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ABSTRACT
With the availability of vast amounts of user visitation history

on location-based social networks (LBSN), the problem of Point-of-
Interest (POI) prediction has been extensively studied. However,

much of the research has been conducted solely on voluntary check-

in datasets collected from social apps such as Foursquare or Yelp.

While these data contain rich information about recreational activ-

ities (e.g., restaurants, nightlife, and entertainment), information

about more prosaic aspects of people’s lives is sparse. This not only

limits our understanding of users’ daily routines, but more impor-

tantly the modeling assumptions developed based on characteristics

of recreation-based data may not be suitable for richer check-in

data. In this work, we present an analysis of education “check-in”

data using WiFi access logs collected at Purdue University. We

propose a heterogeneous graph-based method to encode the corre-

lations between users, POIs, and activities, and then jointly learn

embeddings for the vertices. We evaluate our method compared to

previous state-of-the-art POI prediction methods, and show that

the assumptions made by previous methods significantly degrade

performance on our data with dense(r) activity signals. We also

show how our learned embeddings could be used to identify similar

students (e.g., for friend suggestions).

KEYWORDS
Location-based social networks, network embedding, heteroge-

neous graphs, representation learning.
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1 INTRODUCTION
Millions of check-in records in location-based social networks (LB-
SNs) provide an opportunity to study users’ mobility pattern and

social behavior from a spatial-temporal perspective. In recent years,
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the point-of-interest (POI) recommendation/prediction problem has

attracted significant attention [19], [20], [5], [21], [17], particularly

for advertising and personalization. In POI tasks, the goal is to use

user behavioral data to model users’ activities at different locations

and times, and then make predictions (or recommendations) for

relevant venues based on their current context (including spatial,

temporal, and other contextual information).

While POI predictions have broad applicability to myriad orga-

nizations, to date research has focused on developing POI methods

based solely on voluntary check-in datasets collected from online

social network apps such as Foursquare or Yelp [10], [6]. While

these data contain rich information about recreational activities

(e.g., restaurants, nightlife, and entertainment), the reliance on

voluntary reporting results in sparse information about more pro-

saic aspects of daily life (e.g., offices, errands, houses). Moreover,

recreation-based check-in data may bias conclusions drawn about

mobility patterns or personal preferences. For example, Foursquare

users often visit a POI only once, so the users’ check-ins may not

be sufficient to derive preferences for venues themselves, but only

for venue categories. Also since check-ins to location-based social

networks are often sporadic [10], it can be difficult to identify con-

sistent user patterns.

In this work, we present the first analysis of a spatio-temporal

educational “check-in” dataset, with the aim of using POI predic-

tions to personalize student recommendations (e.g., clubs, friends,

study locations) and to understand behavior patterns that increase

student retention and satisfaction. The results also provide a better

idea of how campus facilities are utilized and how students connect

with each other. The Purdue University “check-in” data records

(anonymized) users’ access to WiFi access points on campus, with

venue information about locations (e.g., dining hall, library, dorm,

gym). Specifically, we analyzeWiFi access history across on-campus

buildings, for all freshmen over one semester.

Compared to well-known check-in datasets like Foursquare,

these data contain (1) more active users, (2) a richer set of daily

activities (e.g., study, dine, exercise, rest), and (3) well-annotated

spatial range (i.e., on campus). These characteristics make it eas-

ier to analyze the unique properties of user check-in data and

extract interesting social and mobility patterns. Notably the WiFi

access logs provide better temporal resolution than previous LBSN

datasets, since a user “checks-in” whenever her device sends or

receives a packet through a wireless connection. Similar data are

collected by GPS trackers, where location observations are passively

recorded [23]. But while GPS tracking provides more extensive in-

formation about users’ movements, it does not provide the rich

venue and activity information associated with check-in data.
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POI prediction and recommendation tasks are different from

more traditional recommendation tasks because they involve a

more structured, context-rich environment [13]. In addition to user-

POI check-in frequencies, the users and POIs are usually associated

with a rich set of attributes, such as POI category, spatio-temporal

information, personal activity. A heterogeneous graph structure is

thus a natural choice to for spatio-temporal POI prediction tasks,

since it is more amenable to representing and reasoning with rich

context compared to tensor factorization methods (e.g., [5]).

Recently, methods which learn graph representations by em-
bedding nodes in a vector space have gained traction from the

research community, and graph embedding methods have been

widely adopted for a variety of tasks, including text mining [14], on-

line event detection [22] and author identification [2]. In this work,

we extend these efforts and propose a network-based embedding

method called Embedding for Dense Heterogeneous Graphs (EDHG).
Our approach (i) incorporates personal preferences, temporal pat-

terns, and activity types into a sparse(r) view of the heterogeneous

graph, (ii) uses global knowledge of the graph to generate negative

samples, (iii) jointly learns vector representations for the nodes in

the graph, i.e., users, POIs, time-slots, and then (iv) uses the learned

representations for user and time specific POI recommendation.

