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Abstract

Various deep learning models have recently been applied to predictive modeling of Electronic 

Health Records (EHR). In medical claims data, which is a particular type of EHR data, each 

patient is represented as a sequence of temporally ordered irregularly sampled visits to health 

providers, where each visit is recorded as an unordered set of medical codes specifying patient’s 

diagnosis and treatment provided during the visit. Based on the observation that different patient 

conditions have different temporal progression patterns, in this paper we propose a novel 

interpretable deep learning model, called Timeline. The main novelty of Timeline is that it has a 

mechanism that learns time decay factors for every medical code. This allows the Timeline to 

learn that chronic conditions have a longer lasting impact on future visits than acute conditions. 

Timeline also has an attention mechanism that improves vector embeddings of visits. By analyzing 

the attention weights and disease progression functions of Timeline, it is possible to interpret the 

predictions and understand how risks of future visits change over time. We evaluated Timeline on 

two large-scale real world data sets. The specific task was to predict what is the primary diagnosis 

category for the next hospital visit given previous visits. Our results show that Timeline has higher 

accuracy than the state of the art deep learning models based on RNN. In addition, we demonstrate 

that time decay factors and attentions learned by Timeline are in accord with the medical 

knowledge and that Timeline can provide a useful insight into its predictions.
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1 INTRODUCTION

Electronic Health Records (EHRs) are the richest available source of information about 

patients, their conditions, treatments, and outcomes. EHRs consist of a heterogeneous set of 

formats, such as free text (e.g., progress notes, medical history), structured data 

(demographics, vital signs, diagnosis and procedure codes), semistructured data (text 

generated following a template, such as medications and lab results), and radiology images. 

The main purpose of the EHRs is to give the health providers access to all information 

pertinent to their patients and to facilitate information sharing across different providers. In 

addition to aiding decision making and supporting coordinated care, there is a strong interest 

in using large collections of EHR data to discover correlations and relationships between 

patient conditions, treatments, and outcomes. For example, EHR data have been widely used 

in various healthcare research tasks such as risk prediction [15, 16, 33], retrospective 

epidemiologic studies [17, 26, 29] and phenotyping [12, 31]. Many of those tasks boil down 

to being able to develop a predictive model that could forecast the future state of a patient 

given the currently available information about the patient [7, 8, 19].

When building a predictive model, the first challenge is to decide on the representation of 

the current knowledge about a patient in a way that could allow accurate forecasting. A 

traditional approach is to represent the current knowledge about a patient as a feature vector 

and to use that vector as an input to a predictive function. In such an approach, features are 

typically generated by hand using the domain knowledge. Given the features, training data 

are used to fit the predictive function to minimize an appropriate cost function. More 

recently, deep learning approaches were proposed to jointly learn a good representation and 

the prediction function.

Among many deep neural network architectures, Recurrent Neural Networks (RNNs) have 

been particularly popular for predictive modeling of EHRs. The main reason for this is the 

temporal nature of EHR data, where interactions of a patient with the health system are 

recorded as a temporal log of individual visits. Thus, the knowledge about a patient at time t 
includes all recorded visits prior to time t. If each visit could be represented as a feature 

vector, those vectors could be sequentially provided as inputs to an RNN and the 

corresponding outputs could be used (by concatenating them, averaging them, or using only 

the last output) to produce a vector representation of the current knowledge about the 

patient. Such patient-level vector representation can then be used as an input to additional 

layers of a neural network to forecast the property of interest, such as readmission, mortality, 

or a reason for the next visit. Several recent studies showed that predictive modeling of EHR 

data using RNNs can significantly outperform traditional models such as logistic regression, 

multilayer perceptron (MLP), and support vector machine (SVM), which all depend on 

feature engineering [6, 18, 23].

Despite the very promising results, traditional RNNs have several limitations when applied 

to EHR data. One limitation of the RNN approach is that it can be very difficult to obtain an 

insight into the resulting predictions. The lack of interpretability of RNNs is one of the key 

obstacles to their practical use as a predictive tool in the healthcare domain. The reason is 

that the predictive models are rarely used in isolation in healthcare domain. More often, they 
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are used either to assist doctors in making treatment decisions or to reveal unknown 

relationships between conditions, treatments, and outcomes. In order to trust the model, it is 

essential for doctors and domain experts to understand the rationale behind the model 

predictions [20, 32].

