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ABSTRACT The ordinal regression problem is an extensmn to the standard multiple regressmn problem 
in terms of assuming only ordinal propertms for the dependent varmble (rank order of preferred brands 
in a product class, academic ranks for students m a class, etc ) while retaining the interval scale 
assumptmn for independent (or predictor) varmbles The hnear  programming formulatmn for obtaining 
the regressmn weights for ordinal regressmn, developed m an earher paper, is outlined and computa- 
tmnal Improvements and alternatives which utilize the special structure of this linear program are 
developed and compared for their computatmnal efficiency and storage reqmrements A procedure which 
solves the dual of the original hnear programming formulatmn by the dual simplex method with upper 
bounded varmbles, m addition to utdlzlng the specml structure of the constraint matrix from the point of 
view of storage and computation, performs the best m terms of both computational efficiency and storage 
requirements Using thin specml procedure, problems with 100 observations and 4 independent variables 
take less than ~ minute, on an average, on the IBM 360/67 Results also show that  the linear program- 
mlng solutmn procedure for ordinal regression is v a h d - t h e  correlation coefficient between "true" and 
predicted values for the dependent varmble was greater than 9 for most of the problems tested 
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1. I n t r o d u c t m n  

T h e  w e l l - k n o w n  m u l t i p l e  r e g r e s s i o n  p r o b l e m  [5, 7] c o n s i s t s  of  e s t i m a t i n g  r e g r e s s i o n  
w e i g h t s  { w . w 2 , ' "  ",wt} for  t p r e d i c t o r s  ( i n d e p e n d e n t  v a r i a b l e s ,  a t t r i b u t e s )  f r o m  n 
o b s e r v a h o n s  (t < n) .  F o r  t h e  j t h  o b s e r v a t i o n ,  i f  we  d e n o t e  b y  % t h e  v a l u e  for  t h e  
d e p e n d e n t  v a r i a b l e  a n d  b y  Y~,y~2,'"~y~t t h e  v a l u e s  for  t h e  t p r e d i c t o r s ,  t h e  m u l t i p l e  
r e g r e s s i o n  m o d e l  c a n  be  s t a t e d  as:  

% = wo + w~yj1 + w2y~2 + " ' "  + wty~t + e~, (1) 

w h e r e  e~ d e n o t e s  t h e  e r r o r  t e r m  for  t h e  . / t h  o b s e r v a t i o n .  T h e  w e i g h t s  a r e  u s u a l l y  
e s t i m a t e d  b y  e i t h e r  M S S E  ( M i n i m i z i n g  S u m  of  S q u a r e d  E r r o r s )  [5, 7] o r  M S A E  
( M i n i m i z i n g  S u m  of  A b s o l u t e  E r r o r s )  p r o c e d u r e s  [3, p. 334]. 

O n e  of  t h e  c ruc i a l  a s s u m p t i o n s  i n v o l v e d  i n  s u c h  e s t i m a t i o n  p r o c e d u r e s  is t h e  
r e q u i r e m e n t  t h a t  bo th  t h e  d e p e n d e n t  a n d  p r e d i c t o r  v a r i a b l e s  be  m e a s u r e d  o n  i n t e r v a l  
sca les .  H o w e v e r ,  g u a r a n t e e i n g  i n t e r v a l  sca le  m e a s u r e m e n t  is v e r y  d i f f i cu l t  for  de-  
p e n d e n t  v a r i a b l e s  s u c h  as  " p r e f e r e n c e "  for  d i f f e r e n t  b r a n d s  i n  a p r o d u c t  c l a s s  [8, 11], 
" a t t i t u d e "  t o w a r d  (or  " s a t i s f a c t i o n s "  b e t w e e n )  a l t e r n a t e  m a s s  t r a n s i t  c o n f i g u r a t i o n s  
[10], ( acadermc)  r a n k s  for  s t u d e n t s  i n  a c l a s s  [2], etc.  S u c h  m e a s u r e m e n t  p r o b l e m s  a r e  
c o n s i d e r a b l y  a l l e v i a t e d  b y  o r d i n a l  m u l t i p l e  r e g r e s s m n ,  w h i c h  r e q u i r e s  o n l y  t h e  
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predictor variables to be "intervally" scaled but permits the dependent variable to be 
"ordinally" scaled. By a logic similar to tha t  in [9], it can be shown that  if n is 
sufficiently large compared to t, the inequalities implied by the ordinal data are 
sufficient to provide (approximately) ratio scaled estimates for the weights. 

A procedure suggested by Carroll [1] makes  it  possible to extend the conventional 
MSSE regressmn procedure to the situation where the dependent variable is known 
only on an ordinal scale His i terative algorithm involves performing the MSSE 
regression on successive monotone transformations [6] of the dependent variable so as 
to improve the fit. However, the hnear  programming procedure provided by Sriniva- 
san and Shocker [14] for est imating ordinal regression weights possesses some 
important advantages over the former procedure. First, the weights can be con- 
strained as to sign or left unconstrained, as desired. Second, the procedure can be 
shown to always ymld estimates of weights which globally minimize a "poorness of 
fit" measure,  although it is not clear whether such a result will always hold for 
Carroll 's procedure. One disadvantage, however, of both these procedures in contrast 
to MSSE regression is the lack of statmtical tests of significance for the estimated 
weights. It  is to be hoped tha t  the pragmatic validity of these approaches will be 
sufficient to encourage eventual development of such tests. 

