
Solution of Integer Programs with a Quadratic 
Objective Function 

TA HUU PHUONG 

London School of Economics, London, England 

ABSTRACT. Thls paper presents a branch and bound method for solving problems in which the ob- 
jective function is quadratic, the constraints are linear, and some or all variables are required to be 
integer. The algorithm is obtained by grafting an reverse-basis vermon of Beale's method onto the 
Land-Dolg procedure The code has been tested on a computer, and computational results with 
various strategies of branching are reported. 

K E Y  W O R D S  A N D  P H R A S E S  : algorithm, branch and bound, integer programming, quadratic program- 
ming, quasiconcavity 

CR CATEGORIES 5 41 

1. Introductwn 

A number of methods [1-3, 7, 11, 13] have been proposed for the solution of discrete 
quadratm programming problems. Little, however, has been done on the implementation 
of computer routines. The purpose of this paper is to provide an algorithm for solving 
quadratic programs which are "well-behaved," but  where some or all variables are re- 
quired to be integer. By well-behaved we mean Quadratic Programming (QP) problems 
which are valid for submission to a quasiconcave QP maximizing routine. ~ As limited 
by such a restriction the algorithm should not, therefore, be used for the solution of such 
problems as the quadratic assignment. 

The code is obtained by grafting (with some modifications) an inverse-basis version of 
Beale's method onto a branch and bound procedure of the Land-Doig type. Computa- 
tional experience with various strategies of branching is discussed. 

2. Problem and Method 

The discrete quadratic programming problem we consider can be writ ten in the following 
form: 

(P) Maximize f = p'x + ½x'Dx 
subject to Ax ~ b, 

z>_O, 
x~ integer, 3 E N1, 

where D is a symmetric matrix of order n, b, p are m X 1 and 1 X n vectors, respectively; 
N1 is a subset of N = (1, 2, . • - , n);  and x is the variable vector to be determined. 

In the absence of the integrality condition we refer to (P) as the relaxed problem. 

Copyright © 1976, Association for Computing Machinery, Inc General permissmn to republish, 
but not for profit, all or part of this material is granted provided that ACM's copyright notice Is 
given and that reference ~s made to the publication, to its date of issue, and to the fact that reprinting 
privileges were granted by permission of the Association for Computing Machinery. 
Author's present address School of Accountancy and Business Administration, Univermty of Singa- 
pore, Buklt Tlmah Road, Singapore 10, Singapore 
1 Some of those routines can be found in [15] For definitions of different classes of concavity and 
t h e i r  properties, see, for instance, [6, 12, 17]. 

Journal of the Assoctatlon for Computing IMachmery, Vol 23, N o  3, July 1976, pp 468-474 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321958.321968&domain=pdf&date_stamp=1976-07-01


Solution of Integer Programs with a Quadratic Objective Function 469 

We shall also restrict our discussion to the case where the objective function is quasicon- 
cave on the nonnegative orthant. This restriction is needed to ensure a global optimum 
to the relaxed problem and the convergence of the algorithm. 

The method is based essentially on the approach of Land and Doig [8]. That  is, one 
first obtains the solution of the relaxed problem. If  it is nonintegral, an integer-con- 
strained variable is then fixed at its nearest integral value. Of course, here one must use 
a QP procedure to solve the successive QP subproblems which arise from the branching 
and backtracking operations. The QP procedure employed is that  described by Land 
and Morton [9]. I ts  adoption is prompted by the following considerations: 

1. As a version of Beale's method, the procedure is capable of solving QP problems 
having quasiconcave objective function. 

2. Apart from other attractive features such as economy of storage space, accuracy, 
and efficiency, the inverse-basis structure of the procedure also 

(i) facilitates the addition and removal of constraints whenever the need demands; 
(ii) allows the use of dual simplex criteria to restore the feasibility of an integer- 

constrained variable when it is forced to take an integral value; and 
(iii) provides sufficient information at an optimal tableau which enables us to specify 

rules for choosing a branching variable and a branching direction. 
As for the bounding, one could use these facilities to obtain the bounds of the unex- 

plored nodes. If one is not prepared to go further than the information given at an optimal 
tableau, one could estimate these bounds from the rates of fall of the (linear) tangential 
function at a QP optimal solution. Unfortunately, this way of estimating bounds can 
only be done when the maximizing function is concave. When the function is noncon- 
cave, exploration of the nodes requires explicit solutions of the QP subproblems. 

