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ABSTRACT
Online healthcare services can provide the general public with
ubiquitous access to medical knowledge and reduce medical in-
formation access cost for both individuals and societies. However,
expanding the scale of high-quality yet structured medical knowl-
edge usually comes with tedious efforts in data preparation and
human annotation. To promote the benefits while minimizing the
data requirement in expanding medical knowledge, we introduce a
generative perspective to study the relational medical entity pair
discovery problem. A generative model named Conditional Relation-
ship Variational Autoencoder is proposed to discover meaningful
and novel medical entity pairs by purely learning from the expres-
sion diversity in the existing relational medical entity pairs. Unlike
discriminative approaches where high-quality contexts and candi-
date medical entity pairs are carefully prepared to be examined by
the model, the proposed model generates novel entity pairs directly
by sampling from a learned latent space without further data re-
quirement. The proposed model explores the generative modeling
capacity for medical entity pairs while incorporating deep learning
for hands-free feature engineering. It is not only able to generate
meaningful medical entity pairs that are not yet observed, but also
can generate entity pairs for a specific medical relationship. The
proposed model adjusts the initial representations of medical enti-
ties by addressing their relational commonalities. Quantitative and
qualitative evaluations on real-world relational medical entity pairs
demonstrate the effectiveness of the proposed method in generating
relational medical entity pairs that are meaningful and novel.
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1 INTRODUCTION
Increasingly, people engage in health services on the Internet
[12, 50]. The healthcare services can provide the general public
with ubiquitous access to medical knowledge and reduce the infor-
mation access cost significantly. The structured medical knowledge
discussed in this paper are binary ones. A relational medical entity
pair, which consists of two medical entities with a semantic connec-
tion between them, is an intuitive representation that distills human
medical knowledge [34]. For example, theDisease

Cause
−−−−−−→ Symptom

relationship indicates a “Cause” relationship from a disease entity
to a symptom entity which is caused by this disease, such as the
medical entity pair <synovitis, joint pain>. Table 1 shows some
relational medical entity pairs for common medical relationships.

The ability to understand, reason and generalize is central to
human intelligence [29]. However, it possesses significant chal-
lenges for machines to understand and reason about the relation-
ships between two entities [33]. Specifically, real-world relational
medical entity pairs posses certain challenging properties to deal
with: First, various linguistic expressions are usually used for a
medical entity. For example, nose plugged, blocked nose and sinus
congestion are symptom entities that share the same meaning but
expressed very differently. Second, one medical relationship may
be instantiated by entity pairs in varying granularities or different
relationship strength. For instance, Disease

Cause
−−−−−−→ Symptom rela-

tionship may include coarse-grained entity pairs like <rhinitis, nose
plugged>, while <acute rhinitis, nose plugged>, <chronic rhinitis,
nose plugged> are considered as fine-grained entity pairs. As for
the relationship strength, <cold, fatigue> has greater relationship
strength than <cold, ear infections> as cold rarely cause serious

Relational Medical Entity Pairs Medical Relationship

<synovitis, joint pain> Disease
Cause
−−−−−−→ Symptom

<stiffness of a joint, orthopedics> Symptom
Belonдto
−−−−−−−−→ Department

<muscular contusion, disinsertion> Symptom
RelatedTo
−−−−−−−−−−→ Symptom

Table 1: Sample medical relationships and relational medi-
cal entity pairs.
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complications such as ear infections. It is straightforward for hu-
man beings yet still challenging for a machine to give insights on
their relational commonalities.

To expand the scale of relational medical entity pairs, discrim-
inative methods for relation extraction [2, 3, 16, 23, 26, 32, 42] or
knowledge graph completion [6, 13, 22, 38, 43, 44] can be adopted.
Despite achieving decent performance in identifying the relation-
ship given candidate entity pairs, their performances capitalize on
well-prepared context as external resources, or high-quality candi-
date entity pairs given for testing. For relation extraction methods
which aim to examine whether or not a semantic relationship exists
between two entities given the context, they require a substan-
tial collection of contexts over a full spectrum of relationships we
would like to work on: e.g. contexts obtained from free-text corpora
where two entities co-occur in the same sentencewith a relationship
between them, from existing domain-specific knowledge graphs
[1, 28], or from web tables and links [21]. As medical relationships
in the real-world are becoming more and more complex and di-
versely expressed [49], such context is hard to obtain. Knowledge
graph completion methods tell what kind of relationship, and how
likely a relationship is going to be formulated between two given
entities. They usually do not require contexts for training. How-
ever, they are vulnerable to the “garbage-in, garbage-out” situation:
we can not obtain the rational medical entity pairs for a specific
relationship when no high-quality entity pairs having that relation-
ship are among the candidate entity pairs. The choice of candidates
may involve additional human annotation; otherwise, any dyadic
combinations of medical entities need to be annotated and tested
by the model, which is tedious and labor-intensive.

In both tasks mentioned above, the lacking preparation of exter-
nal resource or additional human annotation is fatal to successfully
discover the structured medical knowledge. Therefore, it is crucial
for us to discover relational medical entity pairs without substantial
data requirement.

Problem Studied: We propose a novel research problem called
RElational Medical Entity-pair DiscoverY (REMEDY), which aims
at understanding the medical relationship solely from the exist-
ing medical entity pairs via their diverse expressions. We aim to
discover meaningful and novel entity pairs of a specific medical
relationship in a generative fashion, without sophisticated feature
engineering and substantial data requirement such as large-scale
free-text as contexts, or further data preparation.