We empirically evaluate the effectiveness of EDHG using POI

prediction and friend suggestion tasks and show that it outperforms

previous state-of-the-art POI recommendation methods. Our inves-

tigation shows that reason for the improvement stems from the

process of (i) heterogeneous graph construction, and (ii) negative

sampling. We show that the processes used in previous methods

are more suitable to OSN check-in data based on sparse voluntary

reporting, than dense(r) check-in data based on location tracking.

To summarize, our work makes the following contributions:

(1) Presents the first educational “check-in” dataset and explores

its unique mobility and social characteristics;

(2) Identifies the challenges for time-aware POI prediction in

educational check-in data based on increased density due

to location-based tracking (compared to previous voluntary-

report LSBN data);

(3) Proposes a novel heterogeneous information network-based

model to encode the relations between users, POIs, and time-

slots, and evaluates its efficacy for POI and user recommen-

dation tasks.

2 DATA CHARACTERISTICS
In this section, we discuss the characteristics of the Purdue educa-

tional “check-in” dataset and showcase its unique aspects compared

to previous check-in data.

2.1 Data sample
In this work, we use two sample datasets from the Purdue Office

of Instituional Research: (i) WiFi log data and (ii) building location

profiles
1
. We consider a sample of the data restricted to freshmen

students in the 2016-17 academic year. The 376Gb WiFi log file

contains over 1 billion entries, each of which records a data commu-

nication between a campus WiFi access point and a personal device

1
Collected and analyzed anonymously, with IRB approval.

Item Number Description
Users 6250 Freshmen

POIs 221 On-campus buildings

POI category 4 Academic, Residential, Admin-

istration, Auxiliary

POI functionality 7 Residence, Recreation, Dining,

Exercise, Library/Lab, Class-

rooms, Others

Time span 1 sem. Fall: 08/22/16 to 12/17/16

Table 1: Dataset description

in the time period 7/31/2016 to 6/30/2017. Each entry contains activ-

ity time (date, hour and minute), anonymized user id, MAC address,

and building id. The building profile provides building information,

including building id, name, category, and functionalities. Note that

each building belongs to one category but might have multiple

functionalities. We remove users with fewer than 100 check-ins.

We also drop the check-in records generated by MAC addresses

that only checkin at a single building, as these devices are likely

to be stationary PCs in dorms or offices. Moreover, using class reg-

istration information, we attach a ‘in-class’ label for the record if

the WiFi access point is in the building associated with their course

schedule at that time/day. While, we retain these in-class checkins

for the analysis in this section, we remove them for the modeling

in Section 3, to focus the prediction task on less predictable user

movements. The final processed sample has 540 million logs in total.

More dataset statistics are shown in Table 1.

2.2 Temporal dynamics of user preferences
Figures 1a-1d show the students aggregated temporal preference

for each type of activity in terms of the conditional probability

Pr (time = τ |activity = a) for a given time slot τ and activity

a (e.g., Dining). We can see that different activities show unique

temporal patterns. For example, on weekdays (Fig. 1a) students

usually visit the dining halls (i.e., dining activity) around 12pm and

6pm, and go to the gym around 8pm. Check-ins at the residence

halls are visible throughout the day, reflecting the variability in

students daily routines and the dorms’ versatility.

Figures 1a and 1b show the differences in time preferences for

weekday and weekend, respectively. Students only have classes

on Saturday morning, and they are more likely to start studying

(including staying in the lab or library) at later times on weekends.

For non-academic activities on weekends, visiting hours to the gym

are more distributed owing to their more flexible schedule, and

more students choose to have lunch rather than dinner on campus.

We also investigate if students’ temporal preferences vary by

major. Figures 1c and 1d, show the preferences for 302 computer

science students and 267 Pharmacy students, respectively. We can

see that the overall preferences are similar for Dininд, while there
are some differences in taking classes (shown in activity Class),
staying in research labs/library (shown in activity Study), and ex-

ercise (shown in activity Gym). Specifically, Pharmacy students

attend class more often from 11am to 12pm, while CS students

attend class from morning to afternoon. CS students spend more

time in academic buildings (from 10am to 7pm) than Pharmacy

students who prefer to study in the morning and around noon. For



(a) Weekday (b) Weekend (c) CS (d) Pharmacy

Figure 1: Hourly activity preference for (a) weekday, (b) weekend, (c) computer science students, and (d) pharmacy students

non-academic activities, students from both majors show similar

temporal preference, while pharmacy students tend to go to the

gym at later times.

2.3 Co-visitation behavior
While individual visitation histories can indicate temporal and

spatial preference, in isolation they do not indicate relationships

among the students. However, co-visitation events (i.e., when two

students are in the same place at the same time), may be a noisy

indicator of relations among students. Any one co-visitation event

may be due to random chance, but a larger set of events, particularly

when ‘in-class’ events are dropped, is likely to indicate student

friendship. To the best of our knowledge, a study of user pairwise co-

visitation events hasn’t been investigated in other spatio-temporal

analyses.

