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aBSTRACT The ordinal regression problem 1s an extension to the standard multiple regression problem
m terms of assuming only ordinal properties for the dependent variable (rank order of preferred brands
mn a product class, academic ranks for students 1n a class, etc ) while retaiming the interval scale
assumption for independent (or predictor) variables The linear programming formulation for obtaining
the regression weights for ordinal regression, developed m an earher paper, 1s outhned and computa-
tional improvements and alternatives which utihize the special structure of this linear program are
developed and compared for their computational efficiency and storage requirements A procedure which
solves the dual of the onginal hnear programming formulation by the dual simplex method with upper
bounded variables, 1n addition to utthzing the special structure of the constraint matrix from the point of
view of storage and computation, performs the best in terms of both computational efficiency and storage
requirements Using this special procedure, problems with 100 observations and 4 independent variables
take less than § minute, on an average, on the IBM 360/67 Results also show that the linear program-
ming solution procedure for ordinal regression 1s valid —the correlation coefficient between “true” and
predicted values for the dependent variable was greater than 9 for most of the problems tested
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1. Introduction

The well-known multiple regression problem [5, 7] consists of estimating regression
weights {w,,w,, - -,w} for ¢t predictors (independent variables, attributes) from n
observations (¢ < n). For the jth observation, if we denote by «, the value for the
dependent variable and by y,,,y,2," - -,y the values for the ¢ predictors, the multiple
regression model can be stated as:

Q) =Wo+ WYy + Wayy + 0+ wyx t e, (1)

where e, denotes the error term for the jth observation. The weights are usually
estimated by either MSSE (Minimizing Sum of Squared Errors) [5, 7] or MSAE
(Minimizing Sum of Absolute Errors) procedures [3, p. 334].

One of the crucial assumptions involved in such estimation procedures is the
requirement that both the dependent and predictor variables be measured on 1interval
scales. However, guaranteeing interval scale measurement is very difficult for de-
pendent variables such as “preference” for different brands in a product class (8, 11],
“attitude” toward (or “satisfactions” between) alternate mass transit configurations
[10], (academuc) ranks for students in a class [2], etc. Such measurement problems are
considerably alleviated by ordinal multiple regression, which requires only the
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predictor variables to be “intervally” scaled but permits the dependent variable to be
“ordinally” scaled. By a logic similar to that in [9], it can be shown that if » is
sufficiently large compared to ¢, the inequalities implied by the ordinal data are
sufficient to provide (approximately) ratio scaled estimates for the weights.

A procedure suggested by Carroll [1] makes it possible to extend the conventional
MSSE regression procedure to the situation where the dependent variable is known
only on an ordinal scale His iterative algorithm involves performing the MSSE
regression on successive monotone transformations [6] of the dependent variable so as
to improve the fit. However, the hnear programming procedure provided by Sriniva-
san and Shocker [14] for estimating ordinal regression weights possesses some
important advantages over the former procedure. First, the weights can be con-
strained as to sign or left unconstrained, as desired. Second, the procedure can be
shown to always yield estimates of weights which globally minimize a “poorness of
fit” measure, although it 1s not clear whether such a result will always hold for
Carroll’s procedure. One disadvantage, however, of both these procedures in contrast
to MSSE regression is the lack of statistical tests of significance for the estimated
weights. It is to be hoped that the pragmatic validity of these approaches will be
sufficient to encourage eventual development of such tests.

The present paper utilizes the special structure of the linear programming method
[14] mentioned earlier to develop computationally efficient procedures for ordinal
regression. The basic linear programming framework is briefly reviewed in Section 2.
Section 3 develops the several computational improvements and alternatives which
are compared in Section 4 for their relative computational efficiency. Section 4 also
provides some simulation results which demonstrate that the ordinal regression
model together with the linear programming estimation procedure is valid in terms of
its predictive power, defined in terms of the correlation coefficient between predicted
and “true” values for the dependent variable.

