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We study mechanism design for procurement auctions in which the goal is to buy a subset of items or hire a

team of providers. In order to measure the efficiency of a mechanism, one defines an appropriate benchmark

which denotes a reasonable expectation of the payments and defines the overpayment of a mechanism based on

the benchmark. This ratio is called the frugality ratio of the mechanism. Procurement auctions are well-studied

and benchmarks proposed for these auctions have evolved over a sequence of papers [2, 5, 8, 12, 13]. In

this work, we introduce a newer benchmark, and based on that, study classic procurement auctions. Our

benchmark addresses critical issues raised by the unintuitive behavior of the previous benchmarks. We show

two attractive properties for our benchmark which have been lacking in the previous proposals: monotonicity
and smoothness.

Based on our benchmark, we provide positive results for vertex cover and knapsack auctions. Prior to this

work, Kempe et al. [13] propose a constant approximation mechanism for vertex cover auctions. However,

their analysis suffers from an error. We give a correct analysis to the mechanism of Kempe et al. [13] with
respect to our benchmark. In particular, we prove their mechanism is optimal up to a constant factor. Our

analysis is different from what Kempe et al. [13] propose. We also study the knapsack auctions and give a

truthful mechanism for such auctions with a bounded frugality ratio. We show that this is almost tight by

presenting a lower bound on the frugality ratio of any truthful mechanism for such auctions. All our results
depend on both properties of the benchmark. 1

CCS Concepts: • Theory of computation → Algorithmic game theory and mechanism design;

Additional Key Words and Phrases: Frugal, Knapsack, Vertex Cover

1 INTRODUCTION
Suppose we want to purchase a number of different items or hire a team to accomplish certain tasks.

It is quite common that the items or people are interchangeable. In other words, every task can be

performed by different groups of people which naturally leads to a competition between individuals.

As an example, suppose a government wishes to connect a city to another one, by building roads

between intermediary cities. Constructing each road can be entrusted with a contractor at a certain
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cost. It is not natural to expect the contractors to reveal the true cost of their service since they

are selfishly motivated. Therefore one of the key difficulties, especially from the government’s

perspective, is to find out which subset of roads to build andwhat the actual cost of each construction

is. A very effective and commonly used approach (see e.g. [10, 11]) is to design a procurement

auction and hope that the competition between contractors keeps the costs low enough. The goal

is then to design a mechanism for the auction to (i) make the providers truthful (i.e., leave no

incentive for the providers to misrepresent their costs) (ii) do not overpay by much.

Procurement auctions have been extensively studied in the literature [4, 6, 7, 10, 11, 15]. A

mechanism for a procurement auction is an algorithm that receives the bids as input and specifies a

subset of bidders as the winning set. In addition to the selection of the providers, the payments are

also determined by the mechanism. It is shown that if the selection rule is monotonic (decreasing

the bid of each provider increases his likelihood of winning), the payments are uniquely determined

by Myerson’s characterization of truthful mechanisms. Truthfulness makes the market transparent

and reveals the actual costs. However, as a downside, the payments of a truthful mechanism

are inevitably higher than the announced costs. Therefore, it is crucial to define a measure to

evaluate the overpayment and as such, the efficiency of mechanisms. One natural way to define

the overpayment is to compare the total payment of the auctioneer to the total cost of the cheapest

option. However, this formulation becomes unbounded for all truthful mechanisms in most cases

and thus can’t be used to evaluate mechanisms.

One way to achieve this goal is by defining a benchmark and comparing the payments of the

mechanism to the benchmark as the ratio of the overpayment. Such a benchmark receives the costs

as input and maps these values to a non-negative real number. The goal then is to minimize the

ratio of the mechanism’s total payment to the value of the benchmark. This formulation was first

defined by the pioneering work of Archer and Tardos [2] who call this ratio the frugality ratio of a

truthful mechanism. In their work, they also propose a benchmark which is the cost of the second

cheapest option. However, this measure was specifically designed to study the shortest path auction,

and hence it was not extensible to general problems. Later, several attempts were made to improve

the benchmark of Archer and Tardos [2], but none of the proposed benchmarks seem to be a right

fit for the problem setting (see the full-version for a more detailed review). Perhaps the reason

that studying frugal mechanisms is unreasonably hard or sometimes faulty is the unexpected and

counterintuitive behavior of the current benchmarks.

Our main contribution is proposing a new benchmark. Our benchmark benefits from two

attractive properties which have been lacking in most of the previous proposals.

• Smoothness: If a provider changes his bid by a small amount ϵ , the benchmark changes by at

most nO (ϵ ) where n is the number of providers.

• Monotonicity: If a provider decreases his bid, the benchmark does not increase.

Almost none
2
of the currently known benchmarks satisfy both of the above properties. This

makes our proposal unique since both properties are naturally expected of a reasonable benchmark.

We use this newer definition to show positive results for many well-studied auctions. We emphasize

that the results presented in this work are based on our benchmark and thus are not direct improve-

ments/corrections of the previous works. Nonetheless, given the justifications of our benchmark,

we believe our results are strong evidence in support of the efficiency of our mechanisms.

2
Except the proposal Karlin et al. [12] that has been ruled out by Elkind et al. [8] due to several undesired computational

and non-computational properties.
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1.1 Our Benchmark
We model an auction by a set system (E,F ) where E denotes the set of providers and F is a

collection of all feasible subsets of providers who can perform the task. For instance, in the case of

shortest path auction, the auctioneer wishes to buy one feasible set of roads to connect the source

to the destination. Therefore, every edge is a provider and every feasible set corresponds to a path

from the source to the destination.

As aforementioned, our proposal is based on the price of cooperation. Suppose the auctioneer

commits to a feasible set S ∈ F and asks the providers to come up with prices. Of course, the prices

should be reasonable, hence, no other feasible set T ∈ F should be cheaper for the auctioneer. The

maximum total payment of the auctioneer in this case is when all the winning providers collude to

maximize the total payment. Therefore, we assume the providers cooperate in order to maximize

the total payment of the auctioneer. Such prices can be formulated via an LP.

