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ABSTRACT

As the number of contributors to online peer-production systems

grows, it becomes increasingly important to predict whether the

edits that users make will eventually be beneficial to the project.

Existing solutions either rely on a user reputation system or consist

of a highly specialized predictor that is tailored to a specific peer-

production system. In this work, we explore a different point in

the solution space that goes beyond user reputation but does not

involve any content-based feature of the edits. We view each edit

as a game between the editor and the component of the project. We

posit that the probability that an edit is accepted is a function of

the editor’s skill, of the difficulty of editing the component and of a

user-component interaction term. Our model is broadly applicable,

as it only requires observing data about who makes an edit, what
the edit affects and whether the edit survives or not. We apply

our model on Wikipedia and the Linux kernel, two examples of

large-scale peer-production systems, and we seek to understand

whether it can effectively predict edit survival: in both cases, we

provide a positive answer. Our approach significantly outperforms

those based solely on user reputation and bridges the gap with

specialized predictors that use content-based features. It is simple to

implement, computationally inexpensive, and in addition it enables

us to discover interesting structure in the data.
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1 INTRODUCTION

Over the last two decades, the number and scale of online peer-

production systems has become truly massive, driven by better in-

formation networks and advances in collaborative software. At the

time of writing, 128 643 editors contribute regularly to 5+ million

articles of the English Wikipedia [34] and over 15 600 developers

have authored code for the Linux kernel [7]. On GitHub, 24 million

users collaborate on 25.3 million active software repositories [14].

In order to ensure that such projects advance towards their goals,

it is necessary to identify whether edits made by users are benefi-

cial. As the number of users and components of the project grows,

this task becomes increasingly challenging. In response, two types

of solutions are proposed. On the one hand, some advocate the

use of user reputation systems [2, 25]. These systems are general,

their predictions are easy to interpret and can be made resistant to

manipulations [10]. On the other hand, a number of highly special-

ized methods are proposed to automatically predict the quality of

edits in particular peer-production systems [12, 15]. These methods

can attain excellent predictive performance [16] and usually sig-

nificantly outperform predictors that are based on user reputation

alone [12], but they are tailored to a particular peer-production

system, use domain-specific features and rely on models that are

difficult to interpret.

In this work, we set out to explore another point in the solution

space. We aim to keep the generality and simplicity of user repu-

tation systems, while reaching the predictive accuracy of highly

specialized methods. We ask the question: Can one predict the

outcome of contributions simply by observing who edits what and
whether the edits eventually survive? We address this question by

proposing a novel statistical model of edit outcomes. We formalize

the notion of collaborative project as follows. N users can propose

edits onM distinct items (components of the project, such as articles

on Wikipedia or a software’s modules), and we assume that there is

a process for validating edits (either immediately or over time). We

observe triplets (u, i,q) that describe a user u ∈ {1, . . . ,N } editing
an item i ∈ {1, . . . ,M } and leading to outcome q ∈ {0, 1}; the out-
come q = 0 represents a rejected edit, whereas q = 1 represents an

accepted, beneficial edit. Given a dataset of such observations, we

seek to learn a model of the probability pui that an edit made by

user u on item i is accepted. This model can then be used to help

moderators and project maintainers prioritize their efforts once

new edits appear: For example, edits that are unlikely to survive

could be sent out for review immediately.

Our approach borrows from probabilistic models of pairwise

comparisons [24, 36]. These models learn a real-valued score for

each object (user or item) such that the difference between two

https://doi.org/10.1145/3219819.3219979
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objects’ scores is predictive of comparison outcomes. We take a

similar perspective and view each edit in a collaborative project as

a game between the user who tries to effect change and the item

that resists change
1
. Similarly to pairwise-comparison models, our

approach learns a real-valued score for each user and each item.

In addition, it also learns latent features of users and items that

capture interaction effects.

In contrast to quality-prediction methods specialized on a par-

ticular peer-production system, our approach is general and can be

applied to any system in which users contribute by editing discrete

items. It does not use any explicit content-based features: instead,

it simply learns by observing triplets {(u, i,q)}. Furthermore, the

resulting model parameters can be interpreted easily. They enable

a principled way of a) ranking users by the quality of their con-

tributions, b) ranking items by the difficulty of editing them and

c) understanding the main dimensions of the interaction between

users and items.

We apply our approach on two different peer-production sys-

tems. We start with Wikipedia and consider its Turkish and French

editions. Evaluating the accuracy of predictions on an independent

set of edits, we find that our model approaches the performance

of the state of the art. More interestingly, the model parameters

reveal important facets of the system. For example, we characterize

articles that are easy or difficult to edit, respectively, and we identify

clusters of articles that share common editing patterns. Next, we

turn our attention to the Linux kernel. In this project, contributors

are typically highly skilled professionals, and the edits that they

make affect 394 different subsystems (kernel components). In this

instance, our model’s predictions are more accurate than a random

forest classifier trained on domain-specific features. In addition, we

give an interesting qualitative description of subsystems based on

their difficulty score.

