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ABSTRACT

The great success of supervised learning has initiated a paradigm
shift from building a deterministic software system to a proba-
bilistic artificial intelligent system throughout the industry. The
historical records in enterprise domains can potentially bootstrap
the traditional business into the modern data-driven approach al-
most everywhere. The introduction of the Deep Neural Networks
(DNNs) significantly reduces the efforts of feature engineering so
that supervised learning becomes even more automated. The last
bottleneck is to ensure the data quality, particularly the label quality,
because the performance of supervised learning is bounded by the
errors present in labels. In this paper, we present a new Active Deep
Denoising (ADD) approach that first builds a DNN noise model, and
then adopts an active learning algorithm to identify the optimal
denoising function. We prove that under the low noise condition,
we only need to query the oracle with log n examples where n is
the total number in the data. We apply ADD on one enterprise ap-
plication and show that it can effectively reduce % of the prediction
error with only 0.1% of examples verified by the oracle.
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« Information systems — Data cleaning; « Computing method-
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1 INTRODUCTION

During the past decades, supervised learning has achieved a great
success across many fields, e.g., natural language processing, com-
puter vision, and information retrieval, with the emergence of Big
data and Cloud computing. For any given task, we collect data, label
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data, build a model, evaluate the model, revise and repeat. This
loop, as shown in Figure 1, has become the new programming par-
adigm to solve many real-world problems, and shifted the major
focus from building a high-quality software system to building a
high-quality dataset, e.g., ImageNet [9] for object recognition and
SQuAD [22] for machine comprehension. However, if the collected
data contains noisy and conflicting labels, the performance of the
supervised learning is upper bounded. For example, as a popular
crowd-sourcing choice, data are labeled through Mechanical Turk
(MT) where annotators do not necessarily have domain-specific
knowledge, hence bringing human errors into the dataset. Even
with the majority vote mechanism, the quality of the labels is mostly
not guaranteed. This is more severe in enterprise domains where
labels come from different persons at different locations and times
who follow different rules. Recent research [18] studied the effect
of low-quality training data on clinical reports, and demonstrated
that the difficulty of acquiring high-quality data actually bottle-
necks the wide adoption of the data-driven approach in the health
domain. Indeed, how can we obtain super-human accuracy from
noisy inaccurate data? In this paper, we address this challenge from
the active learning perspective.

Active learning [3, 11, 15, 19, 26, 31, 35] was proposed to effec-
tively utilize unlabeled data with a costly oracle. When the prior
distribution over the hypothesis space is known, algorithms like
Query by Commitee [11], i.e., pick the most uncertain example to
ask, can effectively query the oracle with a guaranteed generaliza-
tion bound. When the prior distribution is unknown, this approach
can bring significant biases to the samples, and ends with statisti-
cally inconsistent models. Research [5, 6] shows that with certain
search heuristics, e.g., exploitation vs. exploration, we can avoid
this bias and obtain statistical consistency. However, the label com-
plexity remains linear with respect to supervised learning because
we might still need to query a significant number of examples to ob-
tain the desired accuracy. Theoretical studies [2, 7, 13] have shown
that algorithms like Agnostic Active (A%) can be exponentially ef-
fective under the low-noise condition, but are bound by a large
VC-dimension factor. It is practically impossible to combine A% with
a family of models like Deep Neural Networks in the unsupervised
learning domain as we have to search through a huge hypothesis
space to obtain a confident estimation.

Fortunately, in our setting, all data are labeled, although with
a certain number of errors. These noisy labels allow us to build
a model to address the noise systematically, which we use in re-
stricting the hypothesis space. In this paper, we present a new Deep
Neural Network-based Active Learning algorithm to correct noisy
labels. We first build a DNN noise model to form a denoising func-
tion family. Then, we adopt the A? algorithm to learn the optimal
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Figure 1: Data quality is the key to a data driven paradigm.
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denoising function from the oracle. We prove an exponential reduc-
tion of the label complexity under the low-noise condition because
the constructed denoising function has the VC-dimension of 1. In
addition, an empirical comparison among different choices of noise
models demonstrates that the proposed algorithm can effectively
tune down the noise with fewer queries to the expensive oracle.

