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ABSTRACT
Machine learning approaches have been effective in predicting
adverse outcomes in different clinical settings. These models are
often developed and evaluated on datasets with heterogeneous
patient populations. However, good predictive performance on the
aggregate population does not imply good performance for specific
groups.

In this work, we present a two-step framework to 1) learn rele-
vant patient subgroups, and 2) predict an outcome for separate pa-
tient populations in a multi-task framework, where each population
is a separate task. We demonstrate how to discover relevant groups
in an unsupervised way with a sequence-to-sequence autoencoder.
We show that using these groups in a multi-task framework leads to
better predictive performance of in-hospital mortality both across
groups and overall. We also highlight the need for more granu-
lar evaluation of performance when dealing with heterogeneous
populations.
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1 INTRODUCTION
Many important applications of machine learning utilize data from
groupswith different characteristics. Models trained on these datasets
may not result in good predictions for each constituent group. This
has been illustrated in tasks such as image classification [37], face

∗The first two authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD 2018, August 2018, London, UK
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3219930

recognition [3], and advertising [11]. In this work, we investigate
this problem in clinical data, where such datasets are prevalent.

Machine learning models developed for clinical prediction tasks
have the ability to aid care staff in deciding appropriate treatments.
However, these clinical decision-making tools typically are not de-
veloped with specific subpopulations in mind, or they are developed
for a single subpopulation and can suffer from data scarcity. The ex-
istence of these different subpopulations gives rise to a multifaceted
problem: 1) a single model built for the entire patient population in
aggregate does not imply equally good performance across distinct
patient subpopulations, and 2) separate models learned on each of
the distinct patient subpopulations do not take advantage of the
shared knowledge that is common across patient subgroups.

Our solution combines cohort discovery with amulti-task learning
model. Together, these steps form a pipeline that leverages shared
information across distinct patient cohorts while accounting for
their differences. During cohort discovery, we learn distinct patient
subgroups in a data-driven way. These groups allow us to utilize a
multi-task prediction framework where distinct patient groups are
separate tasks. In order for multi-task learning to work effectively
in this setup, examples need to be grouped into subpopulations that
are sufficiently distinct with relation to the outcome of interest so
that separate task models are beneficial.

Task formulations for multi-task learning with clinical data fall
into two categories: 1) distinct outcomes are used as tasks [4, 18,
34, 42] and 2) distinct patient populations are used as tasks [30,
46]. Our formulation falls in the second category, where different
patient populations are regarded as different tasks. Prior work has
investigated pre-defined task definitions (e.g., [42]), and other work
has used billing diagnosis codes to define latent bases for each
patient [30]. In this work, we use physiological time-series dynamics
to group examples into meaningful clinical tasks.

We investigate these methods in the context of building predic-
tive models for patients in intensive care units (ICUs), using data
from the publicly available MIMIC-III intensive care dataset [23].

Although patients in the ICU are typically more severely ill than
patients in the hospital at large, the heterogeneity of patients in the
ICU provides a useful case study for our approach, and MIMIC, as
a publicly accessible dataset, enables reproducible studies.

We focus on the task of predicting whether a patient will die
in the hospital, using data from the initial duration (24 hours or
48 hours) of their stay. Mortality prediction is an important task
in clinical settings because a high risk of mortality is a signal of
declining state and need for intervention. We show that a) there
are salient subpopulations in the data that we can discover, and b)
a multi-task model with subpopulations as tasks can outperform a
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single model that ignores subpopulation differences (a globalmodel)
as well as a single model trained on each subpopulation (separate
models) on both overall and per-group performance metrics.

We also demonstrate the importance of performing granular
evaluations across important subpopulations in a dataset. While
much work reports overall metrics of performance, we highlight
how this can hide underperformance on specific groups.

In Section 2, we describe the literature in machine learning for
healthcare pertaining to 1) patient cohort discovery, and 2) multi-
task learning. In Section 3, we describe the data we use. Next, we
describe our two-step model formulation in Section 4, and our
experiments and results in Sections 5 and 6.