Proposed Model: A generative model named Conditional Rela-
tionship Variational Autoencoder (CRVAE) is introduced for rela-
tional medical entity pair discovery. The proposed model exploits
the generative modeling capacity roots in Bayesian inference while
incorporating deep learning for powerful hands-free feature engi-
neering. The model takes entity pairs and their medical relation-
ship types as the input. It encodes relational medical entity pairs
into a latent space conditioned on the relationship type. Based on
pre-trained entity representations, the encoding process further
addresses relationship-enhanced entity representations, entity in-
teractions, and expressive latent variables. The latent variables are
decoded to reconstruct entity pairs. Once trained, the generator
samples directly from the learned latent variables and decodes them
into novel medical entity pairs having a specific relationship.

Overall, CRVAE has three notable strengths:

CRVAE significantly lower the data requirement for struc-
tured medical knowledge discovery by learning directly from
the existing medical entity pairs. In the medical domain, the di-
versely expressed medical entity pairs offer significant advantages
for the model to understand their commonalities from various med-
ical expressions without additional contexts.

CRVAE generates novel,meaningful entity pairs by its gen-
erative nature. The generator adopts a density-based sampling strat-
egy that decodes the sampled latent variables into entity pairs. Un-
like discriminative methods which learn the discrepancies among
different medical relationships, the CRVAE models the distribution
of diversely expressed entity pairs within each relationship, so as
to generate new ones rationally.

CRVAE can generate entity pairs for a particular relation-
ship without additional data preparation. Discriminative models
rely on the quality of candidate entity pairs to obtain novel, mean-
ingful entity pairs efficiently. CRVAE’s conditional inference ability
makes it more efficient to discover structured medical knowledge
for specific medical relationships.

The contributions of this paper can be summarized as follows:

• We introduce a generative perspective to study the Relational
Medical Entity-pair Discovery (REMEDY) problem, which
aims to expand the scale of high-quality yet novel structured
medical knowledge with minimized data requirement.

• We propose a model named Conditional Relationship Vari-
ational Autoencoder (CRVAE) that generatively discover
relational medical entity pairs for a specific relationship, by
solely learning the commonalities from diversely expressed
entity pairs without sophisticated feature engineering.

• We obtain relationship-enhanced entity representations as a
byproduct of the encoding process of the model.

2 RELATEDWORKS
DeepGenerativeModels: Recent years havewitnessed an increas-
ing interest in deep generative models that generate observable data
based on hidden parameters. Unlike Generative Adversarial Net-
works (GANs) [31] which generate data based on arbitrary noises,
the Variational Autoencoders (VAEs) [18] setting we adopted is
more expressive since it tries to model the underlying probability
distribution of the data by latent variables so that we can sample
from that distribution to generate new data accordingly. An in-
creasing number of models and applications are proposed which
consider data in different modalities, such as generating images
[15, 30] or natural language [7, 24, 45]. [46] works on generative
relation discovery with a probabilistic graphic model that requires
hand-crafted relation-level features. As far as we know, the rela-
tional medical entity pair discovery problem we studied in this
paper, which is suitable for deep generative modeling, has not been
studied in a generative perspective with restricted data requirement.
Knowledge Graph Completion: Existing knowledge graph com-
pletion methods [6, 13, 22, 38, 43, 44] are discriminative models.
During training, those methods are trained to distinguish entity
pairs of one relationship from another [22, 48], or to identify mean-
ingful entity pairs from randomly sampled negative entity pairs
with no relationships [5, 35]. During testing, some candidate en-
tity pairs are prepared ahead of time and given to the model. The
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model examines what kind of, and how likely there is a relation-
ship for each candidate entity pair. The proposed model can be
seen as augmenting an existing knowledge graph in a generative
way. Although both knowledge graph completion task and our task
provide additional entity pairs as their results, they adopt entirely
different approaches. The knowledge base completion models rely
on the discrepancies among entity pairs of different relationships to
distinguish one from another. Otherwise, random negative samples
are used for discriminative training. Our model does not rely on
discrepancies among relationships: it exploits the commonalities
from diverse expressions within each relationship for a rational
generation. Knowledge graph completion methods are also vulner-
able to low-quality candidate entity pairs during testing: the truly
meaningful entity pairs cannot be even obtained when they are
not a part of the candidate entity pairs that discriminative models
examine from. The choice of candidates involves additional human
annotation to improve efficiency; otherwise, any dyadic combina-
tions of medical entities need to be annotated and tested by the
model. While the generative nature of our model makes it only
generate rational entity pairs by learning from existing ones: no
additional data needs to be prepared for generative discovery.
Relationship Extraction: There is another related research area
that studies relation extraction [2, 3, 16, 23, 26, 32, 42], which usu-
ally amounts to examining whether or not a relation exists between
two given entities in a context [10]. Most relationship extraction
methods require large amounts of high-quality external informa-
tion, such as a large text corpus [2, 3, 20, 32] and knowledge graphs
[8, 39, 41]. However, in the medical domain, it is tedious and label-
intensive to obtain a free-text which contains the co-occurrence
of all kinds of relational medical entity pairs. Thus, we propose an
effective generative method that learns from the existing medical
entity pairs directly. Pre-trained word vectors are used in our model
to provide initial entity representations, which do not introduce
further labeling cost.

