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ABSTRACT

How do we spot interesting events from e-mail or transportation
logs? How can we detect port scan or denial of service attacks
from IP-IP communication data? In general, given a sequence of
weighted, directed or bipartite graphs, each summarizing a snapshot
of activity in a time window, how can we spot anomalous graphs
containing the sudden appearance or disappearance of large dense
subgraphs (e.g., near bicliques) in near real-time using sublinear
memory? To this end, we propose a randomized sketching-based
approach called SPoTL1GHT, which guarantees that an anomalous
graph is mapped ‘far’ away from ‘normal’ instances in the sketch
space with high probability for appropriate choice of parameters.
Extensive experiments on real-world datasets show that SPOTLIGHT
(a) improves accuracy by at least 8.4% compared to prior approaches,
(b) is fast and can process millions of edges within a few minutes, (c)
scales linearly with the number of edges and sketching dimensions
and (d) leads to interesting discoveries in practice.

CCS CONCEPTS

« Information systems — Data stream mining; » Theory of
computation — Graph algorithms analysis;

KEYWORDS
Anomaly detection; streaming graphs; graph sketching

ACM Reference Format:

Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. 2018.
SPOTLIGHT: Detecting Anomalies in Streaming Graphs. In KDD ’18: The
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, August 19-23, 2018, London, United Kingdom. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3219819.3220040

1 INTRODUCTION

Time-evolving (or dynamic) weighted directed/bipartite graphs,
where both nodes and edges are continuously added over time, are
artifacts generated in many real-world contexts. Examples include
transportation logs (w cabs travel from location s to location d),
network communication logs (w packets sent by IP address s to
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Figure 1: Sudden appearance of a dense subgraph at t=3.

IP address d), instant-messaging, phone call, e-mail logs (w mes-
sages/calls/emails from user s to user d), collaborative editing logs
(w edits made by user s to page d) and so on.

We consider the problem of near real-time anomaly detection in
such settings. Due to the fluid nature of what is considered ‘nor-
mal’, prior works typically focus on detecting specific anomalous
changes to the graph, e.g., bridge edges [22, 26], hotspot nodes [31],
changes to community structure [27, 28], graph metrics [8, 10], etc.
In this work, we focus on detecting anomalies involving the sud-
den appearance or disappearance of a large dense directed subgraphs
(near bicliques), which is useful in numerous applications: detecting
attacks (port scan, denial of service) in network communication
logs, interesting/fraudulent behavior creating spikes of activity in
user-user communication logs (scammers who operate fast and in
bulk), important events (holidays, large delays) creating abnormal
traffic in/out flow to certain locations, etc. We are able to discover
several of the above phenomena in real-world data (e.g., Fig. 12).

We highlight two important aspects of the above definition. The
(dis)appearance of a large dense subgraph is anomalous only if it is
sudden, i.e., it has not been observed before or is not part of a slow
evolution (e.g., steadily growing communities). Similarly, the sud-
den (dis)appearance of a large number of edges is anomalous only
if the edges form a dense subgraph (the so-called lockstep behavior
indicating fraud [5]). Fig. 1 illustrates this. In the evolution of a
bipartite graph, e.g., user edits page, an anomalous dense directed
subgraph appears at =3, indicating a possible edit-war between
users s3 and s4 w.r.t. pages dg, d3, d4, ds. In contrast, the appearance
of subgraph {s1,s2} — {d1,d2,d3} at t=4 is not anomalous, since
it has already been (partially) observed at t=1, 2.

The temporal aspect, i.e., near real-time detection, is crucial for
our problem. The value of a newfound surge of ridership requests
or network attack lies in the moment, not one week later. Moreover,
given that nodes and edges are added over time, we seek solutions
that can operate in sublinear memory, without storing a counter
for each edge/node. The problem we set out to solve is:

PrOBLEM 1. Given a stream of weighted, directed/ bipartite graphs,
{G1,Go, ...}, detect in near real-time whether G; contains a sud-
den (dis)appearance of a large dense directed subgraph using sub-
linear memory.
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The technical challenge in detecting the sudden (dis)appearance
of a large dense directed subgraph is computational. New edges
and nodes are continuously arriving and we have limited time and
space to process the changes. The approach that we take is to design
a short summary or sketch of the graph that both reveals newly
found anomalies and can be quickly updated and maintained on a
high-speed moving data stream.