2 RELATEDWORK
The rapid adoption and availability of electronic health records
(EHRs) has enabled new investigations into data-driven clinical
support [14, 31, 44]. The broad goal of these studies is to learn from
datasets of patient records in order to provide personalized treat-
ment to patients. We provide a brief overview of work specifically
in patient cohort discovery and multi-task learning.

2.1 Patient Cohort Discovery
Work in patient cohort discovery has focused on finding phenotypic
characteristics of patients relevant for clinical insights, diagnoses,
or risk-stratification. Constructing these groups requires finding a
robust and meaningful representation of a patient’s state.

2.1.1 Patient Representations. Static risk scores such as the Sim-
plified Acute Physiology Score (SAPS II) [24] can be used to char-
acterize a patient’s state; these scores use a limited number of
variables and do not take into account temporal trends [38]. Many
recent works aim to learn data-driven representations of a patient’s
state. Some of these are learned in a supervised framework: for
example, using the representation learned in a hidden layer of a
deep neural network as a representation of patient state [5]. Other
works characterize evolving patient state in an unsupervised way,
inferring topics from clinical notes using Latent Dirichlet Alloca-
tion (LDA) [15], or inferring states and transitions with a switching
state autoregressive model [16].

2.1.2 Cohort Discovery. After constructing a meaningful rep-
resentation, cohort discovery requires using this representation to
group patients into relevant cohorts. There is a broad range of what
is considered a cohort (sometimes referred to as a phenotype in
the literature) and how they are learned. In some cases, cohorts
are pre-defined: for example, Gehrmann et al. have a group of
physicians manually annotate examples with a set of 10 disease-
related cohort classifications [13]. The process of manual anno-
tation, however, is time-consuming, expensive and hard to scale.
With the growing availability of large, high-dimensional clinical
data, many works have proposed approaches to learning patient
phenotypes [5, 20, 21, 33]. In all of these works, the patient cohorts
are either analyzed for clinical insight, or used as additional features
in a supervised prediction problem with a single, global model. In
contrast to these works, we use the learned cohorts in a multi-task
framework so that we can explicitly optimize for performance on
each cohort.

2.2 Multi-task Learning for Clinical
Risk-Stratification

The goal of multi-task learning is to combine learning of multiple
related tasks, in order to improve performance across tasks (as
opposed to learning each independently). Zhang and Yang present
a comprehensive overview of multi-task methods [48], and Ruder
give an overview of implementations of multi-task learning with
deep neural networks [35].

In the clinical space, multi-task models have been used in a
framework where the tasks are different prediction problems: for
example, Harutyunyan et al. train a multi-task recurrent neural
network that predicts mortality, length of stay, and ICD-9 groupings
[18], Razavian et al. compare multi-task convolution and recurrent
neural networks for predicting a number of ICD-9 diagnoses [34],
and Choi et al. use recurrent neural network architecture to predict
both diagnoses and the duration until the next visit [7]. Ngufor et al.
use a multi-task model to improve prediction of various outcomes
related to surgical procedures [29]. Wang et al. directly compare a
multi-task model with many single-task models to demonstrate the
utility of transferring knowledge across tasks for disease prediction
[41]. Other work has explored post-learning strategies to cluster
similar tasks in a multi-task model to enable optimal cross-transfer
of knowledge [28]. Hierarchical models have also been used to
predict multiple outcomes [36].

Predicting multiple outcomes aims to improve the generalizabil-
ity of a model, whereas our goal is to build the best-suited model
for distinct patient subpopulations by using the populations as the
different tasks. Nori et al. do this by constructing a small number
of latent basis tasks each with their own parameter vectors, and
representing each patient as a combination of these tasks [30]. The
specific combination is determined by the patient’s record of dis-
eases, represented as ICD-10 codes. Similarly, [46] uses a framework
where patient-specific tasks are formulated as a linear combination
of a shared set of base models. We consider salient and characteri-
zable patient subpopulations, rather than separate tasks for each
individual patient.