3. Computational Results 

The algorithm has been tested on five sets of problems having concave objective function. 
Matrices A and D and the solutions of the relaxed problems are generated using a random 
generator. Other components are formed according to the scheme reported by Rosen 
and Suzuki [18]. Each set consists of ten problems having from 5 to 20 quadratic discrete 
variables. In order to test the mechanism of the auxiliary constraints (i.e. constraints 
that are added in order to form artificial corner points) on the algorithm as a whole 
and on the branching process in particular, we decide to limit the number of (original) 
constraints of each problem to two, one of which will be effective at the QP optimal 
solution. 

The following variants with respect to different strategies on the selection of the 
branching variable and branching direction have been tested on each problem. 

Variant 1. The variable which yields the greatest reduction in the linear tangential 
function at an optimal tableau is chosen as the branching variable (the greatest cost rule). 
The adjacent integer value corresponding to the least reduction in the functional value is 
chosen as the branching direction. 

Variant 2. Choose the first integer-constrained variable which appears in the basic 
optimal tableau but does not satisfy the integrality condition as the branching variable 
(the lexicographic rule). The branching direction is similar to that in Variant 1. 

Variant 3. Select from among the integer-constrained variables the variable which 
has the largest fractional part as the branching variable (the greatest fractional rule). 
The dire:tion is similar to that in Variant 1. 

Variant 4. Both branching variable and branching direction are selected in the same 
way as that for Variant 1, except that  when the costs in going to the neighboring integer 
values are equal, the direction corresponding to the nearest integer is selected. 

Variant 5. Follow the same rules in Variant 2, with the additional proviso described 
in Variant 4. 

Variant 6. Use Variant 3 together with the additional proviso described in Variant 4. 



470 T.H. PHUONG 

TABLE I 

F i r 8 ~  ~ i s c r a S a  I Op~i~ao,1 ~tscr¢$e PPoo/ o f  Discrepancy 
beCwcen 

$olu$$on 8olu$ion opg~m,o.l~$y f~Ps¢ and Time 

optimal 
~alue 

No. o f  No; o f  No. o f  
~ t e r a ¢ ~ o n s  ~¢era¢~on~ ~ $ e r a t i o n a  ~ ~econd~ 

V a r i a n t  

20 
19 
,gO 
21 
31 
2 3  

20 
20 

20 
20 
23 

61 
62 
60 
58 
58 
58 

32  
31 
33  
32  
32  
31 

27  
2d 
30 
26  
26 
31 

i 

78 
8Z 
83  
50 
51 
44 

72  
73  
70  
48 
45 
42 

1012 
983 

167'8 
87'8 
692  
304 

4133  
4283 
3354 

750 
2177 

699 

222  
207  
215  
Z88  
315 
237  

105  
109  
121 

87 
90 
95  

100 
,99 

Ii0 
81 
81 
88 

1417 
2455 
2061 
1149 
1147 
884 

7785 
8842 
8850 
4855 
6413 
6237 

222  
207  
215  
2 6 6  
315  
237  

13.30 
14.00 
25.25 

5.33 
5.47 
2.78 

1 2 , 8 3  
1 3 . 1 3  
1 4 . 9 9  

4 . 8 6  
4 . 8 0  
4 . 2 4  

10.51 
i0.78 
10.49 
3.22 
4.12 
2.48 

17.21 
1 6 . 3 3  
2 5 . 6 2  
1 4 . 8 0  
1 4 . 7 3  
11.33 

2 . 6 4  
2 . 4 8  
3 . 3 7  
5 . 2 2  
5.4.0 
2 . 0 7  

, 4 3 9  
, 4 3 8  
, 4 4 6  
, 4 3 0  
. 4 2 8  
,4...96 

• 434 
.431  
• 438  
• 4 2 6  
• 4 2 3  
• 430 

2.i0 
2.04 
2.57 
1.84 
1.71 
1.44 

6 . 4 5  
6 . 9 5  
7 . 6 6  
4 . 2 3  
..5.43 
5 . 6 1  

.99 
•97 
.98 
°96 

1.03 
1,00 

The performance of each set of problems with respect to different variants is recorded 
in Table I. There are five quadratic variables in Sets 1 and 2, ten in Set 3, and twenty 
in Set 5. Set 4 has ten variables, five of which are quadratic. The first column in the 
table indicates the set number, followed by the variant number in the second column. 
The number of simplex iterations should provide a reasonable norm for comparing 
various rules of selection, because it is independent of the machines used The last column 
indicates the average computer time spent on the CDC 7600 for the solution of a problem 
which does not exceed 20,000 iterations to prove optimality. 