3 PRELIMINARIES
We briefly review preliminaries that relate to the proposed model.

3.1 Autoencoder (AE)
The traditional autoencoder [4] is a multi-layer non-recurrent neu-
ral network architecture which has been widely used for unsuper-
vised representation learning. When given an input data x , the
autoencoder starts with an encoder net where the input is mapped
into a low-dimensional latent variable z = encoder_net(x) through
one or more layers of non-linear transformations, followed by a
decoder net where the resulting latent variable z is mapped to an
output data x ′ = decoder_net(z) which has the same number of
units as the input data x , via one or more non-linear hidden layers.
The objective of the AE is to minimize the data reconstruction loss:

LAE (x) =


x − x ′



2 = ∥x − decoder_net(encoder_net(x))∥2 , (1)

and the resulting latent variable z is the low-dimensional latent
feature learned from the data x in a totally unsupervised fashion.

3.2 Variational Autoencoder (VAE)
The concept of automatic encoding and decoding makes AE suitable
for generative models. Unlike the traditional autoencoder [4] where

the hidden variable z has unspecified distributions, the variational
autoencoder (VAE) [19] roots in Bayesian inference and inherits
the architecture of AE to encode the Bayes automatically for an
expressive generation. VAE assumes that the input data x can be
encoded into a set of latent variables z with certain distributions,
such as multivariate Gaussian distributions. The resulting Gauss-
ian latent variables z are generated by the generative distribution
Pθ (z) and x ′ is generated with a Bayesian model by a conditional
distribution on z: Pθ (x ′ |z). VAE infers the latent distribution P(z)
using Pθ (z |x). Pθ (z |x) can be considered as some mapping from x
to z, which is inferred by variational inference as one of the popular
Bayesian inference methods. In VAE, Pθ (z |x) is usually inferred
using a simpler distributionQϕ (z |x) such as a Gaussian distribution.
The objective of VAE is to optimize its variational lower bound:

LVAE (x ,y;θ ,ϕ) = −KL
[
Qϕ (z |x) | |Pθ (z |x)

]
+ log (Pθ (x)), (2)

where the first term uses the KL-divergence to minimize the differ-
ence between the simple distribution Qϕ (z |x) and its true distribu-
tion Pθ (z |x), while the second term maximizes the loд (Pθ (x)).

3.3 Conditional Variational Autoencoder (CVAE)

Although the VAE can generate data that belongs to different types,
the latent variable z is only modeled by x in Pθ (z |x) without know-
ing the type of it. Thus it cannot generate an output x ′ that belongs
to a particular type y. The conditional variational autoencoder
(CVAE) [36] is an extension to VAE that generates x ′ with condi-
tions. CVAE models both the data x and latent variables z. However,
both x and z are conditioned on a class label y:

LCVAE (x ,y;θ ,ϕ) = −KL
[
Qϕ (z |x ,y) | |Pθ (z |x)

]
+ log (Pθ (x |y)).

(3)
In this way, the real latent variable is distributed under Pθ (z |y)
instead of Pθ (z). With such appealing formulation, we can have a
separate Pθ (z |y) for each class y.

4 CONDITIONAL RELATIONSHIP
VARIATIONAL AUTOENCODER

In this section, we introduce the Conditional Relationship Vari-
ational Autoencoder (CRVAE) model for the REMEDY problem.
The proposed model consists of three modules: encoder, decoder,
and generator. The encoder module takes relational medical entity
pairs and a relationship indicator as the input, trained to enhance
medical entity representations and encode the diversely expressed
entity pairs for each medical relationship to a latent space as Qϕ .
The decoder is jointly trained to reconstruct the entity pairs as Pθ .
The generator model shares the same structure with the decoder.
However, instead of reconstructing the relational medical entity
pair given in the input, it directly samples from the learned latent
variable distribution to generate meaningful medical relational en-
tity pairs for a particular relationship. Figure 1 gives an overview
of the proposed model.

The model takes a tuple <eh , et> and a relationship indicator r
as the input, where eh and et are head and tail medical entity of a re-
lationship r . For example, eh =“synovitis” and et=“joint pain”, while

the corresponding r is an indicator for Disease
Cause
−−−−−−→ Symptom.

To effectively represent medical entities, pre-trained word em-
beddings that embody rich semantic information can be obtained
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Figure 1: An overview of Conditional Relationship Varia-
tional Autoencoder (CRVAE) for Relational Medical Entity-
pair Discovery during training. The encodermodule is show
in green color and the decoder module is show in blue.
Model inputs are in white color.

as initial entity representations for eh and et . For simplicity, we
adopt 200-dimensional word embeddings pre-trained using Skip-
gram [25]. After a table lookup on the pre-trained word vector
matrixWembed ∈ RV×DE where V is the vocabulary size (usually
tens of thousands) and DE is the dimension of the initial entity
representation (usually tens or hundreds), embedh ∈ R1×DE and
embedt ∈ R1×DE are derived as the initial embedding of medical
entities.

4.1 Encoder
With the initial entity representation embedh and embedt and their
relationship indicator r , the encoder first translates and then maps
entity pairs to a latent space as Qϕ (z |embedh , embedt , r ).

4.1.1 Translating for Relationship-enhancing. The initial embed-
ding obtained from word embedding reflects semantic and categor-
ical information. However, it is not specifically designed to model
the medical relationship among medical entities.

To get entity representations that address relationship informa-
tion, the encoder learns to translate each medical entity from its ini-
tial embedding space to a relationship-enhanced embedding space
that distills relational commonalities. For example, a non-linear
transformation can be used: translate(x) = f (x ·Wtrans + btrans )
where f can be an non-linear activation function such as the Ex-
ponential Linear Unit (ELU) [9].Wtrans ∈ RDE×DR is the weight
variable and btrans ∈ R1×DR is the bias where DR is the dimension
for relationship-enhanced embeddings.

transh = translate(embed_h), (4)
transt = translate(embed_t) (5)

are obtained as relationship-enhanced embeddings for eh and et .