Since our dataset contains discrete WiFi login records, we merge

each user’s consecutive logins in the same building, and assume that

the user stays in the building throughout this period. For example,

if a user checked in at the library every four to eight minutes from

5pm to 6pm with no checkins at other buildings in between, we will

merge these check-ins and record that the user stayed in library

from 5pm to 6pm. In this way, we augment the visit history with

duration time for each user, and use that to compute the pairwise

co-visitation count matrix. As each co-visitation is per minute, the

pairwise co-visitation count is the total time (in minutes) two users

spend together in the same building. For example, the pair of users

with the largest co-visitation count spent 38,129 minutes together,

which is roughly 27 days, more than 25% of the semester. Note that

the in-class check-ins are removed for computing co-visitation. In

this way, we only consider the activity outside of class for analyzing

co-visitation, which we believe is more informative for determining

friend realtions. We will use the pairwise co-visitation count to

examine the performance of our embeddings on a friend suggestion

task in Section 4.5.

Once the visit history is augmented with duration time for each

user, we compute the number of users visiting the same building

at the same time. For each building, we calculate the number of

unique visitors for each minute over the semester and filter out

the moments when there are fewer than two visitors. We show

the normalized histogram in Figure 2. It indicates that the number

of users appearing at the same time in the building may reflect

building categories, as co-visitation happens more frequently in

dorms and the gym compared to academic building (e.g., CS).

Figure 2: Histogram of co-visitation size for an academic
building (CS), the Gym, and a residence hall, over all times.

2.4 Exploration behavior
We compare the exploration behaviors in our educational “check-in”

dataset to traditional POI recommendation datasets like Foursquare

and Gowalla. Figure 3 shows the average ratio of new POIs over

all users for every new week. For example, the ratio at week two is

the proportion of POIs visited during the second week that have

not been visited in previously.

Compared with Foursquare users (Figure 3c) who keep exploring

new POIs all year round, freshmen (Figure 3a) appear to explore the

campus very quickly (within 2-3 weeks), and then stick to a fixed

range of buildings over the remainder of the semester. But when

we zoom into the first two weeks (Figure 3b), new students show

similar exploration behaviors as in the Foursquare data, with 40

to 60 percent new POIs every day. This provides us with a unique

opportunity to model two types of behaviors with different slices

of the data: (1) the first few weeks of freshmen semester—exploring

new places, and (2) the latter half of the semester—routinely visiting

familiar places in a relatively limited activity range.

3 PROPOSED EDHG METHOD
In this section, we outline our proposed heterogeneous graph em-

bedding method for POI prediction. Specifically, we consider a

time-aware location prediction problem. Given a user and time slot

(e.g., Monday 8 am), the model should predict a place that is most

likely to be visited.



(a) Student “check-in” dataset (b) Student “check-in” dataset (c) Foursquare and Gowalla

Figure 3: Average ratio of new POIs: (a-b) Purdue data (weeks/days), and (c) foursquare and Gowalla dataset (from [4]).

We refer to our method as Embedding for Dense Heterogeneous
Graphs (EDHG). It is designed specifically to reflect the character-

istics of our educational check-in data, which is more dense than

traditional LBSN check-in data. To better leverage contextual in-

formation, we propose a joint embedding model, which maps user,

location, time and activity category into a common latent space.

In this section, we introduce EDHG step by step. We first con-

struct a heterogeneous graph using the check-in records, then we

learn continuous feature representations for vertices by capturing

features of connectivity and structural similarity for pairs of nodes.

In Sections 3.3-3.4, we discuss how to use the learned representa-

tions for POI prediction and friend suggestions, respectively.

3.1 Heterogeneous Graph Construction
Time indexing scheme. According to our data exploration re-

sults, the temporal characteristics of students behavior contain two

aspects: (1) periodicity, and (2) preference variance. For example,

students’ check-ins have clear weekly cyclic patterns. Moreover,

students usually visit academic buildings more on weekdays and

stay at resident halls more on weekends.

In order to capture these temporal cyclic patterns, we designed

a time indexing scheme to encode a standard time stamp to a par-

ticular time id. We consider the preference variance in two scales:

hours of a day and different days of a week. First, a time stamp is

divided into two slices in terms of weekday and hour slot. Next, we

split a week into 7 days and a day into the following four sessions:

(1) Morning – hours between 6 am and 11:59 am

(2) Afternoon – hours between 12 pm and 4:59 pm

(3) Evening – hours between 5 pm and 11:59 pm

(4) Night – hours between 12 am and 5:59 am

This totals 28 distinct time slot ids, which can represent both weekly

and daily preference variance.

Weighted graph construction.We construct a weighted hetero-

geneous information network by aggregating the check-in records

and venue information. An example is shown in Figure 4 with eight

check-in records. In this example, u1,u2 denote two users, b1,b2,b3
denote three buildings/POIs, t1, t2, t3 denote three time slots, and

a1,a2,a3 are three types of activities corresponding to POI func-

tionalities, which we obtained from the venue information. Our

model considers three types of edges, i.e., POI-user, POI-time and

Figure 4: Heterogeneous graph constructed using eight ex-
ample check-in records and venue information

POI-activity. For POI-time and POI-user edges, edge weights are

co-occurrence counts for pair of nodes in the check-in records. For

POI-activity edges, edge weights are set to 1. Our constructed graph

contains 6250 user nodes, 221 POI nodes and 7 activities nodes. The

POI-user graph density is 22.45%, the POI-time graph density is

82.35%, and the POI-activity graph density is 17.19%.