In short, our paper a) gives evidence that observing who edits
what can yield valuable insights into peer-production systems and

b) proposes a statistically grounded and computationally inexpen-

sive method to do so. The analysis of two peer-production systems

with very distinct characteristics demonstrates the generality of

the approach.

Organization of the Paper. We start by reviewing related litera-

ture in Section 2. In Section 3, we describe our statistical model of

edit outcomes and briefly discuss how to efficiently learn a model

from data. In Sections 4 and 5, we investigate our approach in the

context of Wikipedia and of the Linux kernel, respectively. Finally,

we conclude in Section 6.

2 RELATEDWORK

With the growing size and impact of online peer-production sys-

tems, the task of assessing contribution quality has been extensively

studied. We review various approaches to the problem of quantify-

ing and predicting the quality of user contributions and contrast

them to our approach.

1
Obviously, items do not really “resist” by themselves. Instead, this notion should be

taken as a proxy for the combined action of other users (e.g., project maintainers) who

can accept or reject an edit depending, among others, on standards of quality.

User Reputation Systems. Reputation systems have been a long-

standing topic of interest in relation to peer-production systems and,

more generally, in relation to online services [25]. Adler and de Al-

faro [2] propose a point-based reputation system for Wikipedia and

show that reputation scores are predictive of the future quality of

editing. As almost all edits to Wikipedia are immediately accepted,

the authors define an implicit notion of edit quality by measuring

how much of the introduced changes is retained in future edits.

The ideas underpinning the computation of implicit edit quality

are extended and refined in subsequent papers [3, 10]. This line

of work leads to the development of WikiTrust [11], a browser

add-on that highlights low-reputation texts in Wikipedia articles.

When applying our methods to Wikipedia, we follow the same

idea of measuring quality implicitly through the state of the article

at subsequent revisions. We also demonstrate that by automati-

cally learning properties of the item that a user edits (in addition

to learning properties of the user, such as a reputation score) we

can substantially improve predictions of edit quality. This was also

noted recently by Tabibian et al. [28] in a setting similar to ours,

but using a temporal point process framework.

Specialized Classifiers. Several authors propose quality-prediction
methods tailored to a specific peer-production system. Typically,

these methods consist of a machine-learned classifier trained on a

large number of content-based and system-based features of the

users, the items and the edits themselves. Druck et al. [12] fit a

maximum entropy classifier for estimating the lifespan of a given

Wikipedia edit, using a definition of edit longevity similar to that of

Adler and de Alfaro [2]. They consider features based on the edit’s

content (such as: number of words added / deleted, type of change,

capitalization and punctuation, etc.) as well as features based on

the user, the time of the edit and the article. Their model signifi-

cantly outperforms a baseline that only uses features of the user.

Other methods use support vector machines [6], random forests

[6, 17] or binary logistic regression [23], with varying levels of

success. In some cases, content-based features are refined using

natural-language processing, leading to substantial performance

improvements. However, these improvements are made to the detri-

ment of general applicability. For example, competitive natural

language processing tools have yet to be developed for the Turkish

language (we investigate the Turkish Wikipedia in Section 4). In

contrast to these methods, our approach is general and broadly

applicable. Furthermore, the use of black-box classifiers can hinder

the interpretability of predictions, whereas we propose a statistical

model whose parameters are straightforward to interpret.

Truth Inference. In crowdsourcing, a problem related to ours con-

sists of jointly estimating a) model parameters (such as user skills

or item difficulties) that are predictive of contribution quality, and

b) the quality of each contribution, without ground truth [9]. Our

problem is therefore easier, as we assume access to ground-truth

information about the outcome (quality) of past edits. Nevertheless,

some methods developed in the crowdsourcing context [31, 32, 37]

provide models that can be applied to our setting as well. In Sec-

tions 4 and 5, we compare our models to GLAD [32].

Pairwise Comparison Models. Our approach draws inspiration

from probabilistic models of pairwise comparisons. These have
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been studied extensively over the last century in the context of

psychometrics [5, 29], item response theory [24], chess rankings

[13, 36], and more. The main paradigm posits that every object

i has a latent strength (skill or difficulty) parameter θi , and that

the probability pi j of observing object i “winning” over object j
increases with the distance θi − θ j . Conceptually, our model is

closest to that of Rasch [24].

Collaborative Filtering. Our method also borrows from collab-

orative filtering techniques popular in the recommender systems

community. In particular, some parts of our model are remindful of

matrix-factorization techniques [19]. These techniques automati-

cally learn low-dimensional embeddings of users and items based

on ratings, with the purpose of producing better recommendations.

Our work shows that these ideas can also be helpful in addressing

the problem of predicting outcomes of edits in peer-production sys-

tems. Like collaborative-filtering methods, our approach is exposed

to the cold-start problem: with no (or few) observations about a

given user or item, the predictions are notably less accurate. In

practice, this problem can be addressed, e.g., by using additional

features of users and / or items [21, 27] or by clustering users [22].