One way to address the interpretability problem is to add the attention layer to an RNN, as 

was done in some recent healthcare studies [7, 8, 19, 28]. The idea behind the attention 

mechanism is to learn how to represent a composite object (e.g., a visit can be represented as 

a set of medical codes, or a patient can be represented as a set of visits) as a weighted sum of 

representations of its elementary objects [1, 30, 34]. By inspecting the weight values 

associated with each complex object, an insight could be gained about which elementary 

objects are the most important for the predictions. For example, in [19] authors used three 

attention mechanisms to calculate attention weights for each patient visit. By analyzing these 

attention weights, their model was able to identify patient visits that are influencing the 

prediction the most. Due to these positive results, our proposed method also employs an 

attention mechanism.

Another challenge in using RNNs on EHR data is irregular sampling of patient visits. In 

particular, the visits occur at arbitrary times and they often incur bursty behavior; having 

long periods with few visits and short periods with multiple visits. Traditional RNN are 

oblivious to the time interval between two visits. Recent studies are attempting to address 

this issue by using the information about the time intervals when calculating the hidden 

states of the recurrent units [2, 3, 8, 22, 35]. However, most of this work does not account 

for the relationship between the patient condition and time between visits. Unlike the 

previous work, we observe that the impact of previous conditions depends on a disease. For 

example, influence of an acute disease diagnosed and cured one year ago on the current 

patient condition is typically much smaller than the influence of a chronic condition treated, 

but not completely cured a year ago. Based on the observation that each disease has its 

unique progression pattern through time, in this paper we propose a novel interpretable, 

time-aware, and disease-sensitive RNN model, called Timeline.

In this paper, we consider medical claims data, which is a special type of EHR data used 

primarily for billing purposes. In claims data, each patient visit is summarized by a set of 

diagnosis codes (using ICD-9 or ICD-10 ontologies), specifying primary conditions and 

important comorbidities of a patient, and a set of procedure codes (using ICD-9/ICD-10 or 

CPT ontologies), describing procedures employed to treat the patient. One benefit of claims 

data is that visit representation is more straightforward than for the complete EHR data. In 

particular, representation of each visit could be a weighted average of medical code 

representations. Another benefit is that our medical claim data, called SEER-Medicare, has 

an outstanding coverage. Most senior citizens (ages 65 and above) are enrolled into the 

national Medicare program, and all their hospital, outpatient, and physician visits are 

recorded. Unlike this data set, most available EHR data sets are specific to a healthcare 

provider and it is very likely that a substantial number of visits to other healthcare providers 

are not recorded. A full coverage of visits is very important for high-quality predictive 

modeling.
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The proposed Timeline model first embeds medical codes in a continuous vector space. 

Next, for each medical code in a single visit, Timeline uses an attention mechanism similar 

to [30] in order to properly aggregate context information of the visit. Timeline follows by 

applying a time-aware disease progression function to determine how much each current and 

previously recorded disease and comorbidity influences the subsequent visits. The 

progression function is disease-dependent and enables us to model impact of different 

diseases differently. Another input to the progression function is the time interval between a 

previous visit and a future visit. Timeline uses the progression function and the attention 

mechanism to generate a visit representation as a weighted sum of embeddings of its 

medical codes. The visit representations are then used as inputs to Long Short-Term 

Memory (LSTM) network [13], and the LSTM outputs are used to predict the next visit 

through a softmax function. Timeline mimics the reasoning of doctors, which would review 

the patient history and focus on previous conditions that are the most relevant for the current 

visit. As shown in Figure 1, a doctor may give high attention to an acute disease diagnosed 

yesterday, but ignore the same disease if it was diagnosed last year. For the visits occurring 

long time ago, a doctor might still pay attention to the lingering chronic conditions.

We evaluated Timeline on two data sets derived from SEER-Medicare medical claim data 

for 161,366 seniors diagnosed with breast cancer between 2000 and 2010. The specific task 

was to predict what is the primary diagnosis category for the hospital visit given all previous 

visits. Our results show that Timeline has higher accuracy than the state of the art deep 

learning models based on RNN. In addition, we demonstrate that time decay factors and 

attentions learned by Timeline are in accord with the medical knowledge and that Timeline 

can provide a useful insight into its predictions.

