index is 0.5(1− 0.253) + 0.5(0.75)3 =

0.703.

• In contrast, consider the high threshold, B = 3. As above, players receiving

the high signal will surely contribute. However, having only the high signal

players contribute is no longer an equilibrium because of the social insurance

effect. That is, if only high signal players contribute, then a low signal player

is better-off contributing as in this case he assigns a probability of 0.75 to

ω = H conditional on reaching the threshold B = 3. However, if all low type

player choose to contribute, then the social insurance is no longer valid.

Thus, in equilibrium, they use it with caution, or more formally play a

mixed strategy. The actual probability of contribution for the low signal

players in equilibrium turns out to be λ = 0.302. Now the probability of a

successful campaign conditional on the state being H is 0.563 whereas the

probability of a failed campaign conditional on state L is 0.892. From this
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we can compute that the correctness index is equal 0.727, higher than the

case B = 1. On the other hand the participation index is now 0.335, lower

than the case B = 1.

3 Asymptotic Results

We present results for three distinct scenarios, depending on the product pric-

ing. We distinguish between three price levels: cheap, moderate and expen-

sive, formulated as follows. Let pl = Pr(ω = H|si = l) = (1−p)(1−µ)
pµ+(1−p)(1−µ)

and

ph = Pr(ω = H|si = h) = pµ

pµ+(1−p)(1−µ)
be the two possible posterior expecta-

tions over the value of good, depending on the signal received. Obviously ph > pl.

Recall the values of the product at the two states, vH = 1 and vL = 0, which in

turn implies that the posterior forms the maximal price an agent would pay for

the good in a simple take-it-or-leave setting.The three cases we study are:

• The campaign offers a cheap price whenever τ ≤ pl < ph. It should not be

surprising that when the campaign offers a cheap price both types of agents

necessarily contribute. Consequently, the crowd does not convey its wisdom.

• The campaign offers a moderate price whenever pl < τ < ph. Whereas

players a low signal would not buy the good they nevertheless participate in

the campaign (recall Example 1).

• The campaign offers an expensive price whenever pl < ph ≤ τ . Whereas

both types would decline to but the good at the price τ participation does

take place due to the inherent social insurance.

3.1 Cheap Prices

A Crowdfunding game is cheaply priced whenever τ < Prµ(ω = H|si = l). In

such games the outcome is trivial as the unique symmetric equilibrium (which is

necessarily non trivial) is for all players (low and high) to participate:

Theorem 2. In any crowdfunding game with a cheap price there exists a unique

symmetric Bayesian Nash equilibrium where all players contribute. This equilib-

rium is non-trivial.

The proof of Theorem 2 is relegated to Appendix A however the intuition

behind it is quite straightforward. Whenever the price is cheap both types of
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players are happy to buy it even if their contributions will surely be collected, and

do not require the social insurance for that.

Given the simplicity of the equilibrium strategies we can easily derive the value

of the two indices:

Theorem 3. For any crowdfunding game, Γ(n,B, µ, p, τ), with a cheap price:

• θ(n,B, µ, p, τ) = µ; and

• R(n,B, µ, p, τ) = 1.

Proof. The proof follows immediate from Theorem 2 and the corresponding defi-

nitions of the two indices

3.2 Moderate Prices

When a campaign price is moderate, high type players find the price attractive

while low type players do not:

Pr(ω = H|si = l) =< τ < Pr(ω = H|si = h).

We begin by establishing the existence and uniqueness of a symmetric non-

trivial equilibrium:

Theorem 4. For any crowdfunding game, Γ(n,B, µ, p, τ), with a moderate price,

there exists a unique symmetric non-trivial Bayesian Nash equilibrium σ∗ = (σ∗
1 , . . . , σ

∗
n).

Moreover, σ∗
i has the following form,

σ∗
i (si) =







1 if si = h

λ = λ(n,B, µ, p, τ) ∈ [0, 1) if si = l.
. (4)

We relegate the proof to the Appendix A but provide some intuition. We refer

to a player who receives the signal h as a ‘high’ player and to a player who receives

the signal l as a ‘low’ player. The high player is perfectly happy with the price

and would contribute even without the social insurance embedded in the threshold

B. What about ‘low’ players? Assume only high players contribute and none of

the low players do. Then each low player has an incentive to leverage the social

insurance by deviating and contributing. If, on the other hand, all low players as

well as all high players contribute then there is no social insurance and each low

player can profitably deviate by opting out. By properly mixing between the two
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actions each low player can be made indifferent and hence best-replies by mixing.

This establishes the equilibrium.

In the following lemma we characterize the limit equilibrium strategy of the low

player as the size of the population increases. We restrict the analysis to sequences

of games where the the limit, per-capita, threshold exists (∃ limn→∞
Bn

n
= q for

some q ∈ [0, 1]).

Lemma 1. Let {Γ(n,Bn, µ, p, τ)}n be a sequence of moderately priced crowdfund-

ing games such that limn→∞
Bn

n
= q for some q ∈ [0, 1]. Then the limit equilibrium

strategy is:

lim
n→∞

σ∗
n(l) =







0 if q ≤ 1− p

q−(1−p)
p

otherwise
(5)

With this computation at hand we can now turn to study the Correctness

index for large markets:

Our second result characterizes the asymptotic correctness of the moderate

pricing Crowdfunding game.

Theorem 5. For any large crowdfunding game with prior µ, signal quality p and

a moderate price τ the probability of making the correct choice is given by:

θ(µ, p, τ) = 1− 1− p

p

1− τ

τ
µ. (6)

In fact, a careful reading of the proof suggests that the following slightly

stronger result holds. Fix the prior µ, signal quality p and a moderate price

τ . If for every n the threshold Bn satisfies ???? (MORAN LEASE FILL IN)

then limn θ(n,Bn, µ, p, τ) = 1 − 1−p
p

1−τ
τ
µ. To see why this is a bit stronger recall

that the definition of θ(µ, p, τ) pertains to the threshold B that maximizes the

correctness indices along the sequence and not to arbitrary thresholds.

An immediate conclusion is that large crowdfunding campaigns, in the format

we study, necessarily exhibit market failure when prices are moderate.4 This

failure probability is given by 1−p
p

1−τ
τ
µ and the following comparative statics follow

immediately:

Corollary 1. . For any large crowdfunding game with prior µ, signal quality p and

a moderate price τ the market failure probability decreases as one of the following

4Compare this observation with Condorcet’s jury theorem which argues that in a majority

vote, large societies necessarily choose the correct alternative.
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occurs: (1) the signal accuracy of the signal increases, (2) the price increases; and

(3) the prior probability (for the value being high) decreases.5

.

Below we provide an outline of the proof of Theorem 5 while relegating the full

proof to Appendix A. The proof leverages the intuition hinges that any player,

conditional on the actual state of nature, is (almost) non-pivotal (similar to [1] and

[12]). In other words, whenever the population is large enough, each individual

player deems her own action to have impact on the probability of supply, condi-

tional on knowing the state of nature. Thus, in each state ω the probability of

supply, given her contribution and the state ω is approximately equal Pr(cωn ≥ B).

Proof Outline of Theorem 5: Consider the sequence of games {Γ(n, n
2
, µ, p, τ)}∞n=2.

By Lemma 1, the corresponding sequence of equilibrium strategies for low players

converges to

lim
n→∞

σ∗
n(l) =

2p− 1

2p
. (7)

Let αω̃ = Prσ(ai = 1|ω = ω̃) be the probability that an arbitrary player

contribute in the state ω̃. Using equation (7) and the fact that high players

necessarily contribute we get that αH converges to 3p−1
2p

> 1
2
. This implies that the

probability for a successful campaign, conditional on the state H approaches one.

Using similar computations and relying on the indifference of the low players,

we can show that whenever the state is L the probability of success approaches
1−p
p

µ

1−µ
1−τ
τ
. Combining these two computations yields a lower bound:

θ(µ, p, τ) ≥ 1− 1− p

p

1− τ

τ
µ.

To show the opposite inequality consider an arbitrary sequence {Bn} and as-

sume that the following three sequences converge: {θ(n,B, µ, p, τ)}, {Pr(cHn ≥
B}n and {Pr(cLn ≥ B)}n (otherwise, consider a sub-sequence). Let us denote the

corresponding limits by θ∗, x∗ and y∗. By the definition of the correctness index

and by Lemma 1 we get,

θ∗ = µx∗ + (1− µ)(1− y∗). (8)

Recall that a ‘low’ player mixes and so is indifferent between the two actions.

Taking the limit of the indifference equation of the ‘low’ players yields:

(1− p)µx∗(1− τ)− p(1− µ)y∗τ = 0. (9)

5Note the the constraint that prices are moderate rules out the extreme case µ = 1 in which

it would have been surprising to learn of the possibility of market failure.
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By equations (8) and (9), the asymptotic correctness value is bounded above by

the solution for the following linear program:

max µx∗ + (1− µ)(1− y∗)

s.t. 1 ≥ x∗, y∗ ≥ 0

(1− p)µx∗(1− τ)− (1− µ)py∗τ = 0,

(10)

which is 1− 1−p
p

1−τ
τ
µ.

We now to compute the Participation index for large markets when prices are

moderate:

Theorem 6. For any large crowdfunding game with prior µ, signal quality p and

a moderate price τ , the participation index is given by:

R(µ, p, τ) = µ(1 +
1− p

p

1− τ

τ
) (11)

Note that participation is always greater the µ. Furthermore it increases as

the price decreases and as the prior (for the good state) increases. Perhaps less

intuitive is the conclusion that penetration decreases as the signal, p, becomes

more accurate. A possible explanation is that with less accuracy the ‘low’ players

put more emphasis on the aforementioned social insurance. This is manifested

in equation (7) which shows that the contribution probability of such players

increases in p.

Proof Outline of Theorem 6: Let {Γ(n, qn, µ, p, τ)}∞n=1 be a sequence of crowd-

funding games. We discuss the two different cases, q > 1 − p and q ≤ 1 − p,

separately.

Case 1, q > 1− p: By Lemma 1

lim
n→∞

σ∗
n(l) =

q − (1− p)

p
> 0. (12)

Let αω̃n = Prσ∗n(ai = 1|ω = ω̃) be the probability that an arbitrary player con-

tributes in the state ω̃. Using equation (12) and the fact that high players necessar-

ily contribute we get that αHn converges to p+(1−p) q−(1−p)
p

> q. This implies that

the probability for a successful campaign, conditional on the state H approaches

one. Using similar computations and relying on the indifference of the low play-

ers and the observation that in large games, players are (almost) non-pivotal,

we can show that whenever the state is L, the probability of success approaches
1−p
p

µ

1−µ
1−τ
τ
. Combining these two computations yields the unconditional probabil-
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ity of a successful campaign:

lim
n→∞

Pr(cn ≥ Bn) = lim
n→∞

Pr(
cn

n
≥ q) =

µ+ (1− µ)
1− p

p

µ

1− µ

1− τ

τ
= µ(1 +

1− p

p

1− τ

τ
).

(13)

The Participation index is the expected number of contributions conditional

on the campaign’s success and therefore

R(µ, p, τ) ≥ lim
n→∞

R(n,Bn, µ, p, τ) ≥ lim
n→∞

Pr(cn ≥ Bn) = µ(1 +
1− p

p

1− τ

τ
).

In addition, for any q the expected number of contribution conditional on a

successful campaign is bounded below:

lim
n→∞

R(n,Bn, µ, p, τ) ≥ q(µ(1 +
1− p

p

1− τ

τ
)).

Maximizing over q > 1− p yields R(µ, p, τ) ≥ µ(1 + 1−p
p

1−τ
τ
), as desired.

Case 2, q ≤ 1 − p: By Lemma 1 ‘low’ players opt-out and only high players

contribute. Thus, the expected number of contributions conditional on success

equals the expected number of ‘high’ players which yields an upper bound,

lim
n→∞

R(n, qn, µ, τ) ≤ pµ+ (1− p)(1− µ).

As prices are moderate, this implies pµ+ (1 − p)(1 − µ) ≤ µ(1 + 1−p
p

1−τ
τ
), in the

second case.

Combining the two cases yields the desired result.

3.3 Expensive prices

The price in the crowdfunding game is expensive whenever it is high enough such

that none of the players would buy it without any additional insurance. Formally,

τ > Prµ(ω = H|si = h).

In contrast with the two previous cases, a symmetric non-trivial equilibrium

need not exist when the population is small. However, by Theorem 1, when we

consider large games, existence of exactly one non-trivial, symmetric, Bayes-Nash

equilibrium is guaranteed.

Theorem 7. Let {Γ(n,Bn, µ, p, τ)}n be a sequence of expensively priced crowd-

funding games such that limn→∞
Bn

n
= q for some q ∈ [0, 1]. Then the limit
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equilibrium strategy is:

lim
n→∞

σ∗
n(l) =







0 if q ≤ 1− p

q−(1−p)
p

otherwise
and lim

n→∞
σ∗
n(h) =







q

1−p
if q ≤ 1− p

1 otherwise

(14)

The proof of Theorem 7 is relegated to Appendix A.4.

By Theorem 7, the equilibrium strategy depends on how high the threshold is.