Other work aims to identify patient cohorts and transfer knowl-
edge between them in a prediction framework. For example, hier-
archical models have been used to take into account population
differences [1, 10, 12]. Alaa et al. discover latent “classes” in the data,
train Gaussian Processes to model the physiological data stream for
each class, and transfer knowledge learned about the clinically sta-
ble population to a clinically declining population [1]. Our method
has a similar aim (discovering groups in the data and utilizing
shared knowledge across these groups) though we do not assume
the framework of transferring knowledge from clinically stable to
declining populations.

Our two-step pipeline enables us to learn patient subgroups that
we use as tasks in a multi-task framework. In addition, it leverages
the underlying physiological data of the patient rather than domain
knowledge or auxiliary labels to discover relevant patient cohorts.

3 DATA
We use data from the publicly available MIMIC-III database [23].
Although MIMIC-III primarily contains data from a critical care
setting, it has a large, heterogeneous patient population, and the



Figure 1: Primary diagnoses for patient admissions by Clinical Classifications Software (CCS) categories.

conclusions we draw from it in this work are likely relevant con-
siderations for prediction tasks in other clinical settings. In addi-
tion, the dataset is made publicly available to researchers, enabling
reproducibility. The dataset contains both structured electronic
health record-like data, as well as free text clinical notes. We uti-
lize the highly sampled vitals signs and irregularly sampled lab
test results from the structured data, as well as static demographic
attributes such as age, gender, and ethnicity. Table 2 contains a
full list of features used in our experiments. Prior work has used
these time-series to understanding patient physiological state to

Table 1: Number of adult patients and rate of in-hospital
mortality (defined using the earliest time of mortality, or
a note of “do not resuscitate" (DNR) or “comfort-measures
only" (CMO) in each intensive care unit (ICU).

Careunit N n Class Imbalance Age (Mean) Gender (Male)

CCU 4,905 339 0.069 82.56 0.58
CSRU 6,969 137 0.020 69.46 0.67
MICU 11,395 1118 0.098 77.98 0.51
SICU 5,178 397 0.077 72.57 0.52
TSICU 4,239 283 0.067 67.14 0.61
Overall 32,686 2274 0.070 74.59 0.57

Table 2: Physiological variables used for prediction.

Static Variables Gender Age Ethnicity
Vitals and Labs Anion gap Bicarbonate blood pH

Blood urea nitrogen Chloride Creatinine
Diastolic blood pressure Fraction inspired oxygen Glascow coma scale total

Glucose Heart rate Hematocrit
Hemoglobin INR* Lactate
Magnesium Mean blood pressure Oxygen saturation

Partial thromboplastin time Phosphate Platelets
Potassium Prothrombin time Respiratory rate
Sodium Systolic blood pressure Temperature
Weight White blood cell count

*International normalized ratio of the prothrombin time

predict various outcomes such as intervention administration and
mortality [5, 16, 39, 45].

Patient characteristics are summarized in Table 1 and Figure 1.
In particular, we note that the patients in different care units have
very different rates of mortality, ranging from 2.0% in the Cardiac
Surgery Recovery Unit (CSRU) to 9.8% in the Medical Intensive
Care Unit (MICU). In addition, we note that patients in different
units often present with different conditions, from acute events
such as bone fractures to chronic conditions such as hypertension
and coronary artery disease. Figure 1 shows the presence of some
different disease categories.

4 METHODS
In this section, we describe our two-step procedure for 1) identifying
meaningful patient cohorts, and 2) leveraging these cohorts as
separate tasks in a multi-task learning framework. 1 This pipeline
is diagrammed in Figure 2.

4.1 Identifying Meaningful Patient Cohorts
Weutilize unsupervised representations and cohort-discoverymeth-
ods for identifying relevant patient cohorts. Importantly, thismethod
relies only on attributes at hospital admission or data from the ini-
tial portion of the patient’s stay. Using this interval of data for
patient phenotyping allows us to 1) identify patient phenotypes
that are relevant when longitudinal patient history may not be
immediately available, and 2) utilize only information prior to the
time at which we make a prediction.