4.1.2 Mapping to Latent Variables. The relationship-enhanced
entity representation transh and transt are concatenated

transht = [transh , transt ] (6)

and mapped to the latent space by multiple fully connected layers.
For example, we can obtain a variable lht that addresses the relation-
ship information, as well as entity interactions from two medical
entities, by applying six consecutive non-linear fully connected
layers on transht .

As a variational inference model, we assume a simple Gaussian
distribution of Qϕ (z |embedh , embedt , r ) for the relational medical

entity pair <eh , et> with a relationship r . Therefore, for each rela-
tional medical entity pair <eh , et> and a relationship indicator r ,
a mean vector µ and a variance vector σ 2 can be learned as latent
variables to model Qϕ (z |embedh , embedt , r ):

µ = [lht , r ] ·Wµ + bµ , (7)

σ 2 = [lht , r ] ·Wσ + bσ , (8)

where a one-hot indicator r ∈ R1×|R | is used for the medical re-
lationship r and |R | is the number of all relationships.Wµ ,Wσ ∈

R

(
Dlht + |R |

)
×DL are weight terms and bµ ,bσ ∈ R1×DL are bias

terms. DL is the dimension for latent variables and Dlht is the di-
mension for lht . To stabilize the training, we model the variation
vector σ 2 by its log form logσ 2 (to be explained in Equation (15)).
4.2 Decoder
Once we obtain latent variables µ, σ 2 for an input tuple <eh , et>
with an relationship r , the decoder uses latent variables and the
relationship indicator r to reconstruct the relational medical entity
pair. The decoder implements the Pθ (embedh , embedt |z, r ).

Given µ, σ 2, it is intuitive to sample the latent value z from the
distribution N (µ,σ 2) directly. However, such operator is not differ-
entiable thus optimization methods failed to calculate its gradient.
To solve this problem, a reparameterization trick is introduced in
[19] to divert the non-differentiable part out of the network. Instead
of directly sampling from N (µ,σ 2), we sample from a standard nor-
mal distribution ϵ ∼ N (0, I) and convert it back to z by z = µ + σϵ .
In this way, sampling from ϵ does not depend on the network.

Similarly as the use of multiple non-linear fully connected layers
for the mapping in the encoder, multiple non-linear fully connected
layers are used for an inverse mapping in the decoder. After the
inverse mapping we obtain trans ′ht ∈ R

1×2DR . The first DR dimen-
sions of trans ′ht are considered as a decoded relationship-enhanced
embedding for eh , while the last DR dimensions are for et :

trans ′h = trans ′ht [: DR ] , (9)
trans ′t = trans ′ht [DR :] , (10)

where trans ′h , trans
′
t ∈ R1×DR . trans ′h and trans ′t are further

inversely translated back to the initial embedding space RDE :

embed ′h = f (trans ′h ·Wtrans_inv + btrans_inv ), (11)
embed ′t = f (trans ′t ·Wtrans_inv + btrans_inv ), (12)

where embed ′h , embed ′t ∈ R1×DE are considered as reconstructed
representations for embedh and embedt .

4.3 Training
Inspired by the loss function of CVAE, the loss function of CRVAE is
formulated to minimize the variational lower bound:

LCRVAE (embedh , embedt , r ;θ ,ϕ) =

− KL
[
Qϕ (z |embedh , embedt , r ) | |Pθ (z |embedh , embedt , r )

]
+ log (Pθ (embedh , embedt |r )).

(13)
The first term minimizes the KL divergence loss between the

unknown true distribution Pθ (z |embedh , embedt , r ) and a simple
distributionQϕ (z |embedh , embedt , r ). The second term models the

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2723 



entity pairs by log (Pθ (embedh , embedt |r )). The above equation
can be reformulated as:

LCRVAE (embedh , embedt , r ;θ ,ϕ) =

− KL
[
Qϕ (z |embedh , embedt , r ) | |Pθ (z |r )

]
+ E [log (Pθ (embedh , embedt |z, r ))] ,

(14)

where Pθ (z |r ) describes the true latent distribution z given a certain
relationship r and E [log (Pθ (embedh , embedt |z, r ))] estimates the
maximum likelihood. Since we want to sample from Pθ (z |r ) in the
generator, the first term aims to let Qϕ (z |embedh , embedt , r ) be as
close as possible to Pθ (z |r ) which has a simple distribution N (0, I)
so that it is easy to sample from. Furthermore, if Pθ (z |r ) ∼ N (0, I)
and Q(z |embedh , embedt , r ) ∼ N (µ,σ 2), then a close-form solution
for the first term in Equation (14) can be derived as:

−KL
[
Qϕ (z |embedh , embedt , r ) | |Pθ (z |r )

]
= −KL [N (µ,σ )| |N (0, I)]

= −
1
2
(tr (σ 2) + µT µ − DL − log det(σ 2))

= −
1
2

DL∑
l

(σ 2
l + µ

2
l − 1 − logσ 2

l ),

(15)
where l in the subscript indicates the l-th dimension of the vector.
Since it is more stable to have exponential term than a log term,
log

(
σ 2) is modeled as σ 2 which results in the final closed-form of

Equation (15):

−
1
2

DL∑
l

(
exp

(
σ 2

)
l
+ µ2l − 1 − σ 2

l

)
. (16)