Note that past work [18] has included POI-POI edges in the graph

by considering user transitions from one POI to another. However,

these edges increase the average density of our graph substantially

(POI-POI density: 60.13%). As we will show in the experiments,

these edges degrade the performance of the model, particularly on

unvisited nodes, so we do not include them in the graph.

3.2 Graph Embedding
We adapt the graph embedding approach from Xie et al. [18], which

is an extension of [14] geared for POI recommendation. These

approaches are all based on the skip-gram model [9] applied to

graphs. Given an instance (word/node) and its context (neighbors),

the objective of skip-gram is to minimize the log loss of predicting

the context using the instance embedding as input features. We

employ a similar objective (as described below), but adjust the

negative sampling approach to better fit the characteristics of the

heterogeneous graph in our setting.



Specifically, we partition our heterogeneous graph into three

bipartite graphs (POI-user graphGbu , POI-time graphGbt and POI-

activity graphGba ). Below, we first introduce the graph embedding

method for each bipartite graph, then we present our approach for

negative sampling, and finally we show how to jointly learn the

embeddings over the whole graph.

Bipartite graph embedding. Given a bipartite graph GAB =

(VA ∪ VB ,E) where VA and VB are two disjoint sets of vertices

of different types, and E is the set of edges between them, our task

is to find the parameters θ of a model pθ (vi |vj ) (vi ∈ VA: context
vertex; vj ∈ VB : target vertex) that closely approximates the em-

pirical distribution p̃(vi |vj ) in terms of minimizing cross-entropy.

Here the empirical distribution is given by the graph, i.e.,

p̃(vi |vj ) =
wi j

deд(j)
wherewi j is the edge weight between vi and vj , or zero if vi and
vj are not connected.

We define the conditional probability of vertex vi generated by

vertex vj as the outcome of a softmax function:

pθ (vi |vj ) =
e ®ziT ®zj

Σi′∈VAe
®zi′T ®zj

(1)

where ®zv denotes the embedding for a vertex vv . For each vertex

vj in VB , Eq.1 defines a conditional distribution p(·|vj ) over all the
vertices in the set VA. For each pair of vertices vj , vj′ , their second-
order proximity can actually be determined by their conditional

distributions pθ (·|vj ), pθ (·|vj′).
To learn embeddings that ensure the conditional distribution

pθ (·|vj ) closely approximates the empirical distribution p̃(·|vj ), we
minimize the following objective function over the graph GAB :

OAB =
∑
j ∈VB

λjd
(
p̃(·|vj ),pθ (·|vj )

)
(2)

where d(·, ·) is the KL-divergence between two distributions, and

λj is the importance of vertexvj in the graph. Replacing d(·, ·) with
KL-divergence, setting λj = deд(j) =

∑
i ∈VA wi j and omitting some

constants, the objective function can be written as:

OAB = −
∑

(i, j)∈E
wi j logpθ (vi |vj ) (3)

Negative sampling. Optimizing the objective in Eq. 3 is computa-

tionally expensive, as it requires the summation over the entire set

of vertices when calculating the conditional probability pθ (·|vj ). To
address this problem, we adopt the approach of negative sampling

proposed in word2vec [9], which instead of considering all pairs of

nodes, samples a smaller set of observed edges, and then samples

multiple “negative” edges for each observed edge. Specifically, in

each step, a binary edge e = (i, j) is sampled with the probability

proportional to its weight wi j , and then multiple negative edges

(i ′, j) are sampled from a specified noise distribution q(i ′).
The default noise distribution used in word2vec (and subse-

quently used by most, if not all, skip-gram based graph embed-

ding models) is defined as a unigram distribution: q(i) ∝ deд(i)3/4,
where deд(i) denotes the degree of vertex vi . This means that more

“popular” vertices are more likely to be selected as negative samples.

This makes sense in most NLP and graph embedding problems,

where the word co-occurrence matrix or graph adjacency matrix is

very sparse. The intuition behind this form of negative sampling is

to distinguish between the true context word/vertex and another

popular word/vertex which is unlikely to be a context.

However, the graph adjacency matrix is relatively dense in our

WiFI check-in data, due to longer user trajectories (i.e., more fre-

quent check-ins). For example, our POI-POI graph adjacency matrix

density is 60.13%, whereas in the foursquare dataset the POI-POI

graph is extremely sparse with 0.03% density. If we use the above

popularity-based negative sampling method for our data, we find

that 96% of POI vertices sampled as “negatives” are actually con-

nected to the target vertices—which obviously hinders estimation.