2 PROBLEM STATEMENT AND RELATED
WORK

Noisy labels are ubiquitous for all real-world tasks. We study the
problem on enterprise domains which are traditionally built as a
system of records. These historical data facilitate bootstrapping the
process from a deterministic software system to a data-driven Al
system. For example, an IT service desk provides assistance to em-
ployees to troubleshoot their IT-related issues. The system creates
an incident to engage with a user, and human agents classify the
incidents into different categories and route them to different IT
teams for resolution. See examples in Figure 2. The accuracy of
the classification is crucial for incidents being resolved with low
latency because the mis-routing can cause significant delay within
the system. The machine learning task is to learn to categorize from
the data recorded by human agents. The challenge is that these
historical data contain significant errors in labels that bottlenecks
the performance of the supervised learning approach. First of all,
human agents make mistakes due to lack of training or operational
errors. Secondly, different agents might have different understand-
ings of the system, and they conflict with each other in many cases.
Finally, the system routing has been changed over time, which
renders the problem non-stationary. All of these factors result in
noisy labels. Experts exist in the system who can help clean up the
labels, but they are very expensive. Having them go through the
entire historical record is not economic. The cost is even higher
if the Al service is provided from a third party. In fact, effectively
utilizing expert oracles to bootstrap an Al system has become a
common challenge for enterprise Al applications.

Actively denoising labeled data is not a new topic [10, 12, 14, 20,
21, 24, 27, 29]. The problem was studied under the inductive logic
programming framework in the early days of Machine Learning.
For example, a polynomial time algorithm was proposed in [1] that
identifies concepts in the form of k-CNF formulas if the labeling
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Computer Issues

Title |Unable to login to computer

Unable to login to computer as coming up with the error

Body |message account locked. Reads error code 23534902

Title |Outlook Calendar for Fred and George is not up to date

Have been away on vacation and have not logged onto
my computer until today, calendars for Fred and George
are not updating, switching between emails and
calendar it's "not responding” and the attached
document has Fred's old email address which no longer
exits (fred@customer.com) as well as the pop up is
asking for my employee#. | need someone to execute
a reset access process

Body

Outlook Issues

Title  |Outlook Calendar

Under outlook calendar my old team's calendar is showing

Body up instead of my current team. Please fix this issue.

Figure 2: Here are incidents assigned to either computer is-
sues or Outlook issues. However, the second incident in com-
puter issues should belong to Outlook issues but was misla-
beled.

error rate is less than half. Research [8] introduced an EM algorithm
to simultaneously estimate annotator biases and latent label classes
if multiple annotators labeled the same example. Other work [27]
applied a statistical classifier to predict the true label for each exam-
ple given multiple annotations for each example. This early work
focuses on the case where multiple annotators are available for each
data point, which is quite restricted and unlikely to occur. Espe-
cially in many enterprise domains, it is almost impossible to collect
multiple annotations for each data point. CorrActive [20] proposed
an algorithm to estimate the confidence of mislabeling according to
a probability model and iteratively query the oracle with the most
likely mislabeled data. This algorithm does not require multiple
annotators for every data point and demonstrates the effectiveness
on one real application. However, it did not provide any theoretical
or empirical study about how to best estimate the confidence of
mislabeling.

Support Vector Machines based approaches have been widely
studied too [10, 24, 29, 31, 33, 37]. The main observation is that
mislabeled data are likely to be support vectors, and the margin is
directly related to the uncertainty of the data. In spite of its success
in the past, we do not base our work on SVMs for several reasons.
First of all, the recent trend of Deep Neural Networks has signif-
icantly reduced the feature engineering efforts during modeling,
and DNN has become the de facto approach for dealing with text,
audio and image data. Secondly, research study in [4, 7] has shown
that the uncertainty-driven approach is biased if significant noise
is present. The algorithm spends a lot of time on querying the same
uncertain area repeatedly without an escaping mechanism. Lastly,
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Figure 3: Probabilistic Graphical Model For Denoising. X is
the input data, i.e., caller, agent and description. Y is the hid-
den true label. Z is the given noisy label. ®; and ©; are model
parameters.

SVMs are good to model the noise from the input signals, but not
to utilize the output label information.