Our work makes the following contributions:

• We propose Timeline, a novel interpretable end-to-end model to predict clinical 

events from past visits, while paying attention to elapsed time between visits and 

to types of conditions in the previous visits.

• We empirically demonstrate that Timeline outperforms state of the art methods 

on two large real world medical claim datasets, while providing useful insights 

into its predictions.

The rest of the paper is organized as follows: in section 2 we discuss the relevant previous 

work. Section 3 presents the Timeline model. In section 4 we explain experiment design. 

The results are shown and discussed in section 5.

2 RELATED WORK

A unique feature of EHR is irregular sampling of patient visits. Several recent studies 

attempted to address this issue and proposed modifications to the traditional RNN model [2, 

3, 8, 22, 35]. In [8] the authors propose an attention model combined with RNN to predict 

heart failure. The model learns attention at visit level and variable level. Therefore, the 

model could find influential past diagnoses and visits. Additionally, they propose a 

mechanism to handle time irregularity by using the time interval as an additional input 

feature. This simple approach improves the accuracy, but it does not improve interpretability. 
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Other approaches modify the RNN hidden unit to incorporate time decay. For example, [3] 

applies a time decay factor to the previous hidden state in Gated Recurrent Unit (GRU) 

before calculating the new hidden state. [35] uses a time decay term in the update gate in 

GRU to find a tradeoff between the previous hidden state and the candidate hidden state. 

[22] modifies the forget gate of the standard LSTM unit to account for time irregularity of 

admissions. [2] first decomposes memory cell in LSTM into long-term memory and short-

term memory, then applies time decay factor to discount the short term memory, and finally 

calculates the new memory by combining the long-term memory and a discounted short-

term memory. In spite of the improved accuracy, the above approaches have limitations. [2, 

22] use time decay factors insensitive to diseases, while the progression patterns of diseases 

should be different. [3, 35] focus on multivariate time series such as lab test results, while 

our paper focuses on medical codes. More importantly, [2, 3, 22, 35] apply time decay 

factors inside RNN units, which limits the interpretability of the resulting models, since 

RNN units are usually treated as black boxes. Instead of controlling how information flows 

inside the RNN units, our model controls how information of each disease flows into the 

model, therefore providing improved interpretation via analysis of weights associated with 

each code.

Recently, [24] developed an ensemble model for several healthcare prediction tasks. The 

ensemble model combines three different models, one of which is called Feedforward Model 

with Time-Aware Attention. Given the sequence of event embeddings, attention weights are 

calculated for each embedding while taking time into consideration. Our proposed model is 

different in three ways: 1) we use disease-dependent time decay factors, 2) we use LSTM 

instead of the feedforward neural network, 3) we use a sigmoid function to control how 

much information of each disease flows into the network, rather than the softmax function 

that transforms attention values into probabilities.

Several other models that use the attention mechanism to weight medical codes or visits 

have been proposed. [7] proposes Gram model which uses attention mechanism to utilize 

domain knowledge about the medical codes. For rare codes, the model could borrow 

information from the parent codes in the ontology. [19] proposes Dipole which employs 

bidirectional recurrent neural networks to remember all information from both the past and 

the future visits and introduces three attention mechanisms to calculate weights for each 

visit. [28] applies hierarchical attention networks [34] to learn both attention weights of 

medical codes and patient visits. All the above methods do not combine attention value with 

information about time intervals between visits.

Many other convolutional neural networks [4, 21] and recurrent neural networks [9, 25] have 

been applied to modeling EHR data for different prediction tasks, but their focus is slightly 

outside of the scope of this paper.

3 METHODOLOGY

In this section we describe the proposed Timeline model. We first introduce the problem 

setup and define our goal. Then, we describe the details of the proposed approach. Finally, 
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we explain how to interpret the learned model by analyzing weights associated with medical 

codes.

3.1 Basic Problem Setup

Assume our dataset is a collection of patient records. The i-th patient consists of a sequence 

of Ti visits V1
i , V2

i , V3
i , …, V

Ti
i  ordered by the visiting time. The j-th visit V j

i  is a 2-tuple 

V j
i = (ξ j

i , τ j
i ), in which ξ j

i  consists of a set of unordered medical codes ξ j
i = c1, c2, …c

|ξ j
i |

, 

which includes the diagnosis and procedure codes recorded during the visit and τ j
i  is the 

admission day of the visit. We denote the size of code vocabularly C as |C|. For simplicity, in 

the following we describe our algorithm for a single patient and discard superscript i to 

avoid cluttering the notation.