The second term in Equation (14) penalizes the maximum likeli-
hood, which is the conditional probability Pθ (embedh , embedt |z, r )
of a certain entity pair <eh , et> given the latent variable z and
the relationship indicator r . The mean squared error (MSE) is
adopted to calculate the difference between <embedh , embedt>
and <embed ′h , embed ′t>:

E [log (Pθ (embedh , embedt |z, r ))] =

1
2DE

(
| |embedh − embed ′h | |

2
2 + | |embedt − embed ′t | |

2
2

)
,

(17)

where ∥·∥2 is the vector ℓ2 norm. To minimize the LCRVAE , exist-
ing gradient-based optimizers such as Adadelta [47] can be used.
Furthermore, a warm-up technique introduced in [37] can let the
training start with deterministic and gradually switch to variational,
by multiplying β to the first term. The final loss function used for
training is formulated as:

LCRVAE = −
β

2

DL∑
l

(
exp

(
σ 2

)
l
+ µ2l − 1 − logσ 2

l

)
+

1
2DE

(
| |embedh − embed ′h | |

2
2 + | |embedt − embed ′t | |

2
2

)
,

(18)

where β is initialized as 0 and increase by 0.1 at the end of each
training epoch, until it reaches 1.0 as its maximum.

4.4 Generator
When we would like to generate relational medical entity pairs of
a specific medical relationship, a density-based sampling method is

introduced for the generator to sample ẑ from the distribution of
latent variables conditioned on that relationship r .

Instead of using the latent variable z provided by certain µ and
logσ 2 in the encoding process from a certain eh , et and r , the gen-
erator tries to sample ẑ directly from Pθ (ẑ |r ) to get the latent space
value ẑ for a particular relationship r . Once ẑ is obtained, the de-
coder structure is used to decode the relational medical entity pair.
Figure 2 illustrates the generative process. The denser region in the

êt̂et

êhêhDensity-based 
Sampling

ẑ̂z

rr

Generator

……

……
rr

Pθ ẑ r⎛
⎝⎜

⎞
⎠⎟

êmbedh

êmbedt

Figure 2: The generator that generate meaningful, novel re-
lational medical entity pairs from the latent space.

latent space Pθ (ẑ |r ) indicates that more densely entity pairs are lo-
cated in the manifold. Therefore, a sampling method that considers
the density distribution of Pθ (ẑ |r ) samples more often from that
region to preserve the true latent space distribution. Specifically,
for each relationship r , the density-based sampling samples ẑ di-
rectly from Pθ (ẑ |r ) ∼ N (0, I), when trained properly. The resulting
vectors êmbedh and êmbedt are mapped back to entity names in
natural language, namely êh and êt , by finding the nearest neigh-
bor in their initial embedding space R1×DE usingWembed . The ℓ-2
distance measure is used for the nearest neighbor search.

Note that the vocabulary of pre-trained word embedding is way
more comprehensive than medical entities from labeled entity pairs
in training. Using the pre-trained word embedding gives our model
the ability to decode unseen medical entities that exist in the vo-
cabulary, but not necessarily in the training data.

5 EXPERIMENTS
5.1 Experiment Settings

5.1.1 Dataset. The dataset consists of 46,018 real-world rela-
tional medical entity pairs in Chinese, and it covers six different
types of medical relationships, where 70% data are used for training
and 30% validation data are used for hyperparameter tuning. Since
the proposed model discovers entity pairs by directly sampling from
the latent space, not by verifying pre-determined test cases, we eval-
uate the generated entity pairs directly. Table 2 shows the statistics
and representative samples for each medical relationship. We use
200-dimensional word embeddings learned from a Chinese medical
corpus on the healthcare forum as the initial entity representation.
The vocabulary covers 126,270 words.

5.1.2 Performance Evaluation. Three evaluation metrics are in-
troduced to quantitatively measure the generated relational medical
entity pairs: quality, support, and novelty.

Quality Since it is hard for the machine to evaluate whether a
relational medical entity pair is meaningful or not, human annota-
tion is involved in assessing the quality of the generated relational
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Medical Relationship Count Relational Medical Entity Pairs

Disease
Cause
−−−−−−→ Body Part 2320

<tricuspid insufficiency (三尖瓣闭锁), tricuspid valve (三尖瓣)>
<vaginal cancer (阴道癌), reproductive system (生殖)>
<hydrocephaly (脑积水), head (头部)>

Disease
RelatedTo
−−−−−−−−−−→ Disease 4614

<infant hydrocephalus (婴儿脑积水), congenital hydrocephalus (先天性脑积水)>
<urethritis (尿道炎), cystitis (膀胱炎)>
<retention of food in the stomach (食滞胃脘), infantile indigestion (小儿消化不良)>

Disease
Need
−−−−−→ Examine 4185

<salicylates poisoning (水杨酸类中毒), routine urianlysis (尿常规)>
<tetralogy triad (法洛三联症), electrocardiogram, ECG (心电图)>
<epididymitis (附睾炎) , cremasteric reflex (提睾反射)>

Symptom
BelonдTo
−−−−−−−−−→ Department 8595

<anchylosis, stiffness of a joint (关节强直), orthopedics (骨科)>
<female lower abdominal pain (女性小腹疼痛), gynecology (妇科)>
<absent infant sucking reflex (吸吮反射消失), neonatology (新生儿科)>

Disease
Cause
−−−−−−→ Symptom 16642

<peritonitis (腹膜炎), abdominal venous engorgement (腹部静脉怒张)>
<urethritis (尿道炎), urethra itching (尿道痒感)>
<radial nerve palsy (桡神经麻痹), upper extremity weakness (上肢无力)>

