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ABSTRACT
Recently, Visual Question Answering (VQA) has emerged as one
of the most significant tasks in multimodal learning as it requires
understanding both visual and textual modalities. Existing methods
mainly rely on extracting image and question features to learn
their joint feature embedding via multimodal fusion or attention
mechanism. Some recent studies utilize external VQA-independent
models to detect candidate entities or attributes in images, which
serve as semantic knowledge complementary to the VQA task.
However, these candidate entities or attributesmight be unrelated to
the VQA task and have limited semantic capacities. To better utilize
semantic knowledge in images, we propose a novel framework
to learn visual relation facts for VQA. Specifically, we build up a
Relation-VQA (R-VQA) dataset based on the Visual Genome dataset
via a semantic similarity module, in which each data consists of an
image, a corresponding question, a correct answer and a supporting
relation fact. A well-defined relation detector is then adopted to
predict visual question-related relation facts. We further propose
a multi-step attention model composed of visual attention and
semantic attention sequentially to extract related visual knowledge
and semantic knowledge. We conduct comprehensive experiments
on the two benchmark datasets, demonstrating that our model
achieves state-of-the-art performance and verifying the benefit of
considering visual relation facts.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Information systems→ Question answering;
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Figure 1: Our proposedmodel, which learns tomine relation
facts with semantic attention for visual question answering.
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1 INTRODUCTION
With the great development of natural language processing, com-
puter vision, knowledge embedding and reasoning, and multimodal
representation learning, Visual Question Answering has become a
popular research topic in recent years. The VQA task is required
to provide the correct answer to a question with a correspond-
ing image, which has been regarded as an important Turing test
to evaluate the intelligence of a machine. The VQA problem can
be easily expanded to other tasks and play a significant role in
various applications, including human-machine interaction and
medical assistance. However, it is difficult to address the problem,
as the AI system needs to understand both language and vision
content, to extract and encode necessary common sense and se-
mantic knowledge, and then to make reasoning to obtain the final
answer. Thanks to multimodal embedding methods and attention
mechanisms, researchers have made remarkable progress in VQA
development.
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The predominant methods first extract language feature embed-
ding by an RNN model and image feature embedding by a pre-
trained model, then learning their joint embedding by multimodal
fusion like element-wise addition or multiplication, and finally feed-
ing it to a sequential network to generate free-form answers or to
a multi-class classifier to predict most related answers. Inspired
by image captioning, some VQA approaches [16, 32, 33] introduce
semantic concepts such as entities and attributes from off-the-shelf
CV methods, which provide various semantic information for the
models. Compared with entities and attributes, relation facts have
larger semantic capacities as they consist of three elements: sub-
ject entity, relation, and object entity, leading to a large number of
combinations. For example, in Figure 1, given the question "what
is the man doing" and the image, relation facts like (man, standing
on, skateboard), (man, on, ice), (person, in, ski suit) enable providing
important semantic information for question answering.

The main challenge for VQA lies in the semantic gap from lan-
guage to image. To deal with the semantic gap, existing attempts
come in two forms. To be specific, some methods extract high-level
semantic information [16, 32, 33], such as entities, attributes, or even
retrieval results in knowledge base [16], such as DBpedia [2] and
Freebase [5]. Other methods introduce visual attention [14, 36, 38]
to select related image regions corresponding to salient visual infor-
mation. Unfortunately, these progressions of introducing semantic
knowledge are still limited in two aspects. On one hand, they use
entities or attributes as high-level semantic concepts, which are
individual and only cover restricted knowledge information. On the
other hand, as they extract the concept based on off-the-shelf CV
methods in other tasks or datasets, the candidate concepts might
be irrelevant to the VQA task.

To make full use of semantic knowledge in images, we propose
a novel semantic attention model for VQA. We build a large-scale
Relation-VQA (R-VQA) dataset including over 335k data samples
based on the Visual Genome dataset. Each data instance is composed
of an image, a relevant question, and a relation fact semantically
similar to the image-question pair. We then adopt a relation detec-
tor to predict the most related visual relation facts given an image
and a question. We further propose a novel multi-step attention
model to incorporate visual attention and semantic attention into a
sequential attention framework. Our model is composed of three
major components (see Figure 4). The visual attention module (Sub-
section 5.1) is designed to extract image feature representation. The
output of the visual attention module is then fed into semantic
attention (Subsection 5.2), which learns to select important relation
facts generated by the relation detector (Section 4). Finally, joint
knowledge learning (Subsection 5.3) is applied to simultaneously
learn visual knowledge and semantic knowledge based on visual
and semantic feature embeddings.

The main contributions of our work are four-fold.

• We propose a novel VQA framework which enables learning
visual relation facts as semantic knowledge to help answer
the questions.

• We develop a multi-step semantic attention network (MSAN)
which combines visual attention and semantic attention
sequentially to simultaneously learn visual and semantic
knowledge representations.