That is, even when the price is expensive, the equilibrium may take a similar form

as that of the moderate price case whereby high players necessarily contribute

while low players mix. However, for certain threshold levels we observe a different

form of equilibrium, whereby low players opt-out while high players rely on the

social insurance and mix.

The value of the two indices is given in the two last theorems. The main ideas

underlying these proofs are similar to the analysis of the moderate price case.

Theorem 8.

θ(µ, p, τ) = 1− 1− p

p

1− τ

τ
µ. (15)

Theorem 9.

• If µ < 1
3
and p ≤

√
3 − 1, or if µ < 1

3
, p >

√
3 − 1 and τ > 2µ

(1−µ)p+2(1−p)µ)

then

R(µ, p, τ) = µp+ (1− µ)
1− p

2
=

(3µ− 1)p+ (1− µ)

2
.

• Otherwise,

R(µ, p, τ) = µ(1 +
1− p

p

1− τ

τ
)

Note that participation index is more than the prior, µ. I addition, note that

whenever the equilibrium takes the form where only high players participate the

participation decreases as signals become more accurate.

MORAN - ANYMORE INTERESTING COMPARATIVE STATICS? ????????????

4 Crowdfunding in small populations

Our theoretical results pertain to the asymptotic case and so are relevant to large

markets. Empirical data suggests that crowdfunding campaigns eventually attract

around 100 contributors (See [9] and [14] ). For example, in [9], they find that the
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Table 1: Γ(n = 100, B, µ = 0.5, p, τ).

p B τ = 0.5 τ = 0.7

ψ λ θ R ψ λ θ R

0.55

9 1 0 0.5 0.5 0.126 0 0.570 0.019

44 1 0.044 0.606 0.478 0.957 0 0.751 0.366

98 1 0.954 0.561 0.594 1 0.866 0.518 0.037

0.75

9 1 0 0.5 0.5 1 0 0.5 0.5

44 1 0.211 0.854 0.469 1 0.170 0.941 0.571

98 1 0.951 0.795 0.575 1 .931 0.823 0.422

average number of contributors to Kickstarter campaigns that took place during

March and April of 2012 was 100.32. These empirical results suggest that an initial

market size for such campaigns is of the of the order of magnitude of 100− 1000.

In order to validate our theoretical results we compute the equilibrium strate-

gies ( σ∗) and the value of the to indices for the relevant market size (n = 100 and

n = 1000). We do so for a variety of parameter values (threshold, signal accuracy

and price). The result for a market size of n = 100 are depicted in Table 1 while

those for n = 1000 are depicted in Table 2. Finally, Table 3 details the asymptotic

results for the corresponding parameter values (recall that the asymptotic results

are stated in terms of the optimal threshold).

Our theoretical results for case where prices are cheap hold for any market

size and so the calculations we report on below are only for the case of moderate

prices ((p, τ) equal (0.55, 0.5), (0.75, 0.5) , (0.75, 0.7) ) and high prices ( (p, τ) =

(0.55, 0.7) ).

The tables of results below are partial and, in particular focus on the symmetric

prior. The interested reader is referred to Appendix B for the calculations in a

wider variety of parameters, including asymmetric priors.

There are several observations to be made from these tables (and from the

additional calculations reported in Appendix B):

• The most interesting observation is that our asymptotic analysis provides

a good approximation for Crowdfunding games with a realistic market size.

The computed strategies converge quite fast and the corresponding bounds

on the two indices are already quite relevant for these values. This holds both

when prices high and more so when prices are moderate. This observation

is robust with respect to the value of the signal accuracy and the price.
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Table 2: Γ(n = 1000, B, µ = 0.5, p, τ).

p B τ = 0.5 τ = 0.7

ψ λ θ R ψ λ θ R

0.55

90 1 0 0.5 0.5 0.198 0 0.752 0.07

440 1 0.006 0.596 0.462 0.977 0 0.745 0.384

980 1 0.968 0.586 0.845 1 0.954 .668 0.341

0.75

90 1 0 0.5 0.5 1 0 0.5 0.5

440 1 0.243 0.839 0.477 1 0.23 0.932 0.434

980 1 0.970 0.834 0.659 1 .966 0.929 0.565

Table 3: Large markets: θ(µ = 0.5, p, τ) and R(µ = 0.5, p, τ)
p q τ = 0.5 τ = 0.7

ψ λ maxθ(µ, p, τ) maxR(µ, p, τ) ψ λ maxθ(µ, p, τ) maxR(µ, p, τ)

0.55

0.09 1 0

0.590 0.909

0.2 0

0.825 0.6750.44 1 0 0.978 0

0.98 1 0.964 1 0.964

0.75

0.09 1 0

0.833 0.667

1 0

0.929 0.5710.44 1 0.253 0.978 0.253

0.98 1 0.973 1 0.973

• Additionally, we observe that when the signal is weak (p = 0.55) and the

threshold is low (B ≈ n
3
), low type players always opt-out. Nevertheless,

the number of high type players is sufficient to induce production even if

ω = L which causes a rapid deterioration of the Correcteness index. As B

increases the risk facing low type players decreases and therefore we can see

that throughout the table, a higher threshold B leads to a higher probability

that a low player will contribute (a higher λ)

• As predicted the correctness index is an increasing with price and decreasing

with µ. Similarly the participation index is an increasing function of the prior

µ and a decreasing function of prices. This can be verified in Table 4 bellow.

• Surprisingly, for a variety of parameter combinations the theoretical predic-

tions are quite accurate even for a very small populations, n ∈ {5, 10} (see

the table in Appendix B ).

In the following table we can see the valuation in the calculations for varying

priors. We can see that, as expected, Participation increases with the prior. How-

ever, ceteris paribus, in some cases, an increase in the prior may induce a decrease

in the correctness. Intuitively, this occurs as the public signal weight increases in

the players’ contribution decision.
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Table 4: Correctness and Participation of Γ(n = 100, B = 98, µ, p = 0.75, τ)

n B µ p τ θ(n,B, µ, p, τ) R(n,B, µ, p, τ) θ(µ, p, τ) R(µ, p, τ)

100 50 0.2 0.75 0.5 0.946 0.189 0.933 0.267

100 50 0.5 0.75 0.5 0.852 0.489 0.833 0.667

100 50 0.7 0.75 0.5 0.776 0.713 0.767 0.933

100 50 0.2 0.75 0.7 0.978 0.171 0.971 0.229

100 50 0.5 0.75 0.7 0.940 0.437 0.929 0.571

100 50 0.7 0.75 0.7 0.911 0.623 0.900 0.700

1000 500 0.2 0.75 0.5 0.937 0.197 0.933 0.267

1000 500 0.5 0.75 0.5 0.839 0.497 0.833 0.667

1000 500 0.7 0.75 0.5 0.769 0.705 0.767 0.933

1000 500 0.2 0.75 0.7 0.973 0.178 0.971 0.229

1000 500 0.5 0.75 0.7 0.932 0.448 0.929 0.571

1000 500 0.7 0.75 0.7 0.903 0.631 0.900 0.700

5 Discussion

In this paper we report theoretical findings about crowdfunding campaigns - strate-

gies, correctness and participation - for large markets (presented in terms of asymp-

totic results). We then go on to compute outcomes in campaigns where the market

size is inspired by empirical findings using field data. The contribution of the com-

putational part is in showing that the theory holds even for markets of small size.

Our model supports variations in the product price and in the prior belief that

the product is viable. The study of asymmetric prior beliefs is of importance as a

typical crowdfunding scenario is that of a high-risk product in its pre-development

stage. To model this one should consider a low prior for the state of the world

where the product is valuable. Another type of risk is manifested in the price

variation. Expensively priced product embed a greater loss if they are not viable

and smaller gains if they are.

When examining the various cases, we found that the risk associated with a

high price are, in a sense, more instrumental for the analysis then the risk conveyed

in a low prior. When prices are sufficiently low we find out that crowdfunding

campaigns do not provide any value in terms of sieving out the bad products

from the good ones. In fact, for such prices, as intuition suggests, participation is

maximal and the correctness index is equal the prior probability.

Typically, the maximal participation decreases as the signal quality improves.
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However, this is no longer true for sufficiently high prices. In such cases we notice

that the correctness index approaches one as the price approaches the maximal

value of one.

In our model we show that whenever the product is bad the expected number of

contributions roughly equals the campaign’s threshold. Thus, for risky products,

ones that exhibit high risk, the unconditional participation index is almost equal

the threshold. This is indeed observed in field data as reported in [10] and [14].

A crucial primitive of our model is the information structure, composed of the

initial common prior regarding the product quality and the accuracy of the signals

available to each of the agents. Our analysis allows for comparative statics and

shows how the two indices behave as functions of the informational primitives.

Holding the price fixed our model predicts that the aforementioned Correctness

index decreases the as the product becomes more risky (a lower prior for the

good state). In addition, higher prices induce higher correctness as they decrease

players’ expected utility from contributing.

6 Concluding remarks

Crowdfunding is often used by many entrepreneurs to validate the market demand

for innovative products or an art project. We study how well do Crowdfunding

campaigns perform in this context. To do so we introduce a vary simple game

of incomplete information which we call the Crowdfunding game. We consider

two success measures for a Crowdfunding game. First, the ‘Correctness index’

of a game which captures how well information is aggregated, and second, the

‘Participation index’ that reflects how convincing the campaign is. We show that

for large populations information is not fully aggregated and we provide bounds

on the correctness and penetration index for large populations.

Our results are primarily asymptotic. However, calculations show that these

asymptotic bounds provide good approximations for realistic values of populations

size, sometimes as small 10 players. In fact, even when the number of players is

finite, all three parameters we measure: σ∗, the Correctness index θ and the

Participation index R, are quite close to their respective asymptotic values. This

observation is robust to the game parameters n,B, µ, p, τ .
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6.1 Future directions of research

The static model we study is quite elementary and a few natural extensions that

could possibly change some of the qualitative results are called for.

• Realistically, the value of many goods has a private component and so we

would like to study how crowdfunding performs in an environment where the

value of the good has some private component, in addition to the common

component.

• In most campaigns firms offer a menu of bundles (or variants) and prices. In

our model we reduced this to a single product. We would like to verify that

our reduction is not critical for the qualitative observations that we have

•

Finally, as already mentioned in the introduction, most campaigns take place

over a period of time and a dynamic model may be called for. We suspect that

in such a model the equilibrium analysis will show that most (if not all) the

activity takes place in the final stage, in which case our static model serves as a

meaningful approximation. Obviously, nothing guarantees that and a reasonable

hypothesis is that more knowledgeable players will tend to move earlier as well as

more optimistic players.
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A Missing Proofs

Before stating our auxiliary lemmas and proofs let us recap some of the rele-

vant notation and introduce some new notation. Given a crowdfunding game,

Γ = Γ(n,B, µ, p, τ) all the notation refers to its unique non-trivial symmetric

equilibrium strategy σ∗ and all the random variables pertain to the distribution,

PrΓ,σ∗ over Ω× Sn, given by the fundamentals of the game and σ∗.

• For s ∈ {l, h}, let σ∗(si) = Pr(ai = 1|si), is the probability in which a player

with signal s contributes.

• For any action vector (a1, . . . , an) ∈ {o0, 1}n let cn =
∑n

i=1 ai be the number

of contributions.

• For any γ ∈ [0, 1] we let z(γ, n) denote a binomial random variable with n

trials and a probability for success γ. Formally, z(γ, n) ∼ Bin(γ, n).

• For k ∈ {1 . . . n} define ϕ(γ, n, k) = Prσ(z(γ, n) ≥ k). In words, it is the

probability for k successes or more in n independent trials.

• The probability, according to a strategy σ, to contribute in state H is αH =

Prσ(ai = 1|ω) = pσ(h) + (1− p)σ(l).

• The probability, according to a strategy σ, to contribute in state L is αL =

Prσ(ai = 1|ω = L) = (1− p)σ(h) + pσ(l).

• The probability of a successful campaign in the equilibrium of the game

Γ(n,B, µ, p, τ), conditional on state ω is Pr(cn ≥ B|ω) = PrΓ,σ∗(cn ≥
B|ω) = ϕ(αω, n, B).

The utility of consumer i with signal si is:

Eui(ai = 1|si) =

Prσ(ω = H|si)Prσ(cn−1 ≥ B − 1|ω = H)(1− τ) (16)

− Prσ(ω = L|si)Prσ(cn−1 ≥ B − 1|ω = L)τ =

Prσ(ω = H|si)ϕ(αH , n− 1, B − 1)(1− τ)− Prσ(ω = L|si)ϕ(αL, n− 1, B − 1)τ.
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The player’s expected utility induced by each signal is then:

Eui(ai = 1|h) =
pµ

pµ+ (1− p)(1− µ)
ϕ(αH , n− 1, B − 1)(1− τ) (17)

− (1− p)(1− µ)

pµ+ (1− p)(1− µ)
ϕ(αL, n− 1, B − 1)τ

Eui(ai = 1|l) =

(1− p)µ

(1− p)µ+ p(1− µ)
ϕ(αH , n− 1, B − 1)(1− τ) (18)

− p(1− µ)

(1− p)µ+ p(1− µ)
ϕ(αL, n− 1, B − 1)τ.