A clustering-based approach was proposed in [6] to address
the inconsistency issue for the uncertainty-driven active learning
approach. The example to query is picked according to maximum
information gain, i.e., how much information we can gain with
respect to the distribution over both data and hypothesis. After the
true label is acquired, the neighborhood’s label is flipped collectively,
e.g., by a majority vote mechanism. In this paper, we follow a similar
approach: estimate the neighborhood through a DNN and propose
the examples from highly likely mislabeled clusters. DNN provides a
low-dimensional dense vector embedding to represent the semantic
meaning of the original data [16, 28, 30, 36]. This representation
models well on the joint manifold of both input and output labels,
and creates a more accurate estimation of mislabeling clusters.

We study the approach from both Bayesian and Non-Bayesian
perspectives. Bayesian Deep Learning [32] combines Probabilistic
Graphical Models [17, 34] and DNNs to model noises and uncer-
tainty within the Deep Learning framework. Algorithms like Evi-
dence Lower Bound Optimization (ELBO) [23] allow fast approximate
optimization to avoid intractability of the normalization function
in PGMs. The non-Bayesian perspective further relaxes the condi-
tional independence among data points, i.e., clusters share similar
noise distributions. The uncertainty estimation is more robust with
a local neighborhood smoothing than just a point estimation. Our
empirical study also shows that combining the two perspectives
together provides the best results.

3 ACTIVE DEEP DENOISING (ADD)

Deep Neural Networks have demonstrated a great advantage repre-
senting unstructured data, e.g., text and images. Unlike the unsu-
pervised dimensionality reduction approach that does not take the
output space into consideration, DNNs learn a metric space towards
the maximal discrimination even with the presence of significant
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noise. This potentially helps the active learning process identify
similar mislabeled patterns and correct them collectively.

3.1 Modeling noise

A high-quality noise model provides the foundation to engage an
active denoising process. The probabilistic graphical model shown
in Figure 3 describes the noise model where X is the input data, Y
is the hidden true label, and Z is the given noisy label. We train
and monitor a model that predicts the original labels, given the
inputs and our estimated true label, in order to verify that our label
changes result in systematic improvement. With improvement, the
model is able to learn the underlying noise in the data. From the
Bayesian perspective, we maximize the likelihood of the two models
by marginalizing the hidden true label Y. In Equation 1, we adopt
the Evidence Lower Bound optimization approach to approximate
the marginalization.

maximizeg,, @,

E[logZP(Z, Y|X;01,07)]
Y

= Ellog Z P(Z]Y,X;©01)P(Y|X; 0,)]
Y

> Bx.z [Byix zllog PZIY. X; 00)P(Y|X; €2)] + Hy|x ]
1
> sl Z ZP(y|X,Z)(10gP(Z|y,X;®1)+logP(y|X;@2))
X,zES Y
1 Y
sl X;S Zy:P(mX’ z)log P(ylx. 2) - §(||®1|| + 11021

Both P(z|y, x; ©1) and P(y|x; ©2) are DNN models as depicted
in Figure 4. P(y|x, z) is the posterior estimation of the true label
given the noisy label and input data. The relaxed objective is to
minimize the expected errors for both predicting noisy labels and
true labels with regularizations over the posterior and the parame-
ters. Posterior estimation by the Bayesian rule is easier to compute,
but also prone to bias when data is sparse. The non-Bayesian per-
spective relaxes the posterior estimation to a parametrized model
P(y|x, z; ©3), e.g., with k-nearest-neighbor (kNN) smoothing.

ELBO allows the optimization of Equation 1 directly if only the
Bayesian approach is taken. For non-Bayesian smoothing, jointly
optimizing three models over a large input and label space becomes
infeasible. Instead we propose to optimize each model individually
as a coordinate descent approach, until the overall loss converges.
The algorithm is presented in Algorithm 1.

The estimation of the posterior determines potential label changes
as the denoising process iterates. If the true labels conform to the
input attributes of similar features, P(y = z|x,y; ©3) ~ 1. Other-
wise, the probability decreases. Determining how to estimate these
probabilities is crucial, thus multiple methods for estimating ©3 are
proposed and compared.

The first method is a Bayesian posterior calculated by simply
inferring the hidden label from ®; and ©;. This gives us a smooth
probability distribution over a single data point {xj, z; }, but does
not take into account similar examples with varying z.