To formulate the above definition, let c denote the true costs of the providers. We define a

function v∗S (c ) for an arbitrary feasible set S as the solution to the following LP:

max v∗S (c ) =
∑

e ∈S xe (1)

s .t . xe = ce ∀e < S (2)

xe ≥ 0 ∀e ∈ S (3)∑
e ∈S xe ≤

∑
e ′∈T xe ′ ∀T ∈ F (4)

Our proposal for the benchmark is the maximum of such values over all choices of feasible sets for

the auctioneer.

Justification of the benchmark: Our benchmark identifies as the worst cooperative equi-

librium. This explains why we take the maximum over all possible sets. Note that the previous

benchmarks were defined based on the cheapest feasible set only because the corresponding LP

was infeasible for the rest of the feasible sets. This is not the case for cooperative equilibria and

therefore we take the maximum value over all possible feasible sets. One may think of xe as a

candidate payment to provider e . This way,v∗S (c ) formulates the smallest payment of the auctioneer

subject to the winning set being a set S . Roughly speaking, the auctioneer has to pay at least v∗S (c )
as there is no better option for him. This intuition justifies the fact that v∗S (c ) is a good candidate

lower bound for the payment of the auctioneer for any S . Therefore, we define our benchmark as

B(E,F ) (c ) = max

S ∈F
v∗S (c ). (5)

Note that since the winning set is not necessarily the cheapest set, we take the maximum of v∗S (c )
over all feasible sets. This is where our definition differs from that of Elkind et al. [8]. To capture

the concept of cooperation in this benchmark, we do not enforce the candidate prices to be higher

than the costs which might, in some cases, leave the LP infeasible. We provide a complete review

of this benchmark, previously existing benchmarks, and their relation and properties in the full

version of the paper.

1.2 An Overview of the Results and Techniques
Our main contribution is a novel and well-motivated benchmark for measuring the efficiency of

truthful mechanisms. Our benchmark is inspired by the work of Elkind et al. [8] in which the

authors suggest “the price of cooperation" to define the frugality ratio of mechanisms. We show

that our benchmark benefits from two important properties monotonicity and smoothness both of

which are naturally expected from a benchmark.
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Note that, most of the previous benchmarks lack either of these properties. For instance, the

benchmark of [5] (v (c )) is not monotone, i.e., an increase in the agents’ costs might result in a

decrease in the benchmark. Similarly, TUMax(c ) and TUMin(c ) proposed by Elkind et al. [8] (worst
and best Nash equilibrium of a utility transferable game) satisfy neither of the properties and thus

show a counterintuitive behavior in certain situations (see the full-version of the paper for more

detail). We show our benchmark is easier to work with, by presenting several positive results for

different set systems. Both properties of our benchmark are essential in proving all results of this

paper.

1.2.1 Vertex Cover Auctions (Section 3). In a vertex cover auction, we are given a graphG and

every provider corresponds to a vertex of the graph. The goal is to hire a set of providers that cover

all edges of the graph. In other words, E = V (G ) and a set S ∈ F if and only if for every edge

(u,v ) ∈ E (G ) either u ∈ S or v ∈ S (or both).

In Section 3, we analyze the mechanism of Kempe et al. [13] for vertex cover auction and prove

a constant competitive factor for this mechanism. Kempe et al. ’s [13] mechanism for vertex cover

is based on a spectral analysis of the graph. They define a matrix WAM(G ) based on the adjacency

matrix of the graph.WAM(G ) is essentially the adjacency matrix of the graph except that the values

are scaled based on the benchmark. Notice that the benchmark of Kempe et al. [13] is different
from our benchmark, however replacing their benchmark with ours doesn’t change the definition

ofWAM(G ).WAM(G ) only depends on the structure of the graph and is regardless of the bids or

costs. Next, they define a weight qv for every vertex v of the graph and later use the weights to

define the winning set of their mechanism. They show the entries of the dominant eigenvector

of this matrix are positive real numbers and thus formulate the weight of each vertex based on

the dominant eigenvector of WAM(G ). We denote the weights of the vertices with vector q where

every qv is the weight of vertex v .
Finally, based on the weights of the elements, they leverage a variant of the VCG mechanism

to purchase the elements. We call such a mechanism a weighted VCG mechanism (WVCG). In a

WVCG mechanism, every element is associated with a weight. The winning set of such auctions

is the one with the minimum total weighted cost. Based on this selection rule, the prices are set

according to Myerson’s characterization of truthful mechanisms [14]. Therefore, every WVCG
mechanism is truthful. As such, Kempe et al. [13]’s mechanism chooses the vertex cover with the

minimum total weighted cost and computes the payments based on the Myerson’s rule.

In Section 3.3, we give a correct analysis for the above mechanism and show its frugality ratio is

bounded by the dominant eigenvalue ofWAM(G ). Of course, this proof is based on our benchmark

B(E,F ) (c ).

Theorem 3.5 (restated). The frugality ratio of the vertex cover mechanism is bounded by α where α
is the dominant eigenvalue ofWAM(G ).

The complete proof of this theorem appears in Section 3.3.

The intuition behind the proof is that we charge the payments to the value of our benchmark.

Recall that B(E,F ) (c ) = maxS ∈F v
∗
S (c ) and the value of function v∗S (c ) for a specific set S is

determined by variables xe ’s (see LP 1). Let Sw be the winning set of the mechanism and x be a

solution to the LP corresponding to v∗Sw (c ) . We redistribute the value of xe for each element e < Sw

in an optimal solution of v∗Sw (c ) in a way that guarantees the following condition: the payment to

every provider is at most α times the value distributed to him. To this end, we leverage spectral

techniques and exploit properties of the dominant eigenvector ofWAM(G ). The redistribution is

essentially a double counting argument based on the payments in specific instances of the problem.