To address this issue, we define a new process for efficient nega-

tive sampling utilizing the global statistics, i.e., the graph adjacency

matrix. Moreover, we integrate the POI categorical information

into the noise distribution. When a POI is from a popular category,

it’s less likely to be a true negative sample, i.e., it’s more likely to

be connected to the target vertex. By incorporating the global sta-

tistics and POI categorical information into the negative sampling

procedure, our EDHG model incorporates global features into the

local predictive method. In practice, we replace the default noise

distribution q(i) with alternative q(i |j). Here vj is the given target

vertex, and vi is the generated negative sample vertex:

q(i |j) ∝ 1 −
wi j

deд(i) × Pr (cat(i)) (4)

where wi j denotes the weight of edge ei j , or equals zero if there

is no edge between vertex vi and vj , and deд(i) is vi ’s degree.

Pr (cat(i)) is the ratio of checkins in POIs with same category as

POI i , or equals 1 when vertex i is not a POI node. Note that cat(i)
corresponds one of the four POI categories in Table 1.

Using edge sampling as in [15] and negative sampling as de-

scribed above, our final objective function for the bipartite graph

GAB is:

OAB = −Σ(i, j)∈E
[
logσ ( ®ziT ®zj ) + Σmn=1Evi′∼q(· |j)

(
logσ (− ®zi′T ®zj )

)]
(5)

Here σ refers to the sigmoid function and we samplem negative

examples for each positive example. In our implementation, we use

the alias table method from Li et al. [7] to draw a negative sample

with a pre-computed alias table based on the noise distributionq(·|j).
This ensures that it takes O(1) time to repeatedly draw samples

from the same distribution. In this way we can achieve the same

time complexity as the original LINE model, which is demonstrated

to be scalable. Then we adopt the asynchronous stochastic gradient

algorithm (ASGD) [12] to optimize Eq. 5. In each iteration, if the

edge ei j is sampled, the gradient w.r.t. the embedding vector ®zi of
vertex vi will be calculated as

∂OAB
∂ ®zi .

Joint training. The overall objective is the sum of the objectives

for three bipartite graphs Gbu , Gbt and Gab :

O = Obu +Obt +Oab (6)

where each component objective Obu , Obt and Oab is specified

by Eq. 5. We learn a joint node embedding by iterating through

the three component bipartite graphs in a round-robin fashion

and updating the vector representations in each bipartite graph

embedding procedure. See Algorithm 1 for more details.



Algorithm 1 EDHG training algorithm

Input: Bipartite graphs (POI-user graph Gbu , POI-time graph Gbt ,

POI-activity graph Gab ), number of iterations N , negative sample

sizem, vector dimension d .
Output: latent node embeddings for—users: Zu ∈ R |U |×d

, POIs:

Zb ∈ R |B |×d
, time slots: Zt ∈ R |T |×d

, and activities: Za ∈ R |A |×d
.

1: procedure Joint train(N ,m,d,Gbu ,Gbt ,Gab )

2: Initialize Zu , Zb , Zt and Za
3: while iter ≤ N do
4: Bipartite graph embedding(Gbu ,m)

5: ▷ update Zb , Zu
6: Bipartite graph embedding(Gbt , m)

7: ▷ update Zb , Zt
8: Bipartite graph embedding(Gab , m)

9: ▷ update Za , Zb
10: return Zu , Zb , Zt and Za

1: procedure Bipartite graph embedding(GAB ,m)

2: sample an edge ei j (vi ∈ VA,vj ∈ VB )
3: samplem negative nodes from q(·|j) (denote as vi′ )
4: update zi , zj , and zi′ to minimize Eq. 5.

3.3 Predicting POIs using Embeddings
Once we have trained our model and learned representations for

users, time slots, and locations, we can perform location prediction

on new check-in data using simple operations on vectors. Given

a query (user , time) i.e., q = (u,τ ), we first project the timestamp

τ into time slot t using the time indexing scheme described in

Section 3.1, and then rank the POIs based on their location in the

embedding. More precisely, given a query q = (u,τ ), for each POI

b, we compute its ranking score as:

S(b | u,τ = t) = ®zbT ®zu + ®zbT ®zt (7)

where ®zb , ®zb , ®zt are embeddings for user u, POI b, time slot t re-
spectively. Then we select the k POIs with the highest ranking

scores as predictions. Note the POI embedding
®b reflects activity

information via the POI-activity graph, since our model jointly

learns the embedding of multiple relational networks in the same

latent space. Therefore, for both visited POIs and unvisited POIs

(also called cold-start POIs), we can perform user recommendations

using the same scoring function.

3.4 Suggesting Friends using Embeddings
As the embeddings learned from the model fuse the interactions

between user-POI, POI-time and POI-activity, we can make use

of the embeddings to suggest potential friends for a given user

based on their pairwise similarity. Specifically, for a query user u,
∀v ∈ U \u, we compute zu

T zv and rank the results overU , the set

of users. From this, we return the top ranked users as people that

are more likely to be friends of u.

4 EXPERIMENTAL EVALUATION
4.1 Methodology
In the experiments, we concatenate each student’s first 80% check-

in records in chronological order to create the training set examples

and then use the remaining 20% as the test set. We set the number

of iterations (N ) to 100M with a batch size of 1, the dimension of

the embedding vector (d) is set to 100, and we sample 10 negative

samples (m) for each vertex pair.