2. A Reuview of the Linear Programming Procedure for Ordinal Regression

2.1 PreLIMINARIES. Without loss of generality, let us relabel, if necessary, the
observations {1,2, - -,n} to be in the same order as that of the dependent variable. Iif
the dependent variable is expressed on an ordinal scale, this means that the observa-
tions are to be rearranged, if necessary, so that j=1 corresponds to the observation
with the largest value for the dependent variable, =2 the second largest, - - -, j=n
the observation with the smallest value for the dependent variable. We assume that
ties, if any, are broken randomly so as to yield a strict rank order.! The ordering of the
observations {1,2,- - -,n} implies the set of N = n(n—1)/2 paired comparison dominance
Judgments:

Q= {(1’2)3(]-)3)7' ’ .’(l;n)r(2;3)»' ) ‘,(2,7&),' ) "(n_]-’n)}’ (2)

where for each pair (j, k), observation j has its value for the dependent variable
greater than or equal to that for k. Given a set of estimates {w,,w,," --,w;}, we can
determine

S, =Wy + Weye + -+ wy, for j=12,--n, (3)
the predicted values for the dependent variable. The above equation together with the
paired comparison judgments (2) imply that the estimated weights should be such

that violations (if any) of the inequalities (4) below should be “as minimal as
possible”:

s, = s, for (j,k) € Q. 4)

! The procedures discussed 1n this paper can be modified to handle ties expheitly by a method similar to
that discussed m [13, Sec 3(f)], but this would involve a significant increase 1n the computational effort
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It is assumed that the estimated weights {w,} are required to be nonnegative in all
their components, i.e.

w,=0 forp =1,2,---t (5)

This, however, involves no loss of generality since an ordinal regression problem
which does not have this requirement can be reformulated as a problem satisfying (5),
but with at most one additional predictor variable.?

2.2. ProcepUre LP1. The linear programming formulation for estimating the
regression weights along with its intuitive justification is given below. For greater
details the reader should refer to its original development [14]. The reader is assumed
to be fully familiar with linear programming terminology (3, 4, 12].

Minimize S z2.=B (6)

O.k)ef)

subject to

t
2 (Y —yYiw, + 2, =0 for(y, k) €Q, 7

p=1

i [ 2 (- ykp)] w, = 1, ®

p=1 LOUKIEQ
w,=0 forp=12,--t, 9
zx=0 for(y, k)EQ. (10)

In the linear program (6)-(10), the coefficients {y,.} are the known values for the
predictor variables. As explained earlier, the set () is defined by the rank order of the
observations based on the dependent variable. The regression weights {w,} are the
“decision variables” in the linear program. The variables z,. may be interpreted as a
measure of the poorness of fit for pair (7, k) associated with the “solution” {w,}. To see
this, we rewrite eqs. (7) and (10) as

t

zy = max{0, — Z Wp(Yw = Yip)}- an

p=1

Since the objective (6) minimizes the sum of z;, the inequalities (11) will be “tight” at
the optimum so that from (3) and (11) we get:

2y = max{0, —(s, — sp)}. 12)

If s, = s, then from (12) we obtain z,, = 0, so that in accord with (4) there 1s no
poorness of fit for this pair. However, if the solution {w,} leads to s, < s, this violates
(4) and the quantity —(s, — s;) may be defined as the poorness of fit for the pair (j, k).
Consequently objective (6) minimzes the total poorness of fit, i e. summed over all
pairs in ). Equation (8) is a normalization constraint to take into account the fact
that the weights {w,} are determined only to a scalar multiple. It avoids the trivial
solution w, = 0 for all p. (Essentially it requires the constraints (4) to hold a¢ least 1n
the aggregate, i.e. when summed over all (;, k) € (. As shown in [14, p. 480] this
imposes no “real” restriction on the solution procedure.) The reasons for using this
form of normalization rather than others such as w, = 1, Yi{., w, = 1, etc., are

* If some weight w, were to be constrained nonpositive, we may replace r by its “antiattribute” [, 1 e
define y; = —y,,, and constrain w; to be nonnegative If some or all of the weights are to be left
unconstratned as to sign, this can be accomplished by appropriately defining an additional predictor
variable and requiring all the (¢ + 1) weights to be nonnegative [17, p 77]
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discussed in [14]. The procedure of directly optimizing the linear program (6)-(10) will
be referred to as procedure LP1.