There is no doubt that Variants 4, 5, and 6 perform much better than Variants 1, 2, 
and 3 both in the number of iterations and in time. It is fair to say that although oc- 
casionally Variant 6 needs more iterations, and therefore more time than Variants 4 and 
5, it should be preferable because it produces a good first discrete solution For large 
problems (for instance in Set 5) Variant 4 is perhaps the most economical version. 

As it is not possible to estimate the rate of reduction of a nonconcave function by its 
tangential function, the following variant is suggested for a nonconcave quasiconcave 
program. 

Variant 7. Select a branching variable by lexicographic criterion Choose the integer 
value nearest to the current fractional value of the variable as the branching direction. 
Use the functional value at an optimal QP as upper bound to the unexplored nodes or 
solve the subproblems explicitly. 



S o l u t w n  o f  I n t e g e r  P r o g r a m s  w i t h  a Q u a d r a t i c  O b j e c t w e  F u n c t i o n  471 

The algorithm has been implemented on a computer. The program is writ ten in Fortran 
IV and consists of a main routine and 27 subroutines. We have borrowed directly from 
the Land-Powell package [10] 17 subroutines and modified another 10, some substantially, 
some only with minor alterations Detailed description of the modifications can be found 
in [16]. The data of a test problem from each set and those of a mixed zero-one program 
are recorded in Appendix A. 

4.  C o n c l u s i o n  

As with any algorithmic procedure, the method has its own advantages and limitations. 
Perhaps the main advantage of branch and bound is the ease and relatively low cost 
with which a good integer solution can be obtained. This is particularly apparent in 
Variant 6. 

Another facility offered by the method is the possibility of solving problems in which 
some or all variables are required to satisfy a certain step size value, in addition to the 
integrality condition. Occasionally, with the view of simphfying the input to the com- 
puter, this facility could and should be used to scale down large coefficients of matrices 
A or D, or vector p to reasonable magnitude. Moreover, in order to minimize rounding- 
off errors it is very useful to perform the scaling process in cases where there are great 
discrepancies in the coefhcients. 

Needless to say, the method can be applied to solve zero-one problems without any 
modifications. 

A serious drawback of the method lies in the number of branches to be explored which 
cannot be determined a priori. Particularly with problems of a combinatorial nature, the 
branches would proliferate so enormously that  it is prohibitive, in terms oi computer 
time, to reach the discrete optimal solution. 

The method is also limited by the quas~concavity of the quadratic objective function. 
If  the function is concave, any of the first six variants can be used. If  ~t is nonconcave 
but quasiconcave, only Variant 7 is valid A computational scheme to help in recognizing 
the different kinds of concavity is described in Appendix B. What  one needs is simply 
to have access to a routine which computes the eigenvalues of a real square symmetric 
matrix. 

A p p e n d i x  A . 

P r o b l e m  1. 

Maximize 

subject to 

Solution: 

P r o b l e m  2.  

Maximize 

subject to 

Solution: 

P r o b l e m  3.  

Maximize 

S o m e  T e s t  P r o b l e m s  

90.5xl ~ 30.5x2 -- 6.8x3 W 79.3x4 -b 12.2x5 -- 5xl 2 -- XlX2 - -  2XlXa - -  3XlX4 

- -  4XlX5 - -  4.5x2 ~ ~ x2x3 - -  2x2x~ ~ 3x2x5 - -  3.5x3 ~ -- 3x~x4 ~ 5x3x5 

-- 6x42 -- x4x5 - -  7.5X5 2 

- -  23Xl -]- 19x2 + 26x3 + 17x4 -- 35x5 < 18, 41xl -- 10x3 ~ 17x~ -- 38x~ 
< --99.9, x, _> 0, integer i = 1, . . .  , 5. 
x = ( 1 , 4 , 2 , 4 , 5 ) .  