Bayesian point estimation tends to be biased in regions with
sparse data. Taking a neighborhood of x, we can take into account
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[ concatenated feature embedding ]

normalization 1

dropout 1

dense 1

normalization 2

dropout 2

dense 2

normalization 3

dropout 3

dense 3

normalization 4

dropout 4

Figure 4: Deep Neural Network structure for ©; and ©,. Our
concatenated description feature vectors are fed through
multiple iterations of dropout, dense layers, normalization
layers, and a final softmax layer.

Algorithm 1: Modeling Noise
input :S = {x,z}
output: 01, 02, O3

1 begin

2 Let y = z, P(y|x,2;03) = 1 if y = z; 0 otherwise;

3 repeat

4 0, = argmaxg, Xy ; Zy P(y|x, z;©3) log P(y|x; ©2) —
Llel;

5 P(y|x, z; ©3) = Posterior(S, ©1, O2);

6 O =
arg maxe, 2,z Ly P(ylx, z;03) log P(z]x,y; ©1) —
Llenll;

7 until Equation 1 converges;

s end
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Algorithm 2: Posterior by simple Bayesian rule

input :S={x,z},01,0;
output:P(y|x, z; ©3)

1 begin
) P(ylx, 2, 03) = P(z]x,y;01)P(y|x;02)

2y P(z]x,y:01)P(y:x;0;)

3 end

variations to smooth out the posterior estimation. The most com-
mon surrounding label for similar inputs also indicates the true
label, regardless of what given label was assigned to that point. This
majority-vote mechanism is the kNN classifier where the neigh-
borhood is based on the manifold learned from noisy data by the
DNNE.

Algorithm 3: Posterior by neighborhood majority
input :S = {x,2},05,k
output: P(y|x, z; ©3)

1 begin
2 xp, =the last hidden layer representation from @ for all
X € S;

3 Let { return kNN from xy, given the last hidden layer
representation from ®; with input x;

4 foreach xi,z; € {x,z} do

5 {xs} ={(xi);

6 w = szjE{xs} softmax(xsj; ©2);
7 1§ = arg max w;

8 P(yilxi, zi503) = I,=4;

9 end

10 end

The neighborhood is taken from a dense layer from our ®; model
during inference. We cluster the data based on the last dense layer
as they represent the high level features in a low-dimensional space.
The low dimensional manifold learned from the noisy data pro-
vides a higher-quality clustering than any unsupervised approach
commonly used in other active learning algorithms. Note that this
is one of the key reasons that ADD succeeds.

While the majority-vote algorithm yields the consensus of the
neighborhood, the posterior distribution is effectively one hot en-
coded, which does not provide us a range of values to use when
computing Algorithm 1. We explore a combined approach that uses
the Bayesian estimation to smooth out the neighborhood.

3.2 Actively denoising labels

After the noise model is built, we select samples that our models
suggest and verify these changes with the oracle. The verification
process is expensive, and we are allowed K examples to get the
high quality verifications on. If K has be linear on the sample size
|S|, the oracle is required to relabel most of the data to achieve
the optimal accuracy. If K = O(log(|S|), the active denoising saves
the expensive cost exponentially. We show that the exponential
speedup of the label complexity is feasible under the low-noise
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Algorithm 4: Posterior by neighborhood smoothing

input :S = {x,z},07,k
output: P(y|x, z; ©3)

1 begin
2 xp, =the last hidden layer representation from ®; for all
X € S;

3 Let { return kNN from xy, given the last hidden layer
representation from ©, with input x;

4 foreach xi, z; € {x,z} do

5 {xs} =0(xi);

6 P(yilxi, zi303) = Yxe(x,} softmax(xgj; O2);
7 end

s end

condition as we construct a threshold based denoising function that
has the VC-dimension of 1.

Since we were looking for examples that could generalize to
other examples for relabeling, we looked at the clustering methods
that are used to flip the labels during modeling in Section 2. When
constructing ©3 to determine the true label, the estimations were
made for every single point using a learned hidden representation.
This representation is used to create the vectors that are clustered
to determine similarly-structured examples. This led our true label
model ©; to achieve a much higher accuracy than any base model
©1. In selection, we have the knowledge of ®2, but need to verify
those changes with an oracle. We use the metric in Equation 2 to
indicate the score of mislabeling, and select samples accordingly.

f(x,2) = max log P(y|x, z; ©3) — log P(z|x; ©1, O2) (2)
Yy+z

This metric also allows us to define the denoising function
parametrized by the threshold h as shown in Equation 3 where
7 is the label that attains the maximum value of f(x, z).