Symptom
RelatedTo
−−−−−−−−−−→ Symptom 9662

<redness and swelling around the umbilicus (脐周红肿), periumbilical swelling (脐周肿胀)>
<muscular contusion (肌肉挫伤), disinsertion (肌腱断裂)>
<fingers benumbed with cold (手指冻肿), skin frostbite (皮肤冻伤)>

Table 2: Sample Medical Relationships and relational medical entity pairs.

medical entity pairs. We deploy a human annotation task on Ama-
zon Mechanical Turk. Annotators need to pass at least four in five
sample cases to qualify the annotation. Majority voting of three
annotators is adopted. The quality is measured by:

quality =
# of entity pairs that are meaningful
# of all the generated entity pairs

. (19)

Support Besides human annotations, a support score quantita-
tively measures the belongingness of an entity pair generated by a
specific relationship to existing entity pairs with that relationship.
For each generated relational medical entity pair <êh , êt>, the sup-
port score measures its similarities to known entity pairs of each
relationship rc :

support<êh, êt ,rc> =
1

1 + distance(êmbedh , êmbedt , rc )
, (20)

where distance(êmbedh , êmbedt , rc ) calculates the distance be-
tween the vector êmbedh − êmbedt and NNrc (êmbedh − êmbedt )
using distance measure such as cosine distance. The NNrc imple-
ments the nearest neighbor search over the embedh −embedt space
among all the entity pairs having the relationship rc . For each gen-
erated medical entity pair, the support scores of all relationships
are normalized:

norm_support<êh, êt ,rc> =
support<êh, êt ,rc>

|R |∑
ri

support<êh, êt ,ri>

. (21)

The generated entity pair <êh , êt> finds support from its estimated
relationship which has the highest score, while the relationship r
given during the generating process is considered as the ground
truth for <êh , êt>. The final support value is based on the accuracy
of the estimated relationship and the ground truth relationship.

Novelty The ability to generate novel relational medical entity
pairs is one of our key contributions. Due to different scope of
medical knowledge among individuals, human annotators are not

able to precisely evaluate the novelty. We measure the novelty of
the generation process by:

novelty =
# of entity pairs that do not exist in the dataset

# of all the generated entity pairs
. (22)

5.1.3 Baselines. Considering that no known methods are cur-
rently available for the REMEDY problem, and we consider it unfair
to compare with discriminative methods which have external re-
sources, or a test set that is prepared with additional human knowl-
edge, the performance on the following models are compared:

• CRVAE-MONO: The proposed model that works with all
entity pairs having the same medical relationship in both
training and generation. For each relationship, we train a
separate CRVAE with entity pairs having that relationship.

• RVAE: The unconditional version of themodel CRVAEwhere
the relationship indicator r is not provided during model
training and generation.

• CRVAE-RAND: The proposed model CRVAE with a random
sampling based generator. Rather than using the density-
based sampling strategy, the generator of CRVAE-RAND
samples randomly from the latent space.

• CRVAE: The proposed method where relational medical en-
tity pairs with all types of relationships are used together to
train the model. The training is conditioned on relationships,
and density-based sampling is used.

• CRVAE-WA: The proposed method with the warm-up strat-
egy introduced in Section 4.3.

5.2 Experiment Results
We generate 1000 entity pairs for each medical relationship for
evaluation. Table 3 summarizes the performance of the proposed
method when comparing with other alternatives. In summary,
CRVAE-MONO demonstrates the power of generative model that
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Model Name Quality Support Novelty Loss (Train / Valid)

CRVAE-MONO 0.6698 0.9550 0.5118 47.3002 / 116.6739
CRVAE-RAND 0.2550 0.3764 0.9952 43.0954 / 83.6589
CRVAE 0.7308 0.9048 0.5682 43.0954 / 83.6589
CRVAE-WA 0.7717 0.9291 0.6193 33.4399 / 57.9470

Table 3: Performance comparison results.
learns commonalities purely from the diversely expressed entity
pairs without substantial data requirements. By comparing CRVAE-
RAND and CRVAE we show the effectiveness of the density-based
sampling in generating high-quality entity pairs. The warm up
technique adopted in CRVAE-WA is able to give CRVAE a further
performance boost. As a qualitative measure, we also provide re-
lational medical entity pairs generated by the proposed model in
Table 4, fromwhich we can see the meaningful and novel structured
knowledge discovered in a generative fashion.

Disease
Cause
−−−−−−→ Body Part

<dysentery (痢疾), intestine (肠)>
<brain tumor (脑瘤), head (头部)>
<leukopenia (白细胞减少症), vascular system (血液)>

Disease
RelatedTo
−−−−−−−−−−→ Disease

<foreign body in esophagus (食管异物), bowel obstruction (肠梗阻)>
<brain contusion (脑挫裂伤), amnesia (记忆障碍)>
<respiratory acidosis (呼吸性酸中毒), pulmonary edema (肺水肿)>

Disease
Need
−−−−−→ Examine

<uremia (尿毒症), routine urianlysis (尿常规)>
<bacterial meningitis (细菌性脑膜炎), cranial CT (头颅CT)>
<bowel obstruction (肠梗阻), abdominal x-ray (腹部平片)>

Symptom
BelonдTo
−−−−−−−−−→ Department

<retained placenta (胎盘滞留), obstetrics (产科)>
<fluid retention (水潴留), nephrology (肾内科)>
<stuffy nose (鼻塞), otolaryngology (耳鼻咽喉科)>

Disease
Cause
−−−−−−→ Symptom

<otogenic brain abscess (耳源性脑脓肿), earache (耳痛)>
<neuritis (神经炎), numbness in the hands (手麻)>
<open head injury (开放性颅脑损伤), loss of consciousness (意识模糊)>

Symptom
RelatedTo
−−−−−−−−−−→ Symptom

<fatigue (乏力), feel wobbly and rough (四肢无力)>
<joint pain (关节痛), limited joint mobility (关节活动受限)>
<blurred vision (雾视), eye discomfort (眼睛不舒服)>

Table 4: Novel and meaningful relational medical entity
pairs generated by the proposed method.