Denoting by B* the optimal value of the objective (6), an index of fit C* for the
ordinal regression problem is defined as the following transformation of B*:

C* = B¥/(1+B¥). (13)

Since C is a strictly monotone transformation of B, the estimates {w,} which minimize
B also minimize C, and conversely. Furthermore, since B* is a nonnegative, C* 1s
bounded by zero and one, and provides a direct analogue to the “stress” measure in
multidimensional scaling [6] and to 1 — R? (R>=coefficient of determination) in
multiple regression [5, 7]. Consequently, the index C* can be compared across
different problems.

3. Improved Computational Procedures for Ordinal Regression

Direct optimization of the linear program (6)-(10) (1.e. computational procedure LP1)
becomes computationally unwieldy when the number of observations, n, 1s large. For
a problem with r observations and ¢ predictors, set Q) consists of N = n(n—1)/2 pairs so
that LP1 has (N+1) constraints® and (N+t) variables. The computational improve-
ments LP2 through LP4 below also solve the linear program (6)-(10) and hence will
obtain the same parameter estimates {w,}. They are, however, likely to prove
computationally more efficient since they utilize the special structure of the linear
program (6)-(10) in devising special purpose procedures. (The analogy is to the
stepping-stone [3] or u-v method [4] of solving transportation problems rather than
direct optimization using the simplex method.)

3.1. ProcepURE LP2. The solution to the linear program (6)-(10) can be consid-
erably facilitated by considering its dual linear program [e.g. 4, pp. 124-127]. For
each pair (j, k) € Q, let us denote by u, the dual variable associated with the
corresponding constraint (7). Let u be the dual variable associated with (8). Then the
dual to (6)-(10) is obtained as:

Maximize pu (14)
subject to

Z Ot | 3 - ye)| w=0 forp=12n (5

ue=1 for (j,R)EQ, (16)

u=0 for(y,k) € an

Constraints (15) correspond to the variables {w,}. Similarly, the upper bound con-
straints (16) correspond to the variables z;. Introducing slack variables S, (S, = 0)
forp =1,2,-- -t (note the distinction between s (eq. (3)) and S), constraints (15) can be
rewritten in “equality form” as

2 (¥ — Yrp)tip + [ 2 O — ykp)]ﬂ +S,=0 forp=1.2,---t. (18
3,k)EQ 2,k)EQ

The variable w is unconstrained as to sign, since constraint (8) is an equality.
However, since the objective (6) is nonnegative (by definition of z,; —see (12)) and
hence bounded from below, it follows from linear programming duality theory that
the optimum value of the objective (14), i.e. u 1s also nonnegative. Thus the procedure
LP2 1s to solve the upper bounded linear program:

Maximize g (19)

3 Throughout this paper, when we refer to constraints we exclude the nonnegativity constraints (of the
form (9)-(10)) and upper bound constraints on the variables
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subject to
S et t | 2 ()| wt S, =0 forp =12, -
ur<1 for (j,k) €Q, 21)
Uyey u, S, = 0 for (J,R)EQ,andp = 1,2,--- ¢. (22)

The tableau for the problem (19)-(22) is shown in Figure 1. The problem (19)-(22) has ¢
constraints and (N +¢+1) variables (with the N variables u, bounded from above by
unity). Thus LP2 has less storage requirements and can be expected to be computa-
tionally more efficient than LP1. As stated earlier, constraints (15) and (and hence
(20)) correspond to the variables {w,} in LP1. Thus the estimates for the regression
weights {w,} are obtained as the optimal dual variables corresponding to the upper
bounded linear program (19)-(22).

3.2 ProceEpure LP3. Procedure LP3, while essentially the same as LP2, utilizes
the structure of the coefficients in LP2 to its advantage. Suppose we solve LP2 by the
revised simplex method. Let us denote by {w,’} the dual variables corresponding to the
linear program LP2 at the ith iteration. Consider any of the first N columns in Figure
1 and let (7,%) be the pair associated with this column. Since the objective function has
all its elements equal to zero corresponding to the first N columns, it follows that the
reduced price (the “c, — z,” in familiar linear programming terminology) is given by:

¢ t t
_21 Wy W — Vo) = _<E wplym) + (2 wplykp) = —s¢ + s (23)
p= p=1 p=1

Consequently, in procedure LP3 none of the first N columns of Figure 1 are
explicitly stored. At the :th iteration of the revised simplex method, the values s, are
computed from eq. (3), using the current dual variables {w,'}. The reduced price
corresponding to the column for pair (j,k) is then simply obtained as s, — s;. Thus
the main advantage of LP3 over LP2 is the reduction in storage corresponding to the
first N columns and the improved efficiency in “pricing out” these N columns. The
remaining details for procedure LP3 are essentially the same as the revised simplex
method for the upper bounded linear programs and need not be repeated here.