The present paper utilizes the special structure of the linear programming method 
[14] mentioned earlier to develop computationally efficient procedures for ordinal 
regression. The basic hnear  programming framework is briefly rewewed in Section 2. 
Section 3 develops the several computational improvements and alternatives which 
are compared in Section 4 for their  relative computational efficiency. Section 4 also 
provides some simulation results which demonstrate tha t  the ordinal regression 
model together with the hnear  programming estimation procedure is valid in terms of 
its predictive power, defined in terms of the correlation coefficient between predicted 
and "true" values for the dependent variable. 

2. A R e w e w  o f  the L~near P r o g r a m m i n g  Procedure for Ordinal  Regress ion  

2.1 PRELIMINAmES. Without loss of generality, let us relabel, if  necessary, the 
observations {1,2,...,n} to be in the same order as that  of the dependent variable. If  
the dependent variable is expressed on an ordinal scale, this means that  the observa- 
tions are to be rearranged, if  necessary, so that  j = l  corresponds to the observation 
with the largest  value for the dependent variable, j =2 the second largest, • • . ,  j = n  
the observation with the smallest value for the dependent variable. We assume that  
ties, if any, are broken randomly so as to yield a stmct rank order.l The ordering of the 
observations {1,2,..-,n} implies the set o fN = n ( n -  1)/2 paired comparison dominance 
judgments: 

t2 = {(1,2),(1,3),..-,(1,n),(2,3),'' " , (2 ,n ) , " - , ( n - l , n ) } ,  (2) 

where for each pair  (j, k), observation j has  its value for the dependent variable 
greater  than  or equal to that  for k. Given a set of estimates { w , w 2 , "  ",wt}, we can 
determine 

sj = wly~ + w2y~2 + "'" + wty~t for j = 1,2,..-,n, (3) 

the predicted values for the dependent varmble. The above equatmn together with the 
paired comparison judgments (2) imply that  the estimated weights should be such 
that  violations (if any) of the inequalities (4) below should be "as minimal as 
possible": 

s~ -> sk for (j,k) E ft. (4) 

The procedures discussed in this paper can be modified to handle tins exphcltly by a method similar to 
that discussed m [13, Sec 3(f)], but this would involve a mgmficant increase m the computational effort 
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I t  is assumed tha t  the est imated weights {w,} are required to be nonnegat ive  in all 
their  components,  i.e. 

wp >- 0 f o r p  = 1,2, ' . . , t .  (5) 

This, however,  involves no loss of general i ty  since an  ordinal regression problem 
which does not have this requi rement  can be reformulated as a problem satisfying (5), 
but  with at  most one additional predictor variable. 2 

2.2. PROCEDURE LP1. The l inear p rogramming  formulat ion for es t imat ing the 
regression weights along with its intuitive justification is given below. For  greater  
details the reader should refer to its original development [14]. The reader  is assumed 
to be fully familiar  with l inear p rogramming  terminology [3, 4, 12]. 

Minimize ~ z~k = B (6) 

subject to 

t 

(yj~, - y~,)Wp + z~ >- 0 for (j, k) E F~, (7) 
p = ]  

t 

[ ty. - Yk, l wp = 1, 
p=l Lo ,k tea  J 

Wp>- 0 forp  = 1 ,2 , . . . , t ,  (9) 

zjk >- 0 for (j,  k) E ~ .  (10) 

In the l inear program (6)-(10), the coefficients {y~p} are the known values for the 
predictor variables. As explained earlier, the set ~1 is defined by the rank  order of the 
observations based on the dependent  variable. The regression weights  {wp} are the 
"decision variables" in the l inear program. The variables z~. may  be interpreted as a 
measure  of the poorness o f  f i t  for pair  (j,  k) associated with the "solutmn" {wp}. To see 
this, we rewrite eqs. (7) and (10) as 

t 

z~k >- max{0, - ~ Wp(y~p - Yk,)}. (11) 
p = l  

Since the objective (6) minimizes the sum ofz~k, the inequalities (11) will be "'tight" at  
the opt imum so tha t  from (3) and (11) we get: 

z~k = max{0, -(s~ - sk)}. (12) 

If  s~ _> sk, then from (12) we obtain z~k = 0, so tha t  in accord with (4) there ,s no 
poorness of fit for this pair. However,  if the solution {wp} leads to s~ < sk, this violates 
(4) and the quant i ty  -(% - sk) may  be defined as the poorness of fit for the pair  (j,  k). 
Consequently objective (6) minimizes the total poorness of fit, i e. summed over all 
pairs in 1-1. Equation (8) is a normalizat ion constraint  to take into account  the fact 
tha t  the weights {Wp} are determined only to a scalar multiple. I t  avoids the trivial 
solution wp = 0 for all p.  (Essentially it reqmres the constraints (4) to hold at least m 
the aggregate,  i.e. when summed over all (j, k) ~ 12. As shown in [14, p. 480] this 
imposes no ~real" restriction on the solution procedure.) The reasons for using this 
form of normalization ra ther  than  others such as w~ = 1, ~tv=~ w. = 1, etc., are 

I f  some w e i g h t  w,  w e r e  to be  c o n s t r a i n e d  nonpos l t lve ,  we  m a y  r ep lace  r by  i t s  " a n t l a t t r l b u t e "  l ,  1 e 
def ine  yj, = -Yet, a n d  c o n s t r a i n  wl to be  n o n n e g a U v e  I f  some  or al l  of  t he  w e i g h t s  a r e  to be  lef t  
u n c o n s t r a i n e d  as  to s ign ,  t h i s  c a n  be a c c o m p l i s h e d  b y  a p p r o p r i a t e l y  d e f i n i n g  a n  add l t*ona l  p r e d i c t o r  
v a r i a b l e  a n d  r e q m r m g  al l  t h e  (t + 1) w e i g h t s  to be  n o n n e g a t l v e  [17, p 77] 
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discussed in [14]. The procedure of directly optimizing the linear program (6)-(10) will 
be referred to as procedure LP1. 