3 STATISTICAL MODELS

In this section, we describe and explain two variants of a statistical

model of edit outcomes based on who edits what. In other words,

we develop models that are predictive of the outcome q ∈ {0, 1} of
a contribution of user u on item i . To this end, we represent the

probability pui that an edit made by useru on item i is successful. In
collaborative projects of interest, most users typically interact with

only a small number of items. In order to deal with the sparsity of

interactions, we postulate that the probabilities {pui } lie on a low-

dimensional manifold and propose twomodel variants of increasing

complexity. In both cases, the parameters of themodel have intuitive

effects and can be interpreted easily.

Basic Variant. The first variant of our model is directly inspired

by the Rasch model [24]. The probability that an edit is accepted is

defined as

pui =
1

1 + exp[−(su − di + b)]
, (1)

where su ∈ R is the skill of user u, di ∈ R is the difficulty of item i ,
and b ∈ R is a global parameter that encodes the overall skew of the

distribution of outcomes. We call this model variant interank basic.
Intuitively, the model predicts the outcome of a “game” between

an item with inertia and a user who would like to effect change.

The skill quantifies the ability of the user to enforce a contribution,

whereas the difficulty quantifies how “resistant” to contributions

the particular item is.

Similarly to reputation systems [2], interank basic learns a

score for each user; this score is predictive of edit quality. However,

unlike these systems, our model also takes into account that some

items might be more challenging to edit than others. For example,

onWikipedia, we can expect high-traffic, controversial articles to be

more difficult to edit than less popular articles. As with user skills,

the article difficulty can be inferred automatically from observed

outcomes.

Full Variant. Although the basic variant is conceptually attrac-

tive, it might prove to be too simplistic in some instances. In par-

ticular, the basic variant implies that if user u is more skilled than

user v , then pui > pvi for all items i . In many peer-production

systems, users tend to have their own specializations and interests,

and each item in the project might require a particular mix of skills.

For example, with the Linux kernel, an engineer specialized in file

systems might be successful in editing a certain subset of software

components, but might be less proficient in contributing to, say,

network drivers, whereas the situation might be exactly the oppo-

site for another engineer. In order to capture the multidimensional

interaction between users and items, we add a bilinear term to the

probability model (1). Letting xu ,yi ∈ RD for some dimensionality

D ∈ N>0, we define

pui =
1

1 + exp[−(su − di + x⊤u yi + b)]
. (2)

We call the corresponding model variant interank full. The vectors
xu andyi can be thought of as embedding users and items as points

in a latent D-dimensional space. Informally, pui increases if the two
points representing a user and an item are close to each other, and

it decreases if they are far from each other (e.g., if the vectors have

opposite signs). If we slightly oversimplify, the parameteryi can be

interpreted as describing the set of skills needed to successfully edit

item i , whereas xu describes the set of skills displayed by user u.
The bilinear term is reminiscent ofmatrix-factorization approaches

in recommender systems [19]; indeed, this variant can be seen as a

collaborative-filtering method. In true collaborative-filtering fash-

ion, our model is able to learn the latent feature vectors {xi } and
{yi } jointly, by taking into consideration all edits and without any

additional content-based features.

Finally, note that the skill and difficulty parameters are retained

in this variant and can still be used to explain first-order effects.

The bilinear term explains only the additional effect due to the

user-item interaction.

3.1 Learning the Model

From (1) and (2), it should be clear that our probabilistic model

assumes no data other than the identity of the user and that of the

item. This makes it generally applicable to any peer-production

system in which users contribute to discrete items.

Given a dataset ofK independent observationsD = {(uk , ik ,qk ) |
k = 1, . . . ,K }, we infer the parameters of the model by maximizing

their likelihood under D. That is, collecting all model parame-

ters into a single vector θ , we seek to minimize the negative log-

likelihood

−ℓ(θ ;D) =
∑

(u,i,q )∈D

[−q logpui − (1 − q) log(1 − pui )] , (3)

where pui depends on θ . In the basic variant, the negative log-

likelihood is convex, and we can easily find a global maximum

by using standard methods from convex optimization. In the full
variant, the bilinear term breaks the convexity of the objective

function, and we can no longer guarantee that we will find param-

eters that are global minimizers. In practice, we do not observe any

convergence issues but reliably find good model parameters on all

datasets.
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Note that (3) easily generalizes from binary outcomes (q ∈ {0, 1})
to continuous-valued outcomes (q ∈ [0, 1]). Continuous values can
be used to represent the fraction of the edit that is successful.

Implementation. We implement the models in Python by using

the TensorFlow library [1]. Our code is publicly available online at

https://github.com/lca4/interank. In order to avoid overfitting the

model to the training data, we add a small amount of ℓ2 regular-

ization to the negative log-likelihood. We minimize the negative

log-likelihood by using stochastic gradient descent [4] with small

batches of data. For interank full, we set the number of latent

dimensions to D = 20 by cross-validation.