Proof of Theorem 1

The following lemma specifies some characteristics of symmetric equilibria. Infor-

mally it suggests that the high type player is always more keen about contributing

than the low type one.

Lemma 2. Let σ∗ is a symmetric non-trivial Bayesian-Nash equilibrium in Γ,

then

if σ∗(l) > 0 then σ∗(h) = 1

if σ∗(h) < 1 then σ∗(l) = 0

and

if σ∗(l) < 1 then ϕ(αH , n− 1, B − 1) > ϕ(αL, n− 1, B − 1)

if σ(l) = 1 then ϕ(αH , n− 1, B − 1) = ϕ(αL, n− 1, B − 1) = 1.

Proof. First assume that in equilibrium, the low player contributes with positive

probability, that is σ∗(l) > 0. By equation (17), the following condition for the

low type player must be satisfied,

EΓ,σ∗ui(ai = 1|si = l) ≥ 0 ⇔ µ(1−p)ϕ(αH, n−1, B−1)(1−τ) ≥ (1−µ)pϕ(αL, n−1, B−1)τ.

As p > 1
2
this entails that

µpϕ(αH , n− 1, B − 1)(1− τ) > (1− µ)(1− p)ϕ(αL, n− 1, B − 1)τ.

Note that if the above condition holds, the high player’s expected utility from

contributing is strictly positive by equation (17), therefore, contributing is her

best response when other players play σ∗ in the game Γ(n,B, µ, p, τ).
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Next assume that the high player assigns a positive probability to opting-out,

that is σ∗(h) < 1. Then by equation (17), the following condition for the high type

player must be satisfied,

Eui(ai = 1|si = h) ≤ 0 ⇔ µpϕ(αH, n−1, B−1)(1−τ) ≤ (1−µ)(1−p)ϕ(αL, n−1, B−1)τ.

As p > 1
2
this entails

µ(1− p)ϕ(αH , n− 1, B − 1)(1− τ) < (1− µ)pϕ(αL, n− 1, B − 1)τ.

Note that by equation (17), whenever the condition above is satisfied, the utility

of the low players is always negative, i.e, Eui(ai = 1|si = l) < 0. Therefore, when

all other players play σ∗, the low players best response is to opt-out.

Therefore if σ(l)∗ < 1 then σ∗(h) > σ∗(l) and by the definition of ϕ(·, ·, ·), αω,
ϕ(αH , n − 1, B − 1) > ϕ(αL, n − 1, B − 1), and if σ(l) = 1 then σ(h) = 1 and

ϕ(αH , n− 1, B − 1) = ϕ(αL, n− 1, B − 1) = 1.

Next we show that in any crowdfunding game there can be at most one sym-

metric non-trivial equilibrium.

Proposition 1. Let σ be a non-trivial, symmetric strategy in Γ. If σ(l) ∈ (0, 1)

and EΓ,σui(ai = 1|si = l) = 0, then for any non-trivial, symmetric strategy σ̃ =

(σ̃(l), σ(h)) such that σ̃(l) ∈ [0, σ(l)), EΓ,σ̃ui(ai = 1|si = l) > 0; and for any non-

trivial, symmetric strategy σ̃ = (σ̃(l), σ(h)) such that σ̃(l) ∈ (σ(l), 1], EΓ,σ̃ui(ai =

1|si = l) < 0.

Proof. Fix the game parameters p, µ, n, B and τ. Let f be the following function

on [0, 1]2:

f(λ;ψ) =

(1− p)µ

(1− p)µ+ p(1− µ)
ϕ(pψ + (1− p)λ, n− 1, B − 1)(1− τ) (19)

−(1− (1− p)µ

(1− p)µ+ p(1− µ)
)ϕ((1− p)ψ + pλ, n− 1, B − 1)τ.

Note that f is the expected utility of a low player in Γ when the players play a

symmetric strategy σ where σ(h) = ψ and σ(l) = λ. We fix the parameter ψ. Let

σ be the strategy described in the proposition and let ψ̄ denote the probability

that the high player contributes. Now let f(λ) = f(λ, ψ̄) be a single parameter

function.
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Recall that f(λ) is continuous in λ, therefore, to prove that there is at most

one value of λ for which f(λ) = 0 it suffices to prove that whenever f(λ) = 0 then

f ′(λ) < 0. Moran: Is it clearer now?

Assume to the contrary that there exists λ ∈ (0, 1) where f(λ) = 0 and

f ′(λ) ≥ 0.

Taking the derivative of f entails

f ′(λ) =

(1− p)µ

(1− p)µ+ p(1− µ)
(1− p)ϕ′(pψ + (1− p)λ, n− 1, B − 1)(1− τ)

−(1 − (1− p)µ

(1− p)µ+ p(1− µ)
)pϕ′((1− p)ψ + pλ, n− 1, B − 1)τ.

As p > 1
2
,

0 < f ′(λ) < (20)

p
( (1− p)µ

(1− p)µ+ p(1− µ)
ϕ′(pψ + (1− p)λ, n− 1, B − 1)(1− τ)

−(1− (1− p)µ

(1− p)µ+ p(1− µ)
)ϕ′((1− p)ψ + pλ, n− 1.B − 1)τ

)

.

By a standard argument (see for example Feller [6], pp. 173), for any ρ ∈ (0, 1)

ϕ′(ρ, n− 1, B − 1) = (n− 1)
(

n−2
B−2

)

ρB−2(1− ρ)n−B therefore, by equation (20), the

assumption f ′(λ) ≥ 0 entails the following condition,

0 ≤ f ′(λ) < Cη(n− 1, B − 2)

where C = (n− 1)
(

n−2
B−2

)

p and

η(k, n) = (21)

(1− p)µ

(1− p)µ+ p(1− µ)
(pψ + (1− p)λ)k(1− (pψ + (1− p)λ))n−k(1− τ)−

(1− (1− p)µ

(1− p)µ+ p(1− µ)
)(1− p)ψ + pλ)k(1− ((1− p)ψ + pλ))n−kτ.(22)

As C > 0 and we assume f ′(λ) > 0, it must be the case that η(B − 2, n− 1) > 0.

Next we show that η(k, n− 1) > 0 yields that η(k + 1, n− 1) > 0. To see this
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note,

η(k + 1, n− 1) =

(1− p)µ

(1− p)µ+ p(1− µ)
(pψ + (1− p)λ)k+1(1− (pψ(1− p)λ))n−1−(k+1)(1− τ )

− (1−
(1− p)µ

(1− p)µ+ p(1− µ)
)((1− pψ + pλ))k+1(1− ((1− p)ψ + pλ))n−1−(k+1)

τ

=
(pψ + (1− p)λ)

1− (pψ + (1− p)λ)

(1− p)µ

(1− p)µ+ p(1− µ)
(pψ + (1− p)λ)k(1− (pψ + (1− p)λ))n−1−k(1− τ )

−
(1− p)ψ + pλ

1− ((1− p)ψ + pλ)
(1−

(1− p)µ

(1− p)µ+ p(1− µ)
)((1− p)ψ + pλ)k(1− ((1− p)ψ + pλ))n−1−k

τ

≥
(1− p)ψ + pλ

1− ((1− p)ψ + pλ)
η(k, n− 1).

Where the last inequality holds as p > 1
2
, ψ ≥ λ thus

pψ + (1− p)λ > (1− p)ψ + pλ

and the function x
1−x

increases monotonically whenever x ∈ (0, 1).

The assumption f ′(λ) ≥ 0 entails that η(B − 2, n− 1) > 0 . By definition of

Binomial distribution (see for example [6], pp. 147) f(λ) =
∑n−1

k=B−1

(

n−1
k

)

η(k, n−
1) >

∑n−1
k=B−1 η(B − 2, n − 1) > 0. This is in contradiction with our assumption

that f(λ) = 0.

Proposition 2. Let σ be a non-trivial, symmetric strategy in Γ. If σ(h) ∈ (0, 1)

and EΓ,σui(ai = 1|si = h) = 0, then for any non-trivial, symmetric strategy

σ̃ = (σ(l), σ̃(h)) such that σ̃(h) ∈ [0, σ(h)), EΓ,σ̃ui(ai = 1|si = h) > 0; and for

any non-trivial, symmetric strategy σ = (σ(l), σ̃(h)) such that σ̃(h) ∈ (σ(h), 1],

EΓ,σ̃ui(ai = 1|si = h) < 0.

Proof. The proof of Proposition 2 is very similar to that of Proposition 1. Fix the

game parameters p, µ, n, B and τ. Let f̂ be the following function on [0, 1]2 :ψ, λ ∈
(0, 1), ψ ≥ λ We define the function

f̂(ψ;λ) =
pµ

pµ+ (1− p)(1− µ)
ϕ(pψ + (1− p)λ, n− 1, B − 1)(1− τ) (23)

− (1− pµ

pµ+ (1− p)(1− µ)
)ϕ((1− p)ψ + pλ, n− 1, B − 1)τ.

Note that f̂ is the expected utility of a high player in Γ when the players play

a symmetric strategy σ where σ(h) = ψ and σ(l) = λ. We fix the parameter λ.

Let σ be the strategy described in the proposition and let λ̄ denote the probability

that the high player contributes. Now let f̂(ψ) = f̂(λ̄, ψ) be a single parameter

function.
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Recall that f̂(ψ) is continuous in ψ, therefore, to prove that there is at most

one value of ψ for which f̂(ψ) = 0 it suffices to prove that whenever f̂(ψ) = 0

then f̂ ′(ψ) < 0. Moran: Is it clearer now?

Assume to the contrary that there exists ψ ∈ (0, 1) where f̂(ψ) = 0 and

f̂ ′(ψ) ≥ 0.

Taking the derivative of f̂ entails

f̂ ′(ψ) =
pµ

pµ+ (1− p)(1− µ)
pϕ′(pψ + (1− p)λ, n− 1, B − 1)(1− τ) (24)

−(1− pµ

pµ+ (1− p)(1− µ)
)(1− p)ϕ′((1− p)ψ + pλ, n− 1, B − 1)τ.

As p < 1,

0 < f̂ ′(ψ) < p

1−p

(

pµ

pµ+(1−p)(1−µ)
ϕ′(pψ + (1− p)λ, n− 1, B − 1)(1− τ)

−(1− pµ

pµ+(1−p)(1−µ)
)ϕ′((1− p)ψ + pλ, n− 1.B − 1)τ

)

.

By a standard argument (see for example Feller [6] pp.173), for any ρ ∈ (0, 1)

ϕ′(ρ, n − 1, B − 1) = (n − 1)
(

n−2
B−2

)

ρB−2(1 − ρ)n−B therefore, the condition above

entails, 0 ≤ f̂ ′(λ) < Ĉη̂(n− 1, B − 2) where Ĉ = (n− 1)
(

n−2
B−2

)

p

1−p
and

η̂(k, n) = pµ

pµ+(1−p)(1−µ)
(pψ + (1− p)λ)k(1− (pψ + (1− p)λ))n−k(1− τ)

−(1− pµ

pµ+(1−p)(1−µ)
)(1− p)ψ + pλ)k(1− ((1− p)ψ + pλ))n−kτ.

As Ĉ > 0 and we assume f̂ ′(ψ) > 0, it must be the case that η(B − 2, n− 1) > 0.

Next we show that η̂(k, n− 1) > 0 yields that η̂(k + 1, n− 1) > 0 as well.

η̂(k + 1, n− 1) =
pµ

pµ+ (1− p)(1− µ)

(

pψ + (1− p)λ)k+1(1− (pψ(1− p)λ)
)n−1−(k+1)

(1− τ)

−(1 − pµ

pµ+ (1− p)(1− µ)
)((1− (pψ + pλ))k+1(1− ((1− p)ψ + pλ))n−1−(k+1)τ =

(pψ + (1− p)λ)

1− (pψ + (1− p)λ)

pµ

pµ+ (1− p)(1− µ)
(pψ + (1− p)λ)k(1− (pψ + (1− p)λ))n−1−k(1− τ)

− pµ

pµ+ (1− p)(1− µ)
(1− (1− p)µ

(1− p)µ+ p(1− µ)
)((1− p)ψ + pλ)k(1− ((1− p)ψ + pλ))n−1−kτ

≥ (1− p)ψ + pλ

1− ((1− p)ψ + pλ)
η̂(k, n− 1).

Where the last inequality holds as p > 1
2
, ψ ≥ λ thus

pψ + (1− p)λ > (1− p)ψ + pλ

and the function x
1−x

increases monotonically whenever x ∈ (0, 1).
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The assumption f̂ ′(λ) ≥ 0 entails that η̂(B − 2, n− 1) > 0 . By definition of

Binomial distribution (see for example [6], pp. 147) f̂(λ) =
∑n−1

k=B−1

(

n−1
k

)

η̂(k, n−
1) >

∑n−1
k=B−1 η̂(B − 2, n − 1) > 0. This is in contradiction with our assumption

that f̂(λ) = 0.

Lemma 3. No crowdfunding game has more than one symmetric non-trivial

Bayes-Nash equilibrium.