3.2 Timeline Model

For a future visit Vi, the goal is to use the information in all previous visits V1, V2, V3,… 

Vi–1 to predict a future clinical event such as the primary diagnosis for visit Vi. Predicting 

the main diagnosis for a future visit as a function of the time of the future visit could be very 

useful in estimating the future risks of admission and coming up with preventive steps to 

avoid such visits. The state of the art solution to this task is to use a Recurrent Neural 

Network (RNN), which at each time step uses vector representation of a visit as input, 

combines the input with the RNN hidden state that encodes the past visits and transforms the 

RNN outputs into the prediction. One of the key steps in the RNN approach is to generate a 

vector representation for a given visit Vj. As shown in Figure 2, many previous studies use a 

simple approach that first embeds medical codes in a continuous vector space, wherein each 

unique code c in vocabulary C has a corresponding m-dimensional vector ec ∈ ℝm .  Then, 

for a given visit Vj, which contains N medical codes ξ j = c1, c2, …cN  vector representation 

of the visit υ j ∈ ℝm can be calculated by calculating the sum of embeddings of codes 

appearing in the visit as follows,

υ j =
n = 1

N
en . (1)

In the above approach, each code contributes equally to the final visit representation. 

However, some codes may be more important than other codes. For example, high blood 

pressure is much more indicative of hypertensive heart disease than insomnia. In our 

proposed model, called Timeline, each code contributes differently to the visit representation 

depending on when the medical code occurs and what the medical code is.

The process of Timeline is shown in Figure 3. The first step is to aggregate context 

information for each code in the visit, because it has been observed that each disease may 

exhibit different meanings in different contexts. For example, sepsis can occur due to many 
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different reasons such as infection from bacteria or viruses and can cause a wide range of 

symptoms from acute kidney injury to nervous system damage [11]. Previous methods use 

CNN filter [10] or RNN units [28] to generate the context vector. However, both CNN and 

RNN assume temporal or spatial order of input data while each visit is a set of unordered 

codes. Inspired by recent work [30], which uses attention mechanism to aggregate context 

information of words while not making an assumption that words are ordered, Timeline uses 

a similar way to calculate the context vector,

qn = WQen (2)

kn = WKen, (3)

in which WQ ∈ ℝa × m and WK ∈ ℝa × m. qn is the query vector for code cn and kn is the key 

vector for code cn. Next, attention value can be calculated as:

αn1, αn2, …, αnN = so f tmax([
qnk1

a
,

qnk2
a

, …,
qnkN

a
]), (4)

in which a is the scaling factor.

The context vector gn for code cn is calculated as the weighted sum of all codes in the same 

visit,

gn =
x = 1

N
αnxex . (5)

Next, we decide how much each code contributes to the final visit representation. We 

assume that each code has its own disease progression pattern, which can be modeled using 

δ function,

δ(cn, Δt) = S(θcn
− μcn

Δt) (6)

Δt = τi − τ j (7)
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S(x) = 1
1 + e−x , (8)

in which θcn
 and μcn

 are disease-specific learnable scalar parameters. ∆t is the time interval 

between visit Vj and the visit we need to do prediction for, V i . θcn
 is the initial influence of 

disease cn . μcn
 depicts how the influence of disease changes through time. If μcn

 is small, 

then the effect of disease changes slowly through time. On the other hand, the effect of 

disease can dramatically change if μcn
 is large. Finally, we use a sigmoid function S(x) to 

transform θcn
− μcn

Δt into a probability between 0 and 1. We did not use softmax function 

here since in softmax the sum of weights of codes in a visit is always 1. Instead, we want to 

reduce the information flow into the network if the visit happened long before the prediction 

time. δ(cn, Δt) represents how disease cn diagnosed at ∆t ago affects the patient condition at 

the time of prediction.