71.1xl -- 39.7x2 -- 9.4x3 ~ 36.8x4 ~ 96.4x5 -- 5Xl 2 -- x lx2  - -  2x l xa  

- -  3 x l x 4  - -  4 x l x 5  - -  4.5x22 + x2xa - -  2x2x~ + 3x2x5 - -  3.5xa ~ -- 3xax4 

5x3x5 - -  6x42 - -  x4x5 - -  7.5x52 
27xl + 43x2~  10x3 ~ 32x4-- 44x5_< 8; 8Xl--  38x2 -- 20x3W 4 x 4 +  35x5 
_< 57.7; x~ > 0, integer z = 1, • .. , 5. 
x = ( 2 , 1 , 5 , 1 , 5 ) .  

29.6xl -/- 83x2 -- 20.9x3 W 106.7x4 -- 3.7x5 ~ 78.1x6 -- 7.9x7 ~ 63.5x8 
-/- 61.1x9 ~ 24.3x10 -- 5xi 2 -- 4.5x~ 2 -- 3.5x32 -- 6x4 ~ -- 7.5x52 -- 5x62 
- -  4.5x7 ~ -- 3.5xs 2 -- 6x92 -- 7.5x~0 -- XlX2 - -  2x l x3  - -  3 x l x 4  - -  4XlX5 



4 7 2  ~ .  H .  P H U O N G  

s u b j e c t  to  

S o l u t i o n :  

P r o b l e m  4. 

M a x i m i z e  

s u b j e c t  to  

So lu t ion :  

P r o b l e m  5. 

M a x i m i z e  

s u b j e c t  to  

+ x2x,  - -  2x ,x4 + 3x~x~ - 3x,x~ + 5x~x~ ~- x~x~ - -  x~x~ - -  2x~xa 

l lx~ --  41x~ + 25x, - -  12x~ + l l x~  --  46x~ + 47x~ - -  22xs + 20x,  - -  28X~o 
< 175; --  16x~ + 44x2 -- 36x, + 42x4 --  18x~ + 44x~ --  18x~ 
+ 19x~ --  4x~ + 39x~o _< 327;  0 _< x~ _< 10, in teger .  
x = (2, 4, 2, 4, 2, 1, O, 5, 4, 0).  

54.3x~ - 36.5x2 + 27.6x3 --  5.2X4 + 47.8x~ - 13x,  + 6x7 - 44x~ + 39x~ 
- -  5xt 2 --  4.5x~ ~ --  3.5xa 2 --  6x~ 2 --  7.5x~ 2 --  x~x~ - -  2 x , x ,  - -  3.~1x4 

- -  4xxx~ + x2x~ - -  2x~x~ + 3x ,x~ - -  3x ,x4 + 5x ,x~ - -  x~x~ 

22x~ -- 39x2 + 15xa -- 37x4 -t- 14x~ --  13x~ + 6x7 --  44xs "{- 39x~ _< 89;  
- - l l x ~  + 41x~ --  25x~ + 12x~ --  l l x~  + 46x~ --  47x~ q- 22xs --  20x~ 
+ 28Xio < 77;  0 _< x. _< 10, in teger .  
x = (0, 2, 5, 1, 4, 2, 10, O, 1, 0). 

85Xl --  12.5X2 -- 77.5X8 q-  64X4 + 151XS -- 53.5X6 + 130.5X7 + 150.5X8 
- -  167X9 + 54.5Xlo + 99.5Xu --  73.5Xn + 93X13 q- 61.5X14 -- 133.5X15 
-t- 91.5X16 -{- 70X17 --  54X18 + 35.5X19 + 15X2o --  2Xl ~ --  0.5X2 ~ 
- -  4.5x3 ~ --  2x~ 2 --  8X52 --  4.5X6 ~ --  4.5X72 --  12.5X82 -- 8X, ~ --  0.5Xlo 

- - 0.5 h - - 0.5 h - 4.5 h - 4.5 h - 2 I, - 2 I, 

- -  0.5x~, --  2X2o --  2xlx~ -t" 6xlx~ - -  4xlx~ - -  8x lx5  -t- 6x lx6  - -  6xlx~ 