Proof. We prove the first part of the theorem, that is for any n,B, µ, p, τ there can

be at most a single non-trivial symmetric Bayes-Nash equilibrium in Γ(n,B, µ, p, τ).

Let σ be a symmetric, non-trivial strategy of Γ(n,B, µ, p, τ).We separate the proof

into cases and search for strategies that are candidates for equilbria.

Case 1. σ(h) = 1: Consider the following sub-cases: (1.1) First assume that

Eσ=(σ(l)=λ,σ(h)=1)ui(ai = 1|si = l) = 0

for some λ ∈ (0, 1). Note that if the other low players play λ̂ < λ, then by

Proposition 1, Eσ=(λ̂,1)ui(ai = 1|si = l) > 0. In this case a low player’s best

response is to contribute. For any strategy in which λ̂ > λ, again by Proposition

1, Eσ=(λ̂,1)ui(ai = 1|si = l) < 0 and opting-our is a low player’s best response.

However if σ(l) = λ, then a low type player is indifferent between the actions

and can not profit from increasing the probability she assigns to any one of the

pure actions. In addition, by Lemma 2, if low players mix, then the high player

has a dominant strategy σ(h) = 1, therefore, in this case, the only non-trivial,

symmetric equilibrium can be σ = (σ(l) = λ, σ(h = 1)).

(1.2) Assume that

Eσ=(λ,1)ui(ai = 1|si = l) 6= 0

for every λ ∈ [0, 1]. By the continuity of Eσ=(λ,1)ui(ai = 1|si = l) it must be that

EΓ,σ=(λ,1)ui(ai = 1|si = l) > 0 or Eσ=(λ,1)ui(ai = 1|si = l) < 0 for every λ. If

Eσ=(λ,1)ui(ai = 1|si = l) > 0 for every λ ∈ [0, 1] then when σ(h) = 1, contributing

is a best response strategy for a low player and the only equilibrium of this form can

only be σ(l) = σ(h) = 1. If Eσ=(λ,1)ui(ai = 1|si = l) < 0 for every λ. then opting-

out is a dominant action for a low type player. If Eσ=(0,1)ui(ai = 1|si = h) ≥ 0,

then, by Proposition 2, σ = σ(l) = 0, σ(h) = 1 is the only equilibrium candidate. If

Eσ=(0,1)ui(ai = 1|si = h) < 0, then we claim that opting-out is a dominant strategy

for low players. To see this, assume to the contrary that Eσ=(0,1)ui(ai = 1|si =
h) < 0, and there exists some λ ∈ (0, 1] such that Eσ=(λ,1)ui(ai = 1|si = l) ≥ 0,

which, by Proposition 1 entails that Eσ=(0,1)ui(ai = 1|si = l) > 0. a contradiction

as Eσ=(0,1)ui(ai = 1|si = h) > Eσ=(0,1)ui(ai = 1|si = l).
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Case 2. σ(h) < 1 : By Lemma 2, the only candidates for non-trivial symmetric

equilibria can strategies in which σ(l) = 0.We separate the proof to two sub-cases.

(2.1) Assume that

Eσ=(σ(l)=0,σ(h)=ψ)ui(ai = 1|si = h) = 0

for some ψ ∈ (0, 1].Then, by Proposition 2, for every ψ̃ ∈ [0, ψ), Eσ=(σ(l)=0,σ(h)=ψ̃)ui(ai =

1|si = h) > 0 therefore high player is best if she contributes when all other players

play σ = (σ(l) = 0, σ(h) = ψ̃) and for every ψ̃ ∈ (ψ, 1] Eσ=(σ(l)=0,σ(h)=ψ̃)ui(ai =

1|si = h) < 0 therefore high player is best if she opts-out. The high players is in-

different, only when σ(h) = ψ, therefore she can not profit by deviating. Note that

as Eσ=(σ(l)=0,σ(h)=ψ)ui(ai = 1|si = h) = 0, low player’s best response is σ(l) = 0.

(2.2) Assume that

Eσ=(σ(l)=0,σ(h)=ψ)ui(ai = 1|si = h) 6= 0

for every ψ ∈ (0, 1). By the continuity of Eσ=(σ(l)=0,σ(h)=ψ)ui(ai = 1|si = h), A non-

trivial symmetric equilibrium can only occur if for every ψ, Eσ=(σ(l)=0,σ(h)=ψ)ui(ai =

1|si = h) > 0, In this case we get that an equilibrium can occur only when

σ(h) = 1. This case was analyzed in case (1) above.

We conclude, If Eσ=(0,1)ui(a = 1|si = h) > 0 then σ∗(h) = 1. In addition: if

Eσ=(0,1)ui(a = 1|si = l) < 0 then σ∗(l) = 0; if Eσ=(1,1)ui(a = 1|si = l) ≥ 0 then

σ∗(l) = 1; Otherwise, by Lemma 1, there exist λ ∈ (0, 1) for which Eσ=(λ,1)ui(a =

1|si = l) = 0 and σ∗(l) = λ.

Else if Eσ=(0,1)ui(a = 1|si = h) < 0 then σ∗(l) = 0. In addition if Eσ=(0,0)ui(a =

1|si = h) > 0 then by Proposition 2, there exist ψ ∈ (0, 1) such that Eσ=(0,ψ)ui(a =

1|si = h) = 0. By Proposition 2 again, Eσ=(0,ψ̃)ui(a = 1|si = l) < 0 for any ψ̃ ∈
[0, ψ), therefore if a high players plays the strategy σ(h) = ψ̃, any high player can

profit by deviating to action 1 and similarly if high players play σ(h) = ψ̃ ∈ (ψ, 1],

any high player can profit by deviating to action 0.When high players play σ(h) =

ψ, high players have no profitable deviation. In addition, as Eσ=(0,ψ)ui(a = 1|si =
h) = 0 > Eσ=(0,ψ)ui(a = 1|si = l), low players can not gain by deviating to action

1 and thus σ∗(l) = 0, σ∗(h) = ψ is an equiblirium. Finally, if Eσ=(0,0)ui(a = 1|si =
h) ≤ 0 then, there is no non-trivial symmetric equilibrium of Γ(n,B, µ, p, τ).

To complete the proof we will show that for any 4−tuple of parameters (q, µ, p, τ)

where q ∈ (0, 1), and for any there exists some N such that for any n > N, the

crowdfunding game Γ(n,B, µ, p, τ) has a unique non-trivial Bayes-Nash equilib-

rium.

Next we will prove the second part of Theorem 1.
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Lemma 4. Let q ∈ (0, 1) and {Bn}∞n=1 be a sequence of thresholds such that

limn→∞
Bn

n
= q ∈ (0, 1]. For every 3-tuple µ, q, τ there exists N(µ, q, τ) such that

every n > N(µ, q, τ), there exist a unique non-trivial symmetric equilibrium of

Γ(n,Bn, µ, p, τ).

Proof. Assume to the contrary that for some tuple (µ, q, τ) and a sequence of

thresholds {Bn}∞n=1 for which limn→∞
Bn

n
= q, there exists an arbitrarily large n

such that the corresponding game Γ(n,Bn, µ, p, τ) has no non-trivial symmetric

equilibrium.

This entails that for every ψ ∈ (0, 1],

EΓn,σ(l)=0,σ(h)=ψui(ai = 1|si = h) < 0.

To see this, first consider a case in which the expected utility for high player is

positive for every ψ ∈ (0, 1), in this case, action 1 is a dominant strategy for

high players and thus a non-trivial symmetric equilibrium or the form σ∗(h) =

1, σ∗(l) ∈ [0, 1] exists; second consider a case in which there exists ψ ∈ (0, 1) for

which EΓn,σ(l)=0,σ(h)=ψui(ai = 1|si = h) = 0. By Proposition 2 there can be at

most one such ψ. Note that this yields that σ∗(h) = ψ, σ∗(l) = 0 as no player can

gain from deviating to any of the pure actions.

Therefore, by the contrary assumption, for any ψ ∈ (0, 1] following condition

holds,

pµ

pµ+ (1− p)(1− µ)
ϕ(pψ, n− 1, Bn − 1)(1− τ)−

(1− p)(1− µ)

pµ+ (1− p)(1− µ)
ϕ((1− p)ψ, n− 1, Bn − 1)τ < 0 ⇔

pµ

pµ+ (1− p)(1− µ)
ϕ(pψ, n− 1, Bn − 1)(1− τ) < (25)

(1− p)(1− µ)

pµ+ (1− p)(1− µ)
ϕ((1− p)ψ, n− 1, Bn − 1)τ ⇔

pµ(1− τ)

(1− p)(1− µ)τ
<
ϕ((1− p)ψ, n− 1, Bn − 1)

ϕ(pψ, n− 1, Bn − 1)
.

As stated above, equation (25) must be satisfied for any ψ ∈ (0, 1], including

arbitrarily small values and thus,

pµ(1− τ)

(1− p)(1− µ)τ
< lim

ψ→0

ϕ((1− p)ψ, n− 1, Bn − 1)

ϕ(pψ, n− 1, Bn − 1)
. (26)

By the definition of ϕ(·, ·, ·),

lim
ψ=0

ϕ((1− p)ψ, n− 1, Bn − 1) = lim
ψ→0

ϕ((1− p)ψ, n− 1, Bn − 1) = 0,
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and hence we must apply L’hopital’s rule to calculate the limit of the right-hand

side of equation (26), that is,

pµ(1− τ)

(1− p)(1− µ)τ
< lim

ψ→0

ϕ′((1− p)ψ, n− 1, Bn − 1)

ϕ′(pψ, n− 1, Bn − 1)
. (27)

By a standard argument (see for example Feller [6] pp.173),

ϕ(γ, n− 1, B − 1) = (n− 1)

(

n− 2

B − 2

)
∫ γ

0

tB−2(1− t)n−Bdt. (28)

and hence

ϕ′(γ, n− 1, B − 1) = (n− 1)

(

n− 2

B − 2

)

γB−2(1− γ)n−B. (29)

Therefore

lim
ψ→0

ϕ((1− p)ψ, n− 1, B − 1)

ϕ(pψ, n− 1, B − 1)
= lim

ψ→0

ϕ′((1− p)ψ, n− 1, B − 1)(1− p)

ϕ′(pψ, n− 1, B − 1)p
=

lim
ψ→0

(
(1− p)

p
)B−1(

1− (1− p)ψ

1− pψ
)n−B =

(
1− p

p
)B−1.

(30)

We plug this into equation (31) and get,

pµ(1− τ)

(1− p)(1− µ)τ
< (

1− p

p
)Bn−1, (31)

a contradiction as p > 1
2
and n is arbitrarily large (and thus so is Bn).

Theorem 1 joins together Lemmas 4 and 3.

Theorem 1. (1) No crowdfunding game has more than one symmetric non-trivial

Bayes-Nash equilibrium. (2) Consider the sequence {Bn}∞n=1 where limn→∞
Bn

n
= q

for some q ∈ (0, 1]. For any 4-tuple of parameters (q, µ, p, τ) there exists some N

such that for any n > N, the crowdfunding game Γ(n,Bn, µ, p, τ) has a unique

symmetric non-trivial Bayes-Nash equilibrium.

A.1 Additional Proofs.

The following lemma is almost immediate by Lemma 2,

Lemma 5. For every si ∈ {l, h}, if τ < Pr(ω = H|si) then σ∗(ai = 1|si) = 1.
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Proof. The expected utility for player i from the action ai = 1 is

Pr(ω = H|si)(1−τ)ϕ(αH , n−1, B−1)−(1−Prµ(ω = H|si))τϕ(αL, n−1, B−1).

By Lemma 2 we know that ϕ(αH , n − 1, B − 1) ≥ ϕ(αL, n− 1, B − 1) and as σ∗

is non-trivial we know that ϕ(αH , n− 1, B − 1) > 0 therefore,

Pr(ω = H|si)(1− τ)ϕ(αH , n− 1, B − 1)− (1− Prµ(ω = H|si))τϕ(αL, n− 1, B − 1) ≥
(Prµ(ω = H|si)(1− τ)− (1− Prµ(ω = H|si))τ)ϕ(αH , n− 1, B − 1) > 0.

Where the last inequality holds as we assume τ < Pr(ω = H|si).

By Lemma 5, we can distinguish between three crowdfunding game types by

the relationship between µ, the prior for state H and the pre-determined price

level τ. In Game Γ(n,B, µ, p, τ), the price will be called cheap if τ < Prµ(ω =

H|si = l) = µ(1−p)
µ(1−p)+p(1−µ)

; the price will be called moderate if τ ∈ [Prµ(ω = H|si =
l), P rµ(ω = H|si = l) = [ (1−p)µ

(1−p)µ+p(1−µ)
, pµ

pµ+(1−p)(1−µ)
); and finally, the price will be

called expensive if τ > pµ

pµ+(1−p)(1−µ)
.

Let {Bn}∞n=1 be a sequence of thresholds such that limn→∞
Bn,n

=
q for some

q ∈ (0, 1). For every µ, p, τ let Γn denote the corresponding game Γ(n,Bn, µ, p, τ).