We use accuracy@k as the measure of prediction effectiveness,

which is a commonly used metric for this task (see e.g., [4], [18]).

However, in contrast with previous work, which only compare

the score of the true POI to the score of unvisited POIs during

evaluation, we evaluate by comparing the true POI’s score to the

score of all other POIs (both visited and unvisited). Specifically, for

each check-in record (user, time, POI) in the testset, we recommend

the top k POIs for the query (user, time) as described in 3.3, and

determine if the true POI appears in the top-k list (which is defined

as a ’hit’). The accuracy@k is defined as the ratio of hits to the

testset size.

4.2 Comparison Models
We compare our proposed model EDHG to baselines, state-of-the-

art alternative methods and EDHG variants.

NBC: Naive Bayes classifier using (user, time-slot) as joint features.

For each query (u, t), the probability of predicting POI b is given

by p(b |u, t) ∝ p(u, t |b) · p(b) where b denotes a candidate POI, and

(u, t) denote a (user, time-slot) pair. This is a strong baseline which

takes into account POI popularity and a combination of personal

and temporal preference based on counting.

GE [18]: The state-of-art graph embedding method for time-aware

POI recommendation (developed using Foursquare and Gowalla

data). GE uses POI-POI edges, POI-time edges, POI-region edges,

and POI-activity edges, and jointly embeds POIs, times, regions

and activities into a latent space. User embeddings are computed as

sum of recent visited POIs’ embeddings. See Section 5 for details.

GE++: An augmented version of GE that we create to assess the

effect of learning user embeddings directly during joint training.

This version of GE incorporates POI-user edges in the graph, in

addition to its heterogeneous graph embedding.

EDHG: Our proposed model, where we include the POI-user graph,

the POI-time graph, and the POI-activity graph with our improved

negative sampling method.

EDHG-NS: A simplified version of EDHG , in which we use the

traditional method for generating negative samples based on vertex

degree.

EDHG-POI: An augmented version of EDHG, where we also in-

clude the POI-POI bipartite graph in the heterogeneous graph for

learning the embeddings. Note that we only record a POI-POI edge

is there is a transition between the two POIs within a four hour

time window.

All the models are run on a single machine with 8G memory

using 20 threads. Both EDHG and its variants are very efficient—it



Type

Model

Acc@k

k = 1 k = 3 k = 5 k = 10

GE 0.1079 0.3781 0.5104 0.6543

GE++ 0.3019 0.5190 0.6063 0.6909

visited EDHG-NS 0.3321 0.5846 0.7024 0.8137

EDHG-POI 0.6832 0.7912 0.8368 0.8954

EDHG 0.6846 0.7915 0.8367 0.8961

NBC 0.6765 0.7895 0.8495 0.9016
GE 0.0027 0.0073 0.0241 0.0641

GE++ 0.0084 0.0227 0.0332 0.0671

un- EDHG-NS 0.0057 0.0128 0.0301 0.0598

visited EDHG-POI 0.0034 0.0145 0.0195 0.0334

EDHG 0.0072 0.0307 0.0360 0.0710
NBC 5.4e-05 6.3e-04 0.0025 0.0133

GE 0.1084 0.3720 0.5026 0.6443

GE++ 0.2981 0.5125 0.5988 0.6828

total EDHG-NS 0.3270 0.5772 0.6937 0.7996

EDHG-POI 0.6744 0.7811 0.8261 0.8842

EDHG 0.6760 0.7816 0.8263 0.8854

NBC 0.6677 0.7793 0.8385 0.8901
Table 2: Prediction accuracy

takes about 18 minutes (excluding pre-computation of negative

sampling alias table) to process a network with 6486 nodes and

315,407 edges.

4.3 Predictive Effectiveness
Here we present the experimental results for all prediction methods

using well-tuned parameters. Prediction effectiveness in terms of

accuracy@k is shown in Table 2. We report results for visited and

unvisited POIs to highlight the difference between in-sample and

out-of-sample performance. We also use the 20% test data to show

learning curves for accuracy@1 and @3 in Figures 5, 6 for visited

and unvisited POIs respectively. From the results we can make the

following observations:

EDHG v.s. EDHG-NS: the full EDHG consistently outperforms

EDHG-NS for both visited and unvisited POIs, with a 100% perfor-

mance gain in terms of accuracy@1, and 35.4% in terms of accu-

racy@3. The significant performance gain is due to the improved

negative sampling procedures, which selects more informative neg-

ative samples for SGD updates. This indicates that it is promising

to customize the empirical noise distribution used in negative sam-

pling for various tasks or datasets.

EDHG v.s. EDHG-POI: The EDHG-POI variant includes the POI-
POI transition graph in the original graph which prior work on

GE claimed as an important component, but it doesn’t improve

performance on our recommendation task, and it even downgrades

performance for unvisited POIs. This indicates that transition behav-

ior is not informative in our data, as there are too many transitions

betweens buildings that cannot be explained by a single reason.