- -  lOx~xs -[- 8x~x9 - -  2x~x~o - -  6x~xn  -{- 2xtx12 - -  4x lx l s  - -  2XlXl4 

6xlx l6  - -  6xlx16 - -  4xlxl~ + 4.xlxls - -  2xlx19 - -  4xlx2o -{- 3x2x3 --  2x2x4 

- -  4x2xs .~- 3x2x6 - -  3x~x,  - -  5x2xa + 4x2x9 - -  x2Xxo - -  3x2x11 -Jr x2xl~ 

- -  2x2x13 - -  x2x14 -~- 3x2xl5 - -  3x2x~6 - -  2x2x17 -~- 2x2x18 --  x2xl9 

- -  2x2x~o "q- 6xax4 "-I- 12xsxs  - -  9x~x~ + 9x~x~ -{- 15x~xs - -  12x ,x~ -t- 3x~x~o 
9 x , x n  - -  3x,x~2 + 6xax~a + 3x,x~4 - -  9 x , x ~  .q- 9 x a x ~  "t- 6x,x~7 

- 6x~xi~ + 3x~xt9 -t- 6x~X2o - 8x4x~ + 6x~x~ --  6x~x~ - lOz~xs + 8x~x~ 
- 2x~x~o --  6x4xu + 2 x ~ n  --  4x~x~a --  2x~xu + 6X~l~ --  6x~x~ 
- -  4x~x~7 -t- 4x~x~s - -  2x~xi~ - -  4x~x2o .-}- 12x~x ,  - -  12x~x~ - -  20x~xs 
+ 16x~x9 - -  4x~x~o - -  12x~xu  + 4x~x~  - -  8 x ~  - -  4x~x~4 + 1 2 x~x~  

- -  1 2 x ~ x ~  + 8 x ~ x ~  + 8x~x~s - -  4 x ~ x ~  - -  8x~x~o + 9x~x, + 15x~x8 
-- 12x~x9 -t- 3x¢c~o -q- 9xdcn -- 3xcx~2 -I- 6x~xia --[- 3xeX~4 --  9X~Xl~ -q- 9x~x~ 
-I- 6x~x~ --  6x~x~s "b 3x~x~ "t- 6x~x2o --  15x~xs + 12x~x~ - -  3x~x~o 

- -  9XTXll -~- 3XTXI2 --  6XTX13 --  3XTX14 ~ 9XTX15 --  9XTXI~ --  6XTXI7 
+ 6XTX~ - -  3XTX~ - -  6XTX2o + 20XsX~ -- 5X~Xao --  15X~Xn + 5X~X~2 
-- IOxsx~a -- 5X~X~ + 15XsX~ --  15XsX~ --  IOxsx~ + IOx~x~s --  5XaX~ 
--  IOxsx20 -t- 4X~X~o + 12X~Xn --  4X~X~ + 8X~X~, + 4X~X~ --  12X~X~ 
-}- 12x~x~6 "1- 8x~x~7 -- 8x~x~s -I- 4x~x~ q.- 8x~X2o -- 3x~xn  -I- x~x~2 
--  2x~¢c~ --  xlox~4 + 3x~ox~ -- 3x~ox~ -- 2X~oX~7 + 2XloX~s - -  X~oX~ 

--  2x~ox2o @ 3xnx~2 - -  6 x n x ~  - -  3xnx~4 .-}- 9 x n x ~  - -  9 xn x~ ,  - -  6x~x i~  

6 X H X l 8  - -  3 X l I X I ~  - -  6xnx~o "{- 2x~sx~a + x t2x~  - -  3x~2xx~ "t- 3 x n x ~  

"~ 2x12x17 - -  2x12x18 ~ x12x19 "Jr 2x12x~o --  2xl~x14 ~ 6x~ ,x~  - -  6x~ ,x~  - -  4 x~ , x~  

+ 4XlaXls --  2XlaXl9 - -  4XlaX2o + 3Xl~XI~ --  3X14XI~ --  2XI4XI7 + 2Xl~Xls 
- -  X ~ X ~  - -  2X~4X2o + 9 X ~ X ~  "[- 6X~Xt ,  - -  6Xt~X~a "{- 3XtaX~ + 6X~X~O 