After calculating contributions of each code to the visit representation, υ j can be calculated 

as

υ j =
n = 1

N
δ(cn, Δt)gn . (9)

Finally, we use these visit representations as inputs to the RNN for prediction of the target 

label yi ∈ ℝL. Here yi is a one-hot vector in which only the target category is set to 1. In this 

paper we use bidirectional LSTM network [27] to provide prediction. Our goal is to predict 

primary diagnosis category yi out of L categories in visit Vi given all previous visits: 

V1, V2, V3, …, V i − 1. This process can be described as follows:

h1, h2, …, hi − 1 = biLSTM(υ1, υ2, …, υi − 1, θLSTM) (10)

yi = so f tmax(Whi − 1 + b), (11)

in which y ∈ ℝL is the predicted category probability distribution, h j ∈ ℝr is the LSTM’s 

hidden state output at time step j, θLSTM are LSTM’s parameters, W ∈ ℝL × r is the weight 

matrix, and b ∈ ℝL is the bias vector of the output softmax function. Note that we use 

bidirectional LSTM network, although we can decide to use any RNN such as GRU [5]. 
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Since our task is formulated as a multiclass classification problem, we use negative log 

likelihood loss function,

L(yi, yi) = − yilogyi . (12)

Note that equation (12) is the loss for one instance. In our implementation, we take the 

average of instance losses for multiple instances. In the next section we will describe how to 

generate instances from the raw data. We use the adaptive moment estimation (Adam) 

algorithm [14] to minimize the above loss values over all instances.

3.3 Interpretation

Interpretability is one of main requirements for healthcare predictive models. Interpretable 

model needs to shed some light on the rationale behind the prediction. In Timeline, this 

could be achieved by analyzing weights associated with each embedding e of medical code 

c. By combining equations (5) and (9), we get:

υ j =
n = 1

N
δ(cn, Δt)gn

=
n = 1

N
δ(cn, Δt)(

x = 1

N
αnxex)

=
x = 1

N
(
n = 1

N
δ(cn, Δt)αnxex)

(13)

We define coefficient ϕ(cx) = n = 1
N δ(cn, Δt)αnx, which measures how much each code 

embedding ex contributes to the final visit representation: υ j =
x = 1
N ϕ(cx)ex. If ϕ(cx) is 

large, the information of cx flows into the network substantially and contributes to the final 

prediction. We show some representative examples in section 4.4.

4 EXPERIMENTAL SETUP

4.1 Data Sets

In our experiments we used medical claims data from SEER-Medicare Linked Database 

[10]. SEER-Medicare Database records each visit of a patient as a set of diagnosis and 

procedure billing codes. In particular, our dataset contains inpatient, outpatient and carrier 

claims from 161,366 patients diagnosed with breast cancer from 2000 to 2010. The inpatient 

medical claims summarize services requiring a patient to be admitted to a hospital. Each 

inpatient claim summarizes one hospital stay and includes up to 25 ICD-9 diagnosis codes 

and 25 ICD-9 procedure codes. Outpatient claims summarize services which do not require 

a hospital stay. Outpatient claims contain a set of ICD-9 diagnosis, ICD-9 procedure, and 

CPT codes. CPT codes record medical procedures and are an alternative to the ICD-9 

procedure ontology. Carrier claims refer to services by non-institutional providers such as 

physicians or registered nurses. Carrier claims use ICD-9 diagnosis codes and CPT codes. 
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Given the heterogeneous nature of this database, we derived two datasets for our 

experiments.

Inpatient dataset: this dataset contains only inpatient visits. It evaluates the algorithm in the 

scenario where data come from a single source with homogeneous structure. This dataset 

contains only ICD-9 diagnosis codes and ICD-9 procedure codes.

Mixed dataset: this dataset is derived from all available visit types, including inpatient, 

outpatient and physician visits. This dataset allows us to evaluate the algorithm in a scenario 

where data come from different sources with heterogeneous structure. This dataset contains 

a mix of ICD-9 and CPT codes. To merge three different kinds of data, we combine all 

claims from a single day into a single visit. This is validated by an observation that inpatient 

or outpatient visits are often recorded as a mix or hospital and carrier claims.