5.3 Generative Modeling Capacity
Unlike discriminative models which utilize the discrepancies among
instances of different classes to discriminate one class from another,
the generative nature of the proposed method makes it generate
entity pairs only when it fully understands the diverse expressions
within each medical relationship. To validate such appealing prop-
erty, we introduce the baseline CRVAE-MONOwhichworks with all
entity pairs having the same medical relationship in both training
and generation.

Table 5 compares the fine-grained quality, support and novelty
of the generated entity pairs of CRVAE-MONO and CRVAE on each
relationship. The CRVAE-MONO on each relationship achieves a

reasonable performance, which shows that the generative modeling
has the ability to learn directly from the existing medical entity
pairs without additional data requirement. Furthermore, when all
types of entity pairs are trained altogether in CRVAE, we observe a
consistent improvement in not only quality but also novelty.

CRVAE-MONO Quality Support Novelty Loss (Train/Valid)

Disease
Cause
−−−−−−→ Body Part 0.6830 1.0000 0.4880 54.9830 / 126.7426

Disease
RelatedTo
−−−−−−−−−−→ Disease 0.6890 0.8700 0.4830 51.5131 / 155.0721

Disease
Need
−−−−−→ Examine 0.7080 1.0000 0.5210 54.7635 / 136.4802

Symptom
BelonдTo
−−−−−−−−−→ Department 0.6870 1.0000 0.4660 39.0959 / 72.5872

Disease
Cause
−−−−−−→ Symptom 0.5870 0.9400 0.5730 37.3276 / 83.8797

Symptom
RelatedTo
−−−−−−−−−−→ Symptom 0.6650 0.9200 0.5400 46.1180 / 125.2818

CRVAE

Disease
Cause
−−−−−−→ Body Part 0.7560 0.9990 0.7240

43.0954 / 83.6589
Disease

RelatedTo
−−−−−−−−−−→ Disease 0.6910 0.7440 0.8670

Disease
Need
−−−−−→ Examine 0.7570 0.9810 0.8710

Symptom
BelonдTo
−−−−−−−−−→ Department 0.7680 0.9950 0.6130

Disease
Cause
−−−−−−→ Symptom 0.7020 0.8820 0.9270

Symptom
RelatedTo
−−−−−−−−−−→ Symptom 0.7110 0.8280 0.8880

Table 5: Quality, support and novelty metrics of the gener-
ated relational medical entity pairs by CRVAE-MONO and
CRVAE.

5.4 Effectiveness of Density-based Sampling
To validate the effectiveness of the density-based sampling for the
generator, we compare the proposed method with CRVAE-RAND
where a random sampling strategy is adopted. From Table 3 we can
see that when the distribution of the latent space is not considered,
the random sampling strategy in CRVAE-RAND tends to generate
more entity pairs that are not seen in the existing dataset. However,
the generated entity pairs are of low quality and support.

CRVAE adopts a density-based sampling. The dense region in the
latent space indicates that more entity pairs are located. Therefore,
in CRVAE, the quality and support of the generated entity pairs
benefit from sampling more often at denser regions in the latent
space, resulting in less novel but higher quality entity pairs.

5.5 Ability to Infer Conditionally
To effectively discover structured medical knowledge, one of our
key contributions is to generate relational medical entity pairs for
a specific relationship. That is, the ability to infer new entity pairs
for a particular relationship without additional data preparation.
Besides seamlessly incorporating this idea in the model design, we
also show such conditional inference ability by visualization.

Figure 3 shows the validation samples after being mapped into
the µ space using RVAE (left) and CRVAE (right), respectively. The
samples are colored based on their ground truth relationship indica-
tors. The left figure indicates that when the relationship indicator r
is not given during the training/validation, RVAE is still able to map
different relationships into various regions in the latent space, while
a single distribution models all types of relationships. Such property
is appealing for an unsupervised model, but since the relationship
indicator r is not given during training, RVAE fails to generate
entity pairs having a particular relationship, unless we manually
assign a boundary for each relationship in the latent space. The
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Figure 3: The latent variable µ of RVAE (left) and CR-
VAE (right) on the validation data, presented in a two-
dimensional space after dimension reduction using Primary
Component Analysis.

right figure shows that when the relationship indicator r is incor-
porated during the training, CRVAE learns to let each relationship
have a unified latent representation Pθ (ẑ |r ). A separate but nearly
identical distribution is used to model each medical relationship.
Such property may enable the generator of our model to sample
the expression variations from a relationship-independent latent
space, while the relationship indicator r provides the categorical
information regarding what type of medical relationship should
the expression variation applies on.

5.6 Relationship-enhancing Entity Adjustment
To show the effectiveness of relationship-enhancement, Table 6
shows the nearest neighbors of a disease entity genital tract malfor-
mation (生殖道畸形) and a symptom entity muscle strain (肌肉拉
伤) in their original embedding space, as well as in the space after
relationship-enhancing.