Two versions of LP3 were used in choosing the column for basis entry at the
beginning of every iteration:

(a) Version LP3(a) —most positive indicator rule: Choose the column vector with
the most positive reduced price? to be the pivot column for the next iteration. (Since
the linear program (19)-(22) is a maximization problem, column vectors with positive
reduced prices qualify as candidates for a pivot.) If all columns have nonpositive
reduced prices, the current solution is optimal.

(b) Version LP3(b)—most positive for an observation rule: This rule consists of
steps (i)-(iv) below for an iteration. For the first iteration, initialize I’ = 1.5

(1) Set! =1'. Go to (ii).
(i) Among the pairs {(,k), & = [+1, [+2,---,n}, if any of them has a positive
reduced price go to (i1i). Otherwise go to (iv).
(iii) From the pairs considered in (ii) above, identify the pivot column to correspond

4 As mentioned earlier, the reduced price for column u,, 1s s, ~ s This 1s true if u,; 1s nonbasic at 1ts
lower bound If, however, the nonbasic vector u, is at 1ts upper bound, the reduced price would be
57 — 8

5 The nitial basis for LP3 ((a) and (b)) consists of the column vector corresponding to u and any (¢ — 1) of
the slack vectors (the slack vector S, not 1n the basis 1s chosen such that the corresponding 3 eq (¥, —
Yio) 18 positive) Since the right-hand side vector in Figure 1 has all 1ts components zero, the basic
solution also has all its components equal to zero and hence 1s primal feasible It can also be shown that
the vector corresponding to u never leaves the basis in subsequent iterations.
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to the pair with the most positive reduced price. Define !’ = [+1 for the next
iteration.

(iv) Update [ = [+1 (if [ becomes equal to n, redefine ! as 1). If I#I' go to (ii).
Otherwise, choose the vector with the most positive reduced price among the
slacks S,,S,, - -,S; and define I’ =1. If, however, all the slacks S,,S,,- - -,S; have
nonpositive reduced prices, the current solution is optimal.

While rule (a) examines all the N pairs as potential candidates for basis entry, rule
(b) examines, on an average, only a small proportion of these pairs (empirically this
proportion tends to become smaller for larger values of n). Thus rule (b) would involve
less search time per pivot. However, the reduced price under (a) can be expected to be
more positive than under (b) and consequently (a) would result in a smaller number
of iterations. Section 4 compares these two rules for their overall computational time.

Rules (a) and (b) correspond to the “matrix most negative rule” and the “row most
negative rule,” respectively, for pivot choice in transportation problems {15] (also a
special structured linear program). Section 4 concludes that for “small” values of n (n
= 20), rule (a) is computationally more efficient, while for “larger” n (n = 30 (say)),
rule (b) is more efficient. These results are analogous to those found for transporta-
tion problems. Rules (a) and (b) do not exhaust all possibilities for choosing the
column for basis entry Rules similar to the “first encountered negative rule,” “lot
minimum rule,” etc., for transportation problems can be examined. However, as is
the case for transportation problems [15], these additional rules are not likely to
perform as well as rule (b) for large n, (n = 40 (say)). For small n such as n=30,
average computational time for LP3 1s less than 1 second on the IBM 360/67 and seems
hardly worth improving upon.