Concretely, our contributions are: (a) Algorithm (Sec. 4): We
propose SPOTLIGHT, a simple randomized sketching-based approach
to solve Problem. 1. (b) Guarantees (Sec. 5): We prove that SpoT-
LIGHT is focus-aware in expectation, i.e., flags focused addition or
deletion of edges as more anomalous than dispersed changes of the
same magnitude (Thm. 5.2) and maps anomalous graphs ’far’ away
from ‘normal’ instances in the sketch space with high probability
for appropriate choice of parameters (Thm. 5.3). (c) Effectiveness
(Sec. 6): Extensive experiments on real-world data show that Spot-
LiGHT outperforms prior approaches in terms of precision and
recall, is fast and scalable and leads to interesting discoveries.

2 RELATED WORK

Anomaly detection in static graphs is well-studied (for survey,
see [4]). Unsupervised methods rely on node-level features [3],
spectral decomposition [21], finding dense subgraphs signifying
fraud [5, 11], etc. In the presence of limited supervision, belief
propagation is known to work well [7].

Anomaly detection in time-evolving graphs can be reviewed
under the following categories (for survey, see [23]).

(i) Approaches comparing consecutive snapshots [14, 26]: The tra-
ditional approach is to compare adjacent graphs (G, Gt+1) via a
similarity function based on, e.g., belief propagation [14], random
walks [26], etc., They do not consider evolutionary/periodic trends.

(ii) Dense subgraph detection based approaches [13, 25]: These
techniques model dynamic graphs as nodexnodextime tensors and
aim to approximately identify the top-k densest subblocks, e.g.,
persistent dense subgraphs. In contrast, we aim to detect only the
sudden appearance of dense subgraphs in near real-time.

(iii) Graph decomposition/partitioning based approaches [27, 28]:
These methods store a summary of the graph structure based on
tensor decomposition [28] or minimum description language [27]
and identify change points as anomalies. Their primary focus is on
the computationally hard problem of graph modeling.

(iv) Anomalous edge detection approaches [2, 17, 22]: The first
two methods score the likelihood of an edge based on the commu-
nity structure [2], prior occurrence preferential attachment and
homophily information [22]. By scoring edges independent of each
other, these methods miss complex structural (e.g., dense subgraph)
anomalies. They also cannot detect edges which are expected but
do not occur. [17] is closely related, but is applicable when only
multiple heterogeneous graphs are evolving simultaneously.

(v) Others: [10] offers a suite graph metrics to perform anomaly
detection at multiple temporal and spatial granularities. [12] de-
tects anomalous nodes using their activity vectors from principle
component analysis (PCA). [31] also uses PCA, but to detect anoma-
lous nodes (hotspots). [8] proposes density-consistent statistics to
compare graphs having significantly different edge counts.

A qualitative comparison is provided in Table 1.
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Table 1: Qualitative comparison with prior work on anomaly
detection in streaming graphs.

Randomized graph streaming algorithms for testing con-
nectivity and bipartiteness, constructing sparsifiers and spanners,
approximating the densest subgraph etc. in the semi-streaming
model (in O (n polylog n) space where n is the number of nodes)
are popular within the theory community [18, 19]. However, they
do not address graph anomaly detection using sublinear memory.

Randomized algorithms for anomaly detection: Perhaps,
the first known randomized anomaly detector is Isolation Forests
[16] for static multi-dimensional data. Due to its empirical suc-
cess, randomized algorithms for streaming multi-dimensional data
streams are recently gaining traction [9, 20, 29]. In this work, we
investigate a randomized algorithm for the streaming graph setting.