Running Time. Our largest experiment consists of learning the

parameters of interank full on the entire history of the French

Wikipedia (c.f. Section 4), consisting of over 65 million edits by

5 million users on 2 million items. In this case, our TensorFlow

implementation takes approximately 2 hours to converge on a single

machine. In most other experiments, our implementation takes

only a few minutes to converge. This demonstrates that our model

effortlessly scales, even to the largest peer-production systems.

3.2 Applicability

Our approach models the difficulty of effecting change through the

affected item’s identity. As such, it applies particularly well to peer-

production systems where users cooperate to improve the project,

i.e., where each edit is judged independently against an item’s

(latent) quality standards. This model is appropriate for a wide

variety of projects, ranging from online knowledge bases (such as

Wikipedia, c.f. Section 4) to open source software (such as the Linux

kernel project, c.f. Section 5). In some peer-production systems,

however, the contributions of different users compete against each
other, such as multiple answers to a single question on a Q&A

platform. In these cases, our model can still be applied, but fails to

capture the fact that edit outcomes are interdependent.

4 WIKIPEDIA

Wikipedia is a popular free online encyclopedia and arguably one

of the most successful peer-production systems. In this section, we

apply our models to the French and Turkish editions of Wikipedia.

4.1 Background & Datasets

The French Wikipedia is one of the largest Wikipedia editions.

At the time of writing, it ranks in third position both in terms of

number of edits and number of users
2
. In order to obtain a comple-

mentary perspective, we also study the Turkish Wikipedia, which

is roughly an order of magnitude smaller. Interestingly, both the

French and the Turkish editions score very highly on Wikipedia’s

depth scale, a measure of collaborative quality [33].

The Wikimedia Foundation releases periodically and publicly a

database dump containing the successive revisions to all articles
3
.

In this paper, we use a dump that contains data starting from the

beginning of the edition up to the fall of 2017.

2
We chose the French edition over the English one because our computing infrastruc-

ture could not support the ≈ 15 TB needed to store the entire history of the English

Wikipedia. The French edition contains roughly 5× fewer edits.

3
See: https://dumps.wikimedia.org/.

4.1.1 Computation of Edit Quality. On Wikipedia, any user’s

edit is immediately incorporated into the encyclopedia
4
. Therefore,

in order to obtain information about the quality of an edit, we have

to consider the implicit signal given by subsequent edits to the

same article. If the changes introduced by the edit are preserved,

it signals that the edit was beneficial, whereas if the changes are

reverted, the edit likely had a negative effect. A formalization of

this idea is given by Adler and de Alfaro [2] and Druck et al. [12];

see also de Alfaro and Adler [10] for a concise explanation. In this

paper, we essentially follow their approach.

Consider a particular article and denote by vk its k-th revision

(i.e., the state of the article after the k-th edit). Let d (u,v ) be the
Levenshtein distance between two revisions [20]. We define the

quality of edit k from the perspective of the article’s state after

ℓ ≥ 1 subsequent edits as

qk |ℓ =
1

2

+
d (vk−1,vk+ℓ ) − d (vk ,vk+ℓ )

2d (vk−1,vk )
.

By properties of distances, qk |ℓ ∈ [0, 1]. Intuitively, the quantity

qk |ℓ captures the proportion of work done in edit k that remains

in revision k + ℓ. It can be understood as a soft measure of whether

edit k has been reverted or not. We compute the unconditional

quality of the edit by averaging over multiple future revisions:

qk =
1

L

L∑
ℓ=1

qk |ℓ , (4)

where L is the minimum between the number of subsequent revi-

sions of the article and 10 (we empirically found that 10 revisions

is enough to accurately assess the quality of an edit). Note that

even though qk is no longer binary, our models naturally extend to

continuous-valued qk ∈ [0, 1] (c.f. Section 3.1).

In practice, we observe that edit quality is bimodal and asymmet-

ric. Most edits have a quality close to either 0 or 1 and a majority

of edits are of high quality. The two rightmost columns of Table 1

quantify this for the French and Turkish editions.

4.1.2 Dataset Preprocessing. We consider all edits to the pages

in the main namespace (i.e., articles), including those from anony-

mous contributors identified by their IP address
5
. Sequences of

consecutive edits to an article by the same user are collapsed into a

single edit in order to remove bias in the computation of edit quality

[2]. To evaluate methods in a realistic setting, we split the data into

a training set containing the first 90 % of edits, and we report results

on an independent validation set containing the remaining 10 %.

Note that the quality is computed based on subsequent revisions

of an article: In order to guarantee that the two sets are truly inde-

pendent, we make sure that we never use any revisions from the

validation set to compute the quality of edits in the training set. A

short summary of the data statistics after preprocessing is provided

in Table 1.