9(x,z; h) = § iff(x,z) > h otherwise z 3)

Proposition 3.1 shows that the true noise level can be upper
bounded through the VC bounds where VC-dimension of the de-
noising function Equation 3 is 1. The active learning process is to
effectively query the oracle to approximate the true entropy with
fewer samples. We just need to sort the data points according to the
scores and verify the point from the oracle that all data points above
are mislabels. We adopt the Agnostic Active Learning approach to
estimate the target threshold.

PROPOSITION 3.1. Let & represent the true noise level in the labels
where §j represents the unknown true labels. In addition, A is the set of
data points with verified true labels, and |A| < |S|. 1 is a pre-defined
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confidence parameter thatn < 1/2.

Eo= - Y Pk z6s)fx2) @)
|S| X,z, €S
1 ) log1/n

£ < —WXEEAP(ym,z;@z)f(x,zn ap O
1 I _ |logl/n

£ > —WWZQLAP(ylx,z,@s)f(x,Z) 2 ©

The active denoising algorithm is defined in Algorithm 5. Note
that the disagreement function only needs to check the disagree-
ments on the boundary points, i.e., H = [hy, hy). Corollary 3.2, as
a straight application of A? (Agnostic Active) algorithm’s result,
proves that under the low-noise condition the label complexity is
on the log-scale, otherwise it is on the quadratic scale.

Algorithm 5: Active Denoising

input :S = {x,z}, 01,03, 03, Oracle O and small error €
output:h
1 begin

2 Let H = (-0, +0), A = {};
3 Let U(h, A) denote Equation 5;
4 Let L(h, A) denote Equation 6;

5 repeat

6 Sample 2A + 1 from S where (X, z; h) disagrees on
different h € H;

7 Query the oracle O for 7;

8 Add these samples {x, z, j} to A;

9 h= argming g U(h, A);

10 H = {h e H;L(h,A) < U(h, A)} = [h1, h2);

1 until |§(x, z; h1) # §(x, z; hy)| decreases by less than half or

Uh,A) < e

12 end

CoROLLARY 3.2. If¢ < {%, with a high probability 1 — n, Algo-
rithm 5 makes O(ln(% + %)) calls to the oracle. Otherwise, it makes

é:Zlnl

O(>—1) calls.

€2
Algorithm 5 is not restricted to the metric function defined in
Equation 2. It can be generalized to other metric functions as well.
In fact, in our experimentation, we smooth out the estimation by
grouping data points together, and measure the aggregate noise
level. This additional aggregation allows the noise level estima-
tion to be more stable due to the lower variance. Therefore, fewer
iterations are required to achieve the optimal denoising threshold.

4 EXPERIMENTS AND ANALYSIS

For our experiments we used one of our incident categorization
datasets with 150k incidents available for training, validation, and
testing. In total the dataset contains 403 categorical labels that
need to be classified. The distribution of these categorical labels
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are highly skewed, which is mitigated by sample weights during
model training (Figure 5).

Distribution of Prediction Labels

20000

15000

10000

Label Frequency

5000

0 0 50 100 150 200 250

Label Frequency Rank

300 350

Figure 5: The label distribution used for prediction.

We focus on modeling the accuracy gains, given a similar DNN
model architecture, over the accuracies of the DNN models them-
selves. The DNN structure, as described in Figure 4, contains 3 sets
of dropout, dense, and normalization layers before the final soft-
max prediction layer. This structure was chosen as it was already
parameterized and performing well for incident inference, so we
wanted to augment the performance further.

4.1 Denoising comparisons

[ text title ] [ text body ]
word embedding ] [ word embedding ]

Y Y

( zero mask ] [ zero mask ]
l averaging l l averaging I

[ concatenated feature embedding }

Figure 6: Average embedding representation. The input de-
scriptions are taken in and embedded as vectors. Then the
non-zero vectors are removed, and an average vector is com-
puted before the features are concatenated.
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text title text body
word embedding word embedding

[ concatenated feature embedding ]

Figure 7: An embedding using Gated Recurrent Unit (GRU)
layers. Like the average embedding, the inputs are taken and
converted into word vectors. These word vectors are fed into
the GRU layers, which output temporal representations of
word embeddings provided by the inputs.