• To achieve that, we build up a large-scale VQA dataset accom-
panied by relation facts and design a fine-grained relation
detector model.

• We evaluate our model on two benchmark datasets and
achieve state-of-the-art performance. We also conduct sub-
stantial experiments to illustrate the ability of our model.

2 RELATEDWORK
2.1 Visual Question Answering
As the intersection of natural language processing, knowledge rep-
resentation and reasoning, and computer vision, the task of Vi-
sual Question Answering has attracted increasing interest recently
in multiple research fields. A series of large-scale datasets have
been constructed, including VQA [1], COCO-QA [27], and Visual
Genome [15] datasets. A commonly used framework is to first en-
code each question as a semantic vector using a long short-term
memory network (LSTM) and to extract image features via a pre-
trained convolution neural network (CNN), then to fuse these two
feature embeddings to predict the answer. In contrast to work in
[12, 26, 35] which use simple feature fusion like element-wise oper-
ation or concatenation, effective bilinear pooling methods are well
studied in [4, 8, 14].

2.2 Attention Methods
Attention networks have recently shown remarkable success in
many applications of knowledge mining and natural language pro-
cessing, such as neural machine translation [3], recommendation
systems [30], advertising [42], document classification [39], senti-
ment analysis [22], question answering [17], and others. Bahdanau
et al. [3] introduced an attention mechanism to automatically select
parts of words in a source sentence relevant to predicting a target
word, which improves the performance of basic encoder-decoder
architecture. Long et al. [22] propose a cognition based attention
(CBA) layer for neural sentiment analysis to help capture the at-
tention of words in source sentences. Different from above works
focusing onword-level attention, sentence-level [39] and document-
level attention [30] pay more holistic attention to the whole textual
content. An attention mechanism has also been successfully applied
to computer vision tasks like image captioning [40], image retrieval
[21], image classification [34], image popularity prediction [43], et
al.

Inspired by the great success achieved by attention mechanisms
on natural language processing and computer vision, lots of VQA
approaches perform attention mechanism to improve model capac-
ity. Current attention methods [36, 38] for VQA mainly perform
visual attention to learn image regions relevant to the question.
Some recent works [8, 9, 13, 14] integrate effective multimodal
feature embedding with visual attention to further improve VQA
performance. More recently, Lu et al. [24] design a novel dual at-
tention network which introduces two types of visual features and
enables learning question-releted free-form and detection-based
image regions. Different from these studies, we propose a novel
sequential attention mechanism to seamlessly combine visual and
semantic clues for VQA.



2.3 Semantic Facts
Relation facts, standing for relationships between two entities, play
an important role in representation and reasoning in knowledge
graph. The encoding and applications of relation facts have been
widely studied in multiple tasks of knowledge representation [6, 29].
Visual relationship detection is an emerging task aiming to generate
relation facts[19, 23], e.g. (man, riding, bicycle) and (man, pushing,
bicycle), which capture various interactions between pairs of entities
in images.

Existing relevant VQA methods involve using knowledge infor-
mation to either obtain retrieval results of entities and attributes
[16, 32, 33], or detect high-level concepts in the image according
to the question query [31]. However, it is not effective enough to
exploit the complicated semantic relations between the question
and image by simply treating semantic knowledge in images as
entities and attributes. To the best of our knowledge, it is still rare
to incorporate relation facts in VQA to provide rich semantic knowl-
edge. In order to utilize relation facts in the VQA task, we propose
effectively learning relation facts and selecting related facts via
semantic attention.

3 PRELIMINARY
In this section, we first formulate the VQA problem addressed in
this paper, and then clarify the predominant framework for the
problem.

3.1 Problem Formulation
Given a question Q and a related image I , the VQA algorithm is
designed to predict the most possible answer â based on both the
language and image content. The predominant approaches for-
malize VQA as a multi-class classification problem in the space of
candidate answer phrases from most frequent answers in training
data. This can be formulated as

â = argmax
a∈Ω

p(a |Q, I ;Θ), (1)

whereΘ denotes the parameters of the model and Ω is the set of
candidate answers.

3.2 Common Framework
The common frameworks for VQA are composed of three major
parts: the image embedding model, the question embedding model,
and the joint feature learning model. CNN models like [10, 28] are
used in the image model to extract image feature representation.
For example, a typical deep residual network ResNet-152 [10] can
extract the image feature map v from the last convolution layer
before the pooling layer, which is given by:

v = CNN(I ). (2)

Before being fed into the CNN model, the input image is resized to
be 448 × 448 pixels from the raw image. The convolution feature
map extracted from the CNN model has a size of 2048 × 14 × 14,
where 14 × 14 is its spatial size corresponding to different image
regions, and 2048 represents the number of feature embedding
dimension of each region.