Theorem 3.5 follows from the conditions of our redistribution.
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Kempe et al. [13] also show a lower bound on the frugality ratio of any truthful mechanism for

the vertex cover auction. More precisely, they show the frugality ratio of any truthful mechanism

is at least α/2 where α is the largest eigenvalue of WAM(G ). We show a similar analysis works for

our benchmark and hence such a lower bound holds in our setting. We extend this lower bound to

randomized mechanisms as well.

Theorem 3.6 (restated). No truthful randomized mechanism can get a frugality ratio better than α/4.

For the complete proof see Section 3.4. The above theorem along with Theorem 3.5 proves a

constant competitive factor (4) for this mechanism.

One may ask how is our result different from the work of Chen et al. [5]? We emphasize that the

result of Chen et al. is not constant competitive. None of the previous work provides any constant

competitive analysis for any vertex cover mechanism. We present a new analysis for the mechanism

of Kempe et al. [13] with respect to our benchmark and show it is constant competitive.

1.2.2 Knapsack Auctions (Section 4). Knapsack auctions have been studied in the literature of

both economics and computer science [1, 3, 9, 16]. Knapsack auction captures natural economic

interactions. For instance, when a company or individual aims at purchasing at least a specific

amount of advertisement opportunities, the problem can be modeled via a knapsack auction. In

knapsack auctions, every item has an integer volume and an auctioneer wishes to purchase a subset

of items having a total volume of at least a certain number. In the knapsack auction, every element

e corresponds to a volume ve and every feasible set is a subset of items that has a total volume of

at least k . All the volumes are at least 1, i.e., vi ≥ 1 for all items. In other words, E = {1, 2, . . . , |E |}
and F includes every subset S of E such that∑

e ∈S

ve ≥ k .

In Section 4, we present an approximately optimal mechanism for such auctions.

Theorem 4.3 (restated). There exists a weighted VCG mechanism for the knapsack auction with a
frugality ratio of at most

√
2vmax where vmax is an upper bound on the volume of the elements.

Our proposal is again aWVCG mechanism described below.

• Every element e has a weightwe = 1/
√
ve and the winning set is a feasible subset of elements

with the smallest total sum of the weighted costs.

• The payment to every element e is set to its critical value, and as such, the mechanism is

truthful.

In Section 4 we show the frugality ratio of the above mechanism is bounded by

√
2vmax. To this

end, we consider an instance of the knapsack auction and run the above mechanism to specify

the winning set Sw and the associated payments to the elements of Sw. More precisely, for every

element e in the winning set, we define pe as the payment made by the auctioneer to element e .
Next, we provide a feasible solution for the benchmark LP. To do so, for every element e in the

winning set, we define xe = pe/
√
2vmax and for every element e outside the winning set we set

xe = ce . According to Lemma 4.2, we argue that x is a feasible solution for v∗Sw (c ) and thus the total

sum of payments made by the mechanism is bounded by

√
2vmax times the value of the benchmark.

The reader can find the complete proof in Section 4. This result is followed by an almost matching

lower bound.

Theorem 4.1 (restated). No truthful mechanism can guarantee a frugality ratio better than
√
vmax.
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The counter-example of Theorem 4.1 is essentially equivalent to a star instance in the vertex

cover auctions. We translate such an instance of the vertex cover auction into a knapsack auction by

putting an item for every vertex and setting the sizes in a way that the edge constraints are implied.

Theorem 4.1 along with Theorem 4.3 proves that our mechanism is optimal up to a constant factor
√
2.

2 PRELIMINARIES
A set system is a pair (E,F ) where E denotes the set of all ground elements and F ⊂ 2

E
denotes

the list of all feasible subsets of the elements. In this setting, an auctioneer wants to purchase a

feasible subset of elements S ∈ F , and each element e ∈ E is owned by a selfish strategic agent.

For instance, in the case of shortest path auction, every element of the ground set corresponds to

an edge of the graph and every feasible set in F is a path from the source to the target. Similarly,

in a vertex cover system, every element corresponds to a vertex of the graph and every feasible set

is a vertex cover of the graph.

A set system is called monopoly-free, if no element appears in all feasible sets (

⋂
Si ∈F Si = ∅). We

assume both the auctioneer and providers have the full information of the set system in advance

and the auction is monopoly-free. Every provider e ∈ E has a private cost ce for the service or
product he is offering. The auction proceeds as follows:

(1) Every provider submits a bid be for his service. At this point, he is aware of the set system,

the costs, and the mechanism which the auctioneer uses to run the auction.

(2) The auctioneer receives all of the bids, he will then run a predetermined mechanismM to

select a winning set S ∈ F and assign a payment pe ≥ be to every element e ∈ S .

A mechanismM for such an auction is an algorithm that receives a set system (E,F ) and a vector

b = ⟨b1, . . . ,b |E |⟩ of bids as input, and reports a feasible set S ∈ F and a payment p : S → R to the

providers such that pe ≥ be for every e ∈ S .
A mechanism is called truthful, if it is in every provider’s best interest to report his bid be equal

to the cost of his service ce . It is known that a mechanism is truthful if and only if no losing agent

can become a winner by increasing his cost and the payment of each winner is set to the highest

value for which he remains in the winning set. We refer to this as the agent’s critical value.

We measure the performance of a mechanismM by comparing the total payments of an auction-

eer who usesM to a benchmark. Note that, since our focus is on truthful mechanisms, we assume

that all of the bids are equal to the true costs and use the terms bid and cost interchangeably. For a

set system (E,F ) and a cost vector c = ⟨c1, c2, . . . , c |E |⟩, we denote our benchmark by B(E,F ) (c )
or just B (c ) when the parameters are clear from the context. We review different benchmarks and

show the properties of our benchmark in the full-version of the paper.

The frugality ratio of a mechanismM is formulated as

FR(M, (E,F )) = sup

c

PM, (E,F ) (c )

B(E,F ) (c )

where PM, (E,F ) (c ) denotes the total sum of payments when the auctioneer runs mechanismM on

cost vector c for set system (E,F ). Similarly, the competitive ratio of a set system is defined as

FR(E,F ) = inf

M
FR(M, (E,F ))

whereM is a truthful mechanism.