The raw patient data is a sparse timeseries; in order to discover
cohorts we first encode this raw data into a dense fixed-length
representation that we then cluster. We use a long short-term mem-
ory (LSTM) [22] autoencoder to produce a dense representation
that captures important facets of the input. LSTMs have effectively
modeled complicated dependencies in many types of time-series

1Model code is available at github.com/mit-ddig/multitask-patients.



Figure 2: We present a two-step pipeline for 1) discovering relevant cohorts from the underlying physiological data for the
prediction task at hand, and 2) usingmulti-task learning to share knowledge across related datawhile allowing distinctmodels
to make predictions for different patient populations.

(a) Single taskmodel that does not dif-
ferentiate between groups.

(b) Multi-task model with separate
parameters for each group at the final
output layer.

(c) Multi-task model with separate
dense layers for each group.

Figure 3: Single task and multi-task model configurations. Single task models have shared parameters for all examples, while
multi-task models have separate parameters for each group in the output layer and/or the final dense layer.

data [2, 9, 19, 47], including clinical time-series [6, 25, 34, 39]. They
are well-suited to our task because of the complex temporal depen-
dencies in physiological time-series. Autoencoders have been used
to learn compact representations of patient state from multi-modal
timeseries EHR data [27, 40].

We use one LSTM layer in the encoder and one in the decoder.
The embedded representation is the state of the encoder LSTM at
the final timestep. This representation is then used in the decoder
to reconstruct the input timeseries.

Embedding size was tuned for the reconstruction loss based on
the training and validation data. Because reconstruction loss will
consistently decrease when the embedding size is increased, we
chose the embedding size based on the elbow in the reconstruction
curve. We then cluster the embeddings with a Gaussian Mixture
Model (GMM). The cluster assignments are used to group patients
into tasks for the multi-task model.

4.2 Learning Predictive Models
In the prediction step, in order to go from a patient timeseries
to a mortality prediction, we use an LSTM for all of the model
configurations.

Our proposed approach uses amulti-taskmodel, and we compare
against several single-task baselines. The differences in these model
configurations and training procedures are discussed in this section.

4.2.1 Single Task Model. The single task model (Figure 3a) con-
sists of a single LSTM layer with a ReLU activation function fol-
lowed by a single fully-connected layer with a sigmoid activation
function. The output of the fully-connected layer is an estimate of
the probability of mortality for the given example. We train this sin-
gle task model on all the data to produce the global model baseline,
and separately on data from each group to produce the separate
model baselines.

4.2.2 Multi-task Model. In the multi-task model, our goal is
to combine shared, global parameters along with separate param-
eters trained specifically for each group. In order to do this, we
use the hard parameter-sharing framework of multi-task learning
introduced in [4].

Like the single-task model, the multi-task model has one LSTM
layer. The multi-task model was used either a single separate fully-
connected layer for each group (Figure 3c) or a shared dense layer
with separate weights leading to the output ((Figure 3b). During our
grid search for model configurations, we limited the size of these
fully-connected layers compared to the fully-connected layer of
the single task model to ensure that both configurations were able
to have similar capacity for making a fair comparison. The task-
specific parameters are trained using only the losses from examples
belonging to the task.



We compared our multi-task learning approach against two
single-task approaches: 1) a separate single task model for each
group, and 2) a global model for all patients, agnostic to task mem-
bership.