From these cases we can see that the original entity representa-
tions trained with Skip-gram [25] tend to put entities in proximity
when they are mentioned in similar contexts. In the first case, the
entity genital tract malformation (生殖道畸形) is in close proximity
to infertility (不孕) and acyesis (不孕症). In the second case, entities
that have similar context like pull-up (引体向上) and amount of
exercise (运动量) are found near by the entity muscle strain (肌肉
拉伤).

• genital tract malformation (生殖道畸形)
NN in the relationship-enhanced space R1×DR NN in the initial embedding space R1×DE

genital tract (生殖道) reproductive system (生殖系统)
reproductive system (生殖系统) reproductive tract tumors (生殖道肿瘤)
heart malformations (心脏畸形) urinary system malformations (泌尿系畸形)
chromosome abnormalities (染色体异常) infertility (不孕)
reproductive tract tumors (生殖道肿瘤) vaginal atresia (阴道闭锁)
generative organs (生殖器官) genital tract (生殖道)
urinary system malformations (泌尿系畸形) generative organs (生殖器官)
gastrointestinal malformations (消化道畸形) acyesis (不孕症)
• muscle strain (肌肉拉伤)
NN in the relationship-enhanced space R1×DR NN in the initial embedding space R1×DE

strain (拉伤) 拉伤 (strain)
ligament strain (韧带拉伤) muscle tear (肌肉撕裂)
sprain (扭伤) pull-up (引体向上)
foot pain (足痛) sprain (扭伤)
muscle tear (肌肉撕裂) muscle fatigue (肌肉疲劳)
plantar fasciitis (足底筋膜炎) tenosynovitis (腱鞘炎)
joint sprain (关节扭伤) tendonitis (肌腱炎)
repetitive strain injury, RSI (劳损) amount of exercise (运动量)

Table 6: The effectiveness of relationship-enhancing adjust-
ment on entity representations.

The translation layer adjusts the original entity representation so
that they aremore suitable for structuredmedical knowledge discov-
ery. The nearest neighbors in the adjusted space are not necessarily
entities that co-occur in the same context, but more relation-wise
similar with the given entity. For example, heart malformations (心
脏畸形) and chromosome abnormalities (染色体异常) may not be
semantically similar with the given word genital tract malforma-
tion (生殖道畸形), but they may serve similar functionalities in a
Disease

Cause
−−−−−−→ Symptom relationship.

5.7 Hyperparameter Analysis
We train the proposed model with a wide range of hyperparameter
configurations, which are listed in Table 7. We vary the batch size
from 64 to 256. The dimension DR for translating the initial entity
embeddings is set from 64 to 2048. We try two to seven hidden
layers from transht to lht and from [z, r ] to trans ′ht , with different
non-linear activation functions. For each hidden layer, the hidden
unit number DH is set from 2 to 1024. The latent dimension DL is
set from 2 to 200.

Parameter Value

Batch Size 64, 128, 256
DR 64, 128, 256, 512, 640, 768, 1024, 1280, 1536, 1792, 2048
DH 2, 4, 8, 16, 32, 64, 128, 256, 512, 640, 768, 1024
DL 2, 3, 4, 5, 10, 20, 50, 100, 200
Activation ELU [9], ReLU [27], Sigmoid, Tanh
Optimizer Adadelta [47], Adagrad [11], Adam [17], RMSProp [40]

Table 7: Hyperparameter configurations.

The top-5 hyperparameter settings with low validation losses
are shown in Table 8. Among the combinations of hyperparame-
ter configurations, we find that for fully connected hidden layers
from transht to lht , a sequence of six consecutive layers: 1792
·640·640·512·256·64 works the best for the encoder with ELU as
the activation function. For [z, r ] to trans ′ht in the decoder, such
layer setting is organized in a reverse order. A batch size of 64
and the Adadelta optimizer work the best for our task. DR = 640
is used. The latent dimension DL = 200 is adopted for µ and σ 2.
We use Xavier initialization [14] for weight variables and zeros for
biases. Such configuration achieves a training loss of 43.0954 and a
validation loss of 83.6589.

Batch DR {DH } DL Act. Optimizer Loss(Training /Valid)

64 640 1792·640·640·512·256· 64 200 ELU Adadelta 43.0954 / 83.6589
64 640 1792·256·640·512·256·128 200 ELU Adadelta 51.0695 / 86.9153
64 640 1792·256·640·512·256· 64 200 ELU Adadelta 50.4392 / 88.6438
128 640 1792·640·768·512· 64·128 50 ELU Adadelta 50.5997 / 89.0125
256 640 512·768·640·256·512 50 ELU Adam 62.1955 / 89.2014

Table 8: Hyperparameter analysis on the proposed model.
Only the top-5 best configurations are shown.

6 CONCLUSION AND FUTUREWORKS
To efficiently expand the scale of high-quality structured medical
knowledgewhileminimizing the effort in date preparation, we intro-
duce a generative perspective to the Relational Medical Entity-pair
Discovery (REMEDY) problem. A novel model named Conditional
Relationship Variational Autoencoder (CRVAE) is introduced to
exploit the generative modeling ability for efficient discovery of
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relational medical entity pairs. Unlike traditional discriminative
methods which require substantial data as external knowledge, our
model purely learns from the commonalities of the existing medi-
cal entity pairs by their diverse expressions. It is able to generate
meaningful, novel entity pairs of a specific medical relationship
by directly sampling from the learned latent space without the
requirement of additional context information. The performance of
the proposed method is evaluated on real-world medical data both
quantitatively and qualitatively. For future works, we would like
to extend this framework to more general cases where entity pairs
of open-domain knowledge with various granularity are modeled
altogether.
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