We denote the non-trivial symmetric equilibria of Γn by σ∗
n. By by taking a sub-

sequence if necessary, the limit limn→∞ σ∗
n = σ∗

∞, exists and is the non-trivial,

symmetric equilibrium of game Γ∞. By Theorem 1 we know this is well defined.

Lemma 6. If q ≥ 1− p then for every µ, p, τ,

σ∗
∞(h) = 1.

Proof. Assume by contradiction that there exist a sequence {Bn}∞n=1 such that

limn→∞
Bn

n
= q > 1− p, and the corresponding sequence of equilibrium strategies

{σ∗
n} converges to σ∗

∞(h) = ψ for some ψ ∈ (0, 1). By Lemma 2, if σ∗
∞(h) < 1 then

σ∗
∞(l) = 0.

In addition, by the law of large numbers, the expected number of contributions

cLn ≡
∑

i ai in state ω = L is

lim
n→∞

cLn = (1− p)ψ < q,

and thus limn→∞ ϕ(αLn , n − 1, Bn − 1) = 0. Therefore for sufficiently large n,

Eσ∗nu(ai = 1|si = l) > 0, a contradiction as low player profits by deviating to the

pure action 1.

35



Lastly, we follow [16] and [12] and show that in our model, players are (almost)

non-pivotal.

Lemma 7. Consider any tuple p, µ, tau, q and any sequence of thresholds {Bn}
such that limn→∞

Bn

n
= q. Let {Γn}, denote the corresponding sequence of crowd-

funding games and the corresponding equlibria sequence {σ∗
n} the following equality

must be satisfied,

lim
n→∞

ϕ(αω, n− 1, Bn − 1) = lim
n→∞

ϕ(αω, n− 1, Bn − 1)

Proof. Let cωn denote the expected number of contributions. By definition of ϕ we

get,

ϕ(αω, n− 1, Bn − 1) = PrΓn,σ∗n
(cωn ≥ bn − 1|ω) = PrΓn,σ∗n

(
cωn − 1

n
≥ Bn

n
|ω).

The above equality must also hold in the limit and thus,

lim
n→∞

ϕ(αω, n− 1, Bn − 1) = lim
n→∞

PrΓn,σ∗n
(
cωn − 1

n
≥ Bn

n
|ω) =

lim
n→∞

PrΓn,σ∗n
(
cωn
n

≥ Bn

n
|ω) =

lim
n→∞

ϕ(αω, n, Bn).

A.2 Proofs for cheap prices.

Theorem 3.1. In any crowdfunding game with a cheap price there exists a unique

symmetric Bayesian Nash equilibrium where all players contribute. In particular,

this equilibrium is non-trivial.

Proof. The proof of Theorem 2 is immediate by Lemma 5 and the definition of

cheap price.

A.3 Proofs for moderate prices.

Theorem 3.3. For any crowdfunding game, Γ(n,B, µ, p, τ), with a moderate

price, there exists a unique symmetric non-trivial Bayesian Nash equilibrium

σ∗ = (σ∗
1, . . . , σ

∗
n). Moreover, σ∗

i has the following form,

σ∗
i (si) =







1 if si = h

λ = λ(n,B, µ, p, τ)) ∈ [0, 1) if si = l.
. (32)
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Proof. By Lemma 5, in any crowdfunding game Γ with moderate price, σ∗(h) = 1.

First we show that σ∗(l) < 1. Let σ1 be the strategy profile in which all players

play the pure action 1. We use the following shorthand notation,

pl = PrΓ(ω = H|si = l) =
µ(1− p)

p(1− µ) + µ(1− p)

and

ph = PrΓ(ω = H|si = h) =
µp

pµ+ (1− µ)(1− p)
.

As all players contribute under σ1, the threshold is achieved in both states with

probablity 1, and thus the expected utility of a low player is, EΓ,σ1ui(ai = 1|si =
l) = pl(1−τ)− (1−pl)τ < 0, where the last inequality stems from the assumption

of moderate prices. Therefore σ∗(l) < 1.

Next we show that there exists a non-trivial symmetric Bayes Nash equilibrium

in any crowdfunding game with moderate price. We separate the proof into two

cases.

(1) For any λ ∈ [0, 1),

EΓ,σ(h)=1,σ(l)=λui(ai = 1|si = l) < 0.

In this case the action 0 is a low player’s best response against any symmetric

strategy. Therefore σ∗(l) = 0. By Lemma 5, σ∗(h) = 1 and thus σ∗(h) = 1, σ∗(l) =

0 is an equilibrium. Note that by definition of ϕ(cdot, cdot, cdot), the equilibrium

is non-trivial for any n,B, µ, p and a moderate τ.

(2) There exists some λ ∈ (0, 1) such that

EΓ,σ(h)=1,σ(l)=λui(ai = 1|si = l) = 0.

By Proposition 1 there can be at most one such λ.We show that σ∗(h) = 1, σ∗(l) =

λ is the unique non-trivial equilibrium of Γ in this case. Note that σ∗(h) = 1 by

Lemma 5. In addition, by Propositoin 1, the low type player loses utility by

deviating to the pure action 1 and can not gain by deviating to the pure action

0.

Lemma 1. Let {Γ(n,Bn, µ, p, τ)}n be a sequence of moderately priced crowd-

funding games such that limn→∞
Bn

n
= q for some q ∈ [0, 1] and {σ∗

n} be the

corresponding sequence of non-trivial symmetric equilibria. Then the limit equi-

librium strategy is:

lim
n→∞

σ∗
n(l) =







0 if q ≤ 1− p

q−(1−p)
p

otherwise
and lim

n→∞
σ∗
n(h) = 1. (33)
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Proof. By Lemma 5, σ∗(h) = 1 in any crowdfunding game with moderate price.

This also hold in the limit.

Next we show that if q < 1−p then limn→∞ σ∗
n(l) = 0. Assume by contradiction

that limn→∞ σ∗
n(l) = λ > 0. Let cLn = EΓn,σ∗n

∑

i ai|ω = L. That is Cn denote the

expected number of contributors in state L. Recall that by the law of large numbers

lim
n→∞

cLn
n

= αL = p+ (1− p)λ > 1− p > q,

therefore for sufficiently large n the low player expected utility is,

EΓn,σ∗n
u(ai = 1|si = l) = pl(1− τ)− (1− pl)τ < 0

Where

pl = Pr(ω = H|si = l) =
µ(1− p)

p(1− µ) + µ(1− p)
.

The inequality holds as prices are moderate.

Finally we show that if q ≥ 1 − p then limn→∞ σ∗
n(l) =

q−(1−p)
p

. For any λ, if

limn→∞ σ∗
n(l) = λ then by the law of large numbers,

lim
n→∞

cLn
n

= αL∞ = p+ (1− p)λ.

If λ < q−(1−p)
p

, then limn→∞ ϕ(αLn , n− 1, B − 1) = 0, and thus,

lim
n→∞

EΓn,σ∗u(a = 1|s = l) = pl(1− τ) > 0.

Similarly if λ > q−(1−p)
p

, then limn→∞ ϕ(αLn , n− 1, B − 1) = 1 and thus

lim
n→∞

EΓn,σ∗n
u(a = 1|s = l) = pl(1− τ)− (1− pl)τ < 0,

where again, the inequality holds as prices are moderate.

The following corollary is immediate by Lemma 1.

Corollary 2. For any µ, p, a moderate price τ and a sequence {Bn} s.t. limn→∞
Bn

n
=

q for some q ∈ [0, 1], limn→∞ ϕ(αHn , n− 1, Bn − 1) = 1.

In words, Corollary 2 states that if the price is moderate, the probability that

a campaign succeeds when the state is H approaches one as population grows.

Proof. By the Law of Large numbers, the expected number of contribution condi-

tional on the state beingH is, limn→∞
cHn
n

= limn→∞ αHn where αHn is the probability

of a player choosing action 1 in the non-trivial, symmetric equilibrium of game

Γn. By Lemma 1

lim
n→∞

αHn = p + (1− p)
q − (1− p)

p
> q.
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Theorem 5. For any large crowdfunding game with prior µ, signal quality p and

a moderate price τ the probability of making the correct choice is given by:

θ(µ, p, τ) = 1− 1− p

p

1− τ

τ
µ. (34)

Proof. First we show that θ(µ, p, τ) ≥ 1− 1−p
p

1−τ
τ
µ. Consider a sequence of thresh-

olds {Bn} such that Bn = n
2
and the corresponding sequence of moderately priced

crowdfunding games {Γn} where Γn = Γ(n,Bn, µ, p, τ). As limn→∞Bn = 1
2
> 1−p,

by Lemma 1 we get that eventually, σ∗
n(l) ∈ (0, 1) and thus in equilibrium, the

low player is indifferent between both actions yielding,

lim
n→∞

EΓn,σ∗n
u(a = 1|s = l) = 0 ⇔ plϕ(α

H
∞, n−1, B−1)(1−τ)−(1−pl)ϕ(αL∞, n−1, B−1)τ = 0

where pl = Pr(ω = H|si = l) = µ(1−p)
µ(1−p)+p(1−µ)

. Recall that cωn = EΓn,σ∗n

∑

i(ai)|ω
is the expected number of contributions in state ω ∈ H,L. By the law of large

numbers

lim
n→∞

cωn
n

= αωn ,

where, as before, αωn is the probability that a player plays 1 in the equilibrium of

Γn when the state is ω ∈ H,L. As σ∗(h) = 1 we get that αH > p > 1
2
and thus,

when the state is H, the probability that the product be realized approaches 1

that is

lim
n→∞

ϕ(αHn , n− 1, B − 1) = 1.

By the low player indifference condition, we can therefore calculate the probability

the threshold be reached at the limit.

0 = lim
n→∞

EΓn,σ∗n
u(a = 1|s = l) =

(1− p)µ

(1− p)µ+ (1− µ)p
(1− τ)

− (1− µ)p

(1 − p)µ+ (1− µ)p
τ lim
n→∞

ϕ(αLn , n− 1, B − 1).

Rearranging the above equality we get,

lim
n→∞

ϕ(αLn , n− 1, B − 1) =
1− p

p

µ

1− µ

1− τ

τ
.

By definition of the correctness index,

lim
n→∞

θ(n,Bn =
n

2
, µ, p, τ) = µ+ (1− µ)

1− p

p

µ

1− µ

1− τ

τ
= 1− 1− p

p

1− τ

τ
µ.

Therefore the expression in Theorem 1 is achievable.

To complete the proof we must show that θ(µ, p, τ) ≤ 1− 1−p
p

1−τ
τ
µ. Let {B∗

n} be
a sequence of thresholds for which the maximal correctness is achieved. By taking

a subsequence if necessary, the limit limn→∞B∗
n = q∗ exists for some q∗ ∈ [0, 1].
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Next we show that q∗ > 1 − p. Assume to the contrary that q∗ < 1 − p.

By Theorem 4 for any n, σ∗
n(h) = 1 therefore by the Law of large numbers, the

expected number of contributions when the state is L is limn→∞
cLn
n
= αLn > 1−p >

q∗ and thus the probability that the threshold is crossed when the state is L is,

lim
n→∞

ϕ(αLn , n− 1, B − 1) = 1

and hence, by definition of the correctness index and under the contrary assump-

tion,

θ(p, µ, τ) = µ.

A contradiction as prices are moderate and thus,

1− 1− p

p

1− τ

τ
µ > µ⇔ 1− µ

µ
>

1− p

p

1− τ

τ
⇔ (1− p)µ

(1− µ)p+ (1− p)µ
> τ,

and we have seen that the expression on the right is achievable. Therefore it must

be that the optimal sequence of thresholds is such that,

lim
n→∞

B∗
n

n
= q∗ > 1− p.

As q∗ > 1−p, by Lemma 1, we get that the low player is eventually indifferent

in Γn and thus for sufficiently large n,

(1− p)µ(1− τ)ϕ(αHn , n− 1, Bn − 1)− p(1− µ)τϕ(αLn , n− 1, Bn − 1) ⇒

ϕ(αHn , n− 1, Bn − 1) =
p(1− µ)τ

(1− p)µ(1− τ)
ϕ(αLn , n− 1, Bn − 1).

(35)

Assume to the contrary that for some µ, p and a moderate price τ,

θ(µ, p, τ) > 1− 1− p

p

1− τ

τ
µ = µ+ (1− µ)(1− 1− p

p

µ

1− µ

1− τ

τ
).

by the definition of correctness and the inequality above, This entails that there

exists a sequence of thresholds {B∗
n} and a sequence of corresponding games Γn

such that limn→∞ ϕ(αLn , n − 1, Bn − 1) < 1−p
p

µ

1−µ
1−τ
τ
. Therefore equation (35)

becomes,

ϕ(αHn , n− 1, Bn − 1) =
p(1− µ)τ

(1− p)µ(1− τ)
ϕ(αLn , n− 1, Bn − 1) < 1, (36)

a contradiction as by Lemma 1, the expected proportion of contributions when

the state is H approaches

lim
n→∞

cHn
n

= lim
n→∞

αHn = p + (1− p)
q∗ − (1− p)

p
> q∗.

and thus, by the law of large numbers, limn→∞ ϕ(αHn , n− 1, Bn − 1) = 1.
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Theorem 6. For any crowdfunding game with prior µ, signal quality p and a

moderate price τ , the participation ratio in a large campaign is given by:

R(µ, p, τ) = µ(1 +
1− p

p

1− τ

τ
) (37)

Proof. First we show that for any µ, p and a moderate price τ, R(µ, p, τ) ≥ µ(1 +
1−p
p

1−τ
τ
). Let {Bn} be a sequence of thresholds such that limn→∞

Bn

n
= q for some

q > 1−p. By Lemma 1, for sufficently large n, the low player is indifferent between

both actions and thus,

lim
n→∞

EΓn,σ∗n
u(a = 1|s = l) = 0 ⇔

µ(1− p)(1− τ) lim
n→∞

ϕ(αHn , n− 1, Bn − 1) = (1− µ)pτ lim
n→∞

ϕ(αLn , n− 1, Bn − 1).