For the question model, recurrent neural networks like Long
Short-Term Memory (LSTM) [11] and Gated Recurrent Unit (GRU)

[7] are utilized to obtain the question semantic representation,
which is given by:

q = RNN(Q). (3)

To be specific, given a question with T words, the embedding of
each question word is sequentially fed into the RNN model. The
final hidden state hT of the RNN model is taken as the question
embedding.

The question and image representations are then jointly embed-
ded into the same space through multimodal pooling, including
element-wise product or sum, as well as the concatenation of these
representations

h = Φ(v,q), (4)

whereΦ is the multimodal pooling module. The joint representation
h is then fed to a classifier which predicts the final answer.

A large quantity of recent works incorporate visual attention
mechanisms for more effective visual feature embedding. In general,
a semantic similarity layer is introduced to calculate the relevance
between the question and image regions defined as:

mi = sigmoid(ψ (q,vi )), (5)

whereψ is the module of semantic similarity, sigmoid is a sigmoid-
type of function, such as softmax, to map the semantic results to
the value interval [0,1], andmi is the semantic weight of one image
region. Finally, the visual representation of the image is updated
by the weighted sum over all image regions as:

ṽ =
14×14∑
i=1

mivi , (6)

which is able to highlight the representations of image regions most
related to the input question.

4 RELATION FACT DETECTOR
In this section, we describe the process of collecting our Relation-
VQA (R-VQA) dataset, as well as the data analysis in Subsection 4.1.
We then design a relation fact detector in Subsection 4.2 based on
R-VQA to predict visual relation facts related to given questions
and images, which is further incorporated into our VQA model in
Section 5.

4.1 Data Collection for Relation-VQA
Survey of Existing Datasets Existing VQA datasets like VQA
[1] and COCO-QA [27] are made up of images, questions and la-
beled answers, not involving supporting semantic relation facts.
Although the Visual Genome Dataset [15] provides semantic knowl-
edge information such as objects, attributes, and visual relation-
ships about parts of images, which is not aligned with their cor-
responding question-answer pairs. Therefore, we expand Visual
Genome based on semantic similarity and build up the Relation-
VQA dataset, which is composed of questions, images, answers,
and aligned semantic knowledge. The dataset will be released at
https://github.com/lupantech/rvqa.

Data Collection We first define relation facts used in our paper
as shown in Table 1. The relation facts are categorized as one of
three types: entity concept, entity attribute, and entities relation,
based on the semantic data of concepts, attributes, and relationships

https://github.com/lupantech/rvqa


Semantic Knowledge Fact Templates Examples

Entity concept (there, is, object) (there, is, train station )
Entity attribute (subject, is, attribute) (plate, is, white)
Entities’ relation (subject, relation, object) (computer, under, desk)

Table 1: Types of relation facts.

in Visual Genome, respectively. For simplicity, the attribute in an
entity attribute can be an adjective, noun, or preposition phrase. For
Visual Genome, most images are provided with related question-
answer pairs, and parts of images are annotated with semantic
knowledge. Thus, we keep images containing both question-answer
pairs and semantic knowledge, and treat these semantic knowledge
as candidate facts with the form of the above templates.

Response Ranking, a semantic similarity ranking method pro-
posed in [37], is then adopted to compute the relevance between
each QA pair and its candidate facts. It should be noted that as the
ranking algorithm is not our work’s main focus and various ranking
algorithms are compatible in our framework, we simply adopt one
of the state-of the-art ranking methods, such as Response Rank-
ing. We leave the choice or design of a better ranking algorithm
in future work. The relevance matching score obtained from the
Response Ranking module ranges from 0 to 1, and value 0 means
the candidate fact is completely unrelated to the given QA data,
while value 1 means perfect correlation. In the end, after removing
candidate facts below a certain threshold matching score, the fact
with the largest score is chosen as the ground truth. We randomly
partition the generated data into a training set (60%), a development
set (20%) and a testing set (20%). Table 2 shows the data sizes of
R-VQA with different matching score thresholds.

Score THR # Train # Dev # Test # Total # Unique Img. Match

0.20 286,972 95657 95658 478,287 78,863 75.6%
0.25 207,589 69,196 69,198 345,983 72,993 86.1%
0.30 119,333 39,777 39,779 198,889 60,473 90.8%
0.35 28,345 9,448 9,449 47,242 25,884 91.7%
0.40 24,668 8,222 8,224 41,114 23,480 93.1%
0.45 756 252 253 1,261 1,096 95.0%

Table 2: Basic statistics of the R-VQA dataset.

Human Evaluation To ensure the quality of matched facts, we
employ crowdsourcing workers to label whether the generated facts
are closely related to the given QA pair. For each generated dataset
with a certain threshold score, we randomly sample 1,000 examples
for human labeling and ask three workers to label them. The final
accuracy for each dataset is the average accuracy obtained by the
three workers. Additionally, the workers are encouraged to label
every question-answer-fact tuple in more than three seconds. As we
can see in Table 2, with the increase of relevance score threshold,
the R-VQA dataset has higher matched accuracy, together with
a smaller data size. Figure 2 shows two examples in the R-VQA
dataset with a score threshold value of 0.30.

