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ABSTRACT
The great success of supervised learning has initiated a paradigm

shift from building a deterministic software system to a proba-

bilistic artificial intelligent system throughout the industry. The

historical records in enterprise domains can potentially bootstrap

the traditional business into the modern data-driven approach al-

most everywhere. The introduction of the Deep Neural Networks
(DNNs) significantly reduces the efforts of feature engineering so

that supervised learning becomes even more automated. The last

bottleneck is to ensure the data quality, particularly the label quality,

because the performance of supervised learning is bounded by the

errors present in labels. In this paper, we present a new Active Deep
Denoising (ADD) approach that first builds a DNN noise model, and

then adopts an active learning algorithm to identify the optimal

denoising function. We prove that under the low noise condition,

we only need to query the oracle with logn examples where n is

the total number in the data. We apply ADD on one enterprise ap-
plication and show that it can effectively reduce

1

3
of the prediction

error with only 0.1% of examples verified by the oracle.
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1 INTRODUCTION
During the past decades, supervised learning has achieved a great

success across many fields, e.g., natural language processing, com-

puter vision, and information retrieval, with the emergence of Big
data and Cloud computing. For any given task, we collect data, label
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data, build a model, evaluate the model, revise and repeat. This

loop, as shown in Figure 1, has become the new programming par-

adigm to solve many real-world problems, and shifted the major

focus from building a high-quality software system to building a

high-quality dataset, e.g., ImageNet [9] for object recognition and

SQuAD [22] for machine comprehension. However, if the collected

data contains noisy and conflicting labels, the performance of the

supervised learning is upper bounded. For example, as a popular

crowd-sourcing choice, data are labeled through Mechanical Turk
(MT) where annotators do not necessarily have domain-specific

knowledge, hence bringing human errors into the dataset. Even

with the majority vote mechanism, the quality of the labels is mostly

not guaranteed. This is more severe in enterprise domains where

labels come from different persons at different locations and times

who follow different rules. Recent research [18] studied the effect

of low-quality training data on clinical reports, and demonstrated

that the difficulty of acquiring high-quality data actually bottle-

necks the wide adoption of the data-driven approach in the health

domain. Indeed, how can we obtain super-human accuracy from

noisy inaccurate data? In this paper, we address this challenge from

the active learning perspective.

Active learning [3, 11, 15, 19, 26, 31, 35] was proposed to effec-

tively utilize unlabeled data with a costly oracle. When the prior

distribution over the hypothesis space is known, algorithms like

Query by Commitee [11], i.e., pick the most uncertain example to

ask, can effectively query the oracle with a guaranteed generaliza-

tion bound. When the prior distribution is unknown, this approach

can bring significant biases to the samples, and ends with statisti-

cally inconsistent models. Research [5, 6] shows that with certain

search heuristics, e.g., exploitation vs. exploration, we can avoid

this bias and obtain statistical consistency. However, the label com-

plexity remains linear with respect to supervised learning because

we might still need to query a significant number of examples to ob-

tain the desired accuracy. Theoretical studies [2, 7, 13] have shown

that algorithms like Agnostic Active (A2
) can be exponentially ef-

fective under the low-noise condition, but are bound by a large

VC-dimension factor. It is practically impossible to combineA2
with

a family of models like Deep Neural Networks in the unsupervised
learning domain as we have to search through a huge hypothesis

space to obtain a confident estimation.

Fortunately, in our setting, all data are labeled, although with

a certain number of errors. These noisy labels allow us to build

a model to address the noise systematically, which we use in re-

stricting the hypothesis space. In this paper, we present a new Deep
Neural Network-based Active Learning algorithm to correct noisy

labels. We first build a DNN noise model to form a denoising func-

tion family. Then, we adopt the A2
algorithm to learn the optimal
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Figure 1: Data quality is the key to a data driven paradigm.

denoising function from the oracle. We prove an exponential reduc-

tion of the label complexity under the low-noise condition because

the constructed denoising function has the VC-dimension of 1. In

addition, an empirical comparison among different choices of noise

models demonstrates that the proposed algorithm can effectively

tune down the noise with fewer queries to the expensive oracle.