Sequential diagnosis prediction task: our goal is to predict the primary diagnosis of future 

inpatient visits. Primary diagnosis is the main reason a patient got admitted into the hospital 

and is unique for each admission. Since a patient is typically admitted to a hospital only 

when he/she has a serious health condition, it is essential to understand the factors that lead 

to the hospitalization. As the vocabulary of ICD-9 diagnosis codes is very large, in this work 

we were content to predict the high level ICD-9 diagnosis categories, by grouping all ICD-9 

diagnosis codes into 18 major disease groups1. For the Inpatient dataset, given a sequence of 

inpatient visits, we use all previous inpatient visits to predict the final recorded visit. For the 

Mixed dataset, we create an instance for each inpatient visit. In this way, one patient will 

result in two instances if he/she has two inpatient visits. For both datasets we exclude 

patients with less than two visits. The basic statistics of our datasets are shown in Table 1.

4.2 Experimental design

We start this subsection by describing the baselines for diagnosis prediction tasks. Then, we 

summarize the implementation details. We used the following five baselines:

Majority predictor: As a trivial baseline, we report the accuracy of a predictor that always 

predicts the majority class. Since our data relate to patients diagnosed with breast cancer, the 

majority class is “neoplasms”.

RNN-uni: This is the traditional RNN, which uses the sum of code embeddings as visit 

embeddings and feeds them as inputs to a unidirectional LSTM.

RNN-bi: This is the same as the RNN-uni method, except that we use a bidirectional LSTM 

to better represent information from the the first to the last visit.

Dipole [19]: Dipole employs three different attention mechanisms to calculate attention 

weights for each visit. Dipole also uses bidirectional RNN architecture to better represent 

information from all visits. We used location-based attention as baseline as it shows the best 

performance in [19].

1https://www.findacode.com/code-set.php?set=ICD9
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GRNN-HA [28]: This model employs a hierarchal attention mechanism. It calculates two 

levels of attention: attention weights for medical codes and attention weights for patient 

visits.

We compared the five described baselines with our proposed Timeline model. Since the 

Timeline model uses a bidirectional architecture as the default, we also show the result of a 

Timeline model called Timeline-uni, which only uses a unidirectional LSTM.

To evaluate the accuracy of predicting the main diagnosis for the next visit, we used two 

measures for multiclass classification tasks: (1) accuracy, which equals the fraction of 

correct predictions, (2) weighted F1-score, which calculates F1-score for each class and 

reports their weighted mean.

We implemented all the approaches with Pytorch. We used Adam optimizer with the batch 

size of 48 patients. We randomly divided the dataset into the training, validation and test set 

in a 0.8, 0.1, 0.1 ratio. θ and µ were initialized as 1 and 0.1, respectively. We set the 

dimensionality of code embeddings m as 100, the dimensionality of attention query vectors 

and key vectors a as 100, and the dimensionality of hidden state of LSTM as 100. We used 

100 iterations for each method and report the best performance.

4.3 Prediction results

We show the experimental results of 6 different approaches on Inpatient and Mixed datasets 

in Table 2.

From the table we can see that Timeline outperforms all baselines. The accuracies obtained 

on the Mixed dataset are much higher than on the Inpatient dataset, which demonstrates that 

using all available claims from multiple sources is very informative. We also observe that for 

Inpatient dataset, the benefit of using bidirectional model is not large. This could be 

explained by the fact that the number of claims per patient is much smaller in the Inpatient 

data than in the aims to improve representation of long sequences is marginal. On the other 

hand, for the Mixed dataset, bidirectional architectures outperform their unidirectional 

counterparts more significantly, which shows their superiority on long sequences of claims.

4.4 Model interpretation

In this subsection we discuss interpretability of Timeline. For each medical code we are able 

to calculate the weight associated with it using equation (13). We first generate two realistic-

looking synthetic patients, which do not correspond to any real patient, but have properties 

similar to real patients in the SEER-Medicare dataset. We illustrate how our model utilizes 

the information in the patient visits for prediction. For each patient, we show each visit, the 

time stamp of each visit, medical codes recorded during each visit, and the weights assigned 

by Timeline to each medical code.

From Table 3 we can see that most of the medical codes have assigned weights equal to 0, 

meaning that they are ignored during the prediction. This weight sparsity is very useful for 

interpretation since our model focuses on medical codes with nonzero weights. Physicians 

could also gain insight by checking codes with nonzero weights. We can observe that our 
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model has strong preference towards recent visits: visit 1 and visit 2 occurred 298 days ago 

and 185 days ago, respectively, and all weights of codes in these two visits are close to 0. 