EDHGv.s. GE/GE++: EDHG significantly outperforms GE for both

visited and unvisited POIs. The reasons might be due to (1) GE using

the POI-POI graph to model the "locality" of individual check-ins for

Foursquare data. However, as revealed by the comparison between

EDHG and EDHG-POI, including the POI-POI graph doesn’t help

in our setting. Or (2) GE doesn’t include users as entities in their

graph representation, but computes the user embeddings based on

recent visit histories. Due to the limited number of POIs in our

data, computing the user embedding computed in this way may fail

to capture personal preferences. Considering the performance of

GE++, which we adapt to our data by adding the POI-user graph to

the original GE model, modeling users in the graph helps improve

its predictions, but the performance of GE++ is still inferior to that

of EDHG.

EDHG v.s. NBC: EDHG achieves comparable performance for

visited places and significantly outperforms NBC for unvisited

places. In reality, when we look at the learning curves for prediction

accuracy, Figure 5 shows that our model converges very fast while

NBC needs more data to achieve a comparable result; and Figure 6

shows that ourmodel actually “learns” how to recommend unvisited

places with increasing accuracy, while NBC fails to deal with the

cold-start recommendation problem, even when provided with a

large amount of training data.

Figure 5: Learning curve for visited POIs

Figure 6: Learning curve for unvisited POIs

4.4 Parameter Sensitivity
Granularity of temporal pattern. In Table 2 we evaluated the

predictive performance of our model with a combination of weekly

of daily pattern using 28 time slots. Here, we design two additional



(a) Num. iterations v.s. Prediction accuracy (b) Vector dim. v.s. Prediction accuracy (c) Negative sample size v.s. Prediction accuracy

Figure 7: Impact of number of iterations, embedding vector dimension, and negative sample size on prediction accuracy@k.

Type

Model

Acc@k

k = 1 k = 3 k = 5 k = 10

EDHG-dow 0.6025 0.7010 0.7544 0.8403

visited EDHG-hour 0.6727 0.7850 0.8284 0.8927

EDHG 0.6846 0.7915 0.8367 0.8961
un- EDHG-dow 0.0041 0.0083 0.0141 0.0402

visited EDHG-hour 0.0022 0.0080 0.0260 0.0490

EDHG 0.0072 0.0307 0.0360 0.0710
EDHG-dow 0.5947 0.6920 0.7448 0.8299

total EDHG-hour 0.6639 0.7727 0.8102 0.8821

EDHG 0.6760 0.7816 0.8263 0.8854
Table 3: Prediction accuracy v.s. temporal granularity.

variants to explore the effect of temporal patterns with different

granularity. The EDHG-hour only considers time period of day

(4 time slots) and EDHG-dow only considers day of week (7 time

slots). The results are shown in Table 3.

From Table 3 we can see that both Day of Week and Hour of Day

are important temporal factors. Specifically, when we only consider

weekly patterns (day of week), prediction accuracy decreases by

roughly 10%; when we only consider daily patterns (hour of day),

prediction accuracy slightly decreases by 1.5%. This indicates that

time-of-day effects are more significant than day-of-week effects

in terms of POI prediction. It’s likely that students, particularly

freshman, have less flexibility in daily routines due to their course

schedule, which makes time-of-day a more important factor for

nearly all types of activities.

Number of iterations & vector dimension. Figures 7a and 7b

show the performance of EDHG with different number of iterations

N and embedding dimensions d . Note that, the units for N is set to

1 million. We can see from Figure 7a that the accuracy increases

and converges quickly when the number of iterations is larger than

50M. We used N = 100(M) to ensure convergence. For embedding

dimension, we chose d = 100 as the accuracy does not increase

substantially after that point.

Negative sample size. Figure 7c presents the performance of

EDHG with different numbers of negative samples per example.

With more negative samples the accuracy increases, and it plateaus

when negative sample size is 10. Therefore, we chosem = 10 nega-

tive samples for use during optimization.

4.5 Friend Suggestion Effectiveness
To examine the efficacy of using EDHG’s vector representation

for suggesting friends, we first need to identify a proxy signal for

evaluation (since we do not have ground truth information about

friend relations among the students). Specifically, we consider the

following two ways data to determine “true” friends for evaluation:

Covisit As in shown in Section 2.3, a co-visitation record is gen-

erated when two users check in at the same building at the same

time (time unit: minute). In this approach, we identify “friends” of

a query user as those with the largest co-visitation counts.

Location Based on the user-building check-in count matrix, we

create a ranking list of buildings for each user, with the most fre-

quently visited building ranked highest. In this approach, we iden-

tify “friends” of a query user as those that have the smallest distance

between the users’ ranked list of buildings (using Kendall τ dis-

tance). We apply the friend suggestion to the most active users

in our dataset, sorted by activity level. For each user, given a set

of “true” friends from one of the baselines above, we evaluate the

top 10 friend suggestions from EDHG using Mean Reciprocal Rank

(MRR). MRR is computed as:

1

|U |

|U |∑
i=1

∑
j ∈Fi

1

rank(j)

whereU is the set of active users, Fi = 10 is the set of “true” friends

of user i which are obtained from the data and rank(j) is the rank of
item j in the ranking list.We compare the performance of EDHG and

GE in terms of MRR scores.