Finally, we say a mechanismM is κ-competitive for a set system (E,F ) if

FR(M, (E,F )) ≤ κ · FR(E,F ).
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Throughout this paper, we design competitive mechanisms or mechanisms with bounded frugality

ratios for classic set systems such as vertex cover and knapsack. We formally define these set

systems as follows.

Definition 2.1. Given a connected graph G = ⟨V (G ),E (G )⟩, a vertex cover set system is a pair

(E,F ) such that E = V (G ) and F is the set of all vertex covers ofG. More precisely, a subset of

vertices S is in F if and only if every edge e ∈ E (G ) is incident to at least a vertex of S .

We use the notation N (u) to refer to the set of the neighbors of a vertex u in a graph.

Definition 2.2. Given a collectionU of items, a vector v specifying the volumes of the items inU ,

and an integer number k , a set system (E,F ) is a knapsack set system, if E = U and F contains

every subset of S whose total sum of volumes is at least k . All the volumes are integer numbers

greater than or equal to 1.

Finally, we define a class of truthful mechanisms for set systems. This class is a generalization of

the well-known VCG mechanisms and has been used for many different auctions.

Definition 2.3. A WVCG mechanismM for a set system (E,F ) is associated to a weight vector

w = ⟨w1,w2, . . . ,w |E |⟩. For every cost vector c , it selects a feasible set S ∈ F with the minimum

weighted sum of costs (i.e.
∑

e ∈S cewe is minimized) . The payments are set to the critical values,

and hence everyWVCG mechanism is truthful.
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3 VERTEX COVER
As mentioned before, Kempe et al. [13] propose a mechanism for the vertex cover auction and

claim their mechanism is constant competitive with regard to their benchmark. However, the proof

they provide is not entirely correct. In this section, we first explain the mechanism and show why

their proof fails. Next, we provide an alternative proof for the upper bound of the mechanism with

regard to our benchmark. Moreover, in Section 3.4, we show the analysis of Kempe et al. [13] gives
the same lower bound on the frugality ratio of truthful mechanisms for our benchmark. We also

extend this lower bound to all randomized truthful mechanisms. This result in addition to the upper

bound given in Section 3.3 proves that the proposed mechanism is 4 competitive.

3.1 Mechanism
In this section, we explain the mechanism of Kempe et al. [13] for the vertex cover auction, namely

MVC
. Let G = (V ,E) be the underlying graph and the goal be to purchase a vertex cover of G.

Without loss of generality, we assumeV = {1, 2, . . . ,n} and the cost of each vertex u is cu . For each
node u ∈ V , let 1u be an n-dimensional vector with all indices equal to 0 except for index u which

is equal to 1. We define the externality of node u as follows:

Definition 3.1. The externality of node u denoted by βu is defined as the value of the benchmark

for cost vector 1u. In other words βu = B (1u) (recall Equation (5)).

Roughly speaking, βu reflects the amount of cost incurred to the auctioneer to cover all of the

edges of the graph without buying u. Let WAM(G ) be a weighted adjacency matrix of graph G
where the weight of an edge (u,v ) depends on the externality of vertex u. More precisely

WAM(G )(u,v ) =



0, if (u,v ) < E
1

βu
, if(u,v ) ∈ E.

We denote the dominant eignevalue ofWAM(G ) by α and refer to its corresponding eignevector

with q. By the Perron-Frobenius theorem, eigenvalues of WAM(G ) are real and indices of q are

non-negative real numbers. MechanismMVC
is a weighted VCG (WVCG) mechanism where the

weight of every vertex i ∈ V iswi = 1/qi . More formallyMVC
is defined as follows.

• The winning set is a vertex cover S with the minimum total sum of weighted costs, i.e,∑
i ∈S wici is minimized.

• The payment of every vertex i is its critical value.

Since we set the payment of each node u to its critical value, the mechanism is truthful.

3.2 Counter-Example to the Argument of Kempe et al. [13]
In the following, we give a counter-example to the proof of Kempe et al. [13] for showing that

MVC
has a frugality ratio of at most α . The faulty part of their argument is for bounding the sum

of the payments ofMVC
over their benchmark (the optimal value of LP 6 which is equal to v (c )).

They claim that the following equation holds based on the linearity of their benchmark (v (c )).

v (c ) ≥
∑
u

cuv (1u).
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We show that this is not the case by a counter-example. Let us first formulate v (c ) by a linear

program:

max v (c ) =
∑

e ∈Sc xe (6)

s .t . xe = ce ∀e < Sc

xe ≥ ce ∀e ∈ Sc∑
e ∈Sc xe ≤

∑
e ∈T xe ∀T ∈ F

In the above formulation, Sc denotes the cheapest feasible set. Here we give a counter-example in

which the optimal solution of the above LP is smaller than

∑
u cuv (1u). Kempe et al. [13] support

their argument with the following incorrect statement: if we define x (u )
as the optimal solution

of v (1u) then x =
∑
u cux

(u )
is a feasible solution for v (c ). We show in the following that such a

solution for v (c ) does not necessarily have a value of at least

∑
u cuv (1u). The example is shown in

Figure 1.

1

2

3 4

5

6

Sc

Fig. 1. The counter-example graph. Here all the costs are equal to 1 and the optimal vertex cover is shown by
Sc.

The following table illustrates the values of vector x in an optimal solution of v (1u) for each
u ∈ {1, . . . , 6}. We refer to these variables as x (u )

for each vertex u.

v (c ) x (u )

v (11) = 1 (1, 0, 1, 0, 0, 0)

v (12) = 1 (0, 1, 1, 0, 0, 0)

v (13) = 1 (1, 0, 1, 0, 0, 0)

v (14) = 1 (0, 0, 0, 1, 0, 1)

v (15) = 1 (0, 0, 0, 1, 1, 0)

v (16) = 1 (0, 0, 0, 1, 0, 1)

All costs in this example are equal to 1, i.e., c = ⟨1, 1, 1, 1, 1, 1⟩. Moreover, the cheapest feasible

sets (Sc) are different for different x (u )
’s. For instance, when c = 11, one possible cheapest set is {3, 4}

whereas when c = 13, one cheapest set is {4, 1, 2}. Since x =
∑
u cux

(u )
we have x = ⟨2, 1, 3, 3, 1, 2⟩.