2 PROBLEM STATEMENT AND RELATED
WORK

Noisy labels are ubiquitous for all real-world tasks. We study the

problem on enterprise domains which are traditionally built as a

system of records. These historical data facilitate bootstrapping the

process from a deterministic software system to a data-driven AI
system. For example, an IT service desk provides assistance to em-

ployees to troubleshoot their IT-related issues. The system creates

an incident to engage with a user, and human agents classify the

incidents into different categories and route them to different IT

teams for resolution. See examples in Figure 2. The accuracy of

the classification is crucial for incidents being resolved with low

latency because the mis-routing can cause significant delay within

the system. The machine learning task is to learn to categorize from

the data recorded by human agents. The challenge is that these

historical data contain significant errors in labels that bottlenecks

the performance of the supervised learning approach. First of all,

human agents make mistakes due to lack of training or operational

errors. Secondly, different agents might have different understand-

ings of the system, and they conflict with each other in many cases.

Finally, the system routing has been changed over time, which

renders the problem non-stationary. All of these factors result in
noisy labels. Experts exist in the system who can help clean up the

labels, but they are very expensive. Having them go through the

entire historical record is not economic. The cost is even higher

if the AI service is provided from a third party. In fact, effectively

utilizing expert oracles to bootstrap an AI system has become a

common challenge for enterprise AI applications.
Actively denoising labeled data is not a new topic [10, 12, 14, 20,

21, 24, 27, 29]. The problem was studied under the inductive logic
programming framework in the early days of Machine Learning.

For example, a polynomial time algorithm was proposed in [1] that

identifies concepts in the form of k-CNF formulas if the labeling

Figure 2: Here are incidents assigned to either computer is-
sues or Outlook issues. However, the second incident in com-
puter issues should belong to Outlook issues but was misla-
beled.

error rate is less than half. Research [8] introduced an EM algorithm

to simultaneously estimate annotator biases and latent label classes

if multiple annotators labeled the same example. Other work [27]

applied a statistical classifier to predict the true label for each exam-

ple given multiple annotations for each example. This early work

focuses on the case where multiple annotators are available for each

data point, which is quite restricted and unlikely to occur. Espe-

cially in many enterprise domains, it is almost impossible to collect

multiple annotations for each data point. CorrActive [20] proposed
an algorithm to estimate the confidence of mislabeling according to

a probability model and iteratively query the oracle with the most

likely mislabeled data. This algorithm does not require multiple

annotators for every data point and demonstrates the effectiveness

on one real application. However, it did not provide any theoretical

or empirical study about how to best estimate the confidence of

mislabeling.

Support Vector Machines based approaches have been widely

studied too [10, 24, 29, 31, 33, 37]. The main observation is that

mislabeled data are likely to be support vectors, and the margin is

directly related to the uncertainty of the data. In spite of its success

in the past, we do not base our work on SVMs for several reasons.

First of all, the recent trend of Deep Neural Networks has signif-
icantly reduced the feature engineering efforts during modeling,

and DNN has become the de facto approach for dealing with text,

audio and image data. Secondly, research study in [4, 7] has shown

that the uncertainty-driven approach is biased if significant noise

is present. The algorithm spends a lot of time on querying the same

uncertain area repeatedly without an escaping mechanism. Lastly,
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Figure 3: Probabilistic Graphical Model For Denoising. X is
the input data, i.e., caller, agent and description. Y is the hid-
den true label.Z is the given noisy label.Θ1 andΘ2 aremodel
parameters.

SVMs are good to model the noise from the input signals, but not

to utilize the output label information.

A clustering-based approach was proposed in [6] to address

the inconsistency issue for the uncertainty-driven active learning

approach. The example to query is picked according to maximum

information gain, i.e., how much information we can gain with

respect to the distribution over both data and hypothesis. After the

true label is acquired, the neighborhood’s label is flipped collectively,

e.g., by a majority vote mechanism. In this paper, we follow a similar

approach: estimate the neighborhood through a DNN and propose

the examples from highly likelymislabeled clusters. DNN provides a

low-dimensional dense vector embedding to represent the semantic

meaning of the original data [16, 28, 30, 36]. This representation

models well on the joint manifold of both input and output labels,

and creates a more accurate estimation of mislabeling clusters.