Denoting by B* the optimal value of the objective (6), an  index of  fit C* for the 
ordinal regression problem is defined as the following transformation of B*: 

C* = B*/(i  +B*). (13) 

Since C is a strictly monotone transformation of B, the estimates {wp} which minimize 
B also minimize C, and conversely. Furthermore,  since B* is a nonnegative, C* is 
bounded by zero and one, and provides a direct analogue to the ~stress" measure in 
mult idimensmnal scaling [6] and to 1 - R e (Re=coefficient of determination) in 
multiple regression [5, 7]. Consequently, the index C* can be compared across 
different problems. 

3. Improved Computational Procedures for Ordinal Regressmn 

Direct optimization of the linear program (6)-(10) (1.e. computational procedure LP1) 
becomes computationally unwieldy when the number  of observations, n, is large. For 
a problem with n observations and t pre&ctors, set ~ consists ofN = n ( n -  1)/2 pairs so 
that  LP1 has (N+I)  constraints 3 and (N+t) variables. The computational improve- 
ments LP2 through LP4 below also solve the linear program (6)-(10) and hence will 
obtain the same parameter  estimates {wp}. They are, however, likely to prove 
computahonally more efficient since they utilize the special structure of the linear 
program (6)-(10) in devising special purpose procedures. (The analogy is to the 
stepping-stone [3] or u-v method [4] of solving transportatmn problems ra ther  than 
direct optimization using the simplex method.) 

3.1. PROCEDURE LP2. The solution to the linear program (6)-(10) can be consid- 
erably facilitated by considering its dual linear program [e.g. 4, pp. 124-127[. For 
each pair (j, k) E ~,  let us denote by u~k the dual variable associated with the 
corresponding constraint (7). Let ~ be the dual variable associated with (8). Then the 
dual to (6)-(10) is obtained as: 

Maximize ~ (14) 

subject to [- 1 

(Y~p - Ykp)U~k + | ~ (Y~p -- Ykp) ] t~ --< O forp = 1 ,2 , ' ' - , t ,  (15) 
O,k)E~2 L 9. 0 k)~ _l 

u3~ -~ 1 for (j, k) ~ ~ ,  (16) 

u~k-> 0 for (j,k) ~ (17) 

Constraints (15) correspond to the variables {wp}. Similarly, the upper bound con- 
straints (16) correspond to the variables z~k. Introducing slack variables Sp (Sp -> 0) 
forp = 1,2,...  ,t (note the distinction between s (eq. (3)) and S), constraints (15) can be 
rewrit ten in '~equality form" as 

(Y~v--Ykv)Usk+ [ 2 ( Y , p - - Y k p ) ] , + S o = O  f o r p = l , 2 , ' ' ' , t .  (18) 
O , k ) E ~  k O,k)Et~ 

The variable tL is unconstrained as to sign, since constraint (8) is an equality. 
However, since the objective (6) is nonnegative (by definition of z~k-see (12)) and 
hence bounded from below, it follows from linear programming duality theory that  
the optimum value of the objective (14), i.e. ~ is also nonnegative. Thus the procedure 
LP2 is to solve the upper bounded linear program: 

Maximize t~ (19) 

3 T h r o u g h o u t  t h i s  p a p e r ,  w h e n  we  r e f e r  to  c o n s t r a i n t s  we  e x c l u d e  t h e  n o n n e g a t l v l t y  c o n s t r a i n t s  (of  t he  
f o r m  (9)-(10)) a n d  u p p e r  b o u n d  c o n s t r a i n t s  on  t h e  v a r i a b l e s  
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subject  to 

479 

(y~p -- ykp)U~k + [ ~ (y~p -- ykp)] lz + Sp = O 
O , k ) ~ . Q  0 , "k)El~ 

u~k -< 1 for (j, k) E t2, 

u~k, I~, Sp -> 0 for ( j , k )  E t2, a n d p  = 1 ,2 , . . . , t .  

f o r p  = 1 ,2 , . . . , t ,  
(2O) 

(21) 

(22) 

The t ab l eau  for the  problem (19)-(22) is shown in F igu re  1. The problem (19)-(22) has  t 
cons t ra in ts  and  ( N + t + l )  va r i ab le s  (with the  N va r i ab le s  ujk bounded from above by 
unity) .  Thus  LP2 has  less s torage  r equ i r emen t s  and  can be expected to be computa-  
t iona l ly  more  efficient t han  LP1. As s ta ted  ear l ier ,  cons t ra in ts  (15) and  (and hence 
(20)) correspond to the  va r iab les  {wp} m LP1. Thus  the  es t ima tes  for the  regress ion  
weights  {wp} are  ob ta ined  as the  opt imal  dual  va r i ab le s  corresponding to the  upper  
bounded l inea r  p rog ram (19)-(22). 