By Corollary 2 limn→∞ ϕ(αHn , n− 1, Bn − 1) = 1 and thus,

lim
n→∞

ϕ(αLn , n− 1, Bn − 1) =
µ(1− p)(1− τ)

(1− µ)pτ
. (38)

Recall that by Lemma 7, in large crowdfunding games players are (almost)

non-pivotal as,

lim
n→∞

ϕ(αωn, n− 1, Bn − 1) = lim
n→∞

PrΓn,σ∗n
(cωn − 1 ≥ Bn − 1) =

lim
n→∞

PrΓn,σ∗n
(
cωn
n

− 1

n
> q − 1

n
) = lim

n→∞
ϕ(αωn , n, Bn).

(39)

Thus, by the definition of Participation

lim
n→∞

R(Bn, nµ, p, τ) ≥ q(µ lim
n→∞

ϕ(αHn , n, Bn) + (1− µ) lim
n→∞

ϕ(αLn , n, Bn)) =

q(µ+ (1− µ)
µ(1− p)(1− τ)

(1− µ)pτ
).

(40)

By taking q to 1 we can see that,

R(µ, p, τ) ≥ (µ+ (1− µ)
µ(1− p)(1− τ)

(1− µ)pτ
) = µ(1 +

1− p

p

1− τ

τ
).

Next we prove thatR(µ, p, τ) ≤ µ(1+1−p
p

1−τ
τ
). By Corollary 2, limn→∞ ϕ(αHn , n−

1, Bn − 1) = 1. Next note that

lim
n→∞

ϕ(αHn , n− 1, Bn − 1) =

lim
n→∞

PrΓn,σ∗n
(
cHn − 1

n
≥ Bn − 1

n
) =

lim
n→∞

PrΓn,σ∗n
(
cHn
n

≥ Bn

n
) = ϕ(αHn , n, Bn).
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Thus the maximal participation is bounded from above by

R(µ, p, τ) ≤ µ+ (1− µ)y∗

where y∗ is the solution of the following linear programming:

max µ+ (1− µ)y

s.t. 1 ≥ y ≥ 0

(1− p)µ(1− τ)− p(1− µ)yτ ≥ 0.

(41)

Which is simply y∗ = (1−p)µ(1−τ)
(1−p)µτ

and thus

R(µ, p, τ) ≤ µ(1 +
1− p

p

1− τ

τ
).

A.4 Proofs for expensive prices.

Theorem 7. Let {Γ(n,Bn, µ, p, τ)}n be a sequence of expensively priced crowd-

funding games such that limn→∞
Bn

n
= q for some q ∈ [0, 1]. Then the limit

equilibrium strategy is:

lim
n→∞

σ∗
n(l) =







0 if q ≤ 1− p

q−(1−p)
p

otherwise
and lim

n→∞
σ∗
n(h) =







q

1−p
if q ≤ 1− p

1 otherwise

(42)

Proof. First we prove the lemma for all sequences for which q > 1 − p. We start

by showing that in this case limn→∞ σ∗
n(h) = 1. Assume to the contrary that there

exists some limn→∞
Bn

n
= q > 1−p for which limn→∞ σ∗

n(h) < 1. Then, by Lemma

2, for sufficiently large n it must be that σ∗
n(l) = 0. Therefore, by the Law of Large

Numbers,

lim
n→∞

cLn = lim
n→∞

αLn < 1− p < q

and thus limn→∞ ϕ(αLn , n− 1, Bn− 1) = 0. In addition, as σ∗
n(h) < 1 the following

inequality must be satisfied for the high-type player,

lim
n→∞

(pµ(1− τ)ϕ(αHn , n− 1, Bn − 1)− (1− p)(1− µ)τϕ(αLn , n− 1, Bn − 1)) ≤ 0.

This entails a contradiction as σ∗
n is a non trivial equilibrium and thus ϕ(αHn , Bn−

1, n− 1) > 0.
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As limn→∞ σ∗
n(h) = 1, the proof that limn→∞ σ∗

n(l) =
q−(1−p)

p
is similar to the

case of moderate prices and thus omitted.

Next we prove the lemma for all sequences for which q ≤ 1 − p. We start by

showing that in this case limn→∞ σ∗
n(l) = 0. Assume to the contrary that there

exists some limn→∞
Bn

n
= q ≤ 1− p for which limn→∞ σ∗

n(l) > 0. Then, by Lemma

2, for sufficiently large n it must be that σ∗
n(h) = 1. Therefore, by the Law of

Large Numbers,

lim
n→∞

cLn = lim
n→∞

αLn > 1− p ≥ q

and thus limn→∞ ϕ(αLn , n− 1, Bn − 1) = 1. In addition, as σ∗
n(l) > 0 the following

inequality must be satisfied for the low-type player,

lim
n→∞

((1− p)µ(1− τ)ϕ(αHn , n− 1, Bn − 1)− p(1− µ)τϕ(αLn , n− 1, Bn − 1)) =

(1− p)µ(1− τ)− p(1− µ)τ ≥ 0.

This entails a contradiction as the price is expensive. Therefore limn→∞ σ∗
n(l) = 0.

Next assume by contradiction that there exist a sequence limn→∞
Bn

n
= q ≤

1− p for which limn→∞ σ∗
n(h) >

q

1−p
. By the law of large numbers,

lim
n→∞

cLn = lim
n→∞

αLn = (1− p) lim
n→∞

σ∗
n(h) ≥ q

and thus limn→∞ ϕ(αLn , n− 1, Bn − 1) = 1.

As limn→∞ σ∗
n(h) > 0 the following inequality must be satisfied for high players,

lim
n→∞

pµ(1− τ)ϕ(αHn , n− 1, Bn − 1)

− (1− p)(1− µ)τϕ(αLn , n− 1, Bn − 1) ≥ 0

⇔ pµ(1− τ)− (1− p)(1− µ)τ ≥ 0,

a contradiction as the price is expensive.

Finally, assume by contradiction that there exist a sequence limn→∞
Bn

n
= q ≤

1− p for which limn→∞ σ∗
n(h) <

q

1−p
. By the law of large numbers,

lim
n→∞

cLn = lim
n→∞

αLn = (1− p) lim
n→∞

σ∗
n(h) < q

and thus limn→∞ ϕ(αLn , n− 1, Bn − 1) = 0.

As limn→∞ σ∗
n(l) = 0 the following inequality must be satisfied for low players,

lim
n→∞

pµ(1− τ)ϕ(αHn , n− 1, Bn − 1)−

(1− p)(1− µ)τϕ(αLn , n− 1, Bn − 1) ≤ 0 ⇔
pµ(1− τ) lim

n→∞
ϕ(αHn , , n− 1, Bn − 1) ≤ 0,

a contradiction as the equilibrium is non-trivial.
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Theorem 8.

θ(µ, p, τ) = 1− 1− p

p

1− τ

τ
µ. (43)

Proof. First we show that θ(µ, p, τ) ≥ 1 − 1−p
p

1−τ
τ
µ. Consider the sequence {Bn}

where Bn = n
2
and thus limn→∞

Bn

n
= 1

2
> 1 − p. By Theorem 7 the limit of the

sequence of non-trivial Bayes-Nash equilibria is

lim
n→∞

σ∗
n(si) =







1 if si = h
1

2
−(1−p)

p
= 2p−1

p
if si = l

. (44)

Therefore for sufficiently large n, the low player must be indifferent between both

actions and the following equality must be satisfied,

Eσ∗nu(a = 1|s = l) = 0 ⇔
(1− p)µ(1− τ) lim

n→∞
ϕ(αHn , n− 1, Bn − 1)

− p(1− µ)τ lim
n→∞

ϕ(αLn , n− 1, Bn − 1) = 0.

In addition, by equation 44, limn→∞ cHn = limn→∞ αHn = p+(1−p)2p−1
p

> p > 1
2

and thus limn→∞ ϕ(αHn , n− 1, Bn − 1) = 1 which yields,

lim
n→∞

ϕ(αLn , n− 1, Bn − 1) =
1− p

p

µ

1− µ

1− τ

τ
.

Recall that by Lemma 7, in large crowdfunding games players are (almost)

non-pivotal as,

lim
n→∞

ϕ(αωn, n− 1, Bn − 1) = lim
n→∞

PrΓn,σ∗n
(cωn − 1 ≥ Bn − 1) =

lim
n→∞

PrΓn,σ∗n
(
cωn
n

− 1

n
> q − 1

n
) = lim

n→∞
ϕ(αωn , n, Bn).

(45)

Thus, by definition of the correctness index,

θ(µ, p, τ) ≥ lim
n→∞

θ(n,
n

2
, µ, p, τ) = µ+(1−µ)(1−1− p

p

µ

1− µ

1− τ

τ
) = 1−1− p

p

1− τ

τ
µ.

Next we show that θ(µ, p, τ) ≤ 1− 1−p
p

1−τ
τ
µ. Let {B∗

n} be a sequence of thresh-

olds for which the optimal correction is achieved. We show that limn→∞
B∗

n

n
=

q∗ > 1− p. Assume by contradiction that limn→∞
B∗

n

n
= q∗ ≤ 1− p. By Lemma 44,

this entails that,

lim
n→∞

cHn = lim
n→∞

αHn = p
q∗

1− p
> q∗,
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and thus limn→∞ ϕ(limn→∞ αH∞, B
∗
n − 1, n − 1) = 1. Again by Lemma 44, the

high player is eventually indifferent between both actions and thus the following

equality must be satisfied,

lim
n→∞

Eσ∗nu(a = 1|s = h) = 0 ⇔ pµ(1−τ)−(1−p)(1−µ)τ lim
n→∞

ϕ( lim
n→∞

αLn , n−1, B∗
n−1) = 0

and thus ϕ(limn→∞ αLn , B
∗
n − 1, n− 1) = pµ(1−τ)

(1−p)(1−µ)τ
.

By the definition of correctness and by Lemma 7,

lim
n→∞

θ(n,B∗
n, µ, p, τ) = µ+(1−µ)(1− pµ(1− τ)

(1− p)(1− µ)τ
) = 1− p

1− p

1− τ

τ
µ < 1−1− p

p

1− τ

τ
µ,

a contradiction as we saw that the latter expression can be achieved for Bn = n
2
.

As limn→∞
B∗

n

n
= q∗ > 1 − p, by Lemma 44, high player eventually surely

contribute and low players eventually become indifferent between choosing both

actions, thus limn→∞ ϕ(αHn n− 1, B∗
n − 1) = 1. Therefore the maximal correctness

index is bounded from above by the following linear programming problem,

max µ+ (1− µ)(1− y)

s.t. 1 ≥ y ≥ 0

(1− p)µ(1− τ)− p(1− µ)yτ = 0.

Which is simply

y =
1− p

p
µ1− µ

1− τ

τ
.

and thus by definition of asymptotic correctness,

θ(µ, p, τ) ≤ 1− 1− p

p

1− τ

τ
µ.

Theorem 9. • If µ < 1
3
and p ≤

√
3 − 1, or if µ < 1

3
, p >

√
3 − 1 and

τ > 2µ
(1−µ)p+2(1−p)µ)

then

lim
n→∞

max
B∈{1...n}

Rµ(n,B, τ) = µp+ (1− µ)
1− p

2
.

• Otherwise,

lim
n→∞

max
B∈{1...n}

Rµ(n,B, τ) = µ(1 +
1− p

p

1− τ

τ
)
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Proof. First note that in any game Γ(n,B, µ, p, τ), the participation is bounded

by

1(µϕ(αH, n− 1, B − 1) + (1− µ)ϕ(αL, n− 1, B − 1)) ≥ R(n,B, µ, p, τ) ≥ (46)

≥ B

n
(µϕ(αH, n− 1, B − 1) + (1− µ)ϕ(αL, n− 1, B − 1)).

Next we show that the asymptotic participation is bounded from bellow by

the following expression

R(µ, p, τ) ≥ µ(1 +
1− p

p

1− τ

τ
).

Consider a sequence {Bn} such that Bn = n
2
. As limn→∞

Bn

n
= 1

2
> 1− p, by The-

orem 7 and the law of large numbers we get that the proportion of contribution

when the state is H converges to, limn→∞ cHn = αHn = p + (1 − p)
1

2
−(1−p)

p
>

1
2
and thus the probability that the product succeeds in state H approaches

limn→∞ ϕ(αHn , n, Bn) = 1.