We study the approach from both Bayesian and Non-Bayesian

perspectives. Bayesian Deep Learning [32] combines Probabilistic
Graphical Models [17, 34] and DNNs to model noises and uncer-

tainty within the Deep Learning framework. Algorithms like Evi-
dence Lower Bound Optimization (ELBO) [23] allow fast approximate

optimization to avoid intractability of the normalization function

in PGMs. The non-Bayesian perspective further relaxes the condi-

tional independence among data points, i.e., clusters share similar

noise distributions. The uncertainty estimation is more robust with

a local neighborhood smoothing than just a point estimation. Our

empirical study also shows that combining the two perspectives

together provides the best results.

3 ACTIVE DEEP DENOISING (ADD)
Deep Neural Networks have demonstrated a great advantage repre-

senting unstructured data, e.g., text and images. Unlike the unsu-

pervised dimensionality reduction approach that does not take the

output space into consideration, DNNs learn a metric space towards

the maximal discrimination even with the presence of significant

noise. This potentially helps the active learning process identify

similar mislabeled patterns and correct them collectively.

3.1 Modeling noise
A high-quality noise model provides the foundation to engage an

active denoising process. The probabilistic graphical model shown

in Figure 3 describes the noise model where X is the input data, Y
is the hidden true label, and Z is the given noisy label. We train

and monitor a model that predicts the original labels, given the

inputs and our estimated true label, in order to verify that our label

changes result in systematic improvement. With improvement, the

model is able to learn the underlying noise in the data. From the

Bayesian perspective, wemaximize the likelihood of the twomodels

by marginalizing the hidden true label Y . In Equation 1, we adopt

the Evidence Lower Bound optimization approach to approximate

the marginalization.

maximizeΘ1,Θ2

E[log

∑
Y

P(Z ,Y |X ;Θ1,Θ2)] (1)

= E[log

∑
Y

P(Z |Y ,X ;Θ1)P(Y |X ;Θ2)]

≥ EX ,Z
[
EY |X ,Z [log P(Z |Y ,X ;Θ1)P(Y |X ;Θ2)] + HY |X ,Z

]
≥

1

|S |

∑
x,z∈S

∑
y

P(y |x, z)(log P(z |y, x;Θ1) + log P(y |x;Θ2))

−
1

|S |

∑
x,z∈S

∑
y

P(y |x, z) log P(y |x, z) −
γ

2

(∥Θ1∥ + ∥Θ2∥)

Both P(z |y, x;Θ1) and P(y |x;Θ2) are DNN models as depicted

in Figure 4. P(y |x, z) is the posterior estimation of the true label

given the noisy label and input data. The relaxed objective is to

minimize the expected errors for both predicting noisy labels and

true labels with regularizations over the posterior and the parame-

ters. Posterior estimation by the Bayesian rule is easier to compute,

but also prone to bias when data is sparse. The non-Bayesian per-

spective relaxes the posterior estimation to a parametrized model

P(y |x, z;Θ3), e.g., with k-nearest-neighbor (kNN) smoothing.

ELBO allows the optimization of Equation 1 directly if only the

Bayesian approach is taken. For non-Bayesian smoothing, jointly

optimizing three models over a large input and label space becomes

infeasible. Instead we propose to optimize each model individually

as a coordinate descent approach, until the overall loss converges.

The algorithm is presented in Algorithm 1.

The estimation of the posterior determines potential label changes

as the denoising process iterates. If the true labels conform to the

input attributes of similar features, P(y = z |x,y;Θ3) ≈ 1. Other-

wise, the probability decreases. Determining how to estimate these

probabilities is crucial, thus multiple methods for estimating Θ3 are

proposed and compared.

The first method is a Bayesian posterior calculated by simply

inferring the hidden label from Θ1 and Θ2. This gives us a smooth

probability distribution over a single data point {xi, zi }, but does
not take into account similar examples with varying z.

Bayesian point estimation tends to be biased in regions with

sparse data. Taking a neighborhood of x, we can take into account
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Figure 4: Deep Neural Network structure for Θ1 and Θ2. Our
concatenated description feature vectors are fed through
multiple iterations of dropout, dense layers, normalization
layers, and a final softmax layer.