- -  6 X ~  "t- 6X~X~s --  3Xl~X~ -- 6X~X20 + 4X~TX~s --  2 X ~ X ~  - -  4X~X2o 
2X~sXi~ + 4X~X20 -- 2X~X2o 

26X~ --  42X2 + l l x ,  + 5x4 + 33x~ + 35x~ + 42x,  + 3xs --  49x,  + 25X~o 
+ l l x n  --  44x,2 + 34x~ + 32x~4 --  45x~ + 3x~  + llxa~ + 5x,~ + 6xl ,  
- -  44x2o < 193; x~ + 39x2 -t- 25x~ + 23x~ + 25x~ --  42x~ --  49x~ 
+ 22x~ + 3x~ --  45X~o - -  42xn  -}- 37xn  + 28x~, + 22x~4 + 13x~ --  43x~  
+ 34x~, --  48x~s + l l x ~  < 115; 0 < x, < 10, in teger .  



Solution of Integer Programs with a Quadratic Objective Function 473 

So lu t ion :  

Problem 6. 
M a x i m i z e  

s u b j e c t  to  

So lu t ion :  

x5 = 6, x7 = 5, xl~ = 2, xl~ = 3, x ~  = X~s = 1; x, = 0 o therwise .  

90xl + 13x2 -t- 56x3 -- 3Xl 2 -t- 7xlx4 -t- 14xlx5 "t- 19xlx6 -- 2.5x~ 2 "t- 7x2x7 
+ 14x2xs + 19x2x9 -- 2.5x32 + 7xsxlo + 14X3Xll + 19xsx12 --  24.5x42 
- -  98x4x5 --  133x4x6 -- 98x52 -- 266xsx6 -- 180.5x62 --  24.5x72 -- 98xTxs 
--  133x7x9 -- 98Xs 2 --  266xsx9 -- 180.5x92 -- 24.5x~0 -- 98x10xu 
--  133x,0x12 --98x~i --  266XllX12 -- 180.5x~2 
x 4 + x s +  x~ = i ;  x7--k x s +  x9 = 1; x l 0 + X l l  + x , 2  = 1; x 4 + x 7  
+ x l 0  = 1; x s - ' t - X s + X n  = 1; x G + x D + x l 2  = 1; x l , x ~ , x 3  >_ 0, 
x 4 , ' - . ' , x 1 2  = 0 or 1. 
xl = 18.17, x2 = 4, x3 = 14, x8 = x7 = x~ = 1; x, = 0 o therwise .  

Appendix B. A Computatwnal Scheme for Identifying Various Quadratic Concavities 2 

Step 1 Compute the eigenvalues M (~ = 1, . • , n) of the matrix D. If M _~ 0 for all i, the function 
¢(x) is concave. Go to step 6(b). If only one eigenvalue is posmve, go to step 2. Otherwise, 
4~(x) is nonquasiconcave Go to step 6(c) 

Step 2 Check for the sign of the vector p If p = 0, go to step 3(a) If p, < 0 for some i, go to step 
6(c). If p _> 0, go to step 3(b) 

Step 3. Check for the sign of D 
(a) If D _> 0, ¢(x) is quaslconcave Go to step 5 If D < 0 for some ~,j, go to step 6(e) 
(b) I f D  _> 0, g o t o s t e p 4  I f D  <:0 for some~,3,  go to step 6(c). 

Step4. Calculate the e,genvalues of [ p  D, ~ ] . I fon lyonee~genva luempos~t ive ,  c,(x) ispseudocon- 

cave. ,Go to step 6(a). Otherwise, go to step 6(c). 
Step 5. Replace some elements of p by arbitrarily small positive numbers to yield pseudoconcavity. 