In addition, by Lemma ??, the low player is eventually indifferent between

both actions, thus the following equality is satisfied for large ns,

lim
n→∞

Eσ∗nu(a = 1|s = l) = 0 ⇒ (1−p)µ(1−τ)−p(1−µ)τ lim
n→∞

ϕ(αHn , Bn−1, n−1) = 0,

and thus limn→∞ ϕ(αHn , Bn − 1, n− 1) = 1−p
p

1−τ
τ

µ

1−µ
. Recall that, by Lemma 7 in

large crowdfunding games players are (almost) non-pivotal as,

lim
n→∞

ϕ(αωn, n− 1, Bn − 1) = lim
n→∞

PrΓn,σ∗n
(cωn − 1 ≥ Bn − 1) =

lim
n→∞

PrΓn,σ∗n
(
cωn
n

− 1

n
> q − 1

n
) = lim

n→∞
ϕ(αωn , n, Bn).

(47)

By the definition of participation and asymptotic participation then,

R(µ, p, τ) ≥ lim
n→∞

R(n,
n

2
, µ, p, τ) = µ(1 +

1− p

p

1− τ

τ
). (48)

Next let {B∗
n} be the sequence for which the maximal asymptotic participation

is achieved. We divide the proof into two cases. (1) where limn→∞
B∗

n

n
= q∗ ≥ 1−p

and (2)limn→∞
B∗

n

n
= q∗ < 1− p.

Case (1) limn→∞
B∗

n

n
= q∗ ≥ 1−p: Similarily to our discussion for the sequence

{n
2
above, by Lemma 44, eventually high players contribute and low players are

indifferent between both actions and thus limn→∞ ϕ(αHn , n − 1, B∗
n − 1) = 1 and

limn→∞ ϕ(αLn , n−1, B∗
n−1) = 1−p

p
1−τ
τ

µ

1−µ
. Therefore by equation 46, the following

condition is satisfied,

lim
n→∞

R(n,B∗n, µ, p, τ) ≤ µ+(1−µ)1 − p

p

1− τ

τ

µ

1− µ
= µ(1+

1− p

p

1− τ

τ
). (49)
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This, together with equation (48) yields that if the maximal asymptotic partici-

pation is acheived for a sequence where limn→∞
B∗

n

n
= q∗ ≥ 1− p, then

R(µ, p, τ = µ(1 +
1− p

p

1− τ

τ
)) ≡ R1.

We denote this expression by R1.

Case (2) limn→∞
B∗

n

n
= q∗ < 1 − p: We can calculate the expected number of

contributions provided that the threshold is reached using the laws of conditional

expectation. First we present the calculations for ω = H. As before, one can

see that in state H the campaign will eventually succeeds. To see that recall by

Theorem 7,

lim
n→∞

cHn = αH( lim
n→∞

σ∗
n) = p

q

1− p
> q

and hence by the law of large numbers limn→∞ ϕ(αHn , n−1, Bn−1) = 1. Therefore,

at H, the sum of contributions conditional on the campaign success equals the

expected number of contributions and,

lim
n→∞

cHn |cHn ≥Bn−1 = lim
n→∞

cHn
n

= p
q

1− p
. (50)

Next we calculate the expected number of contributions when omega = L and the

population size increases. We will use the ”Binomial approximation to Normal

distribution” (see [6]).

By [6] pp. 174 - 187, Let Z ∼ Bin(n, γ) be a random variable for some γ < 1

and define the transformation

R =
Z − nγ

√

nγ(1− γ)
.

By DeMoivre-Laplace limit theorem, as q < 1− p < 0.5 and n→ ∞, the distribu-

tion of R approaches the standard normal distribution (See [6] page 186, Theorem

2 and equation 3.18.). Therefore

lim
n→∞

Pr(Z > nγ) = lim
n→∞

Pr(R > 0) =
1

2
.

Next we calculate the conditional expected value of Z,

E(Z|Z > nγ) = E(
√

nγ(1− γ) ∗R + nγ|
√

nγ(1− γ) ∗R + nγ > nγ) =
√

nγ(1− γ)E(R|
√

nγ(1− γ) ∗R > 0) + nγ =
√

nγ(1− γ)E(R|R > 0) + nγ =

√

nγ(1− γ)

√

2

π
+ nγ.

(51)
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As q < 1− p, By Theorem 7 we get that

lim
n→∞

cLn = αLn = (1− p)
q

1− p
= q.

Therefore, by equation (51),

lim
n→∞

Eσ∗nc
L
n |
cLn
n
> q = lim

n→∞

1

2
(

√

2

π

q(1− q)

n
+ q) =

q

2
. (52)

We plug in equations (50) and (52) and by the law of large numbers,

lim
n→∞

R(n,Bn, µ, p, τ) = µp
q

1− p
+ (1− µ)

q

2
. (53)

The expression in equation (53) increases in q therefore it will be reached when

q∗ → (1− p)−. Therefore if limn→∞
B∗

n

n
= q∗ < 1− p we get that

R(µ, p, τ) = pµ+ (1− µ)
1− p

2
≡ R2.

We denote the expression by R2.

For any 3-tuple (µ, p, τ) of expensive prices, the asymptotic participation index

will be R(µ, p, τ) = max{R1, R2}. Simple algebraic calculations show that R1 ≥
R2 if µ ≥ 1

3
or if µ < 1

3
and p ≤

√
3 − 1 or if µ < 1

3
and p >

√
3 − 1 and

τ > 2µ
(1−µ)p+2(1−p)µ

. Otherwise R2 > R1.

B Calculations for Crowdfunding Games.

Table 5: Calculations of equilibrium strategies and effi-

ciency for Small Crowdfunding Games

µ n p B τ ψ λ Θ R

0.2 40 0.55 2 0.5 0 0 0.800 0

0.2 40 0.55 20 0.5 0.894 0 0.795 0.115

0.2 40 0.55 2 0.7 0 0 0.800 0

0.2 40 0.55 20 0.7 0.670 0 0.807 0.009

0.2 40 0.75 2 0.5 0.135 0 0.670 0.040

0.2 40 0.75 20 0.5 1 0.156 0.953 0.182

0.2 40 0.75 2 0.7 0 0 0.800 0

0.2 40 0.75 20 0.7 1 0.114 0.981 0.165

0.5 40 0.55 2 0.5 1 0 0.500 0.500
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Table 5: Calculations of equilibrium strategies and effi-

ciency for Small Crowdfunding Games

µ n p B τ ψ λ Θ R

0.5 40 0.55 20 0.5 1 0.164 0.606 0.517

0.5 40 0.55 2 0.7 0 0 0.500 0

0.5 40 0.55 20 0.7 1 0 0.736 0.313

0.5 40 0.75 2 0.5 1 0 0.500 0.500

0.5 40 0.75 20 0.5 1 0.254 0.863 0.480

0.5 40 0.75 2 0.7 1 0 0.500 0.500

0.5 40 0.75 20 0.7 1 0.188 0.947 0.426

0.7 40 0.55 2 0.5 1 1 0.700 1

0.7 40 0.55 20 0.5 1 1 0.700 1

0.7 40 0.55 2 0.7 1 0 0.700 0.520

0.7 40 0.55 20 0.7 1 0.164 0.748 0.553

0.7 40 0.75 2 0.5 1 0 0.700 0.600

0.7 40 0.75 20 0.5 1 0.380 0.781 0.717

0.7 40 0.75 2 0.7 1 0 0.700 0.600

0.7 40 0.75 20 0.7 1 0.254 0.918 0.613

0.9 40 0.55 2 0.5 1 1 0.900 1

0.9 40 0.55 20 0.5 1 1 0.900 1

0.9 40 0.55 2 0.7 1 1 0.900 1

0.9 40 0.55 20 0.7 1 1 0.900 1

0.9 40 0.75 2 0.5 1 1 0.900 1

0.9 40 0.75 20 0.5 1 1 0.900 1

0.9 40 0.75 2 0.7 1 1 0.900 1

0.9 40 0.75 20 0.7 1 1 0.900 1

0.2 100 0.55 5 0.5 0 0 0.800 0

0.2 100 0.55 24 0.5 0.417 0 0.796 0.047

0.2 100 0.55 44 0.5 0.887 0 0.786 0.171

0.2 100 0.55 50 0.5 1 0 0.827 0.174

0.2 100 0.55 98 0.5 1 0.818 0.800 0.003

0.2 100 0.55 5 0.7 0 0 0.800 0

0.2 100 0.55 24 0.7 0.316 0 0.807 0.004

0.2 100 0.55 44 0.7 0.800 0 0.859 0.073

0.2 100 0.55 50 0.7 0.943 0 0.875 0.106

0.2 100 0.55 98 0.7 1 0.748 0.800 0
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Table 5: Calculations of equilibrium strategies and effi-

ciency for Small Crowdfunding Games

µ n p B τ ψ λ Θ R

0.2 100 0.75 5 0.5 0.204 0 0.534 0.061

0.2 100 0.75 24 0.5 1 0 0.497 0.289

0.2 100 0.75 44 0.5 1 0.150 0.947 0.182

0.2 100 0.75 50 0.5 1 0.228 0.946 0.189

0.2 100 0.75 98 0.5 1 0.919 0.891 0.175

0.2 100 0.75 5 0.7 0.114 0 0.861 0.024

0.2 100 0.75 24 0.7 0.836 0 0.794 0.179

0.2 100 0.75 44 0.7 1 0.123 0.978 0.166

0.2 100 0.75 50 0.7 1 0.201 0.978 0.171

0.2 100 0.75 98 0.7 1 0.902 0.895 0.124

0.5 100 0.55 5 0.5 1 0 0.500 0.500

0.5 100 0.55 24 0.5 1 0 0.500 0.500

0.5 100 0.55 44 0.5 1 0.045 0.606 0.478

0.5 100 0.55 50 0.5 1 0.154 0.603 0.526

0.5 100 0.55 98 0.5 1 0.954 0.561 0.594

0.5 100 0.55 5 0.7 0.021 0 0.502 0

0.5 100 0.55 24 0.7 0.493 0 0.711 0.162

0.5 100 0.55 44 0.7 0.957 0 0.751 0.366

0.5 100 0.55 50 0.7 1 0.032 0.814 0.339

0.5 100 0.55 98 0.7 1 0.866 0.518 0.037

0.5 100 0.75 5 0.5 1 0 0.500 0.500

0.5 100 0.75 24 0.5 1 0 0.686 0.462

0.5 100 0.75 44 0.5 1 0.211 0.854 0.469

0.5 100 0.75 50 0.5 1 0.291 0.852 0.489

0.5 100 0.75 98 0.5 1 0.951 0.795 0.575

0.5 100 0.75 5 0.7 1 0 0.500 0.500

0.5 100 0.75 24 0.7 1 0 0.686 0.462

0.5 100 0.75 44 0.7 1 0.170 0.941 0.423

0.5 100 0.75 50 0.7 1 0.249 0.940 0.437

0.5 100 0.75 98 0.7 1 0.931 0.823 0.422

0.7 100 0.55 5 0.5 1 1 0.700 1

0.7 100 0.55 24 0.5 1 1 0.700 1

0.7 100 0.55 44 0.5 1 1 0.700 1

50



Table 5: Calculations of equilibrium strategies and effi-

ciency for Small Crowdfunding Games

µ n p B τ ψ λ Θ R

0.7 100 0.55 50 0.5 1 1 0.700 1

0.7 100 0.55 98 0.5 1 1 0.700 1

0.7 100 0.55 5 0.7 1 0 0.700 0.520

0.7 100 0.55 24 0.7 1 0 0.700 0.520

0.7 100 0.55 44 0.7 1 0.045 0.762 0.514

0.7 100 0.55 50 0.7 1 0.154 0.760 0.562

0.7 100 0.55 98 0.7 1 0.954 0.602 0.618

0.7 100 0.75 5 0.5 1 0 0.700 0.600

0.7 100 0.75 24 0.5 1 0.015 0.783 0.589

0.7 100 0.75 44 0.5 1 0.290 0.777 0.685

0.7 100 0.75 50 0.5 1 0.371 0.776 0.713

0.7 100 0.75 98 0.5 1 0.977 0.759 0.908

0.7 100 0.75 5 0.7 1 0 0.700 0.600

0.7 100 0.75 24 0.7 1 0 0.811 0.577

0.7 100 0.75 44 0.7 1 0.211 0.912 0.603

0.7 100 0.75 50 0.7 1 0.291 0.911 0.623

0.7 100 0.75 98 0.7 1 0.951 0.827 0.692

0.9 100 0.55 5 0.5 1 1 0.900 1

0.9 100 0.55 24 0.5 1 1 0.900 1

0.9 100 0.55 44 0.5 1 1 0.900 1

0.9 100 0.55 50 0.5 1 1 0.900 1

0.9 100 0.55 98 0.5 1 1 0.900 1

0.9 100 0.55 5 0.7 1 1 0.900 1

0.9 100 0.55 24 0.7 1 1 0.900 1

0.9 100 0.55 44 0.7 1 1 0.900 1

0.9 100 0.55 50 0.7 1 1 0.900 1

0.9 100 0.55 98 0.7 1 1 0.900 1

0.9 100 0.75 5 0.5 1 1 0.900 1

0.9 100 0.75 24 0.5 1 1 0.900 1

0.9 100 0.75 44 0.5 1 1 0.900 1

0.9 100 0.75 50 0.5 1 1 0.900 1

0.9 100 0.75 98 0.5 1 1 0.900 1

0.9 100 0.75 5 0.7 1 1 0.900 1
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Table 5: Calculations of equilibrium strategies and effi-