3.2 PROCEDURE LP3. Procedure  LP3, whi le  e s sen t i a l ly  the  same  as  LP2, ut i l izes  
the  s t ruc ture  of the  coefficients in LP2 to i ts advan tage .  Suppose we solve LP2 by the  
revised s~mplex me thod .  Let  us  denote  by {wp'} the  dual  va r i ab les  cor responding to the  
l inea r  p rog ram LP2 a t  the  i th  i te ra t ion .  Consider  any  of the  f i rs t  N co lumns  in  F igu re  
1 and le t  (2,k) be the  pa i r  associa ted  with  th is  column. Since the  objective funct ion has  
a l l  i ts  e l emen t s  equal  to zero corresponding to the  f i rs t  N columns,  i t  follows t ha t  the  
reduced  pr ice  (the "c~ - z~" in f ami l i a r  l inea r  p r o g r a m m i n g  terminology)  is g iven  by: 

- Wp' (y~p - Ykp) = - wp'y,p + Wp'ykp = -s~ ~ + sk'. (23) 
p = l  

Consequent ly ,  in  procedure  LP3 none of the  f i rs t  N columns of F i g u r e  1 are  
expl ic i t ly  stored. At  the  ~th i t e r a t ion  of the  revised  s implex method,  the  va lues  sj ~ a re  
computed  from eq. (3), us ing  the  cu r ren t  dual  va rmbles  {wp~}. The reduced price 
corresponding to the  column for pa i r  ( j ,k )  is t hen  s imply  obta ined  as sk ~ - s~ ~. Thus  
the  mare  advan t age  of LP3 over  LP2 is the  reduct ion  in s torage corresponding to the  
f irst  N columns and  the  improved  efficiency m "pr ic ing out" these  N columns.  The 
r e m a i n i n g  de ta i l s  for procedure  LP3 a re  essen t ia l ly  the  same  as  the  rev ised  s implex  
method  for the  upper  bounded l inea r  p rograms  and need not  be r epea t ed  here.  

Two vers ions  of LP3 were  used in choosing the  column for bas is  en t ry  a t  the  
beg inn ing  of every i tera t ion:  

(a) Vers ion  L P 3 ( a ) - m o s t  posi t ive  indica tor  rule:  Choose the  column vector  wi th  
the  most  posi t ive reduced price 4 to be the  pivot  co lumn for the  nex t  i t e ra t ion .  (Since 
the  l inea r  p rog ram (19)-(22) is a max imiza t ion  problem,  column vectors  wi th  posi t ive 
reduced pmces qual i fy  as  cand ida tes  for a pivot.)  I f  a l l  columns have  nonposi t lve  
reduced prices,  the  cur ren t  solut ion is opt imal .  

(b) Vers ion L P 3 ( b ) - m o s t  posi t ive  for an  observat ion  rule: This  ru le  consists  of 
s teps (i)-(iv) below for an  i te ra t ion .  For  the  f irst  i t e ra tmn,  in i t i ahze  l '  = 1. 5 

(i) Se t  l = l ' .  Go to (ii). 
(ii) Among  the  pa i r s  {(/,k), k = /+1 ,  l + 2 , . . . , n } ,  i f  any  of t hem has  a posi t ive 

reduced price go to (ili). Otherwise  go to (iv). 
(iii) F rom the  pa i r s  considered in (ii) above, ident i fy  the  pivot  co lumn to correspond 

4 As mentioned earher, the reduced pmce for column u~k I S  S k  z - -  S j  ~ W h l s  lS true if U~k IS nonbasic at its 
lower bound If, however, the nonbasic vector ujk is at its upper bound, the reduced price would be 
S~ ~ - -  S k  1 

The initial basis for LP3 ((a) and (b)) consists of the column vector corresponding to ~ and any (t - 1) of 
the slack vectors (the slack vector Sq not m the basis is chosen such that the corresponding ~(~.k)ea (YJq - 
y~q) IS positive) Since the right-hand side vector m Figure 1 has all Its components zero, the basra 
solution also has all its components equal to zero and hence IS primal feasible It can also be shown that 
the vector corresponding to ~ never leaves the basra m subsequent iterations. 
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to the pair with the most positive reduced price. Define l '  = / + l  for the next 
iteration. 

(iv) Update l = l + l  (if l becomes equal to n, redefine l as 1). If  l ~ l '  go to (ii). 
Otherwise, choose the vector with the most positive reduced price among the 
slacks S ~ , $ 2 , ' "  ,St and define l '  =1. If, however, all the slacks S I , S 2 , ' " , S t  have 
nonpositlve reduced prices, the current solution is optimal. 

While rule (a) examines all the N pairs as potential candidates for basis entry, rule 
(b) examines, on an average, only a small proportion of these pairs (empirically this 
proportion tends to become smaller for larger values of n). Thus rule (b) would involve 
less search time per pivot. However, the reduced price under (a) can be expected to be 
more positive than under (b) and consequently (a) would result in a smaller number 
of iterations. Section 4 compares these two rules for their overall computational time. 

Rules (a) and (b) correspond to the ~'matrix most negative rule" and the 'Crow most 
negative rule," respectively, for pivot choice in transportation problems [15] (also a 
special structured linear program). Section 4 concludes that for '~small" values ofn (n 
-< 20), rule (a) is computationally more efficient, while for 'qarger" n (n -> 30 (say)), 
rule (b) is more efficient. These results are analogous to those found for transporta- 
tion problems. Rules (a) and (b) do not exhaust all possibilities for choosing the 
column for basis entry Rules similar to the "first encountered negative rule," ~qot 
minimum rule," etc., for transportation problems can be examined. However, as is 
the case for transportation problems [15], these additional rules are not likely to 
perform as well as rule (b) for large n, (n -> 40 (say)). For small n such as n=30, 
average computational time for LP3 is less than 1 second on the IBM 360/67 and seems 
hardly worth improving upon. 