Algorithm 1: Modeling Noise

input :S = {x, z}
output :Θ1,Θ2,Θ3

1 begin
2 Let y = z, P(y |x, z;Θ3) = 1 if y = z; 0 otherwise;

3 repeat
4 Θ2 = arg maxΘ2

∑
x,z

∑
y P(y |x, z;Θ3) log P(y |x;Θ2) −

γ
2
∥Θ2∥;

5 P(y |x, z;Θ3) = Posterior(S , Θ1, Θ2);

6 Θ1 =

arg maxΘ1

∑
x,z

∑
y P(y |x, z;Θ3) log P(z |x,y;Θ1) −

γ
2
∥Θ1∥;

7 until Equation 1 converges;
8 end

Algorithm 2: Posterior by simple Bayesian rule

input :S = {x, z},Θ1,Θ2

output :P(y |x, z;Θ3)

1 begin
2 P(y |x, z;Θ3) =

P (z |x,y ;Θ1)P (y |x;Θ2)∑
y P (z |x,y ;Θ1)P (y :x;Θ2)

3 end

variations to smooth out the posterior estimation. The most com-

mon surrounding label for similar inputs also indicates the true

label, regardless of what given label was assigned to that point. This

majority-vote mechanism is the kNN classifier where the neigh-

borhood is based on the manifold learned from noisy data by the

DNNs.

Algorithm 3: Posterior by neighborhood majority

input :S = {x, z},Θ2, k

output :P(y |x, z;Θ3)

1 begin
2 xh =the last hidden layer representation from Θ2 for all

x ∈ S ;

3 Let ζ return kNN from xh given the last hidden layer

representation from Θ2 with input x;
4 foreach xi, zi ∈ {x, z} do
5 {xs} =ζ (xi);
6 w =

∑
xsj∈{xs } softmax(xsj;Θ2);

7 ŷ = arg maxw ;

8 P(yi |xi, zi ;Θ3) = Izi=ŷ ;

9 end
10 end

The neighborhood is taken from a dense layer from ourΘ2 model

during inference. We cluster the data based on the last dense layer

as they represent the high level features in a low-dimensional space.

The low dimensional manifold learned from the noisy data pro-

vides a higher-quality clustering than any unsupervised approach

commonly used in other active learning algorithms. Note that this

is one of the key reasons that ADD succeeds.

While the majority-vote algorithm yields the consensus of the

neighborhood, the posterior distribution is effectively one hot en-

coded, which does not provide us a range of values to use when

computing Algorithm 1. We explore a combined approach that uses

the Bayesian estimation to smooth out the neighborhood.

3.2 Actively denoising labels
After the noise model is built, we select samples that our models

suggest and verify these changes with the oracle. The verification

process is expensive, and we are allowed K examples to get the

high quality verifications on. If K has be linear on the sample size

|S |, the oracle is required to relabel most of the data to achieve

the optimal accuracy. If K = O(log(|S |), the active denoising saves
the expensive cost exponentially. We show that the exponential

speedup of the label complexity is feasible under the low-noise
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Algorithm 4: Posterior by neighborhood smoothing

input :S = {x, z},Θ2, k

output :P(y |x, z;Θ3)

1 begin
2 xh =the last hidden layer representation from Θ2 for all

x ∈ S ;

3 Let ζ return kNN from xh given the last hidden layer

representation from Θ2 with input x;
4 foreach xi, zi ∈ {x, z} do
5 {xs} =ζ (xi);
6 P(yi |xi, zi ;Θ3) =

∑
xsj∈{xs } softmax(xsj;Θ2);

7 end
8 end

condition as we construct a threshold based denoising function that

has the VC-dimension of 1.

Since we were looking for examples that could generalize to

other examples for relabeling, we looked at the clustering methods

that are used to flip the labels during modeling in Section 2. When

constructing Θ3 to determine the true label, the estimations were

made for every single point using a learned hidden representation.

This representation is used to create the vectors that are clustered

to determine similarly-structured examples. This led our true label

model Θ2 to achieve a much higher accuracy than any base model

Θ1. In selection, we have the knowledge of Θ2, but need to verify

those changes with an oracle. We use the metric in Equation 2 to

indicate the score of mislabeling, and select samples accordingly.

f (x, z) = max

y,z
log P(y |x, z;Θ3) − log P(z |x;Θ1,Θ2) (2)

This metric also allows us to define the denoising function

parametrized by the threshold h as shown in Equation 3 where

ŷ is the label that attains the maximum value of f (x, z).