Moreover, the objective function of LP 6 for x is 6 although the optimal solution (v (c )) is actually 4

which can be obtained by vector ⟨1, 1, 2, 2, 1, 1⟩. This shows that they bound the total payment of

MVC
by some value higher than their benchmark. The same counter-example holds even when

applying their argument to our benchmark.

3.3 Upper Bound on the Frugality Ratio ofMVC

Recall that α is the dominant eigenvalue of matrixWAM(G ) corresponding to eigenvector q. We

show that the frugality ratio ofMVC
is bounded by α with respect to our benchmark.
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The main steps for showing such an upper bound on the frugality ratio ofMVC
are the following:

recall that the externality of a node u (βu ) is defined as the value of the benchmark for cost vector

1u. We fix the feasible set purchased by the mechanism to be a vertex cover Sw and in Lemma 3.2

show an upper bound on the total payment of the mechanism. The upper bound follows from the

fact that our mechanism buys a set Sw with the minimum total weighted costs and the payments are

set according to the Myerson’s characterization of the truthful mechanisms. Thus, the payment to

every vertex u ∈ Sw is bounded by a linear expression in terms of the costs of the vertices in N (u).
This enables us to prove an upper bound of (

∑
u<Sw cuβu ) ·α on the total payment of the mechanism.

Next, in Lemma 3.4 we show a lower bound of

∑
u<Sw cuβu for the value of the benchmark B (c ).

Notice that B (c ) ≥ v∗S (c ) for every S ∈ F and therefore B (c ) ≥ v∗Sw (c ) also holds. Therefore, to

show such a lower bound, it only suffices to construct a solution for v∗Sw (c ) that has a value of at

least

∑
u<Sw cuβu . The two bounds together imply that the frugality ratio ofMVC

is bounded by α .
We begin by showing an upper bound on the total payment of the mechanism to the vertices of

the winning set. In Lemma 3.2, we use the fact that Sw is a vertex cover with the minimum total

weighted costs and that the mechanism is truthful. We denote the payment to a vertex u ∈ Sw by

pu .

Observation 3.1. For every u ∈ Sw, pu ≤
∑
v ∈(N (u )\Sw ) cvwv/wu holds.

Proof. This observation follows from the fact that the payment of each provider is determined by

its critical value. Recall that the critical value or payment of vertex u is the minimum bid for which

he remains in the winning set fixing the bids of all other bidders. Now if the critical value of u (pu )
were higher than

∑
v ∈N (u ),v<Sw cvwv/wu then WVCG would select all neighbors of u which are

not in Sw (N (u) \ Sw) instead of u since

∑
v ∈N (u ),v<Sw cvwv would be less than puwu . □

Lemma 3.2.

∑
u ∈Sw pu ≤

( ∑
u<Sw cuβu

)
· α .

Proof. This lemma follows from the following inequalities∑
u ∈Sw

pu ≤
∑
u ∈Sw

∑
v ∈(N (u )\Sw )

cvwv/wu Observation 3.1

=
∑
v<Sw

∑
u ∈N (v )

cvwv/wu Sw is a vertex cover

=
∑
v<Sw

cv
qv

∑
u ∈N (v )

qu wu = 1/qu

=
∑
v<Sw

cvβv
qv

∑
u ∈N (v )

qu/βv

=
∑
v<Sw

cvβv (
1

qv

∑
u ∈N (v )

qu/βv )

=
∑
v<Sw

αcvβv q is an eigenvector of WAM(G)

and α is its corresponding eigenvalue.

□

To complement the result of Lemma 3.2, we aim to prove a lower bound on the value of the

benchmark (B). Let S be a vertex cover of G and x be a feasible solution to v∗S (c ). For each subset
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of nodes U ⊆ V , we define x (U ) as
∑
u ∈U xu . We state the following lemma which reinterprets the

last constraint of LP 1 (the benchmark LP) for vertex cover auctions.

Lemma 3.3. Let ⟨E,F ⟩ be a vertex cover auction on graph G and S ∈ F be a vertex cover of G. A
vector x is a feasible solution of LP 1 for S (v∗S (c )) if and only if
• constraints of type (2) and (3) hold for x
• and for every independent set R ⊆ S we have x (R) ≤ x (N (R) \ S ).

Proof. only if part. If x is a feasible solution for v∗S (c ) then clearly constraints of type (2) and (3)

hold. Now for every independent set R ⊆ S , letT be equal to (S \R) ∪ (N (R) \S ).T is a vertex cover

ofG since every edge with one endpoint in R will be covered by either N (R) \ S or S \ R. Moreover,

the rest of the edges will be covered by S \R. Therefore, by Constraint (4) and the fact that R ⊆ S we

have x (S ) = x (S \R)+x (R) ≤ x (T ) which can be written as x (S \R)+x (R) ≤ x (S \R)+x (N (R) \S )
and hence x (R) ≤ x (N (R) \ S ).

if part. Let T ∈ F be an arbitrary vertex cover of G. S \T is an independent set and N (S \T )
is a subset of T since otherwise T would not be a vertex cover. Moreover, let R = S \ T be an

independent set of S . Therefore we have

x (R) ≤ x (N (R) \ S ) assumption of the lemma

x (R) + x (S \ R) ≤ x (N (R) \ S ) + x (S \ R) add x (S \ R) to both sides

x (S ) ≤ x (N (R) \ S ) + x (S \ R)

x (S ) ≤ x (T ) N (R) \ S and S \ R

are disjoint subsets of T

and thus constraints of type (4) hold for every vertex cover T ∈ F and therefore x meets all

constraints of LP 1. □

Now we are ready to prove the lower bound on the value of B. Let c be a vector of costs for
the providers and Sw be the set of items thatMVC

buys. For every u < Sw, let set Su be a vertex

cover such that βu = B (1u) = v∗
Su

(1u). In other words, v∗
Su

(1u) is at least as large as v∗S (1
u) for

every vertex cover S of G. If there are multiple vertex covers that maximize v∗
Su

(1u), we select
the one that does not contain u and if there are still more than one such vertex covers, we select

one arbitrarily. In the following, we claim that u < Su holds for all Su . Another way to interpret

Observation 3.2 is that for every vertex u, there always exists a vertex cover S that does not contain

u but maximizes v∗S (1
u).