3 PRELIMINARIES

In this section, we introduce our streaming model and formalize
how to detect the sudden (dis)appearance of large dense subgraphs.
Streaming model. Let & = {G;};, be a graph stream. Each
graph G; is a tuple (S;, Dy, &) where S; and D; are the possibly
time-evolving sets of source and destination nodes respectively
and each edge (s, d, w) in the edge set &; originates from a source
s € Sy, ends at a destination d € D; and carries a weight w € R*
(w=0 is equivalent to the absence of an edge). We assume each
node (source or destination) has a unique identifier that is fixed
over time, i.e., the node-correspondence across graphs is known. Let
Ay = [A; sq] be the adjacency of G; where each A; ;4 denotes the
sum of weight of edges connecting a source s to a destination d in
graph G;. While there are other ways of aggregating weights, this
is the most natural in the applications we consider (see Sec. 1) .
The above model allows us to represent a flexible range of graphs:
(i) weighted or unweighted (by letting A; ;4 = 1V s, d), (ii) bipartite
or unipartite (by allowing S; and D; to overlap) and (iii) directed
or undirected (by constraining A, ¢4 = A; 45) when s#d).
Problem Description. Given a graph G with adjacency A, let
G(8’,D’) denote the directed subgraph induced by the source
set 8’ and the destination set D’. Its density p(G(S’, D’)) can
be defined in several ways, e.g., Xses, den Asqa/IS’||D’| - the
higher the total weight of edges in it, the greater its density [6].
In a nutshell, a graph G; is said to be anomalous - i.e., contain a
sudden appearance or disappearance of a dense directed subgraph
— if there is a large directed subgraph which shows a significant
change in density compared to the past graphs {G;-1, Gr-2, .. .}.
For example, in Fig. 1, letting S” = {s3,s4} and D’ = {d2, d3, ds, ds},
the subgraph G3(S’, D’) has high density (=1) but G1(S’, D’) and
G2(S’, D’) have low densities, 0.125 and 0 respectively. Hence G3
is an anomaly. The next section presents the proposed method to
identify such anomalies.
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Figure 2: Overview of SPOTLIGHT

4 PROPOSED METHOD

The proposed method, called SPoTLIGHT, works in two main steps
as shown in Alg. 1. First, it extracts a K-dimensional (we show how
to choose K in Sec. 5) SPoTLIGHT sketch v(G) for every G, such
that graphs containing the sudden (dis)appearance of large dense
subgraphs are ‘far’ from ‘normal’ graphs in the sketch space (line
4). Second, it exploits the distance gap in the sketch space to detect
graphs yielding anomalous sketches as anomalous graphs (line 5).
A schematic is given in Fig. 2. We next elaborate on these two steps
in greater detail.

4.1 SpotLigHT graph sketching

A natural way to sketch a graph is by enumerating the total edge
weight of each directed subgraph G(S’, D’) for sufficiently large
source and destination sets S’, D’. However, this sketch has ex-
ponential number of dimensions and is infeasible to compute or
store. Hence, we propose to compose a sketch containing total
edge weights of K specific directed subgraphs (called query sub-
graphs henceforth) chosen independently and uniformly at random,
according to node sampling probabilities, p for sources and q for
destinations. This leads to (K, p, q)-SPOTLIGHT graph sketching.

Conceptually, SPOTLIGHT sketching first chooses K query sub-
graphs {(S/, Dl’c)},{(z1 by sampling each source (or destination)
into each SI’c (resp. Dl,c) with probability p (resp. g). This choice is
made only once per source or destination (the first time it is seen)
and is fixed throughout the graph stream. Next, for every graph G,
its sketch v(G) € RX is computed as v (G) = ZseS;(,deD;c Agq =
total_edge_weight(G(S;, D, )). For example, in Fig. 3 showing a
graph G with unit-weight edges, there are three edges belonging to
the first query subgraph (red), one to the second (green) and none
to the third (blue). Hence, its sketch is v(G) = (3, 1, 0).

@
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Figure 3: A (K=3,p=0.5,¢9=0.33)-SpoTLIGHT sketch v(G) of
a graph G with unit-weight edges. Each sketch dimension
vr(G) is the total weight of edges going from a random set
of sources S, and to a random set of destinations D, .