ŷ(x, z;h) = ŷ iff (x, z) > h otherwise z (3)

Proposition 3.1 shows that the true noise level can be upper

bounded through the VC bounds where VC-dimension of the de-

noising function Equation 3 is 1. The active learning process is to

effectively query the oracle to approximate the true entropy with

fewer samples. We just need to sort the data points according to the

scores and verify the point from the oracle that all data points above

are mislabels. We adopt the Agnostic Active Learning approach to

estimate the target threshold.

Proposition 3.1. Let ξ represent the true noise level in the labels
where ȳ represents the unknown true labels. In addition, ∆ is the set of
data points with verified true labels, and |∆| ≪ |S |. η is a pre-defined

confidence parameter that η < 1/2.

ξ = −
1

|S |

∑
x,z,ȳ∈S

P(ȳ |x, z;Θ3)f (x, z) (4)

ξ ≤ −
1

|∆|

∑
x,z,ȳ∈∆

P(ȳ |x, z;Θ3)f (x, z) +

√
log 1/η

2|∆|
(5)

ξ ≥ −
1

|∆|

∑
x,z,ȳ∈∆

P(ȳ |x, z;Θ3)f (x, z) −

√
log 1/η

2|∆|
(6)

The active denoising algorithm is defined in Algorithm 5. Note

that the disagreement function only needs to check the disagree-

ments on the boundary points, i.e., H = [h1,h2). Corollary 3.2, as

a straight application of A2
(Agnostic Active) algorithm’s result,

proves that under the low-noise condition the label complexity is

on the log-scale, otherwise it is on the quadratic scale.

Algorithm 5: Active Denoising
input :S = {x, z}, Θ1,Θ2,Θ3, Oracle O and small error ϵ

output : ˆh

1 begin
2 Let H = (−∞,+∞), ∆ = {};

3 LetU (h,∆) denote Equation 5;

4 Let L(h,∆) denote Equation 6;

5 repeat
6 Sample 2∆ + 1 from S where ŷ(x, z;h) disagrees on

different h ∈ H ;

7 Query the oracle O for ȳ;

8 Add these samples {x, z, ȳ} to ∆;

9 ˆh = arg minh∈H U (h,∆);

10 H = {h ∈ H ;L(h,∆) ≤ U ( ˆh,∆)} = [h1,h2);

11 until |ŷ(x, z;h1) , ŷ(x, z;h2)| decreases by less than half or
U ( ˆh,∆) ≤ ϵ ;

12 end

Corollary 3.2. If ξ ≤ ϵ
16
, with a high probability 1 − η, Algo-

rithm 5 makes O(ln( 1

ϵ +
1

η )) calls to the oracle. Otherwise, it makes

O(
ξ 2

ln
1

η

ϵ 2
) calls.

Algorithm 5 is not restricted to the metric function defined in

Equation 2. It can be generalized to other metric functions as well.

In fact, in our experimentation, we smooth out the estimation by

grouping data points together, and measure the aggregate noise

level. This additional aggregation allows the noise level estima-

tion to be more stable due to the lower variance. Therefore, fewer

iterations are required to achieve the optimal denoising threshold.

4 EXPERIMENTS AND ANALYSIS
For our experiments we used one of our incident categorization

datasets with 150k incidents available for training, validation, and

testing. In total the dataset contains 403 categorical labels that

need to be classified. The distribution of these categorical labels
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are highly skewed, which is mitigated by sample weights during

model training (Figure 5).

Figure 5: The label distribution used for prediction.

We focus on modeling the accuracy gains, given a similar DNN

model architecture, over the accuracies of the DNN models them-

selves. The DNN structure, as described in Figure 4, contains 3 sets

of dropout, dense, and normalization layers before the final soft-

max prediction layer. This structure was chosen as it was already

parameterized and performing well for incident inference, so we

wanted to augment the performance further.

4.1 Denoising comparisons

Figure 6: Average embedding representation. The input de-
scriptions are taken in and embedded as vectors. Then the
non-zero vectors are removed, and an average vector is com-
puted before the features are concatenated.