4.2 Evaluation

In order to facilitate the comparison of our method with competing

approaches, we evaluate the performance on a binary classification

4
Except for a small minority of protected articles.

5
Note, however, that a large majority of edits are made by registered users (82.7 %
and 76.6 % for the French and Turkish editions, respectively).

https://github.com/lca4/interank
https://dumps.wikimedia.org/
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Table 1: Summary statistics of Wikipedia datasets after preprocessing.

Edition # users N # articlesM # edits First edit Last edit % edits with q < 0.2 % edits with q > 0.8

French 5 460 745 1 932 810 65 430 838 2001-08-04 2017-09-02 6.4 % 72.2 %

Turkish 1 360 076 310 991 8 768 258 2002-12-05 2017-10-01 11.6 % 60.5 %

task consisting of predicting whether an edit is of poor quality. To

this end, we assign binary labels to all edits in the validation set:

the label bad is assigned to every edit with q < 0.5, and the label

good is assigned to all edits with q ≥ 0.5. The predictions of the

classifier might help Wikipedia administrators to identify edits of

low quality; these edits might then be sent to domain experts for

review.

As discussed in Section 3, we consider two versions of our model.

The first one, interank basic, simply learns scalar user skills and

article difficulties. The second one, interank full, additionally
includes a latent embedding of dimension D = 20 for each user and

article.

4.2.1 Competing Approaches. To set our results in context, we

compare them to those obtained with four different baselines.

Average. The first approach always outputs the marginal proba-

bility of a bad edit in the training set, i.e.,

p =
# bad edits in training set

# edits in training set

This is a trivial baseline, and it gives an idea of what results we

should expect to achieve without any additional information on

the user, article or edit.

User-Only. The second approach models the outcome of an edit

using only the user’s identity. In short, the predictor learns skills

{su | u = 1, . . . ,N } and a global offset b such that, for each user u,
the probability

pu =
1

1 + exp[−(su + b)]

maximizes the likelihood of that user’s edits in the training set. This

baseline predictor is representative of user reputation systems such

as that of Adler and de Alfaro [2].

GLAD. In the context of crowdsourcing, Whitehill et al. [32]

propose the GLAD model that postulates that

pui =
1

1 + exp(−su/di )
,

where su ∈ R and di ∈ R>0. This reflects a different assumption

on the interplay between user skill and item difficulty: under their

model, an item with a large difficulty value makes every user’s

skill more “diffuse”. In order to make the comparison fair, we add a

global offset parameter b to the model (similarly to interank and

the user-only baseline).

ORES reverted. The fourth approach is a state-of-the-art classifier
developed by researchers at the Wikimedia Foundation as part of

Wikipedia’s Objective Revision Evaluation Service [15]. We use

the two classification models specifically developed for the French

and Turkish editions. Both models use over 80 content-based and

Table 2: Predictive performance on the bad edit classifica-

tion task for the French and Turkish editions of Wikipedia.

The best performance is highlighted in bold.

Edition Model Avg. log-likelihood AUPRC

French interank basic −0.339 0.399

interank full −0.336 0.413

Average −0.389 0.131

User-only −0.346 0.313

GLAD −0.344 0.369

ORES reverted −0.469 0.453

Turkish interank basic −0.380 0.494

interank full −0.379 0.503

Average −0.461 0.168

User-only −0.390 0.410

GLAD −0.387 0.471

ORES reverted −0.392 0.552

system-based features extracted from the user, the article and the

edit to predict whether the edit will be reverted, a target which

essentially matches our operational definition of bad edit. Features

include the number of vulgar words introduced by the edit, the

length of the article and of the edit, etc. This predictor is represen-

tative of specialized, domain-specific approaches to modeling edit

quality.

4.2.2 Results. Table 2 presents the average log-likelihood and

the area under the precision-recall curve (AUPRC) for each method.

interank full has the highest average log-likelihood of all models,

meaning that its predictive probabilities are well calibrated with

respect to the validation data.

Figure 1 (left and center) presents the precision-recall curves for

all methods. The analysis is qualitatively similar for both Wikipedia

editions. All non-trivial predictors perform similarly in the high-

recall regime, but present significant differences in the high-precision

regime, on which we will focus. The ORES predictor performs the

best. interank comes second, reasonably close behind ORES, and

the full variant has a small edge over the basic variant. GLAD is

next, and the user-only baseline is far behind. This shows that a) in-
corporating information about the article being edited is crucial

for achieving a good performance on a large portion of the preci-

sion-recall trade-off, and b) modeling the outcome probability by

using the difference between skill and difficulty (interank) is better

than by using the ratio (GLAD).
We also note that in the validation set, approximately 20 % (15 %)

of edits are made by users (respectively, on articles) that are never

encountered in the training set (the numbers are similar in both
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Figure 1: Precision-recall curves on the bad edit classification task for the Turkish and French editions of Wikipedia (left and

center). Average log-likelihood as a function of the number of observations of the user and item in the training set (right).

editions). In these cases, interank reverts to average predictions,

whereas content-based methods can take advantage of other fea-

tures of the edit to make an informed prediction. In order to explore

this cold-start effect in more detail, we group users and articles into

bins based on the number of times they appear in the training set,

and we compute the average log-likelihood of validation examples

separately for each bin. Figure 1 (right) presents the results for

the French edition; the results for the Turkish edition are similar.