ciency for Small Crowdfunding Games

µ n p B τ ψ λ Θ R

0.9 100 0.75 24 0.7 1 1 0.900 1

0.9 100 0.75 44 0.7 1 1 0.900 1

0.9 100 0.75 50 0.7 1 1 0.900 1

0.9 100 0.75 98 0.7 1 1 0.900 1

0.2 1000 0.55 50 0.5 0.097 0 0.790 0.016

0.2 1000 0.55 240 0.5 0.516 0 0.771 0.113

0.2 1000 0.55 440 0.5 0.958 0 0.766 0.211

0.2 1000 0.55 500 0.5 1 0.065 0.844 0.195

0.2 1000 0.55 980 0.5 1 0.948 0.810 0.100

0.2 1000 0.55 50 0.7 0.085 0 0.838 0.005

0.2 1000 0.55 240 0.7 0.497 0 0.904 0.078

0.2 1000 0.55 440 0.7 0.936 0 0.901 0.147

0.2 1000 0.55 500 0.7 1 0.050 0.934 0.148

0.2 1000 0.55 980 0.7 1 0.939 0.811 0.022

0.2 1000 0.75 50 0.5 0.214 0 0.436 0.064

0.2 1000 0.75 240 0.5 0.992 0 0.414 0.298

0.2 1000 0.75 440 0.5 1 0.223 0.938 0.189

0.2 1000 0.75 500 0.5 1 0.303 0.937 0.197

0.2 1000 0.75 980 0.5 1 0.963 0.934 0.263

0.2 1000 0.75 50 0.7 0.182 0 0.782 0.039

0.2 1000 0.75 240 0.7 0.930 0 0.759 0.199

0.2 1000 0.75 440 0.7 1 0.214 0.974 0.172

0.2 1000 0.75 500 0.7 1 0.294 0.973 0.178

0.2 1000 0.75 980 0.7 1 0.960 0.972 0.225

0.5 1000 0.55 50 0.5 1 0 0.500 0.500

0.5 1000 0.55 240 0.5 1 0 0.500 0.500

0.5 1000 0.55 440 0.5 1 0.006 0.596 0.462

0.5 1000 0.55 500 0.5 1 0.115 0.595 0.511

0.5 1000 0.55 980 0.5 1 0.968 0.586 0.845

0.5 1000 0.55 50 0.7 0.108 0 0.738 0.039

0.5 1000 0.55 240 0.7 0.533 0 0.749 0.209

0.5 1000 0.55 440 0.7 0.978 0 0.745 0.384

0.5 1000 0.55 500 0.7 1 0.078 0.831 0.379
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Table 5: Calculations of equilibrium strategies and effi-

ciency for Small Crowdfunding Games

µ n p B τ ψ λ Θ R

0.5 1000 0.55 980 0.7 1 0.954 0.668 0.342

0.5 1000 0.75 50 0.5 1 0 0.500 0.500

0.5 1000 0.75 240 0.5 1 0 0.611 0.474

0.5 1000 0.75 440 0.5 1 0.243 0.840 0.477

0.5 1000 0.75 500 0.5 1 0.323 0.839 0.497

0.5 1000 0.75 980 0.5 1 0.970 0.834 0.659

0.5 1000 0.75 50 0.7 1 0 0.500 0.500

0.5 1000 0.75 240 0.7 1 0 0.611 0.474

0.5 1000 0.75 440 0.7 1 0.230 0.933 0.434

0.5 1000 0.75 500 0.7 1 0.309 0.932 0.448

0.5 1000 0.75 980 0.7 1 0.966 0.929 0.565

0.7 1000 0.55 50 0.5 1 1 0.700 1

0.7 1000 0.55 240 0.5 1 1 0.700 1

0.7 1000 0.55 440 0.5 1 1 0.700 1

0.7 1000 0.55 500 0.5 1 1 0.700 1

0.7 1000 0.55 980 0.5 1 1 0.700 1

0.7 1000 0.55 50 0.7 1 0 0.700 0.520

0.7 1000 0.55 240 0.7 1 0 0.700 0.520

0.7 1000 0.55 440 0.7 1 0.006 0.757 0.498

0.7 1000 0.55 500 0.7 1 0.115 0.757 0.547

0.7 1000 0.55 980 0.7 1 0.968 0.729 0.879

0.7 1000 0.75 50 0.5 1 0 0.700 0.600

0.7 1000 0.75 240 0.5 1 0 0.767 0.585

0.7 1000 0.75 440 0.5 1 0.268 0.770 0.677

0.7 1000 0.75 500 0.5 1 0.348 0.769 0.705

0.7 1000 0.75 980 0.5 1 0.977 0.767 0.925

0.7 1000 0.75 50 0.7 1 0 0.700 0.600

0.7 1000 0.75 240 0.7 1 0 0.767 0.585

0.7 1000 0.75 440 0.7 1 0.243 0.904 0.611

0.7 1000 0.75 500 0.7 1 0.323 0.903 0.631

0.7 1000 0.75 980 0.7 1 0.970 0.900 0.792

0.9 1000 0.55 50 0.5 1 1 0.900 1

0.9 1000 0.55 240 0.5 1 1 0.900 1
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Table 5: Calculations of equilibrium strategies and effi-

ciency for Small Crowdfunding Games

µ n p B τ ψ λ Θ R

0.9 1000 0.55 440 0.5 1 1 0.900 1

0.9 1000 0.55 500 0.5 1 1 0.900 1

0.9 1000 0.55 980 0.5 1 1 0.900 1

0.9 1000 0.55 50 0.7 1 1 0.900 1

0.9 1000 0.55 240 0.7 1 1 0.900 1

0.9 1000 0.55 440 0.7 1 1 0.900 1

0.9 1000 0.55 500 0.7 1 1 0.900 1

0.9 1000 0.55 980 0.7 1 1 0.900 1

0.9 1000 0.75 50 0.5 1 1 0.900 1

0.9 1000 0.75 240 0.5 1 1 0.900 1

0.9 1000 0.75 440 0.5 1 1 0.900 1

0.9 1000 0.75 500 0.5 1 1 0.900 1

0.9 1000 0.75 980 0.5 1 1 0.900 1

0.9 1000 0.75 50 0.7 1 1 0.900 1

0.9 1000 0.75 240 0.7 1 1 0.900 1

0.9 1000 0.75 440 0.7 1 1 0.900 1

0.9 1000 0.75 500 0.7 1 1 0.900 1

0.9 1000 0.75 980 0.7 1 1 0.900 1

0.2 5000 0.55 250 0.5 0.107 0 0.773 0.024

0.2 5000 0.55 1200 0.5 0.526 0 0.763 0.116

0.2 5000 0.55 2200 0.5 0.969 0 0.760 0.213

0.2 5000 0.55 2500 0.5 1 0.080 0.840 0.198

0.2 5000 0.55 4900 0.5 1 0.500 0.800 0

0.2 5000 0.55 250 0.7 0.103 0 0.903 0.016

0.2 5000 0.55 1200 0.7 0.518 0 0.899 0.081

0.2 5000 0.55 2200 0.7 0.960 0 0.898 0.151

0.2 5000 0.55 2500 0.7 1 0.073 0.932 0.151

0.2 5000 0.55 4900 0.7 1 0.500 0.800 0

0.2 5000 0.75 250 0.5 0.207 0 0.416 0.062

0.2 5000 0.75 1200 0.5 0.975 0 0.406 0.293

0.2 5000 0.75 2200 0.5 1 0.240 0.935 0.191

0.2 5000 0.75 2500 0.5 1 0.320 0.935 0.199

0.2 5000 0.75 4900 0.5 1 0.969 0.934 0.264
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Table 5: Calculations of equilibrium strategies and effi-

ciency for Small Crowdfunding Games

µ n p B τ ψ λ Θ R

0.2 5000 0.75 250 0.7 0.193 0 0.760 0.041

0.2 5000 0.75 1200 0.7 0.948 0 0.750 0.203

0.2 5000 0.75 2200 0.7 1 0.236 0.972 0.174

0.2 5000 0.75 2500 0.7 1 0.316 0.972 0.180

0.2 5000 0.75 4900 0.7 1 0.968 0.972 0.226

0.5 5000 0.55 250 0.5 1 0 0.500 0.500

0.5 5000 0.55 1200 0.5 1 0 0.500 0.500

0.5 5000 0.55 2200 0.5 1 0 0.538 0.484

0.5 5000 0.55 2500 0.5 1 0.102 0.593 0.505

0.5 5000 0.55 4900 0.5 1 0.500 0.500 0

0.5 5000 0.55 250 0.7 0.111 0 0.750 0.044

0.5 5000 0.55 1200 0.7 0.534 0 0.743 0.210

0.5 5000 0.55 2200 0.7 0.978 0 0.741 0.384

0.5 5000 0.55 2500 0.7 1 0.086 0.827 0.381

0.5 5000 0.55 4900 0.7 1 0.500 0.500 0

0.5 5000 0.75 250 0.5 1 0 0.500 0.500

0.5 5000 0.75 1200 0.5 1 0 0.525 0.494

0.5 5000 0.75 2200 0.5 1 0.249 0.836 0.479

0.5 5000 0.75 2500 0.5 1 0.329 0.836 0.499

0.5 5000 0.75 4900 0.5 1 0.972 0.834 0.660

0.5 5000 0.75 250 0.7 1 0 0.500 0.500

0.5 5000 0.75 1200 0.7 1 0 0.525 0.494

0.5 5000 0.75 2200 0.7 1 0.243 0.930 0.436

0.5 5000 0.75 2500 0.7 1 0.323 0.930 0.451

0.5 5000 0.75 4900 0.7 1 0.970 0.929 0.566

0.7 5000 0.55 250 0.5 1 1 0.700 1

0.7 5000 0.55 1200 0.5 1 1 0.700 1

0.7 5000 0.55 2200 0.5 1 1 0.700 1

0.7 5000 0.55 2500 0.5 1 1 0.700 1

0.7 5000 0.55 4900 0.5 1 0.500 0.300 0

0.7 5000 0.55 250 0.7 1 0 0.700 0.520

0.7 5000 0.55 1200 0.7 1 0 0.700 0.520

0.7 5000 0.55 2200 0.7 1 0 0.723 0.510
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Table 5: Calculations of equilibrium strategies and effi-

ciency for Small Crowdfunding Games

µ n p B τ ψ λ Θ R

0.7 5000 0.55 2500 0.7 1 0.102 0.756 0.541

0.7 5000 0.55 4900 0.7 1 0.500 0.300 0

0.7 5000 0.75 250 0.5 1 0 0.700 0.600

0.7 5000 0.75 1200 0.5 1 0 0.715 0.597

0.7 5000 0.75 2200 0.5 1 0.260 0.768 0.674

0.7 5000 0.75 2500 0.5 1 0.340 0.768 0.702

0.7 5000 0.75 4900 0.5 1 0.975 0.767 0.925

0.7 5000 0.75 250 0.7 1 0 0.700 0.600

0.7 5000 0.75 1200 0.7 1 0 0.715 0.597

0.7 5000 0.75 2200 0.7 1 0.249 0.902 0.612

0.7 5000 0.75 2500 0.7 1 0.329 0.902 0.632

0.7 5000 0.75 4900 0.7 1 0.972 0.900 0.793

0.9 5000 0.55 250 0.5 1 1 0.900 1

0.9 5000 0.55 1200 0.5 1 1 0.900 1

0.9 5000 0.55 2200 0.5 1 1 0.900 1

0.9 5000 0.55 2500 0.5 1 1 0.900 1

0.9 5000 0.55 4900 0.5 1 0.500 0.100 0

0.9 5000 0.55 250 0.7 1 1 0.900 1

0.9 5000 0.55 1200 0.7 1 1 0.900 1

0.9 5000 0.55 2200 0.7 1 1 0.900 1

0.9 5000 0.55 2500 0.7 1 1 0.900 1

0.9 5000 0.55 4900 0.7 1 0.500 0.100 0

0.9 5000 0.75 250 0.5 1 1 0.900 1

0.9 5000 0.75 1200 0.5 1 1 0.900 1

0.9 5000 0.75 2200 0.5 1 1 0.900 1

0.9 5000 0.75 2500 0.5 1 1 0.900 1

0.9 5000 0.75 4900 0.5 1 1 0.900 1

0.9 5000 0.75 250 0.7 1 1 0.900 1

0.9 5000 0.75 1200 0.7 1 1 0.900 1

0.9 5000 0.75 2200 0.7 1 1 0.900 1

0.9 5000 0.75 2500 0.7 1 1 0.900 1

0.9 5000 0.75 4900 0.7 1 1 0.900 1
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