Figure 7: An embedding using Gated Recurrent Unit (GRU)
layers. Like the average embedding, the inputs are taken and
converted into word vectors. These word vectors are fed into
the GRU layers, which output temporal representations of
word embeddings provided by the inputs.

We first demonstrate the denoising accuracy gains by comparing

the Bayesian and neighborhood Θ3 modeling methods as described

in Algorithm [2,3,4]. We also test two different approaches for

embedding our feature vectors to input into our DNN. We try

both an average word vector embedding (Figure 6), and a learned

recurrent word vector representation (Figure 7). Our convergence

criterion is estimated as follows:

|(Θ1 accuracy+Θ2 accuracy)t−1−(Θ1 accuracy+Θ2 accuracy)t | ≤ δ

Here t is the iteration number for the repeat loop described in

Algorithm 1. In our tests we set the δ = 0.01 for convergence test.

Once the models are computed, we adapted the denoising Algo-

rithm 5 for the industry setting. One issue is that many incidents

sent for IT Agent verification could be similar when successively

sampling under the denoising algorithm. To address this, we sam-

ple a single incident for annotation from the errors grouped by

(z,y) pairs, reducing the probability of sending an agent a similar

incident. Another logistic issue is that the IT agent is less willing to

wait for multiple iterations of denoising. We approach this problem

with a batch adaptation of denoising, where samples from multiple

pair groups are queried ahead of time. These methods are laid out in

Algorithm 6, where we typically set h such that |A| = 100. Feedback

for the annotations is then requested from the agent.

When asking for feedback we provide an explanation as to why

the model would make each label prediction (Figure 8). This allows

agents to understand what the model is looking at when the model

is making a label prediction, based on an approximation of the

network features [25]. It also serves as a debugging process if the

model is under suspicion of overfitting, given the generalizability

of the features returned.

For each verified error pair, all ŷ’s of the error pair’s correspond-
ing error pair group are set to ȳ. These verified denoised values are

saved as the last step in the full denoising process (Figure 9).
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Table 1: Modeling Accuracies and statistics across different combinations

Embedding Method Base Accuracy Denoised Accuracy Accuracy Gain Entropy Reduction % Labels Changed

Average

Vector

Bayesian 0.7572 0.7877 0.0305 0.0127 13.2531

Neighbor-Majority 0.7572 0.8543 0.0971 0.0981 13.1244

Neighbor-Smooth 0.7562 0.8570 0.1008 0.1097 13.1501

GRU

Bayesian 0.7288 0.7676 0.0388 -0.0169 8.9279

Neighbor-Majority 0.7253 0.7795 0.0542 0.1093 9.0586

Neighbor-Smooth 0.7283 0.7825 0.0542 0.1226 9.0174

Algorithm 6: Annotation Selection

input :S = {x, z},h > 0,Θ3

output :A (data to re-annotate) such that A ∈ S

1 begin
2 G = {z, ŷ | x, z ∈ S, ŷ = arg max P(x, z;Θ3)};

3 E = {{(z,y, x) | x, z′ ∈ S where z′ = z and ŷ = y}

(z,y) ∈ G where y , z};

4 A = {{x, z,y | random sample x, z,y ∈ e where∑
{x,z }∈e

∑
P(x, z;Θ3) > h}e ∈ E};

5 end

Afterwards, ŷ can be utilized to train a final, agent-backed model.

The final model, Θdenoised , is trained on {x, ŷ} and compared with

Θbase , which is trained on {x,y}. We repeated this for every combi-

nation of average/GRU embedding and Θ3 modeling methodology.

For each run we keep track of a couple of metrics. The key metric

measure is Θdenoised − Θbase , in order to view our final impact

of our verified label changes on the newly-trained model over the

previous best. We calculate the entropy over the predictions for all

the data and keep the mean entropy reduction over all mean label

entropies. This is the entropy reduction calculated from Θbase to

Θdenoised . This metric shows us if our modifications to the labels

increased the overall confidence to predict each category, due to

the decrease of noisy labels. For a sanity check we also keep track

of the percentage of labels flipped while the process is carried out.