4.3 Evaluating Predictive Models Across
Patient Cohorts

Machine learning models for clinical outcome predictions often
utilize aggregate discriminative metrics such as the area under the
receiver operating characteristic curve (AUC) to account for class
imbalance (e.g., [5, 17, 39]). In settings where evaluations on specific
patient cohorts is of interest, evaluation is more challenging. To
evaluate metrics over different populations or outcomes, micro and
macro versions of predictive metrics are used. In the micro case, all
of the predicted probabilities for all patients are treated as if they
come from a single classifier:

Metricmicro = Metric
(
[ŷ0, · · · , ŷK ], [y0, · · · ,yK ]

)
, (1)

where K = the number of groups, ŷk = predictions for the examples
in group k and yk = true labels for the examples in group k . This is
the metric that is typically used in the literature. However, using
these micro-evaluated metrics makes it difficult to assess how a
model is performing on different subpopulations. This is especially
true when the subpopulations are not equally represented.

Macro measures evaluate a metric within each cohort first, and
then average the results across cohorts:

Metricmacro =
1
K

K∑
k=0

Metric
(
ŷk ,yk

)
(2)

This metric is better suited to assess performance across groups
of disparate size, since each group contributes equally to the macro
metric evaluation [26].

We use both of these methods of computing metrics, and evalu-
ate micro- and macro- AUC. We additionally evaluate micro- and
macro- positive predictive value (PPV) and specificity at a sensi-
tivity of 80%. While AUC gives a sense of overall discriminative
model performance, we show PPV and specificity at a single deci-
sion threshold to evaluate how well such a model might perform
in a real setting.

5 EXPERIMENTS
We developed models for predicting in-hospital mortality using
physiological time-series data from the initial portion of the pa-
tient’s ICU stay.

5.1 Prediction Task Definition
We define in-hospital mortality as having an outcome of mortality,
or a note of "Do Not Resuscitate" (DNR) or "Comfort Measures
Only" (CMO). This definition is in contrast to what has been used
in prior work, where only mortality was considered (e.g., [15, 17,
18]). Notes of DNR or CMO indicate differences in what clinical
interventions will be taken, and our proposed risk models might
not have actionable predictions.

We conducted experiments in two settings:

(1) Using the first 24 hours of data from the patient’s stay to
predict in-hospital mortality starting at 36 hours into the
stay. Acuity scores such as the Simplified Acute Physiology
Score (SAPS-II) [24] also use the first 24 hours of data to
evaluate patient severity of illness.

(2) Using the first 48 hours of data from the patient’s stay to
predict in-hospital mortality starting 72 hours in to the stay.
We explore this task because the first 24 hours often contain
routine tests done upon admission, and this time period
might reflect different changes in patient physiology.

Each of the described experiments includes prediction gaps be-
tween the information used about a patient and the point at which
outcomes are counted. This is common in the literature, and the
motivation is two-fold: 1) it eliminates trivial cases where the out-
come is imminent, and 2) simulates a situation in which there is
time to intervene. Patients who were discharged or had an outcome
of in-hospital mortality during the period of the stay being used
for prediction or during the gap period were dropped from the
experiments.

5.2 Data Processing
We considered all ICU patients over the age of 15 and took the
patient’s first ICU stay (if there are multiple), as the majority of
patients have only one ICU stay. For each patient, we extracted 29
time-varying vitals and labs, detailed in Table 2. The timestamps of
these measurements were rounded to the nearest hour. If an hour
had multiple measurements for a signal, those measurements were
averaged. We created discrete, binary features by first transforming
each variable to the z-score, and then making each z-score value its
own column. Similar methods have been used in previous work [40,
45] in order to have an explicit representation of missing values, and
to avoid overfitting to small changes in the physiological variables.
This creates a very sparse data representation.

In addition, we include demographics such as the patient’s eth-
nicity, gender and age quartile. These static variables are replicated
across all time-steps for a patient.

5.3 Model Implementation and Training
In this section, we describe our model training and selection proce-
dures. We describe 1) the supervised models trained for predicting
the outcome using a single-task and multi-task framework, 2) the
autoencoders used to learn unsupervised, latent representations for
our physiological data, and 3) the Gaussian Mixture Models used
to identify cohorts from the latent representations of the data. For
all experiments, we split the data using an 80:20 training:test split
stratified on the outcome.