S’y = {s1,52} D't = {d,ds}
S2={s:} D'>2={d3ds}
S3={s3s} D’3={di}
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Algorithm 1 SPOTLIGHT graph stream anomaly detection

Input: a stream ® of weighted directed/bipartite graphs
Parameters: sketch dimensionality K, source sampling proba-
bility p, destination sampling probability q
Output: a stream of anomaly scores

1: procedure SpoTL1GHT(®, K, p, q)

2 In1TIALIZE(K, P, 9)

3 for graph G € ® do

4 Vv « SKETCH(G)

5 yield ANOMALYSCORE(V)

6: procedure INITIALIZE(K, p, q)
7: fork=1,...,Kdo

8: Pick source hash hy : S — {1,...,[1/p]} and destina-
tion hash h;{ : D — {1,...,]1/q]} independently at
random.

9: procedure SKETCH(G)

10: v «— Og
11 for edge e = (s,d, w) in graph G do
12: fork=1,...,Kdo

13:
14:

if hy(s) == 1 and h;c(d) == 1 then
UV <~ U +w

15: return v

An efficient implementation of SPOoTLIGHT sketching using hash-
ing is given in Alg. 1. The hash functions ensure that the node to
query subgraph mapping remains fixed over time without explicitly
storing it. The choice of the first hash bucket in line 13 is arbitrary;
one can pick any value within the suitable range. Observe how this
algorithm is able to seamlessly process old and new nodes alike.

SpoTLIGHT sketching can be thought of in two alternative ways.
First, it can be regarded as a memory-limited and non-deterministic
generalization of two common used graph features — nodal degree
(K=|S],p=1/|S|,q=1 or K=|D|,p=1,q=1/|D|) and total edge
weight (K=p=q=1). Second, and more interestingly, each sketch
dimension can be considered as a spotlight which illuminates and
allows for monitoring a region of the graph (i.e., its query subgraph).
The central idea is that the (dis)appearance of a large and dense sub-
graph would be brought to light by at least one of these spotlights,
provided there are enough of them and each one is fine-grained, il-
luminating a small enough region of the graph. In Sec. 5, we prove
high probability guarantees of exactly this nature.

4.2 Anomaly detection in the SPoTLIGHT space

Exploiting the distance gap between the anomalous graphs con-
taining the sudden (dis)appearance of large dense subgraphs and
‘normal’ instances in the SPOTLIGHT (sketch) space, we may now em-
ploy any off-the-shelf data stream anomaly detector (e.g., [9, 20, 29])
to carry out ANOMALYSCORE procedure call (line 5 of Alg. 1). These
techniques require sublinear memory and output an anomaly score
for every data point (i.e., SPOTLIGHT graph sketch) in the stream.

5 THEORETICAL ANALYSIS

This section presents the distance guarantees offered by SPoTLIGHT
sketch space and also analysis of running time and memory.
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5.1 Guarantees for SpoTLiGHT sketches

How do we theoretically analyze the distance between graphs in the
SpOTLIGHT space, even though the sketching algorithm is random-
ized? What properties should this distance function obey? How do
we choose the sketching parameters so that anomalous graphs lie
‘far’ from ‘normal’ instances with high probability in the SpoTLIGHT
space? These are the questions we set out to answer.

In the rest of this section, G is always an arbitrary weighted
directed/bipartite graph on Ny sources and N destinations. Adding
unit-weight edges to G increments corresponding edge weights by
one, even if these edges already existed. v(-) represents the (K, p, q)-
SpoTLIGHT sketch. For simplicity, we let Ny=Ny=N and p=gq. Also,
without loss of generality, we consider only the appearance of dense
subgraphs (disappearance can be argued in a similar way).

We begin by defining SL-distance (SL for SPOoTLIGHT) between
graphs G1 and G in the SPOTLIGHT space as a deterministic function
of G1, G2 and the sketching parameters K, p, q.

DEFINITION 1 (SL-D1STANCE). The SL-distance between graphs
G1 and G is the expected squared Euclidean distance between their
SPOTLIGHT sketches, i.e. d(G1, G2) = E [[[v(G1) — v(G2)|%], where
the expectation is taken over the random coin tosses of the sketching
algorithm!.