Data Analysis To balance the quality of matched facts and
quantity of data sample, we compromise by choosing a matched
score threshold value of 0.30, leading to a dataset of 198,889 sam-
ples with an average matched accuracy of 90.8% for all question-
answer-fact tuples. There are 5,833, 2,608, and 6,914 unique subjects,

Q: What sport is the person playing?

A: tennis

R: (A man, playing, tennis)

Q: How many animals are there?

A: two

R: (two horses, stand on, the grass)

Figure 2: Examples on the R-VQA dataset. For each image-
question-answer pair, the dataset provides its aligned rela-
tion fact.

Top subjects Top relations Top objects Top Facts

man 7.80 % is 42.68 % white 6.69 % sky, is, blue 2.22 %
woman 2.86 % on 21.74 % blue 4.08 % grass, is, green 1.75 %
sky 2.81 % in 8.23 % green 4.02 % cloud, in, sk 0.76 %
there 2.35 % wearing 3.18 % black 2.79 % plate, is, white 0.72 %
grass 2.24 % holding 2.71 % red 2.43 % train, on, track 0.59 %
cat 2.12 % near 1.64 % brown 2.27 % snow, is, white 0.47 %
dog 1.85 % behind 1.60 % plate 2.11 % tree, is, green 0.39 %
train 1.50 % above 1.56 % table 2.06 % toilet, is, white 0.37 %
tree 1.45 % sitting on 1.47 % wall 1.61 % man, wearing, shirt 0.35 %
plate 1.41 % has 1.12 % water 1.58 % snow, on, ground 0.34 %

Table 3: Top relation facts in the R-VQA dataset.

relations, and objects, respectively, covering a wide range of se-
mantic topics. In Table 3, we can see the distribution of the most
frequent subjects, relations, objects, and facts on the generated
R-VQA dataset.

4.2 Relation Fact Detector
The Relation-VQADataset provides 198,889 image-question-answer-
fact with a matching score of 0.30. That is to say, for each image
in the dataset, a question and a correct answer corresponding to
the image content are provided, as well as a relation fact well sup-
porting the question-answer data. As stated before, a relation fact
describes semantic knowledge information, which benefits a VQA
model a lot with better image understanding. For these reasons, we
develop a relation fact detector to obtain a relation fact related to
both the question and image semantic content. The fact detector
will be further expanded in our relation fact-based VQA model, as
illustrated in Section 5.

Detector Modeling Given the input image and question, we
formulate the fact prediction as a multi-task classification following
[19, 20]. For the image embedding layer, we feed the resized image
to a pre-trained ResNet-152[10], and take the output of the last
convolution layer as a spatial representation of the input image
content. Then we add a spatial average pooling layer to extract a
dense image representation v ∈ R2048 as

v = Meanpooling(CNN(I )). (7)

The Gated Recurrent Unit (GRU) network is adopted to encode the
input question semantic feature as q ∈ R2400

q = GRU(Q). (8)
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To encode the image and question in a shared semantic space, the
feature representations v and q are fed into a linear transformation
layer followed by a non-linear activate function, respectively, as
the following equations,

fv = tanh(Wvv + bv ), fq = tanh(Wqq + bq ), (9)

whereWv ,Wb ,bv ,bq are the learnable parameters for linear trans-
formation, and tanh is a hyperbolic tangent function.

A joint semantic feature embedding is learned by combing the
image and question embeddings in the common space,

h = tanh(Wvh fv +Wqh fq + bh ). (10)

where element-wise addition is employed for the fusion strategy of
twomodalities. After fusing the image and question representations,
a group of linear classifiers are learned for predicting the subject,
relation and object in a relation fact,

psub = softmax(Whsh + bs ), (11)
pr el = softmax(Whrh + br ), (12)
pob j = softmax(Whoh + bo ), (13)

where psub ,pr el ,pob j denote the classification probabilities for sub-
ject, relation and object over pre-specific candidates, respectively.
Our loss function combines the group classifiers as

Lt = λsL(s, ŝ) + λrL(r , r̂ ) + λoL(o, ô) + λw ∥W ∥2, (14)

where s, r ,o are target subjects, relations, and objects, and ŝ, r̂ , ô
are the predicted results. λs = 1.0, λr = 0.8, λo = 1.2 are hyper-
parameters obtained though grid search on the development set. L
denotes the cross entropy criterion function used for multi-class
classification. An L2 regularization term is added to prevent over-
fitting, and the regularization weight λw is set to 1 × 10−7 in our
experiment.