Clearly, predictions for users and articles present in the training set

are significantly better. In a practical deployment, several methods

can help to address this issue [21, 22, 27]. A thorough investigation

of ways to mitigate the cold-start problem is beyond the scope of

this paper.

In summary, we observe that our model, which incorporates

the articles’ identity, is able to bridge the gap between user-only

prediction approach and a specialized predictor (ORES reverted).

Furthermore, modeling the interaction between user and article

(interank full) is beneficial and helps further improve predictions,

particularly in the high-precision regime.

4.3 Interpretation of Model Parameters

The parameters of interankmodels, in addition to being predictive

of edit outcomes, are also very interpretable. In the following, we

demonstrate how they can surface interesting characteristics of the

peer-production system.

4.3.1 Controversial Articles. Intuitively, we expect an article i
whose difficulty parameter di is large to deal with topics that are

potentially controversial. We focus on the French Wikipedia and

explore a list of the ten most controversial articles given by Yasseri

et al. [35]. In this 2014 study, the authors identify controversial

articles by using an ad-hoc methodology. Table 3 presents, for each

article identified by Yasseri et al., the percentile of the corresponding

difficulty parameter di learned by interank full. We analyze these

articles approximately four years later, but the model still identifies

them as some of the most difficult ones. Interestingly, the article

on Sigmund Freud, which has the lowest difficulty parameter of

Table 3: The ten most controversial articles on the French

Wikipedia according to Yasseri et al. [35]. For each article i,
we indicate the percentile of its corresponding parameterdi .

Rank Title Percentile of di

1 Ségolène Royal 99.840 %

2 Unidentified flying object 99.229 %

3 Jehovah’s Witnesses 99.709 %

4 Jesus 99.953 %

5 Sigmund Freud 97.841 %

6 September 11 attacks 99.681 %

7 Muhammad al-Durrah incident 99.806 %

8 Islamophobia 99.787 %

9 God in Christianity 99.712 %

10 Nuclear power debate 99.304 %

median 99.710 %

the list, has become a featured article since Yasseri et al.’s analysis—

a distinction awarded only to the most well-written and neutral

articles.

4.3.2 Latent Factors. Next, we turn our attention to the param-

eters {yi }. These parameters can be thought of as an embedding of

the articles in a latent space of dimension D = 20. As we learn a

model that maximizes the likelihood of edit outcomes, we expect

these embeddings to capture latent article features that explain edit

outcomes. In order to extract the one or two directions that ex-

plain most of the variability in this latent space, we apply principal

component analysis [4] to the matrix Y = [yi ].
In Table 4, we consider the Turkish Wikipedia and list a subset

of the 20 articles with the highest and lowest coordinates along

the first principal axis of Y . We observe that this axis seems to

distinguish articles about popular culture from those about “high

culture” or timeless topics. This discovery supports the hypothesis

that users have a propensity to successfully edit either popular

culture or high-culture articles on Wikipedia, but not both.
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Table 4: A selection of articles of the Turkish Wikipedia among the top-20 highest and lowest coordinates along the first

principal axis of the matrix Y .

Direction Titles

Lowest Harry Potter’s magic list, List of programs broadcasted by Star TV, Bursaspor 2011-12 season, Kral Pop TV Top 20, Death

Eater, Heroes (TV series), List of programs broadcasted by TV8, Karadayı, Show TV, List of episodes of Kurtlar Vadisi Pusu.

Highest Seven Wonders of the World, Thomas Edison, Cell, Mustafa Kemal Atatürk, Albert Einstein, Democracy, Isaac Newton,

Mehmed the Conqueror, Leonardo da Vinci, Louis Pasteur.

TV & teen culture

French municipality

Tennis-related

Other

Justine Henin

Julie Halard

Virginia Wade

Marcelo Melo

…

William Shakespeare

M. de Robespierre

Nelson Mandela

Charlemagne

…

Figure 2: t-SNE visualization of 80 articles of the French

Wikipedia with highest and lowest coordinates along the

first and second principal axes of the matrix Y .

Finally, we consider the French Wikipedia. Once again, we apply

principal component analysis to the matrixY and keep the first two

dimensions. We select the 20 articles with the highest and lowest

coordinates along the first two principal axes
6
. A two-dimensional

t-SNE plot [30] of the 80 articles selected using PCA is displayed in

Figure 2. The plot enables identifying meaningful clusters of related

articles, such as articles about tennis players, French municipalities,

historical figures, and TV or teen culture. These articles are repre-

sentative of the latent dimensions that separate editors the most: a

user skilled in editing pages about ancient Greek mathematicians

might be less skilled in editing pages about anime, and vice versa.