3.3 Procepure LP4. Procedure LP4 solves the linear program (19)-(22) by the
dual simplex method with bounded variables [16]. Suppose we wish to pivot on the lth
row during the ith iteration of the dual simplex method. Then, for each column we
need to know (a) its reduced price and (b) its updated coefficient on the /th row of
Fagure 1 (obtained as DA where D; denotes the /th row of the inverse of the basis
matrix at the ith iteration and A is the vector of coefficients in Figure 1 for the column
under consideration). Consider any of the first N columns and let (j,k) be the pair
associated with this column As in LP3, the reduced price for this column is obtained
simply as s;' — s (with the s} computed from (3) using the current duals {w,?}). The
column vector A for the (7,k)-th pair has components {y,;—¥i1, Yi2=Yr2 * * > Yt — Yt}
Let D} be represented as (d,ds, - -,d;) so that the updated coefficient for the /th row
in the column for pair (7,k) is:

¢ t {
2 dp'Vip — Yip) = 2 a4y — 2 &)y = 1} — 1
p=1 p=1 p=1

Thus for the ith iteration of the dual simplex method, the updated coefficients along
row [ for the first N columns can be efficiently obtained by (a) determining
d,ds, - -,d), the [th row of the basis inverse at the ith iteration, (b) computing r} =
Si_dyy, foryg =1,2,--+ n, and (c) finding the differences r;} — r; for the pairs (7,k) €
Q. Consequently, the first N columns of the matrix of Figure 1 need not be explicitly
stored.

There are two potential advantages for procedure LP4 over LP3. First, LP4 main-
tains dual feasibility at every iteration. Thus the current dual variables represent a
feasible set of regression weights (i.e. satisfy (5). In fact, they also satisfy (8) since the
column vector corresponding to u is a basis vector at every iteration®). Consequently,

¢ The mitial dual feasible basic solution 1s constructed as follows Let [ be the index corresponding to
which Y, 0ea®,, — ¥ip) attains its maximum over p = 1,2, - ,¢ (This maximum 1s clearly positive,
otherwise from (8) 1t follows that there 1s no feasible solution {w,} Although infeasibility 1s a theoretical
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for a very large problem (n = 500, say), even if we stop the procedure before attaining
global optimality (because of excessively long computational time), we will still
obtain feasible and hopefully “good” estimates for the regression weights. Second, in
method LP3 we need a vector U (say) to indicate whether columns 1,2, - - N in Figure
1 are nonbasic at their upper bound or not. If n=200 (say), this vector is of size 19,900.
In method LP4, however, this information is implcitly known from the relative
magnitudes of s, and s;.. Assuming nondegeneracy,’ since the solution is dual feasible,
it follows that for pair (7,k), (i) if s, < s;, u,; is nonbasic at its upper bound 1, (i) if s, =
Sk, (j,k) 18 in the current basis, and (i1i) if s, > sy, (J,k) is nonbasic at its lower bound
0. Consequently, no vector such as U is needed. This reduces storage requirements as
well as computational effort. However, despite these two advantages it is hard to say
whether LP4 would be computationally more efficient than LP3 since the number of
iterations in the primal and dual methods could be quite different. The overall
computational efficiencies of these methods are now compared in Section 4.

4. Computational Comparison of the Procedures

Table 1 reports the storage requirements of the procedures for several problem sizes
(n,t). It may be noted that the storage requirements for computing with double
precision (displayed in parentheses) are generally less than double the storage
required with single precision because of some integer arrays used in these proce-
dures. From Table 1 it is clear that the procedure LP1 is impractical for present-day
computers for any large size problems (say, n = 50, t = 5). Likewise LP2 becomes
unwieldy for n = 100, ¢ = 10. Procedures LP3 and LP4, however, require only a
modest amount of storage, although LP4 1s clearly superior to LP3. Such differences
can be important for “time-shared” computing, where on-line storage is at a premium
compared to batch processing.

Several 4-attribute problems (¢=4) for different values of n were randomly gener-
ated to compare the computational efficiency of the procedures. For each value of n, 20
problems were randomly generated and tested (for n=150 and 200, because of exces-
sive computation time, only 5 replications (problems) were used).

The steps involved in generating and testing each problem are outlined in the
Monte-Carlo (simulation) procedure below:

(1) A (4x4) variance-covariance matrix was randomly generated by first defining a
(4x4) matrix G = {g,,} with its components drawn as (independent) random numbers
uniformly distributed between —.5 and +.5. The matrix product V = GT-G (where GT
denotes the transpose of G) defines a valid variance-covariance matrix for the vana-
bles (y,,y2,y5.y4 (say). (See [5, eq. (4-68)1). The variables (v,,v,,v;,74 were standard-
ized to have means zero and variances 1 by setting V, the variance covariance matrix
of the standardized variables, equal to the correlation matrix corresponding to V.