We analyze the effect of accuracy increase given the number of

feedbacks requested of the oracles. We compare this to a baseline

test of randomly sampling examples and making the label changes

to the data directly (Figure 11). This clearly demonstrates the ef-

fectiveness of the algorithm while a random sampling approach

represents the label complexity for the traditional supervised learn-
ing.

4.2 Denoising results
From the results in Table 1, the average embedding using the smooth

kNN approach gives the best results in our data. Intuitively, this

makes sense, as the smooth estimation generalizes better to the test

data and future variation. We were expecting the GRU performance

to be on par or exceeding that of the average embedding, but the

accuracy improvements in the test were halved. Looking at our

data, this result is not surprising, as the text bodies can often be

largely segmented and discontinuous pieces of text.

The entropy reduction scores give interesting results. The en-

tropy drop for our best accuracy improvement (Table 1), average

Figure 8: Feedback layout presented to the oracle. The origi-
nal label and the proposedADD label are provided. The color
corresponding to each label are overlaid on the original text,
indicating which n-grams are influential in the correspond-
ing label predictions.

embedding with smooth kNN, is on par the GRU kNN majority

approach but doubled the accuracy gain. We proceeded to explore

the loss reductions per category basis, looking at the most frequent

categories. For the top 7 recurring categories (Figure 10), there is

an average entropy reduction of 0.09 and 0.05 for the average and

the GRU methods respectively. With the only difference being the

embedding methodology, we infer that the patterns learned by the

GRU generalized over many category labels. Observing the text

body of incidents show us that they are structured very similarly

for different categories, for example: "I am not able to login to

x.", where x can be any concept ranging from payroll, email, en-

vironments, etc. We suspect that our GRU is able to capture this

general structure, but we could not achieve a robust enough (with-

out overfitting) model to distinguish the nuances with "x", each

of which may belong to different category labels. In comparison,

the averaging embedding model is able to better focus on these

discrepancies.

Figure 10 also shows that the most common category had an

insignificant entropy reduction, while the next most common labels

were more significant. The most common label ended up being

the most general label, computer issues. Many specific incidents

are assigned to this category despite other more nuanced labels

being present, such as email, browser, that closely match these

incidents. Thus consistency within the general category does not

improve, as no consensus regarding what is supposed be within that

general computer label group is provided. Therefore, the posterior
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Figure 9: A full view of the end-to-end ADD process.

Figure 10: Assessing the reduction of mean entropy per la-
bel after generating Θdenoised vs. Θbase . This compares how
the average embedding and GRU representations compared
when it came to reducing model loss in the most frequent
categories.

Figure 11: The accuracy vs. the number of labels queried

for that computer label decreased while the probabilities for the

more specific categories increased. Based on the shift between these

labels, the percentages of label changes fall within the range of what
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we expected (Table 1), which is in the range of 10-20%, based on

observational random sampling.

Figure 11 shows how the accuracy improves during the first few

iterations for our ADD method. This is partially due to the fact

that confirmation from the oracle within our h thresholds leads to

more corrections as it covers larger error pair groups. As the labels

become denoised, the cardinality of the error pair groups shrinks,

providing fewer corrections than before. In comparison, randomly-

corrected samples increase the accuracy linearly over time. Most

importantly, a DNN noise model effectively represents both input

and output space in a smooth manifold so that the neighborhood

clustering effectively groups similar errors and allow the denoising

function to correct them collectively.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a DNN based label denoising approach.

We first model the noise with a Bayesian DNN. Given the DNN,

we develop Bayesian and non-Bayesian techniques to calculate the

posterior label probability for every incident. Then, we query the

oracle with an active denoising algorithm, which selects examples

that provide label verification for similarly-structured data points.

Once these mislabels of similar examples are corrected, the DNN

is trained on these more-confident labels and the process can be

repeated. We apply this approach on the IT incident categoriza-

tion dataset where the experiment results demonstrate significant

accuracy improvements by just querying a small portion of misla-

beled data. We compare our results among Bayesian, non-Bayesian

(neighborhood majority), and combined approach (neighborhood

smooth). The combined approach demonstrates the best accuracy

improvement. To our surprise, GRU-based DNN produces an infe-

rior result than a simple Average Embedding based DNN. As ADD

can be generalized to other data, we look forward to comparing its

noise detection performance on public datasets as well.
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