Observation 3.2. No vertex cover Su contains vertex u.

Proof.We consider two cases. The first case is where B (1u) = 0. In this case for every vertex cover

S ∈ F we have v∗S (1
u) = 0 and hence any vertex cover that does not contain u is a candidate for

Su and thus Su does not contain u. Next we investigate the case where B (1u) > 0. Note that in

this case if u ∈ Su then it implies B (1u) = 0 which is self-contradictory. □

Next, we show that B (c ) is at least
∑
u<Sw cuβu .

Lemma 3.4. B (c ) ≥
∑
u<Sw cuβu .

Proof. To show the lemma, we construct a solution for v∗Sw (c ) as follows. Let vector x (u )
be a

feasible solution that maximizes v∗
Su

(1u). For every vertex u ∈ Sw, we set xu =
∑
v<Sw cux

(u )
v and

for every vertex u < Sw we set xu = cu .
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We argue that 1) x is a feasible solution for v∗Sw (c ) and 2) the objective value of solution x for

v∗Sw (c ) is equal to
∑
u<Sw cuβu . These two together imply that B (c ) ≥ v∗Sw (c ) ≥

∑
u<Sw cuβu and

hence the lemma holds. We present the proof of each claim separately.

Proof of the feasibility of x for v∗Sw (c ): Notice that constrints of type (2) and (3) trivially hold

for solution x . Therefore, by Lemma 3.3, it only suffices to show that for every independent set

R ⊆ Sw we have x (R) ≤ x (N (R) \ Sw) to complete the proof of this part. In what follows, we prove

this inequality. Since x (u )
is a feasible solution for v∗

Su
(1u), it follows from Lemma 3.3 that∑

v ∈R

x (u )
v ≤ x (u ) (N (R) \ Su ) =

∑
v ∈N (R )\Su

1uv ≤ 1

for solution x (u )
of v∗

Su
(1u) and any independent set R ⊆ Su . Morever, by scaling both sides of the

inequality we get ∑
v ∈R

cux
(u )
v ≤ cu (7)

for every independent set R ⊆ Su . For any v < (Su ∪ {u}) we have x (u )
v = 0. This implies that if

u < Sw, then x (u )
v = 0 holds for every v ∈ (Sw \ Su ). This, in addition to Inequality (7) implies that

for every node u < Sw and independent set R ⊆ Sw we have∑
v ∈R

cux
(u )
v ≤ cu

and therefore ∑
u ∈(N (R )\Sw )

∑
v ∈R

cux
(u )
v ≤

∑
u ∈(N (R )\Sw )

cu . (8)

For an independent set R ⊆ Sw and a vertex u < (Sw ∪ N (R)) we have x (u )
v = 0 for every v ∈ R

because of the following argument: If v < Su , x (u )
v = 0 holds by definition. Otherwise the costs

of vertex v and all its neighbors in 1u are equal to zero and if x (u )
v > 0 for a v ∈ R then we can

replace v with all of its neighbors which are not in Su and obtain a vertex cover with a smaller

value. Therefore we can extend Equation (8) to

*.
,

∑
u ∈(N (R )\Sw )

∑
v ∈R

cux
(u )
v +

∑
u<(Sw∪N (R ))

∑
v ∈R

cux
(u )
v

+/
-
≤

∑
u ∈(N (R )\Sw )

cu

Therefore we have

*.
,

∑
u ∈(N (R )\Sw )

∑
v ∈R

cux
(u )
v +

∑
u<(Sw∪N (R ))

∑
v ∈R

cux
(u )
v

+/
-
≤

∑
u ∈(N (R )\Sw )

cu

∑
v ∈R

*.
,

∑
u ∈(N (R )\Sw )

cux
(u )
v +

∑
u<(Sw∪N (R ))

cux
(u )
v

+/
-
≤

∑
u ∈(N (R )\Sw )

cu reordering∑
v ∈R

∑
u<Sw

cux
(u )
v ≤

∑
u ∈(N (R )\Sw )

cu∑
v ∈R

xv ≤
∑

u ∈(N (R )\Sw )

xu definition of x

x (R) ≤ x (N (R) \ Sw)
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Proof of
∑
u ∈Sw xu ≥

∑
u<Sw cuβu :We have

∑
u<Sw

cuβu =
∑
u<Sw

∑
v ∈Su

cux
(u )
v

=
∑
u<Sw

∑
v ∈Sw

cux
(u )
v explained below

=
∑
v ∈Sw

∑
u<Sw

cux
(u )
v reordering

=
∑
v ∈Sw

xv definition of x

The second equation follows from the fact that x (u )
v is equal to zero if v is not in N (u) and that Su

contains all vertices of N (u) since u < Su . □

Finally, Lemma 3.2 along with Lemma 3.4 shows an upperbound of α on the frugality ratio of

MVC
.

Theorem 3.5 (a corollary of Lemmas 3.2 and 3.4). The frugality ratio ofMVC is bounded by α .

3.4 Lower Bound
In this section we show the frugality ratio of every truthful mechanism is at least α/4. This along
with Theorem 3.5 proves the competitive factor ofMVC

is bounded by 4. Our proof is similar to

[13] except that we extend this lower bound to all randomized mechanisms as well.