(1) (n + 30) observations were drawn independently from the 4-variate normal
distribution with means zero and variance-covariance matrix V. (For each observa-
tion this can be accomplished by sequentially drawing 4 univariate normal random
numbers; see [7, p. 213] for details.) The last 30 observations constitute the “hold-out”
sample to test the predictive validity of the ordinal regression procedure.

(iii) A set of four independent random numbers uniformly distributed between —.5
and +.5 were drawn to represent the “true” weights {w,’,w,’,w;’,w,’}.

possibility, it never occurs 1n practice (see {14], p 480) If1t does, we can replace (8) by w; = 1 where [ 18
the “most relevant” attribute from prior yjudgment ) The 1mtial basis consists of the column vectors
corresponding to the ¢ slack vanables (S,,S,, -, S (see Figure 1) except that the /th slack vector 15
replaced by the column vector corresponding to = Such a basis defines a dual feasible solution, with
weights w,' = 0 forp = 1,2, ¢, except w;' = 1/3 ey — yu)

7 This can be guaranteed almost always by shightly perturbing the attribute values {y,,}, 1 e definingy,,
=y, + {0 — 1t + pl6 where § 1s a very small positive number (e g § = 107



Linear Programming Computational Procedures for Ordinal Regression 483

Table 1: Computer Storage Requirements for LP1 through LP4

Storage Requirement in Words
Single Precision (Double Precision)

n 1 LP1 LP2 LP3 LP4
20 5 39100 2281 420 340

(17617) (4165) (615) (585)
50 5 >102 13816 1665 700

>10% (25165) (2040) (1185)
50 10 >102 20326 2105 1150

109 (38170) (2905) (2070)
100 10 >1o; 80426 6430 2000

10" (>109%) (7780) (3570)
200 10 >10§ >10§ 22580 3700

108 10%) | (25030) (6570)
200 20 >|0§ >10° 25260 6400

108 >10%) (30360) (11940)

NOTE The storage requirements 1n words given above are for data arrays
only (1 e, the computer program and scalars, which take less than
8000 words of storage, are not included 1n these calculations)

(1v) For each of the (n+30) observations the “true” value of the dependent variable
was computed as

4
8= 2 wym 7= 12730, @24)

(v) Error terms were added to the first n observations used for estimation as follows:
Let 62 denote the variance of the observations {s,’,s,’, - -,s,'}. Let E denote the desired
proportion of error variance in the “observed” dependent variable. Since 2 denotes
the proportion (1-E) of the observed variance, A = E§?%/(1-E) gives the error
variance. The observed dependent variables were then computed as s,” = s, + ¢, for
= 1,2,---,n, where e,, the error term, is drawn randomly from a normal distribution
with mean zero and variance A.

(v1) The first n observations were then renumbered so that j=1 corresponds to the
observation with the largest value of s,, =2 the second largest,- -, j=n corresponds
to the observation with the smallest s,".

(vii) The values {y,,} forj = 1,2,---,n (renumbered as above) and p = 1,2,3,4 were
then input into procedures LP1, LP2, LP3(a), LP3(b), and LP4. The time to obtain the
optimal estimates {w,} (exclusive of input and output) were recorded.®

(viii) To test the predictive power of the ordinal regression model, the “predicted”
dependent variables s, fory = n+1, n+2,---,n+30 (the hold-out sample) were com-
puted as

4
s, = 2wy, forj= (n+l), (n+2),- -, (n+30), (25)

p=1

where {w,} are the estimated weights in step (vii). (As remarked in Section 3, these
estimates will be the same for each of the procedures LP1-LP4.)

(ix) The Pearson Product Moment correlation R was computed between {s,'} and {s,}
(egs. (24) and (25)) for the 30 observations in the hold-out sample.® Thus R 1s a

8 Since the weights are unconstrained 1n sign (see step (111)), the estimation 1s to be done with the given
four attributes plus a fifth attribute with values y,; = —34.,y,, The optimal estimates are given by
(w, - ws), w, — ws), w, — ws), and (w, — w;), where w, = 0 forp = 1,2, ,5 (see Footnote 2)

¥ The Spearman (Rho) rank order correlation coefficients, although not reported in the results to be
discussed below, were only about 01, on the average, less than the Pearson R.
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Table 2: Comparative Performance of Procedures LP1 - LP4