Experiments Given an input image and question, the goal
of the proposed relation detector is to generate a set of relation
facts subject,relation,object related to semantic contents of both
image and question. The possibility of a predicted fact is the sum
of probabilities of the subject, relation, and object in Eqs 11-13.
We conduct experiments on the training and development sets for
learning, and the testing set for evaluation.

Before carrying out the experiments, some essential operations
of data preprocessing are performed. It is observed that there exist
some similar and synonymous elements in facts on R-VQA, which
may confuse the training of fact detection. For example, “on” vs.
“on the top of ” vs. “is on”, “tree” vs. “trees”, etc. Therefore, we merge
these ambiguous elements to their simplest forms based on alias
concept dictionaries labeled by [15], e.g., “on the top of ” and “is on”
are simplified to “on”. The merging results are shown in Table 4.
We take the most frequent subjects, relations, and objects from all

Top subjects (2k) Top relations (256) Top objects (2k)

Operation No. Perc. No. Perc. No. Perc.

Before merging 114,797 96.20 115,159 96.50 113,398 95.10
After merging 115,581 96.86 116,008 97.21 113,962 95.50

Table 4: Merging results of the R-VQA dataset for relation
detector. After merging similar elements, the top element
candidate in relation facts can cover more training data.

Element (Accuracy) Fact (Recall)

Models Sub. Rel. Obj. R@1 R@5 R@10

V only 3.25 39.19 2.11 0.14 0.43 0.72
Q only 56.66 77.34 40.76 23.14 37.82 43.16

ours - no merge 65.98 74.79 43.61 25.23 44.25 51.26
ours - final 66.47 78.80 45.13 27.39 46.72 54.10

Table 5: Results for the relation detector.

unique candidates in training data, which leads to 2,000 subjects, 256
relations and 2,000 objects, respectively, with more details shown
in Table 4.

The evaluation metrics we report are recall@1, recall@5, and
recall@10, similar to [23]. recall@k is defined as the fraction of
numbers the correct relation fact is predicted in the top k ranked
predicted facts. The RMSProp learning method is adopted to train
the detector, with an initial learning rate of 3 × 10−4, a momentum
of 0.98 and a weight decay of 0.01. The batch size is set to 100,
and dropout strategy is applied before every linear transformation
layer.

Results Table 5 shows the experiment results on the R-VQA
test set. The first part of Table 5 reports two baseline models, which
fully supports that both image and question semantic information
is beneficial to relation fact prediction. On the one hand, the model
without question content (denoted as V only) shows a sharp drop
in the accuracy of predicted facts. This phenomenon is intuitive
since semantic facts and questions both come from textual modality,
while images come from visual modality. In order to improve the
semantic space of relation facts, we formulate fact prediction as
a multi-objective classification problem, and candidate facts are
combinations of three elements, namely a subject, a relation, and an
object. Therefore, it is important to provide the question semantic
information to reduce the space of candidate facts. On the other
hand, the model without image content (denoted asQ only) suffers
from limited prediction performance, indicating images also contain
some useful semantic knowledge.

The second part of Table 5 illustrates that the model based on
the merged R-VQA data (denoted as Ours - final) works much
better than the model based on initial R-VQA data (denoted as
Ours - no merge). Although existing methods have made good
progress in visual detection achieving Rec@100 accuracy of 10-
15% on Visual Genome for visual facts, these approaches are not
suitable to predict question-related visual facts. In contrast with
these works, our model incorporates the question feature for fact
prediction, and achieves a much higher accuracy with a smaller



candidate number of k, as well as a much simpler framework. In
future work, it will be still meaningful to design a fine-grained
model to obtain better prediction performance.

5 VISUAL QUESTION ANSWERINGWITH
FACTS

The overall framework of our proposed multi-step attention net-
work for VQA is demonstrated in Figure 4, which takes a semantic
question and an image as inputs, and learns visual and semantic
knowledge sequentially to infer the correct answer. Our proposed
network consists of three major components: (A) Context-aware
Visual Attention, (B) Fact-aware Semantic Attention, and (C) Joint
Knowledge Embedding Learning. Context-aware visual attention is
designed to select image regions associated with the input question
and to obtain visual semantic representation of these regions. Fact-
aware semantic attention aims to weigh detected relevant relation
facts by the learned visual semantic representation, and to learn se-
mantic knowledge. Finally, a joint knowledge embedding learning
model is able to jointly encode visual and semantic knowledge and
infer the most possible answer.

5.1 Context-aware Visual Attention
Similar to many previous VQA approaches [8, 36, 41], we adopt
a question-aware visual attention mechanism to choose related
image regions.

Image Encoding We apply a ResNet-152 network [10] to ex-
tract image feature embedding for an input image. The 2048×14×14
feature map from the last convolution layer is taken as the image
visual feature v , which corresponds to 14 × 14 image regions with
2048 feature channels.