Let mechanismM be an arbitrary truthful randomized mechanism for a vertex cover auction

⟨E,F ⟩ on graph G. We construct a directed graph

−→
G as follows. For any edge (u,v ) ∈ G, let cost

vector c be cu = qu , cv = qv and ci = 0 for all i , u,v . Now if we runM on graph G with cost

vector c , either u or v appears in the winning set with probability at least 1/2. If u appears in the

winning set with probability at least 1/2 we add a directed edge from u to v in

−→
G . Similarly if that’s

the case with v we add a directed edge from v to u in

−→
G . Since we iterate over all edges ofG, for

any edge (u,v ) ∈ E (G ) either u has a directed edge to v in

−→
G or the vice versa or both.

We associate a weight to every vertex of

−→
G . More precisely we set the weight of every vertex u

equal to qu . One could show that there exists a node v ∈ V (
−→
G ) such that

∑
(u,v )∈E (

−→
G )

qu ≤
∑

(v,u )∈E (
−→
G )

qu

(for a proof see Lemma 11 of [12]). We define a cost vector c in the following way: cu = 0 for all

u , v and cv = qv . Now we runM on graph G with cost vector c . Note that sinceM is truthful,

every node u such that (v,u) ∈ E (G ) should be in the winning set. Moreover, again by truthfulness

ofM, each vertex u such that (u,v ) ∈ E (
−→
G ) receives a payment of at least

qu
2
.
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The rest of the proof follows from the following inequalities that bound the total payment ofM.

p (M) ≥
∑

(v,u )∈E (
−→
G )

1

2

qu

≥
1

4

∑
(v,u )∈E (G )

qu by selection of v

=
1

4

βv
∑

(v,u )∈E (G )

1

βv
qu

=
1

4

βvα · qv q is an eigenvector ofWAM(G )

Note that the value of our benchmark for cost vector c equals qv · βv which concludes thatM

has a frugality ratio of at least
α
4
.

Theorem 3.6. Every truthful mechanism (deterministic or randomized), has a frugality ratio of at
least α/4.

4 KNAPSACK AUCTION
In this section, we formally define the knapsack auction and discuss the mechanism we propose

for this problem. Let E be a set of elements, each having a volume ve . In a knapsack auction, the

auctioneer is willing to purchase a subset of items having a total volume of at least k . Therefore,
every subset S ⊆ E is in F if and only if the total sum of the volumes of the elements in S is at

least k . As an example of such auction, consider a company is interested in purchasing some ad

slots that guarantee a certain number of user clicks over a period of time. Moreover, we have a

number of advertisement companies that offer an ad slot which is guaranteed to be clicked by a

certain number of people. Now, the company wishes to run a procurement auction to purchase the

ad slots.

We first show it is impossible to design any truthful mechanism for this system with a frugality

ratio better than

√
vmax, where vmax is the volume of the largest item.We then, propose a mechanism

and show the frugality ratio of this mechanism is bounded by

√
2vmax.

Theorem 4.1. Let vmax = maxe ∈E ve be the volume of the largest item in E. No truthful mechanism
can guarantee a frugality ratio better than

√
vmax.

Proof. Let E = {1, 2, . . . , vmax + 1} contain vmax + 1 elements such that vi = 1 for all 1 ≤ i ≤ vmax
and vvmax+1 = vmax. We set k = vmax and hence, F would be the union of all subsets of items whose

total sum of volumes is at least k . We show it is impossible to design a truthful mechanism for

purchasing a feasible set of items in this instance of knapsack auction that has a frugality ratio

better than

√
vmax.

To this end, assumeM is a truthfulmechanism and consider a cost vector c = ⟨1, 0, 0, . . . , 0,
√
vmax⟩

for the elements such that c1 = 1, cvmax+1 =
√
vmax, and the cost of all other elements is equal to 0.

Suppose we run mechanismM on cost vector c and end up buying a set S of the elements. There

are two cases for set S .

• vmax + 1 ∈ S .
• vmax + 1 < S and hence i ∈ S for all 1 ≤ i ≤ vmax.

We show in both cases the frugality ratio ofM cannot be less than

√
vmax. First, assume vmax + 1 ∈ S .

Now, consider a different cost vector c ′ in which the cost of vmax + 1 is equal to 0 and the cost of all

other elements is the same as c . SinceM is truthful, vmax + 1 should also be in the winning set and
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it should receive a payment of at least

√
vmax. Therefore, the total payment of the auctioneer in this

case is at least

√
vmax. However, the benchmark B (c ′) = 1 and thus, the frugality ratio ofM is at

least

√
vmax.

Next, we investigate the case where vmax + 1 < S . Let c
1, c2, c3, . . . , cvmax

be vmax cost vectors such

that civmax+1
=
√
vmax for all 1 ≤ i ≤ vmax and c

i
i = 1. Apart from this, all other costs in these vectors

are equal to 0. With the same argument, we can conclude that runningM on each of the cost

vectors c1, c2, . . . , cvmax
, does not lead to buying vmax + 1 unless FR(M) ≥

√
vmax. Now, consider a

cost vector c ′′ such that c ′′vmax+1
=
√
vmax and c

′′
i = 0 for all 1 ≤ i ≤ vmax. SinceM is truthful and

it buys all of the elements 1, 2, . . . , vmax for all cost vectors c
1, c2, . . . , cvmax

, it also buys all those

elements for cost vector c ′′. Moreover, each item receives a payment of at least 1. Therefore, the

auctioneer makes a payment of at least vmax, where B (c
′′) =

√
vmax. Hence, FR(M) ≥

√
vmax. □

In the rest of this section, we propose aWVCG mechanismMK
for knapsack auction and bound

its frugality ratio by

√
2vmax. We first define a weight we for every item e which is equal to

√
ve
ve

and then defineMK
as follows:

• The winning set is a S ∈ F such that that minimizes the expression

∑
webe . Ties are broken

lexicographically.

• The payment of every item e ∈ S is determined based on its critical value.

In the following, we show the frugality ratio ofMK
is bounded by

√
2vmax where vmax = maxe ∈E ve .

Before we proceed to the proof, we state an axillary lemma which we use in the proof of the

theorem.