Go to step 6(a). 
Step 6. (a) Solve the discrete quadratic programming problem, using the functional value at  central 

node as bound. 
(b) Solve the discrete quadratic programming problems, estimating the change in functional 
value at  branch nodes by the fall of the gradient function at  central node 
(c) Only the relaxed problem will be solved 

W h e n  t h e  ob jec t ive  f u n c t i o n  ha s  b e e n  ident i f ied  as n o n q u a s i c o n c a v e  on  t h e  n o n n e g a -  
t ive  o r t h a n t ,  we could t r y  to  find a subse t  of E+ ~ on  wh ich  i t  m a y  b e  quas i concave  (for 
i n s t a n c e  w h e n  t he  sadd le  p o i n t  of t h e  f u n c t i o n  is no t  a t  t h e  or igin) .  T h i s  could  b e  done  
b y  loca t ing  t he  sadd le  p o i n t  of t he  func t i on  us ing  o r d i n a r y  calculus,  and  would  in  effect 
requ i re  t he  so lu t ion  of a s y s t e m  of h o m o g e n e o u s  l inear  equa t ions .  W i t h  r e spec t  to  t h e  
new axes t hus  found,  we t h e n  go b a c k  to s t ep  2 to  con t inue  t he  t e s t  for  q u a s i c o n c a v i t y .  

ACKNOWLEDGMENTS. I a m  gra te fu l  to  Dr .  A.H.  L a n d  for  he r  gu idance  a n d  encourage-  
m e n t  t h r o u g h o u t  th i s  work.  I also wish  to  t h a n k  t h e  referee for he lpfu l  sugges t ions .  

REFERENCES 

1. AGRAWAL, S.C. On mixed integer quadratic programs. Naval Res. Logistics Quart 21 (1974), 
289-297. 

2. AORAWAL, S C On integer solutions to quadratic programs by a branch and bound technique. 
Trabajus de Estadistlca y de Invest~gahon Operational 25 (1974), 65-70. 

3. BALAS, E. Duality in discrete programming. The quadratic case. Manage. Sc~. 16, 1 (1969), 
14-32. 

4. COTTLE, R W., AND FERLAND, J A. On pseudo-convex functions of non-negative variables 
Math. Programming I, 1 (1971), 95-101 

5 COTTLE, R.W., AND FERLAND, J A. Matrix theoretic criteria for the quasi-convexity and 
pseudo-convexity of quadratic functions L~near Algebra and Its Applicatwns 5, 2 (1972), 123- 
136 

6. GREENBERG, H . J ,  AND PI~RSKALLA, W.P. - A review of quasi-convex functions Oper. Res 19, 
7 (1971), 1553-1570. 

2 The scheme is based on various results reported m [4, 5, 14]. 



474 T . H .  PHUONG 

7. KUNZI, H.P.,ANDOETTLI, W. Integer quadratic programming InRecentAdvances~nMathemati- 
cal Programming, Robert L Graves and Philip Wolfe, Eds., McGraw-Hill, New York, 1963, 
pp. 303-308 

8 LAND, A.H., AND DOIG, A G An automatic method of solving discrete programming problems. 
Econometmca 28, 3 (1960), 497-520 

9. LAND, A H,  AND MORTON, G An inverse-basis method for Beale's quadratic programming 
algorithm Manage. Sc~ 19, 5 (1973), 510-516 

10 LAND, A H ,  AND POWELL, S Fortran codes for mathematical programming. Linear, quadratic 
and dmcrete. Wdey, New York, 1973 

11. LAUGHHUNN, D J. Quadratic binary programming with application to capital budgeting 
problems Oper Res 18, 3 (1970), 454-461 

12. MANGASARIAN, O L Nonlznear Programming. McGraw-Hall, New York, 1969 
13 MAo, J T C ,  AND WALLINGFORD, B A An Extension of Lawler and Bell's method of discrete 

optlmlsatmn with examples from capital budgeting Manage. Sc~ 15, 2 (1968), B51-B60 
14 MARTOS, B Quadratic programming with a quasiconvex objective function Oper. Res 19, 

1 (1971), 87-97 
15 MYLANDER, W C Finite algorithms for solwng quasiconvex quadratic programs Oper. Res 

20, 1 (1972), 167-173 
16. PHUONG, T.H An algorithm for solwng quadratic programs hawng integer variables Avail- 

able c/o Dr A.H. Land, London School of Economics, Houghton Street, London WC2, England. 
17 PONSTEIN, J. Seven kinds of convexity SIAM Rev 9, 1 (1967), 115-119 
18. ROSEN, J B ,  AND SUZUKI, S. Construction of non-hnear programming test  problems Comm. 

ACM 8, 2 (Feb 1965), 113 

RECEIVED JANUARY 1975; REVISED OCTOBER 1975 

Journal of the Association for Computing Machinery, Vol 23, No 3, July 1976 