5 LINUX KERNEL

In this section, we apply the interank model to the Linux kernel

project, a well-known open-source software project. In contrast to

Wikipedia, most contributors to the Linux kernel are highly skilled

professionals who dedicate a significant portion of their time and

efforts to the project.

5.1 Background & Dataset

The Linux kernel has fundamental impact on technology as a whole.

In fact, the Linux operating system runs 90 % of the cloud workload

6
Interestingly, the first dimension has a very similar interpretation to that obtained on

the Turkish edition: it can also be understood as separating popular culture from high

culture.

and 82 % of the smartphones [7]. To collectively improve the source

code, developers submit bug fixes or new features in the form of

a patch to collaborative repositories. Review and integration time

depend on the project’s structure, ranging from a few hours or days

for Apache Server [26] to a couple of months for the Linux kernel

[18]. In particular for the Linux kernel, developers submit patches

to subsystem mailing lists, where they undergo several rounds of

reviews. After suggestions are implemented and if the code is ap-

proved, the patch can be committed to the subsystem maintainer’s

software repository. Integration conflicts are spotted at this stage by

other developers monitoring the maintainer’s repository and any

issues must be fixed by the submitter. If the maintainer is satisfied

with the patch, she commits it to Linus Torvalds’ repository, who

decides to include it or not with the next Linux release.

5.1.1 Dataset Preprocessing. We use a dataset collected by Jiang

et al. [18] which spans Linux development activity between 2005

and 2012. It consists of 670 533 patches described using 62 features

derived from e-mails, commits to software repositories, the devel-

opers’ activity and the content of the patches themselves. Jiang

et al. scraped patches from the various mailing lists and matched

them with commits in the main repository. In total, they managed

to trace back 75 % of the commits that appear in Linus Torvalds’

repository to a patch submitted to a mailing list. A patch is labeled

as accepted (q = 1) if it eventually appears in a release of the Linux

kernel, and rejected (q = 0) otherwise. We remove data points with

empty subsystem and developer names, as well as all subsystems

with no accepted patches. Finally, we chronologically order the

patches according to their mailing list submission time.

After preprocessing, the dataset contains K = 619 419 patches

proposed by N = 9672 developers onM = 394 subsystems. 34.12 %

of these patches are accepted.We then split the data into training set

containing the first 80 % of patches and a validation set containing

the remaining 20 %.

5.1.2 Subsystem-Developer Correlation. Given the highly com-

plex nature of the project, one could believe that developers tend

to specialize in few, independent subsystems. Let Xu = {Xui }
M
i=1

be the collection of binary variables Xui indicating whether de-

veloper u has an accepted patch in subsystem i . We compute the

sample Pearson correlation coefficient ruv = ρ (Xu ,Xv ) between
Xu and Xv . We show in Figure 3 the correlation matrix R = [ruv ]
between developers patching subsystems. Row ru corresponds to

developer u, and we order all rows according to the subsystem each

developer u contribute to the most. We order the subsystems in

decreasing order by the number of submitted patches, such that

larger subsystems appear at the top of the matrix R. Hence, the
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Figure 3: Correlation matrix R between developers ordered

according to the subsystem they contribute to the most. The

blocks on the diagonal correspond to subsystems. Core sub-

systems form a strong cluster (blue square).

blocks on the diagonal roughly correspond to subsystems and their

size represents the number of developers involved with the sub-

system. As shown by the blocks, developers tend to specialize into

one subsystem. However, as the numerous non-zero off-diagonal

entries reveal, they still tend to contribute substantially to other

subsystems. Finally, as highlighted by the dotted, blue square, sub-

systems number three to six on the diagonal form a cluster. In fact,

these four subsystems (include/linux, arch/x86, kernel and mm)
are core subsystems of the Linux kernel.

5.2 Evaluation

We consider the task of predicting whether a patch will be inte-

grated into a release of the kernel. Similarly to Section 4, we use

interank basic and interank full with D = 20 latent dimensions

to learn the developers’ skills, the subsystems’ difficulty, and the

interaction between them.

5.2.1 Competing Approaches. Three baselines that we consider—
average, user-only and GLAD—are identical to those described in

Section 4.2.1. In addition, we also compare our model to a random

forest classifier trained on domain-specific features similar to the

one used by Jiang et al. [18]. In total, this classifier has access to

21 features for each patch. Features include information about the

developer’s experience up to the time of submission (e.g., number

of accepted commits, number of patches sent), the e-mail thread

(e.g., number of developers in copy of the e-mail, size of e-mail,

number of e-mails in thread until the patch) and the patch itself (e.g.,

number of lines changed, number of files changed). We optimize

the hyperparameters of the random forest using a grid-search. As

the model has access to domain-specific features about each edit, it

is representative of the class of specialized methods tailored to the

Linux kernel peer-production system.