We devote the rest of this section to show (i) that SL-distance
is focus-aware, a desirable property for anomaly detection and (ii)
how to set sketching parameters so that ‘anomalous’ graphs lie far
from ‘normal’ ones according to SL-distance. All proofs are given
in the appendix.

5.1.1 Focus-awareness. Many highly dynamic settings, e.g., IP-
IP communication logs, present bursty traffic leading to a high
variance in the total edge weight. Thus, it becomes easy for a sudden
appearance of dense subgraph, e.g., denial of service attack, to evade
detection, unless the distance function used has the so-called focus-
awareness property: ‘random [dispersed] changes in graphs are
less important [anomalous] than targeted [focused] changes of the
same extent’ [14]. In this section, we show that SL-distance has this
desirable property. Consider,

EXAMPLE 1 (STAR Vs. MATCHING). Add an out-star graph (Fig. 4a)
of m unit-weight edges (focused change) to G to obtain Gs. Add a
matching graph (Fig. 4b) of m edges (dispersed change) to G to create
Gu . Intuitively, the appearance of a dense star subgraph is more
anomalous (e.g., potential port scan attack/ hotspot in road traffic)
and accordingly, we desire d(G, Gs) > d(G, Gu). See Fig. 4c.

We show that SL-distance not only satisfies the condition above,
but even the distance gap increases with the number of edges
m and sketch dimensionality K. That is, Gs is increasingly more
anomalous than Gy as m grows. See Lem. 5.1.

LEMMA 5.1 (STAR VS. MATCHING). Suppose G, Gs and Gy are as
defined in Ex. 1, with (K, p, q)-SPoTLIGHT sketches v(-) € RK and let
0 < p,q < 1. Then, d(Gs,G) > d(Gm, G) + O (sz)

The edge addition process in Ex. 1 was deterministic, in the
sense that the relative position of added edges was fixed. We now
consider the more general case where m edges are added uniformly

1d(-, -) is not a metric, but it obeys a relaxed triangle inequality.
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Figure 4: Focus-awareness: Addition of dense star graph is
more anomalous than that of the sparse matching graph.

at random (i.e., non-deterministically) in regions of different sizes.
Thm. 5.2 shows that the smaller the region in which edges are
added, the farther away the final graph lies from the initial graph
in the SPOTLIGHT space (in expectation). In other words, the more
focused the edge addition, the more anomalous the final graph is
expected to be in the SpoTLIGHT-space.

THEOREM 5.2 (Focus-AwWARENEsS). Consider the distribution of
graphs ' obtained by adding m unit-weight edges (in expectation)
to any n’xn’ region of G by sampling each of the n'? possible edges
with probability m/n"?. Let ' be another distribution over graph
obtained by adding edges in a similar manner to any n’’xn"’ region.
Then,

n <n = Eg/r~79r [J(Q,Q/')] > Eg/N? [(J(g,g,)] (1)

Thm. 5.2 guarantees a separation in the expected SL-distance,
(the expectation is taken over the random coin tosses of the edge
addition process), which is a necessary condition for anomaly detec-
tion to work. It is not sufficient, however: in order to detect ¥’/ as
anomalies in the SPOTLIGHT space, a large distance gap with high
probability is crucial. Sec. 5.1.2 addresses precisely this.

5.1.2  Criterion for anomaly detection. To show that anomalous
graphs are mapped far from normal instances in the SPOTLIGHT
space, we need formal definitions for (i) what ‘far’ means in the
sketch space and (ii) what class of ‘normal’ graphs to use as a control
group. These are provided in Def. 2 and Def. 3 respectively.

DEFINITION 2 (e-SL-FARNESS). Ifd(G1,G) > d(G2. G) + €, we
say that Gy is e-SL-far from G compared to Go.

DEFINITION 3 (ERDOS-RENYI CONTROL GROUP). Let G be a graph
on N sources and N destinations. An Erdés-Rényi (ER) control group
FER(G, m) is defined as a distribution of graphs, where each instance
GER is obtained by adding m unit-weight edges (in expectation) uni-
formly throughout the graph by sampling each of the N* possible
edges independently with probability m/N?.