5.3.1 Gaussian Mixture Model. We used the Scikit-learn (ver-
sion 0.19.1) implementation of Gaussian Mixture Models [32]. The
GMM was initialized using assignments from k-means clustering.
We fit themodel with 30 different initializations and chose themodel
that gave the highest data likelihood. We divided the training data
in a 7:1 training:validation split. We explored several possible values
for the number of clusters, and chose the value that resulted in the
best predictive performance on the validation set when the clusters
were used as tasks in the multi-task model.



Figure 4: Selected lab test and vital signs features over the first 24 hours for the unsupervised clusters. Figures show z-score
values of the features over time; 0 indicates the mean value, positive values indicate elevated measures, and negative values
indicate decreased measures. In the first 24 hours, lab test results in cluster 2 are more elevated than in cluster 0 and cluster
1. Cluster 0 has a centroid with decreasing heart rate, whereas cluster 1’s centroid shows an increasing heart rate. Note that
while the trends are opposing, both centroids have heart rate values that are below the mean. Additionally, we note that blood
test results for magnesium, lactate, and potassium are elevated in cluster 1, while glucose is elevated in cluster 2.

5.3.2 Unsupervised Representations. To learn unsupervised rep-
resentations, we used a sequence-to-sequence autoencoder with
LSTM units implemented with Keras. We explored several hidden
dimension sizes for the autoencoder, and chose the dimensionality
corresponding to the elbow in the reconstruction error curve on
the validation set. This procedure resulted in an embedding size of
100.

The autoencoder was trained with a mean squared error loss
function and the Adam optimizer with an initial learning rate of
0.001. We trained the autoencoder for a maximum of 100 epochs; to
prevent over-training, we employed early stopping if the validation
loss decreased for 6 epochs.

5.3.3 Single and Multi-task Prediction Models. We implemented
the single and multi-task models using Keras version 2.1.3 [8]. We
determined the best model configurations by doing a grid search
over possible hyperparameters and choosing the best configuration
over 5 random splits of the training data into 7:1 training:validation
splits. We allowed the global model to search over a larger range of
layer sizes to enable a fair comparison with the extra parameters
that could be introduced in the multi-task model. We used binary
cross-entropy as our loss function, and the Adam optimizer with a
learning rate of 0.0001. The models were trained for a maximum of
100 epochs with early stopping.

6 RESULTS
We report results comparing the global single-task model with the
multi-task model. We also tested a baseline of using separate single-
task models for each task, but this model had significantly worse
performance in all cases so we have not included it. All reported
statistical significance results were computed using the Wilcoxon
signed-rank test [43] over 100 bootstrapped samples of the test set.

Table 3: Cohort statistics at 24 hours and 48 hours

Cohort Type Group N n Class
Imbalance

24 hours Unsupervised
0 11862 404 0.0341
1 6434 107 0.0166
2 14390 1786 0.1241

Global - 32686 2297 0.0703

48 hours Unsupervised 0 13433 291 0.0217
1 16995 1436 0.0845

Global - 30,428 1,727 0.0568

Bootstrapped samples were of the same size and class imbalance as
the original test set.

6.1 Predicting Mortality at 24 Hours
6.1.1 Discovered Cohorts are Physiologically Distinct. Statistics

about the discovered cohorts are shown in Table 3, and Figure 4
shows visualizations of the tasks learned using our methodology.

Table 4 shows that the three cohorts of patients discovered from
the first 24 hours of data are different in terms of size and class
imbalance. While two of the clusters are large, with over 10,000
patients each, the class imbalances in these two cohorts are dramat-
ically different. Whereas Cohort 0 has an outcome incidence of 3%,
Cohort 1 has an outcome incidence of 12%.