3.3 PROCEDURE LP4. Procedure LP4 solves the linear program (19)-(22) by the 
dua l  s i m p l e x  m e t h o d  w~th b o u n d e d  var iables  [16]. Suppose we wish to pivot on the / th  
row during the ith iteration of the dual simplex method. Then, for each column we 
need to know (a) its reduced price and (b) its updated coefficient on the lth row of 
Figure 1 (obtained as Dz'A where Dz ~ denotes the lth row of the inverse of the basis 
matrix at the ith iteration andA is the vector of coefficients in Figure 1 for the column 
under consideration). Consider any of the first N columns and let (j,k) be the pair 
associated with this column As in LP3, the reduced price for this column is obtained 
simply as sk' - s~' (with the s~ ~ computed from (3) using the current duals {Wp~}). The 
column vector A for the (j,k)-th pair has components {yj~-yki, Y~2-yk2, • " ", YJt-Ykt}. 
LetDt' be represented as (d~,d2', . . .  ,dr') so that the updated coefficient for the lth row 
in the column for pair (j,k) is: 

t t t 

dp'(yjp - Ykp) = ~ dp'yjp - ~ dp'ykp = r~' - rk'. 
p = l  p = l  p = l  

Thus for the ~th iteration of the dual simplex method, the updated coefficients along 
row l for the first N columns can be efficiently obtained by (a) determining 
(dis,d2', ' ' ' , d t q ,  the lth row of the basis inverse at the ith iteration, (b) computing r~' = 
~tp=~dp'y~p forj = 1,2,. • .,n, and (c) finding the differences r~' - rk' for the pairs (j,k) 
~. Consequently, the first N columns of the matrix of Figure 1 need not be explicitly 
stored. 

There are two potentml advantages for procedure LP4 over LP3. First, LP4 main- 
tains dual feasibility at every iteration. Thus the current dual variables represent a 
feasible set of regressmn weights (i.e. satisfy (5). In fact, they also satisfy (8) since the 
column vector corresponding to t~ is a barns vector at every iteration6). Consequently, 

The mltlal dual feamble basra solution is constructed as follows Let l be the index corresponding to 
which ~o,k~ea(Yjp -- Ykp) attains its maximum over p = 1,2, - ,t (Thin maximum is clearly positive, 
otherwise from (8) it follows that there is no feamble solution {wp} Although infeaslbihty is a theoretical 
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for a very large problem (n -~ 500, say), even if we stop the procedure before attaining 
global optimality (because of excessively long computational tlme), we will still 
obtain feasible and hopefully ~good" estimates for the regression weights. Second, in 
method LP3 we need a vector U (say) to mdlcate whether columns 1,2,. • • ,N in Figure 
I are nonbasic at their upper bound or not. If n=200 (say), this vector is of size 19,900. 
In method LP4, however, this information is implicitly known from the relative 
magnitudes ofsj and sk. Assuming nondegeneracy, 7 since the solution is dual feasible, 
it follows that for pair (j,k), (i) ifs~ < sk, ujk is nonbasic at its upper bound 1, (ii) ifs~ = 
sk, (j,k) is in the current basis, and (ili) ifsj > sk, (J,k) is nonbasic at its lower bound 
0. Consequently, no vector such as U is needed. This reduces storage requirements as 
well as computational effort. However, despite these two advantages it is hard to say 
whether LP4 would be computationally more efficient than LP3 since the number of 
iterations in the prima] and dual methods could be quite different. The overall 
computational efficmncies of these methods are now compared in Section 4. 

4. Computatmnal Compartson of the Procedures 

Table  I r epor t s  the  s torage r equ i r emen t s  of the  procedures  for severa l  p rob lem sizes 
(n,t). I t  m a y  be noted t ha t  t he  s torage  r e q u i r e m e n t s  for comput ing  wi th  double  
precis ion (d isp layed in paren theses )  a re  gene ra l ly  less t h a n  double  the  s torage  
requ i red  wi th  s ingle  precis ion because  of some in teger  a r r a y s  used in  these  proce- 
dures .  F r o m  Table  I i t  is c lear  t h a t  the  procedure  LP1 is imprac t i ca l  for p re sen t -day  
compute rs  for any  l a rge  size p rob lems  (say, n >- 50, t >- 5). L ikewise  LP2 becomes 
unwie ldy  for n -> 100, t ~ 10. Procedures  LP3 and  LP4, however ,  r equ i re  only  a 
modes t  a m o u n t  of s torage,  a l t hough  LP4 is c lear ly  super ior  to LP3. Such differences 
can be i m p o r t a n t  for " t ime-shared"  comput ing,  whe re  on-l ine s torage  is a t  a p r e m i u m  
compared  to ba tch  processing.  

Severa l  4 -a t t r ibu te  p rob lems  ( t=4) for di f ferent  va lues  of n were  r a n d o m l y  gener-  
a ted  to compare  the  computa t iona l  efficiency of the  procedures .  For  each va lue  of n,  20 
problems  were  r a n d o m l y  gene ra t ed  and tes ted  (for n=150 and  200, because  of exces- 
sive computa t ion  t ime,  only  5 rep l ica t ions  (problems) were used). 

The s teps  involved in  gene ra t i ng  and t es t ing  each problem are  ou t l ined  in  the  
Monte-Car lo  (s imulat ion)  procedure  below: 

(i) A (4 × 4) var iance-covar iance  m a t r i x  was  r a n d o m l y  gene ra t ed  by f i rs t  def in ing  a 
(4 × 4) m a t r i x  G = {g,} wi th  i ts  components  d r a w n  as  ( independent)  r a n d o m  numbe r s  
un i fo rmly  d i s t r ibu ted  be tween  - . 5  and  + .5. The  m a t r i x  product  V = G T.G (where G w 
denotes  t he  t ranspose  of G) def ines  a va l id  va rmnce-covar iance  m a t r i x  for t he  va r i a -  
bles  (Y,,Y~,Y~,Y4) (say). (See [5, eq. (4-68)]). The va r i ab l e s  (y,y2,y.~,y4) were  s t andard-  
ized to have  means  zero and va r i ances  1 by se t t ing  V, the  va r i ance  covar iance  m a t r i x  
of the  s t andard ized  var iab les ,  equal  to the  cor re la t ion  m a t r i x  cor responding  to V. 