Mean
Number of Mean Solution Times (standard deviations) in Seconds Predictive
observations Valdity
n LP1 LP2 LP3(a) LP3(b) LP4 R

i0 .574 115 031 037 .049 910
(215) (067) (013) (014) ( 020) (.081)

14 3135 403 075 098 120 955
(975) (104) (.022) ( 025) (036) (.049)

20 - 1786 243 275 261 961
(420) (.060) (062) (.110) (.037)

30 - 8108 .838 791 .850 972
(1 524) (187) (113) ( 350) (.039)

40 - 25147 2 481 1911 2.031 .987
(5.231) (.574) (357) (874) (.010)

50 - - 5.210 3907 3.503 986
( 709) ( 670) (1.079) (014)

60 - ~ 11 024 6 754 6278 991
(2 125) (1176) (2.211) (008)

70 - - - 10.643 8 269 991
(1173) (3 728) (.008)

80 - - - - 13.624 993
(6.056) (004)

90 - -~ - - 20.008 996
(7.577) (.004)

100 - - - - 25.388 996
(8 467) (.003)

150 - - - - 93.406 997
(27.830) (.003)

200 - - - - 185.256 .998
(75.110) ( 002)

NOTE All problems are with 4 independent variables (t=4) and proportion of error variance E=.2
Computational times are based on 20 randomly generated problems each (except n=150 and
n=200 are based on 5 rephications each) on the IBM 360/67 (FORTRAN 1V, H Compiler)
and are exclusive of mnput and output ‘-’ 1ndicates computations which were not performed

measure of the predictwe validity of the ordinal regression model using the linear
programming estimation procedure.

All computations were performed on the IBM 360/67 (Fortran IV, H Compiler). To
maintain accuracy, computations were done in double-precision arithmetic and the
current basis inverse was recalculated after every 100 pivots. The computational
results are displayed in Table 2, where the mean solution times and standard
deviations (displayed in parentheses) are reported based on 20 replications each (for
rn=150 and 200, 5 replications each) with the proportion of error variance E equal to
.20 (see step (v)).!* Some of the computations were not performed (these are marked as
“~” in Table 2) because either (i) the required storage exceeded the available storage
(n = 20 for LP1) or (11) computational times were large and the direction of the results
were unambiguously clear even without performing the computations (n > 40 for
LP2, n > 60 for LP3(a), and n > 70 for LP3(b)).

There is marked improvement in the solution times in going from LP1 to LP2. For

19 The values ¢=4 and E = 20 approximate the values of ¢ and E typically encountered in (multiattribute)
marketing applications, an area where some form of ordinal regression has been used 1n the past The
number of replications was chosen as 20 based on the conflicting considerations of accuracy versus
computer costs
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n=14, LP2 took only about 3th of the time required by LP1. Likewise, for n=40 there
is about a 12:1 reduction in going from LP2 to LP3 or LP4. Thus LP3 and LP4 are
significantly superior to LP1 and LP2.

The relative performance of LP3(a), LP3(b), and LP4 depends on the value of n. For
n = 20, the “most positive indicator rule” (LP3(a)) performs best. For such small
values of n, the search effort for computing all the N reduced prices is quite small, and
h- 1ce it seems desirable to get the maximum improvement per pivot. For n = 30, the
search effort becomes proportionately larger, and LP3(b) (most positive for an obser-
vation rule) takes over as the best procedure. For n = 50, LP4 performs the best. Even
in the range of n where LP4 is not the best, its solution time differs from the best by
less than 0.12 seconds/problem. This coupled with the considerably smaller storage
requirements for LP4 (See Table 1) makes LP4 a very attractive solution procedure.
LP4 also has the advantage that at every stage of computation, a feasible {w,} is at
hand so that if we had to stop the procedure before attaining the global optimality
because the computation times are too large (say, for n=500) we can still hope to get a
“good” feasible solution within reasonable computational effort. Finally, although the
above analysis of the superiority of LP4 is based on =4 and E =.2, a number of “spot
checks” for other values of ¢ and E showed that LP4 continued to be the best for n =
50. For these reasons it seems clear that LP4 should be chosen as the best solution
procedure.