The choice of ER control group is motivated by focus-awareness:
we wish to distinguish the addition of a dense subgraph of m edges
in any focused part of the graph from a case where the same m edges
are added uniformly at random throughout the graph. Thm. 5.3 as-
serts this is indeed the case: when sketching parameters are chosen
appropriately, it is possible to achieve an e-separation between the
anomalous and normal graphs with high probability.

THEOREM 5.3 (ANOMALY DETECTION CRITERION). Add n® unit-
weight edges in any nxn region to get Gpc (BC for BiClique). Let
1 < n? < N2andp = q < 0.5. Then, Gpc is e-SL-far from G
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compared to a Ggg drawn from Fgr(G, n?) with high probability
1-6, i.e.,

Prg, ~7in(Gn?) 4G, GBo) — d(G, Grr) = €] 2 1-6 (2
where § is the false positive rate on the ER control group, provided:

(1+pn2)? e

4p?n2s

i ©

Observe from Eq. (3) that more sketch dimensions are required
if € is high or § is low which is intuitive: the higher the separation
needed between the anomaly and the control group or the lower the
permitted false positive rate on the control group, the more dimen-
sions we need. Another subtle point to note here is that Thm. 5.3
guarantees an isolation of anomalies in the sketch space, without
knowing a priori which nXn region contains the dense subgraph —
this is crucial because, in practice, anomalous dense subgraphs can
appear (or disappear) in any region. Further, Thm. 5.3 also guides
us in choosing parameters, as stated below.

COROLLARY 5.4 (OPTIMAL SKETCHING PARAMETERS). From Eq. (3),
the optimal value of p requiring the least sketching dimensionality
is obtained by solving n°p2 — np, = 6€5. When =0, this reduces to
p«=1/n ie., sample exactly one added edge in expectation. Accord-
ingly, we require Ky > 1/0.

For example, with K=50, p=¢=0.2, we may detect the addition
of n=5 biclique as an anomaly with e=0 separation by incurring at
most §=2% false positive rate on the ER control group.

5.2 Running time and memory analysis

SPOTLIGHT obeys the sublinear memory and linear time constraints
of Problem. 1, as stated below.

LEMMA 5.5 (LINEAR RUNNING TIME). SPOTLIGHT takes O (|E] - K)
time to process each G = (S, D, E) in the stream.

LEMMA 5.6 (SUBLINEAR MEMORY REQUIREMENT). SPOTLIGHT takes
O (log Ng + log N; + K) to process each graph in a stream having
Ng sources and N destinations.

SpotLiGHT sketching runs in O (|&| - K) running time due to the
loops in lines 11-12 (Alg. 1), since the other steps require constant
time. The O (log Ns + log Ny) space is a lower bound on memory
requirements, since each edge (including source and destination
identifiers) needs to be read (one by one). An additional O (K) space
is needed to store the sketch. Anomaly detection in SPOTLIGHT
space takes O (K) time and sublinear space, e.g., using [9].

6 EXPERIMENTS

We empirically evaluate the proposed method on datasets where
the anomalies are verifiable and interpretable. We begin with the
details of datasets and experimental setup.

6.1 Datasets

We shortlist three real-world publicly available time-evolving graph
datasets, where the anomalies can be verified by comparing to
manual annotations or by correlating with real-world events:
Darpa dataset [15] contains 4.5M IP-IP communications taking
place between 9484 source IPs and 23398 destination IPs over 87.7K
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time steps (minutes). Each communication is a directed edge (srcIP,
dstIP, 1, time). We obtain a stream of 1463 graphs by aggregating
edges occurring in every hourly duration. The dataset contains
89 known network attacks — large or stealthy — e.g., portsweep,
ipsweep, mscan and snmpgetattack. Most attacks were large (>
100 edges), but were targeted at and/or engineered from a few hosts
and occurred in single/multiple bursts of time — thus, leading to
the sudden (dis)appearance of large dense subgraphs that we aim to
detect. Using the furnished ground truth (attack/not) for each edge,
we label a graph as anomalous if it contains at least 50 attack edges.