0i) (n + 30) observa t ions  were  d r a w n  independen t ly  fr~)m the 4 -var ia te  no rma l  
d i s t r ibu t ion  with  m e a n s  zero and  var iance-covar iance  m a t r i x  V. (For  each  observa-  
t ion th is  can be accomplished by sequen t i a l ly  d r a w i n g  4 u n i v a r i a t e  n o r m a l  r andom 
numbers ;  see [7, p. 213] for de ta i l s . )  The  l a s t  30 observa t ions  cons t i tu te  t he  '~hold-out" 
sample  to t es t  the  predic t ive  va l i d i t y  of the  o rd ina l  regress ion  procedure.  

(iii) A set  of four i ndependen t  r andom number s  un i fo rmly  d i s t r ibu ted  be tween  - . 5  
and + .5  were  d r a w n  to r ep re sen t  the  " t rue" we igh t s  {wi',w2',w3',w4'}. 

posslblhty, it never occurs m practice (see [14], p 480) If it does, we can replace (8) by wz = 1 where l as 
the "most relevant" attribute from prior judgment ) The mmal basis consists of the column vectors 
corresponding to the t slack variables (S~,$2, ", St) (see Figure 1) except that the lth slack vector is 
replaced by the column vector corresponding to tz Such a basis defines a dual feasible solution, with 
weights w~' = 0 forp = 1,2, ,t, except wl ~ = l/~o.k)e~(y~ - Ykz) 
7 This can be guaranteed almost always by slightly perturbing the attribute values {y~p}, 1 e definlngy~'~ 
= yjp + [(] - 1)t + p]5 where 6 is a very small positive number (e g 5 = 10 -~) 
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Table 1: Computer Storage Requirements for LPI through LP4 

n 

20 

50 

50 

100 

200 

200  

10 

10 

l 0  

20 

Storage Requ i remen t  m Words 
Single Precision (Double  Precision) 

LPI LP2 LP3 

39100  2281 420  
(77617)  (4165)  (615)  

> 1 0 6  . 13816 1665 
( > 1 0  b) (25165)  (2040)  

> 1 0 6  20326  2105 
( > 1 0 6  ) (38170)  (2905)  

> 1 0 7  _ 80426  6430 
( > 1 0 7  ) ( > 1 0 5  ) (7780)  

> 1 0 _  8 > 1 0 _  s 2 2 5 8 0  
( > 1 0 8  ) (>105  ) (25030)  

> 1 0 -  8 > 1 0 5  25260  
( > 1 0  ~) ( > 1 0 6  ) (30360)  

LP4 

340 
(585) 

700  
(I185) 

I150 
(2070)  

2000  
(3570)  

3700 
(6570)  

6400 
(11940)  

NOTE The storage requi rements  m words  gtven above are for data arrays  
only 0 e , the compute r  p rogram and scalars, whmh take less than  
8000 words  o f  s torage,  are not included m these calcula tmns)  

0v) For each of the (n + 30) observations the "true" value of the dependent variable 
was computed as 

4 

s~' = ~ wp'y~p, .1 = 1,2, '-- ,n+30. (24) 
p=l  

(v) Error terms were added to the first n observations used for estimation as follows: 
Let 6 -2 denote the variance of the observations {s1',s2',"" ,sn'}. LetE denote the desired 
proportion of error variance in the "observed" dependent variable. Since 6 -z denotes 
the proportion ( l - E )  of the observed variance, h = E6-2/(1-E) gives the error 
variance. The observed dependent variables were then computed as sj' = s~' + e~ for,/ 
= 1,2,...,n, where e ,  the error term, is drawn randomly from a normal distribution 
with mean zero and variance h. 

(vl) The first n observations were then renumbered so that,/= 1 corresponds to the 
observation with the largest value of sj',,/=2 the second largest, . . . ,  j =n corresponds 
to the observation with the smallest s~". 

(vii) The values {y~.} for,/ = 1,2,..-,n (renumbered as above) andp  = 1,2,3,4 were 
then input into procedures LP1, LP2, LP3(a), LP3(b), and LP4. The time to obtain the 
optimal estimates {wp} (exclusive of input and output) were recorded. 8 

(viii) To test the predictive power of the ordinal regression model, the "predicted" 
dependent variables s~ for,/ = n + l ,  n+2,. . . ,n+30 (the hold-out sample) were com- 
puted as 

4 

s~ = ~ wpy~p for j  = (n+l), (n+2) , . . . ,  (n+30), (25) 
p~l  

where {wp} are the estimated weights in step (vii). (As remarked in Section 3, these 
estimates will be the same for each of the procedures LP1-LP4.) 

(ix) The Pearson Product Moment correlation R was computed between {s~'} and {s~} 
(eqs. (24) and (25)) for the 30 observations m the hold-out sample2 Thus R 1s a 

8 S ince  t h e  w e i g h t s  a r e  u n c o n s t r a i n e d  m s i g n  (see s t ep  (m)),  t h e  e s t l m a t m n  1s to be  done  w i t h  t h e  g i v e n  
four  a t t m b u t e s  p lus  a f i f th  a t t r i b u t e  w i t h  v a l u e s  yj~ = - ~ = , y ~ .  T h e  op t ima l  e s t i m a t e s  a r e  g i v e n  b y  
(w~ - w~), (w2 - w~), (wj - w~), a n d  (w4 - w~), w h e r e  wp >- 0 f o r p  = 1,2,- ,5 (see F o o t n o t e  2) 