Question Encoding A gate recurrent unit (GRU) [7] is used to
encode the question embedding, which is widely adopted in NLP
and multimodal tasks [17, 22, 41]. To be specific, given a question
withT wordsQ = [q1, ...,qt , ...,qT ], where qt is the one hot vector
of the question word at position t , we first embed them into a
dense representation via a linear transformation xt = Weqt . At
each time t , we feed the word embedding xt into the GRU layer
sequentially, and the GRU recursively updates the current hidden
state ht = GRU(ht−1,xt ) with the input xt and previous hidden
state ht−1. Finally, we take the last hidden state hT as the question
representation.

Visual Attention A visual attention mechanism is adopted to
highlight image regions related to question semantic information,
and to learnmore effective multimodal features between textual and
visual semantic information. First, we apply the multimodal low-
rank bilinear pooling (MLB) method [14] to merge two modalities
of the question and image as

c = MLB(q,v). (15)

where context vector c contains both question and image semantic
content. We map the context vector to attention weights via a linear
transformation layer followed by a softmax layer,

m = softmax(Wcc + bc ), (16)

where weightsm has a size of 14 × 14, and the value of each di-
mension represents the semantic relevance between corresponding
image region and the input question. The context-aware visual

feature is calculated as weighted sum of representations over all
image regions, which is given by:

ṽ =
14×14∑
i=1

m(i)v(i). (17)

We further combine the context-aware visual feature with the ques-
tion feature to obtain the final visual representation as

fv = ṽ ◦ tanh(Wqq + bq ), (18)

where ◦ denotes element-wise multiplication.

5.2 Fact-aware Semantic Attention
Visual attention enables the mining of visual context-aware knowl-
edge, such as object and spatial information, which is beneficial to
questions mainly focusing on object detection. However, models
only with visual attention may suffer from limited performance
when more relation reasoning is required. Therefore, we incorpo-
rate a list of relation facts as semantic clues and propose a semantic
attention model to weigh different relation facts for better answer
prediction. Some existing studies mine semantic concepts or at-
tributes as semantic knowledge to assist VQA models. Our pro-
posed model differs from these works in two ways. On one hand,
existing methods only mine concepts or attributes, while our model
extracts relation facts containing concepts and attributes, obviously
increasing the semantic capacity of the semantic knowledge used.
On the other hand, concepts or attributes in previous works may
be irrelevant to VQA, because they are extracted only considering
image content and based on data or pre-trained CNN models from
other tasks like caption and object recognition [41]. In contrast, we
build up the Relation-VQA dataset to train the relation fact detector
directly focusing on both the input image and question.

Fact Detection First, we incorporate the fact detector intro-
duced previously in Section 4 into our VQA model. Given the input
image and question, the fact detector is used to generate the most
possible K relation facts as a candidate set T = [t1; t2; ...; tK ]. For a
fact ti = (si , ri ,oi ), we embed each element of the fact into a com-
mon semantic space Rn , and concatenate these three embeddings
as the fact embedding as follows:

fti = [Wshsi ,Wrhri ,Wohoi ] ∈ R3n . (19)

Then we can obtain the representation of K fact candidate, denoted
as fT = [ft1 ; ft2 ; ...; ftK ] ∈ RK×3n .

Semantic Attention Second, we develop a semantic attention
to find out important facts considering the input image and ques-
tion. Concretely, we use the context-aware visual representation
as a query to select significant facts in a candidate set. Similar to
context-aware visual attention, given the context-aware visual em-
bedding fv and fact embedding fT , we first obtain joint context
representation ct and then calculate attention weight vectormt as
follows:

ct = MLB(fv , fT ), (20)
mt = softmax(Wct ct + bct ). (21)
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Figure 4: Our proposed multi-step attention network for VQA.

The final attended fact representation over candidate facts is calcu-
lated as

fs =
K∑
i=1

mt (i)fT (i), (22)

which serves as semantic knowledge information for answering
visual questions.

5.3 Joint Knowledge Embedding Learning
Our proposed multi-step attention model consists of two attention
components. One is visual attention which aims to select related
image regions and output context-ware visual knowledge represen-
tation fv . Another is semantic attention which focuses on choosing
related relation facts and output fact-ware semantic knowledge
representation fs . We merge these two representations via element-
wise addition with linear transformation and a non-linear activation
function to jointly learn visual and semantic knowledge,

h = tanh(Wvh fv + bv ) + tanh(Wsh fs + bs ). (23)

As we formulate VQA as a multi-class classification task, a linear
classifier is trained to infer the final answer,

pans = softmax(Wah + ba ). (24)

6 EXPERIMENTS
6.1 Datasets and Evaluation Metrics
Weevaluate our proposedmodel on two popular benchmark datasets,
th VQA dataset [1] and the COCO-QA dataset [27], due to large
data sizes and various question types.