We first demonstrate the denoising accuracy gains by comparing
the Bayesian and neighborhood ®3 modeling methods as described
in Algorithm [2,3,4]. We also test two different approaches for
embedding our feature vectors to input into our DNN. We try
both an average word vector embedding (Figure 6), and a learned
recurrent word vector representation (Figure 7). Our convergence
criterion is estimated as follows:

|(®1 accuracy+0; accuracy);—1—(0©1 accuracy+®; accuracy);| < 8§

Here ¢ is the iteration number for the repeat loop described in
Algorithm 1. In our tests we set the § = 0.01 for convergence test.

Once the models are computed, we adapted the denoising Algo-
rithm 5 for the industry setting. One issue is that many incidents
sent for IT Agent verification could be similar when successively
sampling under the denoising algorithm. To address this, we sam-
ple a single incident for annotation from the errors grouped by
(z, y) pairs, reducing the probability of sending an agent a similar
incident. Another logistic issue is that the IT agent is less willing to
wait for multiple iterations of denoising. We approach this problem
with a batch adaptation of denoising, where samples from multiple
pair groups are queried ahead of time. These methods are laid out in
Algorithm 6, where we typically set h such that |A| = 100. Feedback
for the annotations is then requested from the agent.

When asking for feedback we provide an explanation as to why
the model would make each label prediction (Figure 8). This allows
agents to understand what the model is looking at when the model
is making a label prediction, based on an approximation of the
network features [25]. It also serves as a debugging process if the
model is under suspicion of overfitting, given the generalizability
of the features returned.

For each verified error pair, all §’s of the error pair’s correspond-
ing error pair group are set to §. These verified denoised values are
saved as the last step in the full denoising process (Figure 9).
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Table 1: Modeling Accuracies and statistics across different combinations

Embedding Method Base Accuracy Denoised Accuracy  Accuracy Gain  Entropy Reduction % Labels Changed
Average Bayesian 0.7572 0.7877 0.0305 0.0127 13.2531
Vectorg Neighbor-Majority ~ 0.7572 0.8543 0.0971 0.0981 13.1244
Neighbor-Smooth 0.7562 0.8570 0.1008 0.1097 13.1501
Bayesian 0.7288 0.7676 0.0388 -0.0169 8.9279
GRU Neighbor-Majority  0.7253 0.7795 0.0542 0.1093 9.0586
Neighbor-Smooth 0.7283 0.7825 0.0542 0.1226 9.0174
Algorithm 6: Annotation Selection
" Title Outlook Calendar for Fred and George are not up to date
input :S={x,z},h> 0,03 -
Have been away on vacation and have not
output: A (data to re-annotate) such that A € S my until today, calendars for Fred and George
. are not updating, switching between emails and calendar
1 begin Bod it's "not responding"” and the attached document has
2 G={z7|xz€8,§=argmax P(x,z;03)}; Y Fred's old email address which no longer exits
, ’ N (fred@customer.com) as well as the pop up is asking for
3 E={{(z,y,x) | x,z’ € S where z’ = zand § = y} my employee#. | need someone to a
(z,y) € G where y # z}; process
4 A = {{x,z,y | random sample x, z, y € e where Label
ADD Label Outlook Issues
Z{x,z}ee 2 P(x,2;03) > h}te € E};
end Feedback | O Computer Issues @  Outlook Issues
5

Afterwards, J can be utilized to train a final, agent-backed model.
The final model, © 4.1, 0ised, is trained on {x, §} and compared with
Opases Which is trained on {x, y}. We repeated this for every combi-
nation of average/GRU embedding and ®3 modeling methodology.

For each run we keep track of a couple of metrics. The key metric
measure is Ogepoised — Obaser in order to view our final impact
of our verified label changes on the newly-trained model over the
previous best. We calculate the entropy over the predictions for all
the data and keep the mean entropy reduction over all mean label
entropies. This is the entropy reduction calculated from @, to
Odenoised- This metric shows us if our modifications to the labels
increased the overall confidence to predict each category, due to
the decrease of noisy labels. For a sanity check we also keep track
of the percentage of labels flipped while the process is carried out.