Since the Covisit baseline encodes both temporal and geograph-

ical preference, and the Location baseline only takes into account

geographical preference, Covisit is likely a better proxy for “true”

friends, and thus the ideal search results should have a higher MRR

score w.r.t. Covisit.
The results are shown in Figure 8. We can make the following

observations based on the results. Comparing Covisit and Loca-
tion, EDHG suggests friends with more relevance to co-visitation



counts than merely geographical preference, while GE does the

opposite. Since neither method uses user co-visitation data directly

in its model, this implies that EDHG captures social behaviors

from the spatial-temporal data more accurately. Comparing the

general MRR scores of the two models, EDHG suggests friends

with higher accuracy in general. We also calculated the MMR be-

tween the Covisit and Location friend lists (the green line in the

graph). The relatively low MRR score reveals that a large potion of

co-visitation behavior cannot be explained by location preference.

In reality, students with same major and same year usually stay

in a same set of places, e.g. academic buildings and libraries, but

their temporal preferences may vary significantly. The plot shows

how performance changes as the increase of |U |. We can see that,

on the co-visitation data, EDHG’s MMR score decreases as less

active users are included inU . This indicates that EDHG discovers

better suggestions for more active users, which suggest that with

richer check-in information we can capture more precise social

relationships.

Figure 8: Number of frequent users v.s. MRR scores

4.6 Visualization of Embeddings
Figure 9 shows a visualization of the learned user embeddings,

where we project the d = 100 dimensions into 2D using t-SNE [8].

From the visualization we can clearly find two clusters of computer

science students and pharmacy students (colored green and red

respectively). This can be understood through their differences

in temporal preference (as shown in Figures 1c-1d) and also their

geographical preferences (i.e., these two majors share very few

academic buildings).

5 RELATEDWORK
POI recommendation methods have received extensive research

attention in the last five years, and many approaches have been

proposed. For example, Wang et al. ([16, 17]) applied sparse ad-

ditive generative models to incorporate multiple factors for POI

recommendation. Yin et al. [21] proposed a Spatial-Aware Hierar-

chical Collaborative Deep Learning model (SH-CDL), which jointly

performs deep representation learning for POIs and hierarchically

Figure 9: User embeddings

additive representation learning for spatial-aware personal pref-

erences. Xie et al. [18] proposed a graph embedding model GE

for context-aware POI recommendation, which uses the POI-POI

transition graph, POI-region graph, and POI-category graph, and

jointly learn the representations for POI, region, and time with the

same method as PTE [14]. User embeddings are then computed as

weighted sum of recent POI embeddings, and with user, POI, time

embeddings they can perform time-aware POI recommendation.

GE achieved better performance than all previous work on this task,

which is why we use it as a baseline for evaluation in this paper.

In addition, our work is related to the extensive literature on

network embedding, which has attracted a great deal of attention in

recent years. Many of these recent methods are technically inspired

by Skipgram [9]. For example, Deepwalk [11] uses the embedding

of a node to predict the context in the graph, where the context is

generated by a random walk. Metapath2vec [3] extends DeepWalk

for heterogeneous graph embedding. LINE [15] extends the skip-

gram model to have multiple context spaces for modeling both first

and second order proximity. PTE [14] adapts the LINE model [15]

for embedding bipartite networks. Note that PTE model is directly

adopted by GE [18] for POI recommendation, and we further adjust

PTE to our setting by improving the negative sampling method and

targeting the graph construction process.

Heterogeneous information network embedding has been broadly

applied to multiple tasks. For example, Tang et al. [14] predicted

text embeddings based on heterogeneous text networks which

showed great potential in document classification. Zhang et al. [22]

proposed ReAct, a method that processes continuous geo-tagged

social media (GTSM) streams into a heterogeneous graph and ob-

tains recency-aware activity models on the fly, in order to reveal

up-to-date spatiotemporal activities. Chen and Sun [2] proposed a



task-guided and path-augmented heterogeneous network embed-

ding for author identification task.

6 CONCLUSIONS
This paper presents our analysis of the first educational “check-in”

dataset and proposes EDHG, a heterogeneous graph embedding

basedmethod tomodel more dense spatio-temporal checkin activity.

To account for the unique characteristics of the data, we improve

the negative sampling method to incorporate global statistics of

the graph/data into the noise distribution. We also show that it’s

better to drop the POI-POI transition edges when the check-in data

is more dense. We evaluated EDHG with two tasks: time-aware

POI prediction and friend suggestion. On both tasks, our proposed

model outperforms the previous state-of-art methods and baselines.

These initial results indicate the promise of using student trajectory

information for personalized recommendations in education apps,

as well as in predictive models of student retention and satisfaction.

Several interesting research problems remain for further explo-

ration. For example, we did not make direct use of the co-visitation

data in the model but rather withheld it for evaluation of the friend

suggestions. We plan to incorporate it in the training process and

see whether social interactions impact student checkin behavior.

Also, inspired by Chen et al. [1], we may be able to further im-

prove the negative sampling by dynamically selecting informative

negative samples during each SGD update.
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