The VQA dataset is annotated by Amazon Mechanical Turk
(AMT), and contains 248,349 training instances, 121,512 valida-
tion instances and 244,302 testing instances based on a number
of 123,287 unique natural images. The dataset is made up of three
question categories including yes/no, number and other. For each
question, ten answers are provided by different annotators. We
take the top 2,000 most frequent answers following previous work
[14] as candidate answer outputs, which cover 90.45% of answers

in training and validation sets. For testing, we train our model on
the train+val set and report the testing result on the test-dev set
from a VQA evaluation server maintained by [1]. There are two
different tasks, an open-ended task and a multi-choice task. For
the open-ended task, we select the most possible answer from our
candidate answer set, while for the multi-choice task, we choose the
answer with the highest activation score among the given choices.

The COCO-QA dataset is another benchmark dataset, including
78,736 training questions and 38,948 testing questions. There are
four question types, object, number, color, and location, which cover
70%, 7%, 17% and 6% of total question-answer pairs, respectively.
All of the answers in the dataset are single words. As the COCO-
QA dataset is smaller, we select all the unique answers as possible
answers, which leads to a candidate set with a size of 430.

Evaluation Metric For the VQA dataset, we report the results
following the evaluation metric provided by the authors of the
dataset, where a predicted answer is considered correct only if
more than three annotators vote for that answer, that is to say,

Acc(ans) = min(1, #humans vote for ans
3

). (25)

For the COCO-QA dataset, a predicted answer is regarded as correct
if it is the same as the labeled answer in the dataset.

6.2 Implementation Details
For encoding question, the embedding size for each word is set to
620. For encoding facts in the VQA model, the top ten facts are
generated and the size of element embedding sizem is set as 900.
All other visual and textual representations are vectors of size 2400.

We implement our model with the Torch computing framework,
one of the most popular recent deep learning libraries. In our ex-
periments, we utilize the RMSProp method for the training process
with mini-batches of 200, an initial learning rate of 3 × 10−4, a
momentum of 0.99, and a weight-decay of 10−8. The validation is
performed every 10,000 iterations and early stopping is applied if
the validation accuracy does not improve at the last five validations.



Open-Ended Multi-Choice

Method All Y/N Num. Other All Y/N Num. Other

LSTM Q+I [1] 53.74 78.94 35.24 36.42 57.17 78.85 35.80 43.41
DPPnet [26] 57.22 80.71 37.24 41.69 62.48 80.79 38.94 52.16
FDA [12] 59.24 81.14 36.16 45.77 64.01 81.50 39.00 54.72
DMN+ [35] 60.30 80.50 36.80 48.30 - - - -

SMem [36] 57.99 80.87 37.32 43.12 - - - -
SAN [38] 58.70 79.30 36.60 46.10 - - - -
QRU [18] 60.72 82.29 37.02 47.67 65.43 82.24 38.69 57.12
MRN [13] 61.68 82.28 38.82 49.25 66.15 82.30 40.45 58.16
MCB [8] 64.20 82.20 37.70 54.80 68.60 - - -
MLB [14] 64.53 83.41 37.82 54.43 - - - -

V2L [31] 57.46 78.90 36.11 40.07 - - - -
AMA [31] 59.17 81.01 38.42 45.23 - - - -
MLAN [41] 64.60 83.80 40.20 53.70 64.80 - - -

RelAtt (ours) 65.69 83.55 36.92 56.94 69.60 83.58 38.56 64.65

Table 6: Evaluation results for our proposedmodel and com-
pared methods on the VQA dataset.

Method All Obj. Num. Color Loc.

2VIS+BLSTM [27] 55.09 58.17 44.79 49.53 47.34
IMG-CNN [25] 58.40 - - - -
DDPnet [26] 61.16 - - - -
SAN [38] 61.60 65.40 48.60 57.90 54.00

AMA [33] 61.38 63.92 51.83 57.29 54.84
QRU [18] 62.50 65.06 46.90 60.50 56.99

RelAtt (ours) 65.15 67.50 48.81 62.64 58.37

Table 7: Evaluation results for our proposedmodel and com-
pared methods on the COCO QA dataset.

We use a drop strategy with a probability of 0.5 at every linear
transformation layer to reduce overfitting.

6.3 Comparison with State-of-the-art
Table 6 demonstrates our proposed model for both open-ended and
multi-choice tasks with state-of-the-arts on the VQA test set. Note
that all listed approaches apply only one type of visual feature and
the report results of a single model.