The relationship of the mean computational time of LP4 as a function of n was
studied from the data of Table 2. A log-linear regression fitted to this data yielded

= .0665n% 7 (26)

The adjusted R? (coefficient of determination adjusted for degrees of freedom) was
.998, and both coefficients were statistically significant beyond the .001 level.

The constant term .0665 in eq. (26) is for the particular case of t=4 and E=.2. To
study the effect of n, ¢, and E on the mean solution time of LP4, a 3x3x3 design was
used with n at the three levels 20, 40, 60, ¢ at 2, 4, 6, and E at .25, 0.5, 1. An E=1
means that all the variance in the dependent variable is error variance. This can be
accomplished by taking the “true” weights w; = wy = --+ = w; = 0 in step (1ii) and
A=1 in step (v) of the simulation procedure outlined earlier. Each of the 27 possible
parameter combinations were tested with LP4. For each parameter combination, 10
problems were solved and the mean solution times and standard deviations based on
these 10 rephications are reported in Table 3.

A log-linear multiple regression relating the mean computation time T to the
parameters n, ¢, and E yielded

T = .0039n?2 795! 363F; 230, @n
The adjusted R? was .988 and all the coefficients were statistically significant beyond

Table 3: Effects of n, t and E on the Solution Time of LP4

t Mean Solution Times (standard deviations) of LP4 in Seconds
n 2 4 6 2 4 6 2 4 6

20 085 255 455 .093 294 521 127 387 525
(052)]  (094)) (173) | (os®| (12n] (18D (059)] (.146)] (179)

40 503 1987 2 811 599 1.936 2 968 898 2 067 3178
(534)] (934) (908) (519) (800)| (912) (656)] (989) (1307)

60 1980 5692 9 304 2216 5428 10 089 4 572 6 349 11 659
(1 891) (1727 (2933) (1 989)] (1978)] (3 800) (2 490) (2 885)] (4 245)

E= 25 E= 50 E=10
NOTE 1) The computational times reported above are based on 10 randomly generated problems each on the
IBM 360/67 (FORTRAN 1V, H Compiler) and are exclusive of input and output.
2) n = number of observations, t = number of independent variables, and E = proportion of error variance

n the dependent variable
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Table 4: Effects of n, t and E on Predictive Vahdity

t Means (and standard deviations) of Predictive Vahdity R

n 2 4 6 2 4 6

20 989 978 913 .971 924 705
(.013) ( 024) (.062) (.033) ( 066) (:230)

40 996 983 967 .987 959 915
(.006) (014) (025) (017) (.030) (.059)

60 .998 987 971 994 968 921
(002)[ (o012)] (026) (007) | (028)| (080)

E= 25 E=.50

NOTE 1) The means (and standard deviations) are based on 10 randomly
generated problems each.

2) n = number of observations, t = number of independent variables,
and E = proportion of error varjance 1n the dependent variable

the .001 level. From the exponents 1n (27), we find that n has the largest effect on T,
and ¢ the next largest; £ has a considerably smaller effect on T'. It is interesting to
note that the exponents of n in the eqs. (26) and (27) are remarkably consistent.

The predictive valdities R (see step (ix) of the Monte Carlo procedure outlined
earlier) are reported mn the last column of Table 2 and in Table 4. For E=1, as
remarked earlier, the true weights w,'=0 for p=1,2,- - - £, so that the true dependent
variable s,’=0 for every (eq. (24)). Consequently R =0, as it should be, since there is
no systematic variation in the dependent variable. Consequently Table 4 reports the
values of R only for E=.25 and £ =.50.

The correlation coefficient R is above .9 almost always (the only exception is for
n=20, =6, and E=.5 in Table 4, where R drops to .705). It is mteresting that the
predictive validity is high even for problems such as n=10, t=4, E=.2; n=20, t=6,
E=.25;n=20, t=4, E=.5. Admittedly, the tests conducted do not exhaust all possibili-
ties in terms of n, ¢, E, other distributions for {y,}, and the like. Nevertheless, the
ordinal regression procedure coupled with the linear programming solution procedure
LP4 offers considerable promise as a valid and computationally feasible procedure
and provides a viable alternative to the standard multiple regression for problems
where the data for the dependent variable satisfy only ordinal properties.
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