In addition, the centroids of the cohorts show physiological
trends over the first 24 hours that differ in important ways (Fig-
ure 4). For example, clusters 0 and 2 both have elevated blood
pressure in the first several hours of their stay. However, whereas
cluster 0’s blood pressure decreases over time, cluster 2’s blood



Table 4: 24 Hour Mortality Prediction: Performance differences between multi-task and global models on specific cohorts.
A multi-task model with pre-defined tasks based on careunits performs poorly, while the unsupervised multi-task model
performs comparably on two out of three cohorts and better on one. Significant differences (p < 0.01) are shown in bold.

AUC PPV Specificity
Cohort type Cohort Global Multi-task Global Multi-task Global Multi-task

Unsupervised

0 0.803 0.819† 0.083 0.103‡ 0.732 0.786‡

1 0.811 0.829† 0.120 0.126⋆ 0.916 0.915
2 0.814 0.821‡ 0.276 0.288‡ 0.734 0.742‡

Macro 0.809 0.823† 0.159 0.172‡ 0.794 0.814‡

Micro 0.852 0.858‡ 0.231⋄ 0.228 0.817† 0.814

Careunits

CCU 0.862⋆ 0.861 0.248‡ 0.229 0.834‡ 0.819
CSRU 0.849 0.867† 0.107 0.117† 0.893 0.898†

MICU 0.814 0.832‡ 0.261 0.262⋆ 0.764 0.766⋆

SICU 0.839 0.855† 0.226 0.238† 0.781 0.796†

TSICU 0.846 0.869‡ 0.183 0.192† 0.823 0.818⋄

Macro 0.842 0.857‡ 0.205 0.208† 0.819 0.819
Micro 0.852 0.866‡ 0.231 0.233⋄ 0.817 0.821†

⋆: 0.01 > p > 0.001, ⋄: 0.001 > p > 1e-5, †: 1e-5 > p > 1e-15, ‡: p < 1e-15

pressure stays elevated. We also observe that the heart rate in clus-
ter 0 decreases over time, whereas cluster 1 and cluster 2 both have
increasing heart rates. The differences between these cluster cen-
troids indicate that our method of learning dense representations
from the sparse physiological data for clustering discovers salient
differences between patients.

6.1.2 Multi-task Models Outperform Global and Separate Mod-
els. Our multi-task framework significantly improved performance
over the global model in AUC, PPV, and specificity on each of the
learned cohorts (p < 0.01). In addition, it improved performance
on aggregate metrics such as macro-AUC, PPV, and specificity, as
well as micro-AUC. However, micro- PPV and micro-specificity
were significantly worse. This is because micro-metrics are com-
puted by setting a single threshold across all examples, regardless
of the cohort they belong to. However, setting a single threshold
ignores the large class imbalance differences between the cohorts.
In contrast, the macro-measure, which considers a separate decision
threshold based on 80% sensitivity for each individual cohort, is sig-
nificantly better when using the multi-task model compared to the
global model. The performance increase from using the multi-task
model indicates that we can improve both per-group and aggregate
measures using this framework.

More generally, we hope to highlight the importance of evaluat-
ing methods across subpopulations, since overall micro-measures
can hide underperformance on specific subgroups. For example, the
global model achieves an overall Micro AUC of 0.852, but it’s AUC
on cluster 0 was only 0.803. Without an evaluation broken down
by groups, it would be hard to detect such performance disparities.

We contrast our learned patient populations against expert knowl-
edge driven cohorts, where patients are stratified by the first care
unit they are admitted to. This cohort definition does not rely on the
underlying physiological data. However, it is a reasonable attribute
on which to split patients, given the differences across care units
in patient conditions (see Figure 1). In addition, the rate of adverse

events in these different units is highly variable, from less than two
percent in the Cardiac Surgery Recovery unit to over 10% in the
Medical ICU.

Grouping patients by first care unit and using these groups as
tasks in an multi-task framework significantly improved perfor-
mance over the global model. At this point in the patient’s stay,
first care unit is likely a meaningful indicator of differences be-
tween populations. However, while we have access to meaningful
patient cohorts defined by first care unit, such distinct, labeled
groups may not be available for a different clinical population. Our
unsupervised method results in significant improvements, without
requiring expert knowledge.