ENRON dataset [24] contains ~ 50K emails exchanged among
151 employees of the energy company over a 3 year period sur-
rounding the famous ENRON scandal. Each email is a directed edge
(sender, receiver, 1, timestamp). We derive a stream of 1139 graphs by
treating each day as its own graph. As ground truth is not directly
available, we verify the detected anomalies by correlating with the
major events of the scandal.

NycTaxr dataset [1] contains taxi ridership data during a 3-
month period (Nov 2015-Jan 2016) obtained from New York City
(NYC) Taxi Commission. Each taxi trip is furnished with pick-up
(PU)/drop-off (DO) times and (lon, lat) coordinates of PU/DO lo-
cations, which we process as follows. We manually click on the
centers of 57 geographically or conceptually distinguishable NYC
zones based on common knowledge - including parks, airports,
stadiums, bridges, residential neighborhoods, islands — on a map
and note their (lon, lat) coordinates. Every PU/DO location is then
assigned to the nearest zone. Thus, a directed edge (srcZone, dst-
Zone, 1, timestamp) is created for each taxi trip. These are further
aggregated into 2208 graphs, each containing trips that took place
in a given hourly duration. We verify the detected anomalies by
correlating with important occasions — holidays, events, unusual
weather conditions — which affect the normal rhythm of road traffic.

6.2 Experimental Setup

We implement SPOTLIGHT (abbreviated as SL henceforth) in Python
and run experiments on MacOS with 2.7 GHz Intel Core i5 pro-
cessor and 16 GB main memory. By default, we use K=50 sketch
dimensions and p=¢=0.2 source/destination sampling probabilities.
Mapping to Thm. 5.3, this corresponds to detecting a n=>5 biclique
(or more) as an anomaly w.r.t. the control group by incurring less
than §=2% false positives. This also ensures all edges are covered
twice in expectation. For the anomalous sketch detection step, we
use the state-of-the-art Robust Random Cut Forests (RRCF) [9] with
50 trees and 256 samples (unless specified otherwise).

Baselines: We compare SPOTLIGHT to the following three base-
lines on the labeled DARpA dataset: (a) EDGEWEIGHT (EW): We
consider a vanilla version of SL by setting K=p=g=1, i.e., sketch-
ing each graph using a single coarse-grained feature, namely, its
total weight of edges. Observe that EW tends to miss ‘small” anom-
alies which do not alter the total edge weight significantly com-
pared to usual. (b) RHSS [22], abbreviated based on the last names
of authors, processes each edge e in the stream individually, out-
putting a likelihood score £(e). We compute the likelihood of a graph
G = (S, D, E) as the geometric mean of the per-edge likelihoods
(similar to [2]): €(G) = (TTe=(s.d, w)cs €(e)")/W where W is the
total edge weight. Finally, to reflect the intuition that a more likely
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precision@ recall@
Method | 100 200 300 400 100 200 300 400
Ideal ‘ 1.0 1.0 096 0.72 | 0.35 0.69 1.0 1.0
SL 096 0.79 0.64 0.57 | 0.34 0.55 0.67 0.80
EW 086 054 047 046 | 0.30 038 049 0.65
RHSS 031 0.28 032 036 | 0.11 0.19 033 0.50
STA 0.23 0.16 0.19 0.24 | 0.08 0.11 0.20 0.34

Table 2: SPoTLIGHT (SL) achieves better precision and recall
than baselines (EW, RHSS, STA). Bold indicates the highest
value in each column (excluding ideal). Underline shows sig-
nificant differences (p-value < 0.01) w.r.t. baselines according
to a two-sided micro-sign test [30].

graph is less anomalous, we use anomaly_score(G) = —log {(G).
We implement RHSS in Python without using the sketching-based
approximation?. (c) STA [28] scores the anomalousness of each
graph as the error incurred in reconstructing it based on a streaming
graph decomposition. We use 50 as the rank of decomposition.