For the visits 3–5, which occurred within the last month, Timeline gives large weights to 

medical codes indicative of female breast cancer. This result is enabled by the disease 

progression function δ in Timeline. Note that although visits 2 and 3 are consecutive visits, 

Timeline assigned large weights to codes in visit 3, while ignoring codes in visit 2, showing 

that it is aware that these two visits are distant in time.

From Table 4, we can observe that Timeline assigned weights to relatively few medical 

codes. Although visit 1 occurred 153 days ago, both medical codes d_7240 and d_4149 have 

large weights. The large weights were assigned because the two codes have slowly decaying 

disease progression function. For these two codes they can have large weights even when 

they are assigned long time ago since they have long-term influence on the future patient 

conditions. On the other hand, for the most recent visit, which occurred 18 days ago, none of 

the codes have large weights, since Timeline learned they have little influence on the future 

patient condition. This visit is about a basic blood test, which is not very influential for 

inferring the future health condition of the patient.

As another illustration of the interpretability of Timeline, we generated another synthetic 

patient. As seen in Table 5, the patient has 2 recorded visits, the first occurred t days ago 

with diagnosis d_1749 (female breast cancer, unspecified), while the second occurred 10 

days ago with diagnosis d_2720 (Pure hypercholesterolemia). d_1749 is a strong indicator of 

cancer hospital admission while d_2720 is an indicator of admission because of circulatory 

system disease. The prediction task is to predict the main diagnosis of the next hospital visit 

if the first visit occurs t ago, where t ranges form 11 to 160. We can observe in Figure 4 that 

for t < 60 the Timeline is very confident the diagnosis will be “neoplasms”, while for t > 80 
it is very confident it will be “diseases of the circulatory system”. This example shows that 

Timeline is very sensitive to the exact time of past clinical events.

To further illustrate how the learned disease progression functions might differ depending on 

the disease, we select six medical codes and show their δ (c, ∆) function in Figure 5. As we 

can see, each disease has its own disease progression function. For d_5712 (alcoholic 

cirrhosis of liver), δ decrease slowly through time and approaches zero after 100 days. 

However, for acute diseases d_4878 (influenza) and d_4643 (acute epiglottitis), it decreases 

much faster and approaches zero in 20 days and 10 days, respectively. For code d_4280 

(congestive heart failure unspecified), its influence actually increases over time and reaches 

1 (the upper limit of sigmoid function δ ) very fast. This implies d_4280 is a very serious 

chronic disease and its influence is high irrespective of time. We note that this result is a 

consequence of our decision to allow the µ parameter in equation (6) to be negative. For 

d_4019 (essential hypertension unspecified), we found its influence decreases fast and starts 

from a relatively low value. This is explained by the fact that hypertension is a very common 

comorbidity and that it is not predictive of the future hospitalizations. Therefore, Timeline 

decreases its influence fast and tries to ignore it. Another common code is our dataset is 

d_1749 (female breast cancer unspecified). δ of this code decreases slowly and approaches 

zero at 100 days. This code is a very strong indicator of neoplasm, and its influences stays 

strong over a long time period.
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5 CONCLUSIONS

Predictive modeling, such as prediction of the main diagnosis of a future hospitalization, is 

one of the key challenges in healthcare informatics. In order to properly model sequential 

patient data, it is important to take sampling irregularity and different disease progression 

patterns into consideration. The state of the art deep learning approaches for predictive 

modeling of EHR data are not capable of producing interpretable models that can account 

for those factors. To address this issue, in this paper we proposed Timeline, a novel 

interpretable model which uses an attention mechanism to aggregate context information of 

medical codes and uses time-aware disease-specific progression function to model how 

much information of each disease flows into the recurrent neural network. Our experiments 

demonstrate that our model outperforms state-of-the-art deep neural networks on the task of 

predicting the main diagnosis of a future hospitalization using two large scale real world 

data sets. We also demonstrated the interpretability of Timeline by analyzing weights 

associated with different medical codes recorded in previous visits.
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Figure 1: 
The diagnosis process in one visit: doctors review all previous patient visit records and pay 

attention to those diagnosis that may affect patient’s current health conditions. Here time 

interval plays an import role since each disease has its own effect range.
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Figure 2: 
The framework of using vanilla visit representation with RNN for diagnosis prediction. Each 

visit representation is the sum of embeddings of medical codes in that visit.
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Figure 3: 
The illustration of Timeline. Timeline starts by embedding each medical code cn as a low 

dimensional vector en. Next, it uses a self attention mechanism to generate context vector gn. 