The  S p e a r m a n  (Rho) r a n k  o r d e r  c o r r e l a t m n  coef f icmnts ,  a l t h o u g h  n o t  r e p o r t e d  m t h e  r e s u l t s  to  be  
d i s cus sed  be low,  w e r e  on ly  a b o u t  01, on  t h e  a v e r a g e ,  less  t h a n  t h e  P e a r s o n  R .  
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Table 2: Comparative Performance o f  Procedures LPI  - LP4 

Number o f  
observations 

n 

l 0  

Mean Solution Times (standard devtattons) in Seconds 

LP1 

.574 115 
( 2 1 5 )  ( 0 6 7 )  

NOTE 

LP2 LP3(a) LP3(b) LP4 

031 
( 0 1 3 )  

037  
( 0 1 4 )  

.049 
( 0 2 0 )  

Mean 
Predict ive 
Vahdlty 

R 

.910 
( .081)  

14 3 135 403 075 098  120 .955 
( 9 7 5 )  ( 1 0 4 )  ( .022)  ( 0 2 5 )  ( 0 3 6 )  ( .049)  

20 1 786 243  275 .261 961 
( 4 2 0 )  ( .060)  ( 0 6 2 )  ( .110)  ( .037)  

30 8 108 .838 791 .850 972 
(1 524) ( 1 8 7 )  ( 1 1 3 )  ( 3 5 0 )  ( .039)  

40 25 147 2 481 1 911 2.031 .987 
(5 .231)  ( .574)  ( 3 5 7 )  ( 8 7 4 )  ( .010)  

50 5 .210 3 907 3 .503 .986 
( '709)  ( 6 7 0 )  (1 .079)  ( 0 1 4 )  

60 6 278  
(2 .211)  

70 

80 

90 

100 

150 

200  

11 024  
(2 125) 

6 754 
(1 176) 

991 
( 0 0 8 )  

- 10.643 8 269 991 
(1 173) (3 728)  ( .008)  

13 .624 .993 
(6 .056)  ( 0 0 4 )  

20 .008  .996 
(7 .577)  ( .004)  

25 .388  .996 
(8 467)  ( .003)  

93 .406  .997 
(27 .830)  ( .003) 

185 .256  .998 
(75 .110)  ( 0 0 2 )  

All problems are wRh 4 independent variables ( t=4)  and proportion o f  error variance E=.2 
Computational  times are based on 20 randomly generated problems each (except n=150  and 
n=200 are based on 5 rephcatlons each) on the IBM 360 /67  ( F O R T R A N  IV, H Compiler) 
and are exclusive o f  input and output '-' indicates computat ions  which were not performed 

measure of the predtctwe validity of the ordinal regression model using the linear 
programming estimation procedure. 

All computations were performed on the IBM 360/67 (Fortran IV, H Compiler). To 
maintain accuracy, computations were done in double-precision arithmetic and the 
current basis inverse was recalculated after every 100 pivots. The computational 
results are displayed in Table 2, where the mean solution times and standard 
deviations (displayed in parentheses) are reported based on 20 replications each (for 
n = 150 and 200, 5 replications each) with the proportion of error variance E equal to 
.20 (see step (v)).t° Some of the computations were not performed (these are marked as 
"-" in Table 2) because either (i) the required storage exceeded the available storage 
(n -> 20 for LP1) or (11) computational times were large and the direction of the results 
were unambiguously clear even without performing the computations (n > 40 for 
LP2, n > 60 for LP3(a), and n > 70 for LP3(b)). 

There is marked improvement in the solution times in going from LP1 to LP2. For 

,o The  v a l u e s  t = 4  a n d  E = 20 a p p r o x i m a t e  the  v a l u e s  o f t  and E typica l ly  encountered  in (mul t la t t r ibute )  
m a r k e t i n g  appl icat ions ,  an area  w h e r e  s o m e  form of  ordinal  regress ion  ha s  been  used  in the  past  The  
n u m b e r  of  repl icat ions  w a s  chosen  as  20 based  on the  conf l i c t ing  cons iderat ions  o f  accuracy  versus  
c o m p u t e r  costs  
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n=14, LP2 took only about { th  of the time required by LP1. Likewise, for n=40 there 
is about a 12:1 reduction in going from LP2 to LP3 or LP4. Thus LP3 and LP4 are 
signfficantly superior to LP1 and LP2. 

The relative performance of LP3 (a), LP3 (b), and LP4 depends on the value of n. For 
n _< 20, the "most positive indicator rule" (LP3(a)) performs best. For such small 
values of n, the search effort for computing all the N reduced prices is quite small, and 
h, ice it seems desirable to get the maximum improvement per pivot. For n -> 30, the 
search effort becomes proportionately larger, and LP3(b) (most positive for an obser- 
vation rule) takes over as the best procedure. For n >- 50, LP4 performs the best. Even 
in the range of n where LP4 is not the best, its solution time differs from the best by 
less than 0.12 seconds/problem. This coupled with the considerably smaller storage 
requirements for LP4 (See Table 1) makes LP4 a very attractive solution procedure. 
LP4 also has the advantage that at every stage of computation, a feasible {wp} is at 
hand so that if we had to stop the procedure before attaining the global optimality 
because the computation times are too large (say, for n=500) we can still hope to get a 
"good" feasible solution within reasonable computational effort. Finally, although the 
above analysis of the superiomty of LP4 is based on t=4 and E =.2, a number of"spot 
checks" for other values of t and E showed that LP4 continued to be the best for n ~- 
50. For these reasons it seems clear that LP4 should be chosen as the best solution 
procedure. 

The relationship of the mean computational time of LP4 as a function of n was 
studied from the data of Table 2. A log-linear regression fitted to this data yielded 

T = .0665n2 796. (26) 

The adjusted R 2 (coefficmnt of determination adjusted for degrees of freedom) was 
.998, and both coefficients were statistically significant beyond the .001 level. 