Lemma 4.2. Let Y = {1, 2, . . . , |Y |} be a set of elements with volumes v1,v2, . . . ,v |Y | and costs
c1, c2, . . . , c |Y | such that

∑
vi = b. If V ≥ maxe ∈Y ve and every vi ≥ 1 then, for any 1 ≤ d ≤ b, there

exists a subset S of elements in Y such that
∑

e ∈S ve ≥ d and∑
e ∈S

ce/
√
ve ≤

√
2dV

b

∑
e ∈Y

ce .

Proof. Without loss of generality, we assume the elements are sorted in increasing order of
ce
ve
. In

other words,

c1
v1
≤

c2
v2
≤ . . . ≤

c |Y |

v |Y |
.

Therefore for every 1 ≤ i ≤ |Y | we have ∑i
j=1 c j∑i
j=1vj

≤
ĉ

b
(9)

where ĉ denotes the total cost of items in Y . Now let set Q = {1, 2, 3, . . . , |Q |} be the smallest prefix

of items in Y whose total sum of volumes is at least d . Note that,
∑ |Q |

i=1 vi ≥ d but

∑ |Q |−1
i=1 vi < d .

Now, let q be the total cost of all items in Q \ {|Q |}. In the rest of the proof we show∑
e ∈Q

ce/
√
ve ≤

√
2dV

b
ĉ .

Since mine ∈Q\{ |Q | } ve ≥ 1 we have∑
e ∈W

ce/
√
ve ≤ q + c |Q |/

√
v |Q | . (10)
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Moreover, by Inequality (9) we have

q ≤
(d − 1)ĉ

b

and

q + c |Q | ≤
(d +v |Q | − 1)ĉ

b
.

Therefore (10) is maximized when q = (d−1)ĉ
b and c |Q | =

(v |Q | )ĉ
b and thus∑

e ∈W

ce/
√
ve ≤ q + c |Q |/

√
v |Q |

≤
(d − 1)ĉ

b
+

(v |Q | )/
√
v |Q |ĉ

b

=
(d − 1)ĉ

b
+

√
v |Q |ĉ

b

≤
(d − 1)ĉ

b
+

√
Vĉ

b

=
ĉ

b
(d − 1 +

√
V )

=
ĉ

b

√
V (1 +

d − 1
√
V

)

≤
ĉ

b

√
2Vd .

□

Next we prove FR(MK) ≤
√
2vmax.

Theorem 4.3. Let (E,F ) be a knapsack set system and vmax = maxe ∈E ve . Then we have

FR(MK) ≤
√
2vmax.

Proof. Let (E,F ) be a set system and c be a cost vector for the elements of E. Suppose we run

MK
on the bids and determine a set S as the winning set and assign a payment pe to every element

e in S . In the following we show ∑
e ∈S

pe ≤
√
2vmaxB (c ).

By the definition, we have B (c ) ≥ v∗S (c ). Recall that v
∗
S (c ) is equal to the objective value of the

following linear program:

max v∗S (c ) =
∑

e ∈S xe (11)

s .t . xe = ce ∀e < S (12)

xe ≥ 0 ∀e ∈ S (13)∑
e ∈S xe ≤

∑
e ∈T xe ∀T ∈ F (14)

Let x be a solution of v∗S (c ) in which for every e ∈ S , xe = pe/
√
2vmax and for every e < S , we

have xe = ce . We first show x is a feasible solution of LP (11). Note that all constraints of type (12)

and (13) are trivially satisfied. Now let T be a feasible set for constraints of type (14). We define
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X = S \T to be the elements of S that are not inT and Y = T \S to be the elements ofT that replace

X in S . Since xe is the same for both sides of constraint (14), we can rewrite the inequality as∑
e ∈X

xe ≤
∑
e ∈Y

xe =
∑
e ∈Y

ce . (15)

Now let

∑
e ∈Y ve = b be the total volume of the elements in Y and b ′ =

∑
e ∈X ve . Note that, since

all elements of Y can replace elements of X , then every element e ∈ X can be replaced by some

elements of Y that have a total sum of volumes of at least ve −max(0,b ′ −b). Since we set the price
of every item in S by its critical value, the payment of any item e ∈ X that can be replaced by a

subset Re , (i.e., Re ∩ S = ∅) is bounded by

wepe ≤
∑
e ′∈Re

we ′ce ′

and hence

pe/
√
ve ≤

∑
e ′∈Re

ce ′/
√
ve ′ .

Therefore

pe ≤
∑
e ′∈Re

√
vece ′/

√
ve ′ (16)

By applying Equation (16) to Lemma 4.2 we get

pe ≤
√
ve

√
2(ve −max(0,b ′ − b))vmax

b

∑
e ′∈Y

c ′e

Since

√
ve
√
(ve −max(0,b ′ − b) ≤ ve −

max(0,b′−b )
2

, we have

pe ≤
√
vmax

√
2(ve −

max(0,b′−b )
2

)

b

∑
e ′∈Y

c ′e . (17)

We sum Equation (17) over all elements e ∈ X and obtain∑
e ∈X

pe ≤
√
2vmax

∑
e ∈X (ve −

max(0,b′−b )
2

)

b

∑
e ∈Y

ce =
√
2vmax

b ′ − |X | b
′−b
2

b

∑
e ∈Y

ce . (18)

Note that if |X | = 1, (16) directly proves∑
e ∈X

pe ≤
√
2vmax

∑
e ∈Y

ce

otherwise b ′ − |X | b
′−b
2
≤ b and by (18) we have∑

e ∈X

pe ≤
√
2vmax

∑
e ∈Y

ce .

Since we set xe = pe/
√
2vmax, we have ∑

e ∈X

xe ≤
∑
e ∈Y

ce .

and thus all constraints of type (14) are satisfied. Since x is a feasible solution of LP 11, we have

B (c ) ≥ v∗S (c ) ≥
∑
e ∈S

xe =
∑
e ∈S

pe/
√
2vmax

and therefore FR(M) ≤
√
2vmax. □
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