Then, it applies a disease progression function δ to control how much the information about 

cn flows into the RNN. δ depends on the specific disease c and the time interval ∆t. Finally, 

Timeline uses the weighted sum of the context vector as visit representation υ j and feeds it 

into a RNN for prediction.
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Figure 4: 
We change time interval t in Table 5 and show how prediction probabilities change with t.
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Figure 5: 
The δ (c, ∆) function for six different codes.
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Table 1:

Basic statistics of Inpatient and Mixed datasets

Dataset Inpatient dataset Mixed dataset

# of patients 45,104 93,123

# of visits 155,898 5,979,529

average # of visits per patient 3.46 64.21

max # of visits per visit 35 483

# of instances 45,104 200,892

# of unique medical codes 6,020 18,826

# of unique ICD-9 diagnosis codes 3,928 8,342

# of unique ICD-9 procedure codes 2,092 2,614

# of unique CPT codes NA 7,870

Average # of medical codes per visit 8.01 6.21

Max # of medical codes per visit 29 105
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Table 2:

The accuracy and weighted F1-score of Timeline and 5 baselines on two datasets.

Inpatient dataset Mixed dataset

Method Accuracy F1 Accuracy F1

Majority Predictor 0.212 NA 0.245 NA

RNN-uni 0.299 0.194 0.511 0.436

RNN-bi 0.298 0.199 0.516 0.442

Dipole 0.300 0.230 0.523 0.463

GRNN-HA 0.301 0.222 0.519 0.450

Timeline-uni 0.314 0.234 0.526 0.469

Timeline 0.315 0.235 0.530 0.473
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Table 3:

Visits of synthetic patient 1. For each visit, all medical codes and weights associated with them are shown. 

CPT codes are prefixed by c_; ICD-9 diagnosis codes are prefixed by d_..

visit 1 (298 days ago)

c_99213 0.0 Office, outpatient visit

d_2859 0.0 Anemia unspecified

c_92012 0.0 Eye exam

visit 2 (185 days ago)

c_99213 0.0002 Office, outpatient visit

d_4241 0.0002 Aortic valve disorders

visit 3 (26 days ago)

c_80061 0.03 Lipid panel

d_6117 1.739 Signs and symptoms in breast disorders

visit 4 (10 days ago)

d_V048 0.458 viral diseases

c_G0008 0.601 Administration of influenza virus vaccine

d_4019 0.0 Unspecified essential hypertension

visit 5 (8 days ago)

d_1742 1.87079 Upper-inner quadrant of female breast cancer

c_99243 0.0 Office consultation

Prediction: Neoplasms (0.99)
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Table 4:

Visits of synthetic patient 2. For each visit, all medical codes and weights associated with them are shown. 

CPT codes are prefixed by c_; ICD-9 diagnosis codes are prefixed by d_.

visit 1 (153 days ago)

d_4149 1.0 Chronic ischemic heart disease unspecified

d_7240 1.0 Spinal stenosis other than cervical

d_4019 0.0 Unspecified essential hypertension

c_99213 0.0 Office, outpatient visit

visit 2 (143 days ago)

d_2780 0.0 Obesity

d_3751 0.0 Disorders of lacrimal gland

c_92012 0.0 Eye exam

visit 3 (82 days ago)

d_3771 1.94464 Pathologic fracture

c_72080 1.739 Radiologic examination, spine

d_4019 0.0 Unspecified essential hypertension

visit 4 (18 days ago)

d_4019 0.0 Unspecified essential hypertension

c_80048 0.017 Basic metabolic panel

c_85025 0.0 Blood count

d_V726 0.301 Special investigations and examinations

Prediction: diseases of the musculoskeletal system and connective tissue (0.67)
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Table 5:

We generate two visits, one visit contains d_1749 and one visit contains d_2720, we change the time interval 

of the first visit in order to see how prediction changed.

visit 1 (t days ago)

d_1749 female breast cancer unspecified

visit 2 (10 days ago)

d_2720 Pure hypercholesterolemia
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