The constant term .0665 in eq. (26) is for the particular case of t=4 and E = .2. To 
study the effect of n, t, and E on the mean solution time of LP4, a 3 × 3 × 3 design was 
used with n at the three levels 20, 40, 60, t at 2, 4, 6, and E at .25, 0.5, 1. An E=I 
means that  all the varmnce in the dependent variable is error variance. This can be 
accomplished by taking the "true" weights w't = w~ . . . . .  w~ = 0 in step 0ii) and 
h= 1 in step (v) of the simulation procedure outlined earlier. Each of the 27 possible 
parameter combinations were tested with LP4. For each parameter combinatidn, 10 
problems were solved and the mean solution times and standard deviations based on 
these 10 rephcations are relJorted in Table 3. 

A log-linear multiple regression relating the mean computation time T to the 
parameters n, t, and E yielded 

T = .0039n 2795tt 3~E 230 (27) 

The adjusted R 2 was .988 and all the coefficients were statistically significant beyond 

Table 3: Effects o f  n, t and  E on  the  So lu t ion  Ttrne o f  LP4 

20  

40  

60 

N O T E  1) 

2) 

Mean So lu t ion  Ttmes  ( s tandard  devta t lons)  o f  LP4 in Seconds  

2 4 6 2 4 6 2 4 6 
i 

085  255  : 455  . 0 9 3  2 9 4  521 127 387  525 
( 0 5 2 )  ( 0 9 4 )  ( 1 7 3 )  ( 0 5 5 )  ( 1 2 7 )  ( 1 5 1 ) l  ( 0 5 9 )  ( . 146 )  ( 1 7 9 )  

I 
503  1 987  I 2 811 599  1 .936  2 968  898  2 0 6 7  3 178  
534)  ( 9 3 4 )  ( 9 0 8 )  ( 5 1 9 )  ( 8 0 0 )  ( 9 1 2 )  ( 6 5 6 )  ( 9 8 9 )  (I  307)  

98Q 5 692  9 304  2 2 1 6  5 4 2 8  10 089  I 4 572  6 349  11 659  
8 9 1 )  (1 727)1 (2 933) (1 9 8 9 )  (1 9 7 8 )  (3 8 0 0 )  I (2 4 9 0 )  (2 8 8 5 )  (4 24S) 

E =  25 E =  50 E =  1 0 

The  c o m p u t a t i o n a l  t imes  r epo r t ed  above are based on 10 r andoml y  genera ted  problems  each on the 
IBM 3 6 0 / 6 7  ( F O R T R A N  IV, H Compi l e r )  and  are exclustve o f  i npu t  and o u t p u t .  

n = n u m b e r  o f  observa t ions ,  t = number  o f  i ndependen t  variables,  and  E = p ropo r t i on  o f  er ror  var iance  
m the  dependen t  var iable  
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20 

40 

6O 

NOTE 1) 

2) 

Table 4: Effects of  n, t and E on Pgedtcttve Vahdtty 

(.ot3) 

(.006) 

.998 
(.oo2) 

Means (and standard deviations) of Predwtlve Vahdlty R 

2 4 6 2 4 6 

989 978 913 .971 924 705 
( 0 2 4 )  ( .062) ( .oa3) ( 0 6 6 )  

996 983 967 .987 .959 915 
(o14) (o2s) (.o17) (.o3o) 

987 971 .994 968 921 
( 0 1 2 )  ( 0 2 6 )  ( 0 0 7 )  ( 0 2 8 )  

E = 25 E = . $ O  

The means (and standard deviations) are based on 10 randomly 
generated problems each. 

n = number of  observations, t = number of independent variables, 
and E = proportion of error variance in the dependent variable 

(.23o) 

(.os9} 

(o8o) 

the .001 level. From the exponents  in  (27), we find t ha t  n has the largest  effect on T,  
and  t the next  largest; E has  a considerably smal ler  effect on T. I t  is in te res t ing  to 
note tha t  the exponents  of n in  the eqs. (26) and  (27) are r emarkab ly  consistent.  

The predichve vahdi t ies  R (see step (ix) of the Monte Carlo procedure out l ined 
earlier) are  reported m the las t  column of Table  2 and  in  Table  4. For  E = i ,  as 
remarked  earlier,  the t rue  weights  Wp'= 0 for p = 1,2, . . - , t ,  so tha t  the t rue  dependent  
varmble  s / = 0  for every. / (eq.  (24)). Consequent ly  R =0, as it  should be, since there is 
no systematic  var ia t ion  in  the dependent  variable.  Consequent ly  Table  4 reports the 
values  of R only for E =.25 and  E =.50. 

The correlat ion coefficient R is above .9 a lmost  a lways (the only exception is for 
n=20,  t=6, and  E = . 5  in  Table  4, where R drops to .705). It  is in te res t ing  t ha t  the 
predictive val idi ty  is high even for problems such as n=10,  t=4,  E=.2;  n=20, t=6, 
E =.25; n =20, t=4, E = .5. Admit tedly,  the tests conducted do not  exhaus t  all  possibili- 
tins in  te rms  of n,  t, E ,  other d is t r ibut ions  for {y~p}, and  the like. Nevertheless,  the 
ordinal  regressmn procedure coupled wi th  the l inear  p rogramming  solut ion procedure 
LP4 offers considerable promise as a val id and  computa t ional ly  feasible procedure 
and  provides a viable  a l t e rna t ive  to the s t andard  mul t ip le  regression for problems 
where the data  for the dependent  var iable  satisfy only ordinal  properties. 
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