5.2.2 Results. Table 5 displays the average log-likelihood and

area under the precision-recall curve (AUPRC). interank full per-
forms best in terms of both metrics. In terms of AUPRC, it outper-

forms the random forest classifier by 4.4 %, GLAD by 5 %, and the

user-only baseline by 7.3 %.

Table 5: Predictive performance on the accepted patch classi-

fication task for the Linux kernel. The best performance is

highlighted in bold.

Model Avg. log-likelihood AUPRC

interank basic -0.589 0.525

interank full -0.588 0.527

Average -0.640 0.338

User-only -0.601 0.491

GLAD -0.598 0.502

Random forest -0.599 0.505
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Figure 4: Precision-recall curves on the bad edit classifi-

cation task for the Linux kernel. interank (solid orange

and red) outperforms the user-only baseline (dotted green),

the random forest classifier (dashed blue), and GLAD (dash-

dotted purple).

We show the precision-recall curves in Figure 4. Both interank

full and interank basic perform better than the four baselines.

Notably, they outperform the random forest in the high-precision

regime, even though the random forest uses content-based features

about developers, subsystems and patches. In the high-recall regime,

the random forest attains a marginally better precision. The user-
only and GLAD baselines performworse than all non-trivial models.

5.3 Interpretation of Model Parameters

We show in Table 6 the top-five and bottom-five subsystems accord-

ing to difficulties {di } learned by interank full. We note that even

though patches submitted to difficult subsystems have in general

low acceptance rate, interank enables a finer ranking by taking

into account who is contributing to the subsystems. This effect

is even more noticeable with the five subsystems with smallest

difficulty value.

The subsystems i with largest di are core components, whose

integrity is crucial to the system. For instance, the usr subsystem,

providing code for RAM-related instructions at booting time, has
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Table 6: Top-five and bottom-five subsystems according to

their difficulty di .

Difficulty Subsystem % Acc. # Patch # Dev.

+2.664 usr 1.88 % 796 70

+1.327 include 7.79 % 398 101

+1.038 lib 15.99 % 5642 707

+1.013 drivers/clk 34.34 % 495 81

+0.865 include/trace 17.73 % 547 81

-1.194 drivers/addi-data 78.31 % 272 8

-1.080 net/tipc 43.11 % 573 44

-0.993 drivers/ps3 44.26 % 61 9

-0.936 net/nfc 73.04 % 204 26

-0.796 arch/mn10300 45.40 % 359 63

barely changed in the last seven years. On the other hand, the

subsystems i with smallest di are peripheral components serving

specific devices, such as digital signal processors or gaming consoles.

These components can arguably tolerate a higher rate of bugs, and

hence they evolve more frequently.

Jiang et al. [18] establish that a high prior subsystem churn

(i.e., high number of previous commits to a subsystem) leads to

lower acceptance rate. We approximate the number of commits

to a subsystem as the number of patches submitted multiplied by

the subsystem’s acceptance rate. The first quartile of subsystems

according to their increasing difficulty, i.e., the least difficult sub-

systems, has an average churn of 687. The third quartile, i.e., the

most difficult subsystems, has an average churn of 833. We verify

hence that higher churn correlates with difficult subsystems. This

corroborates the results obtained by Jiang et al.

As shown in Figure 4, if false negatives are not a priority, inter-

ank will yield a substantially higher precision. In other words, if

the task at hand requires that the patches classified as accepted are

actually the ones integrated in a future release, then interank will

yield more accurate results. For instance, it would be efficient in

supporting Linus Torvalds in the development of the Linux kernel

by providing him with a restricted list of patches that are likely to

be integrated in the next release of the Linux kernel.

6 CONCLUSION

In this paper, we have introduced interank, a model of edit out-

comes in peer-production systems. Predictions generated by our

model can be used to prioritize the work of project maintainers by

identifying contributions that are of high or low quality.

Similarly to user reputation systems, interank is simple, easy

to interpret and applicable to a wide range of domains. Whereas

user reputation systems are usually not competitive with special-

ized edit quality predictors tailored to a particular peer-production

system, interank is able to bridge the gap between the two types

of approaches, and it attains a predictive performance that is com-

petitive with the state of the art—without access to content-based

features.

We have demonstrated the performance of the model on two

peer-production systems exhibiting different characteristics. Be-

yond predictive performance, we can also use model parameters to

gain insight into the system. On Wikipedia, we have shown that

the model identifies controversial articles, and that latent dimen-

sions learned by our model display interesting patterns related to

cultural distinctions between articles. On the Linux kernel, we have

shown that inspecting model parameters enables to identify core

subsystems (large difficulty parameters) from peripheral compo-

nents (small difficulty parameters).

Future Work. In the future, we would like to investigate the idea

of using the latent embeddings learned by our model in order to

recommend items to edit. Ideally, we could match items that need

to be edited with users that are most suitable for the task. For

Wikipedia, an ad-hoc method called “SuggestBot” was proposed

by Cosley et al. [8]. We believe it would be valuable to propose a

method that is applicable to peer-production systems in general.
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