The first part in the table shows models using simple multi-
modal joint learning without an attention mechanism. Models in
the second part are based on visual attention, while models in the
third part apply semantic attention to learn semantic knowledge
like concepts and attributes. It’s shown that our proposed multi-
step semantic attention network (denoted as RelAtt) improves the
state-of-the-art MLAN [41] model from 64.60% to 65.69% on the
open-ended task, and from 64.80% to 69.60% on the multi-choice
task. To be specific, our model obtains the improvement of 2.51%
in the question types Other. As the state-of-the-art model, apart
form visual attention,MLAN uses semantic attention to mine im-
portant concepts based on image content. In contrast, our model
RelAtt introduces relation facts instead of concepts as semantic
knowledge, which obviously increase semantic capacity. Moreover,
we train a relation detector to learn facts based on both visual and

Method Accuracy

Q+I 53.22
Q+R 51.34
Q+I+Att 57.40

RelAtt-Average 57.84
RelAtt-MUL 58.12

RelAtt (final) 58.63

Table 8: Ablation study on the VQA dataset.

textual content, instead of only using the image [41]. As our pro-
posed R-VQA dataset extended from Visual Genome dataset shares
similar image semantic space with current datasetes like VQA and
COCO-QA, semantic knowledge learned from the fact detector can
be easily transferred to the VQA task. These are the main reasons
that RelAtt beats MLAN significantly.

Table 7 compares our approach with state-of-the-arts on the
COCO-QA dataset. Different from the VQA dataset, COCO-QA
doesn’t contain the multi-choice task, and fewer results are reported
on it. Our model improves the state-of-the art QRU [18] from
62.50% to 65.15% with a growth of 2.65%. In particular, our model
significantly outperforms the state-of-the-art semantic attention
model AMA [33] by 3.77%, indicating the benefits of modeling
semantic relation facts and learning semantic knowledge from R-
VQA dataset.

6.4 Ablation Study
In this section, we conduct five ablation experiments to study the
role of individual components designed in our model. Table 8 re-
ports the ablation results of compared baseline models, which are
trained on the training set, and evaluated on the validation set.
Specifically, the ablation experiments are as follows:

• Q+I, where we only take the image and question to infer the
answer, and image-question joint representation is learned
by a simple fusion method of element wise addition.

• Q+R, where only the question and relation facts generated
by the detector are considered to predict the answer.

• Q+I+Att, where we apply visual attention to learn the joint
representation of the image and question.

• RelAtt-Average, where the semantic attention mechanism de-
noted in Eqs 20 - 22 is removed from our best model RelAtt.
Instead, the fact representation is calculated by averaging
different fact embeddings.

• RelAtt-MUL, where element-wise addition is replaced bymul-
tiplication in Eq 23 to learn the joint knowledge embedding.

The results of first three ablated models indicate that visual at-
tention provides limited visual information for question answering
and relation facts can play an important role as they contain se-
mantic information. A drop of 0.79% in accuracy for RelAtt-Average
illustrates that semantic attention is essential to encode relation
facts. Moreover, it is shown that the fusion method of element-wise
addition might work better than multiplication when encoding
joint visual-textual knowledge representation.



Q: What color is the ball ? 

A: yellow

R: (ball, is, yellow) 0.43

(tennis ball, is, yellow) 0.36

(ball, is, green) 0.12

(there, is, tennis ball) 0.05

(ball, in, air) 0.02

(c)

Q: What kind of court is this ? 

A: tennis court

R: (there, is, tennis court ) 0.52

(white lines, in, tennis court) 0.21

(line, in, tennis court) 0.09

(grass, in, tennis court) 0.08

(court, is, orange) 0.03

(d) 

Q: Does this building have a clock ? 

A: yes

R: (clock, on, building) 0.81

(window, on, building) 0.07

(building, has, clock) 0.03

(clock, near, tower) 0.01

(clock tower, near, building) 0.01

(a)

Q: What are the animals standing on ? 

A: grass

R: (animal, standing on, grass) 0.27

(animal, standing on, field) 0.20

(zebra, standing on, grass) 0.19

(zebra, standing on, field) 0.14

(animal, standing on, gazing) 0.13

(b)

Figure 5: Testing samples on the VQA test set.

6.5 Case Study
To illustrate the capability of our model in learning relation facts as
semantic knowledge, we show some examples on the VQA testing
set with the image, question and predicted answer. We also list
relation facts generated by the fact detector and their attention
weights in the semantic attention component. For saving space,
only five in ten relation facts are shown in Figure 5. In Figures 5 (a)
and (b), the fact detector mines semantic fact candidates related to
both the image and the question, and semantic attention highlights
the most possible facts for question answering. In Figures 5 (c) and
(d), although given the same image, the fact detector can depend on
the different questions to generate corresponding semantic facts.

7 CONCLUSION
In this paper, we aim to learn visual relation facts from images
and questions for semantic reasoning of visual question answering.
We propose a novel framework by first learning a relation factor
detector based on the built Relation-VQA (R-VQA) dataset. Then
a multi-step attention model is developed to incorporate the de-
tected relation facts with sequential visual and semantic attentions,
enabling the effective fusion of visual and semantic knowledge
for answering. Our comprehensive experiments show our method
outperforms state-of-the-art approaches and demonstrate the effec-
tiveness of considering visual semantic knowledge.
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