6.2 Predicting Mortality at 48 Hours
In contrast to the results from predicting mortality at 24 hours,
our multi-task model with learned patient cohorts does not result
in significant improvements compared to the global model when
predicting mortality after 72 hours using 48 hours of data. One
reason for this may be the sparse nature of the physiological data.
Because routine lab tests and other evaluations are frequently done
in the first day of a patient’s ICU stay, data presence drops off in
the second day. Because of this, the data are heavily biased towards
missing values; therefore, the autoencoder we use to construct
dense representations of patient physiological state may also be
biased.

The macro- and micro- performance metrics are shown in Ta-
ble 5. For our unsupervised method, macro AUC and PPV were not
significantly different from the global model’s performance, but the
specificity was significantly worse. In addition, we again compared
a multi-task model with learned cohorts against the expert-defined
cohorts. In this case, while our method did not result in significant
differences, the care units multi-task model performed significantly
worse on all metrics compared to the global model. As a patient’s
stay in the ICU progresses, her characteristics may be less defined



Table 5: 48 Hour Mortality Prediction: Performance differences between multi-task and global models on specific cohorts.
A multi-task model with pre-defined tasks based on careunits performs poorly, while the unsupervised multi-task model
performs comparably. Significant differences (p < 0.01) are shown in bold.

AUC PPV Specificity
Cohort type Cohort Global Multi-task Global Multi-task Global Multi-task

Careunits Macro 0.859‡ 0.839 0.187‡ 0.170 0.833‡ 0.826
Micro 0.865‡ 0.856 0.206† 0.198 0.833⋆ 0.832

Unsupervised Macro 0.834 0.833 0.154 0.154 0.789‡ 0.775
Micro 0.865† 0.861 0.206 0.191 0.833‡ 0.812

⋆: 0.01 > p > 0.001, ⋄: 0.001 > p > 1e-5, †: 1e-5 > p > 1e-15, ‡: p < 1e − 15

by the care unit she is admitted to compared to the interventions
that are being administered. This highlights the need to use the un-
derlying data to discover meaningful and distinct cohorts as tasks,
and motivates further research on how to discover such cohorts in
the presence of extreme sparsity (as in the 48-hour data).

7 CONCLUSIONS & DISCUSSION
In this work, we show how machine learning models trained glob-
ally on heterogeneous populations can perform well in an overall
sense while under-performing on specific, meaningful populations.
We propose a two-step pipeline that 1) identifies distinct patient sub-
populations, and 2) leverages these subpopulations in a multi-task
framework to effectively share knowledge.

We demonstrate that for 24-hourmortality prediction, our learned
cohorts significantly improve over a single model learned on all
of the data. In addition, we compare against an expert-knowledge
driven method for identifying cohorts. We show that meaning-
ful, distinct tasks can be learned in a data-driven way without
pre-specifying cohorts for a particular outcome. We evaluate our
models on the overall population, and on each separate cohort.

We highlight the need to evaluate performance across relevant
cohorts. Much real data consists of heterogeneous populations, and
reporting a single, overall evaluation metric can hide disparities in
performance across groups. Accounting for these patient differences
is important in model training, but also in model evaluation.

In addition, we believe that while unsupervised clustering of
the physiological data representations led to improved results in
the multi-task framework, learning clusters and representations
that are guided by the specific outcome of interest could lead to
useful outcome-specific cohorts. While unsupervised cohorts are
generalizable across outcomes, representations and cohorts that are
outcome-specific could lead to further improvements in predictive
performance. For example, patient subpopulations that are distinct
for predicting ventilator administration may look very different
compared to patient subpopulations that are distinct for predicting
length of stay or discharge status.

While the work we present is specific to the MIMIC-III dataset,
we believe that the considerations we outline here are broadly
applicable to clinical prediction tasks. We hope the ideas we have
discussed can help ensure that machine learning algorithms are not
assumed to be one-size-fit-all, but rather that they work well for
all groups involved.
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