We analyze the effect of accuracy increase given the number of
feedbacks requested of the oracles. We compare this to a baseline
test of randomly sampling examples and making the label changes
to the data directly (Figure 11). This clearly demonstrates the ef-
fectiveness of the algorithm while a random sampling approach
represents the label complexity for the traditional supervised learn-

ing.

4.2 Denoising results

From the results in Table 1, the average embedding using the smooth
kNN approach gives the best results in our data. Intuitively, this
makes sense, as the smooth estimation generalizes better to the test
data and future variation. We were expecting the GRU performance
to be on par or exceeding that of the average embedding, but the
accuracy improvements in the test were halved. Looking at our
data, this result is not surprising, as the text bodies can often be
largely segmented and discontinuous pieces of text.

The entropy reduction scores give interesting results. The en-
tropy drop for our best accuracy improvement (Table 1), average
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Figure 8: Feedback layout presented to the oracle. The origi-
nal label and the proposed ADD label are provided. The color
corresponding to each label are overlaid on the original text,
indicating which n-grams are influential in the correspond-
ing label predictions.

embedding with smooth kNN, is on par the GRU kNN majority
approach but doubled the accuracy gain. We proceeded to explore
the loss reductions per category basis, looking at the most frequent
categories. For the top 7 recurring categories (Figure 10), there is
an average entropy reduction of 0.09 and 0.05 for the average and
the GRU methods respectively. With the only difference being the
embedding methodology, we infer that the patterns learned by the
GRU generalized over many category labels. Observing the text
body of incidents show us that they are structured very similarly
for different categories, for example: "I am not able to login to
x!", where x can be any concept ranging from payroll, email, en-
vironments, etc. We suspect that our GRU is able to capture this
general structure, but we could not achieve a robust enough (with-
out overfitting) model to distinguish the nuances with "x", each
of which may belong to different category labels. In comparison,
the averaging embedding model is able to better focus on these
discrepancies.

Figure 10 also shows that the most common category had an
insignificant entropy reduction, while the next most common labels
were more significant. The most common label ended up being
the most general label, computer issues. Many specific incidents
are assigned to this category despite other more nuanced labels
being present, such as email, browser, that closely match these
incidents. Thus consistency within the general category does not
improve, as no consensus regarding what is supposed be within that
general computer label group is provided. Therefore, the posterior



Applied Data Science Track Paper

KDD 2018, August 19-23, 2018, London, United Kingdom

Figure 9: A full view of the end-to-end ADD process.
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for that computer label decreased while the probabilities for the

more specific categories increased. Based on the shift between these
labels, the percentages of label changes fall within the range of what
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we expected (Table 1), which is in the range of 10-20%, based on
observational random sampling.

Figure 11 shows how the accuracy improves during the first few
iterations for our ADD method. This is partially due to the fact
that confirmation from the oracle within our A thresholds leads to
more corrections as it covers larger error pair groups. As the labels
become denoised, the cardinality of the error pair groups shrinks,
providing fewer corrections than before. In comparison, randomly-
corrected samples increase the accuracy linearly over time. Most
importantly, a DNN noise model effectively represents both input
and output space in a smooth manifold so that the neighborhood
clustering effectively groups similar errors and allow the denoising
function to correct them collectively.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a DNN based label denoising approach.
We first model the noise with a Bayesian DNN. Given the DNN,
we develop Bayesian and non-Bayesian techniques to calculate the
posterior label probability for every incident. Then, we query the
oracle with an active denoising algorithm, which selects examples
that provide label verification for similarly-structured data points.
Once these mislabels of similar examples are corrected, the DNN
is trained on these more-confident labels and the process can be
repeated. We apply this approach on the IT incident categoriza-
tion dataset where the experiment results demonstrate significant
accuracy improvements by just querying a small portion of misla-
beled data. We compare our results among Bayesian, non-Bayesian
(neighborhood majority), and combined approach (neighborhood
smooth). The combined approach demonstrates the best accuracy
improvement. To our surprise, GRU-based DNN produces an infe-
rior result than a simple Average Embedding based DNN. As ADD
can be generalized to other data, we look forward to comparing its
noise detection performance on public datasets as well.
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