Evaluation Metrics: Each method above outputs an anomaly
score (higher is anomalous) per graph. Sorting these in descending
order, we compute the number of anomalies caught TP(k) (true
positives) among the top k most anomalous graphs, for every k. If
the overall number of anomalies is N, we compute precision@k =
TP(k)/k and recall@k = TP(k)/N. We also summarize the overall
accuracy using the AUC (Area Under ROC Curve) score. Recall
that precision@k, recall@k and AUC lie in [0, 1] and a higher value
is better. In addition, we note the running time of all methods,
averaged over five runs.

Experimental Design: Our experiments are designed to an-
swer the following questions: [Q1] Accuracy: How well is SpoT-
LiGHT able to spot anomalies compared to baselines? What is the
trade-off with respect to running time? How does the performance
vary with parameters? [Q2] Scalability: How does the running
time scale with the number of edges in the stream and sketch dimen-
sions K? [Q3] Discoveries: Does SPOTLIGHT lead to interesting
discoveries on real world data? We now present our findings.

Q1. Accuracy

Table 2, Fig. 5 and Fig. 6 compare the precision, recall, accuracy
(AUC) and running time of SL with baselines on the labeled DArpPA
dataset. Fig. 7 shows the variation of accuracy with parameters. As
SL and EW are initialized based on the first 256 graphs, performance
is reported on the subsequent 1463 — 256 = 1207 graphs, containing
288 ground truth anomalies (23.8% of total).

Precision and recall: Table 2 gives the precision and recall at
cut-off ranks k € {100, 200, 300, 400}. Ideal values are computed
based on an oracle which scores the ground truth anomalies higher
than all non-anomalies. We see that SL consistently outperforms all
baselines achieving 11—46% (statistically significant) improvements.
Further, a plot of precision vs. recall for all methods, shown in Fig. 5,
reveals that SL’s curve (blue) lies completely above those of all
baselines, achieving higher precision for every recall value. Thus,
the performance gain of SL generalizes to all cut-off ranks (k).

2We also tried computing the anomaly score as the negative average of the per-edge
likelihoods and obtained similar results.
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Figure 7: Variation of accuracy with (a) p = g for K = 10 and
(b) with K for p = ¢ = 0.1.

Accuracy vs. running time: Fig. 6 plots the accuracy (AUC)
of each method vs. its running time (in seconds). We see that SL
achieves the highest accuracy (=0.91), 8.4% higher than EW (=0.83)
and 30% higher than RHSS (=0.70). This gain comes at a cost of
a mere 4X slow down compared to EW and RHSS. STA, which
computes graph decomposition, was considerably slower.

Accuracy w.r.t. sampling probabilities p, q: Fig. 7a shows
how the accuracy varies with source (p) and destination (g) sam-
pling probabilities for K=10 dimensions, after tying p=g for simplic-
ity. We see that the poor accuracy results from choosing very low
(anomalous dense subgraphs are easily missed as very few nodes
are sampled resulting in a sketch with mostly zeroes) and very high
(sketch dimensions are coarse-grained, similar to EW, as almost all
nodes are sampled) node sampling probabilities. The sweet spot lies
in between. Over a large interval [0.05, 0.4], the accuracy remained
fairly robust (insensitive) to the exact value of p.

Accuracy w.r.t. #dimensions K: Fig. 7b shows the variation of
accuracy with the number of sketch dimensions K € {5, 20, 35, 50,
65, 80,95} for p = ¢ = 0.1. We see that accuracy increases rapidly
from 0.67 to 0.95 as K is increased from 5 to 50, beyond which
it stabilizes around 0.95. This is the classic ‘diminishing returns’
pattern we expect. When K is low, an added SpotLiGHT sketch
dimension likely ‘illuminates’ a new part of the graph and detects
anomalies that were previously undetected, but once K crosses a
threshold (here, 50) when most of the graph is already ‘illuminated’,
a new sketch dimension gives little to no added benefit.

Q2. Scalability

Fig. 8 shows the scalability of SL with the number of edges and
sketch dimensions. We use RRCF with 10 trees and sample size 128.

With #edges: We uniformly sample 100K — 2M edges from the
DaRpa dataset in eight logarithmic steps and timed SL. Fig. 8a plots
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Figure 8: SL scales linearly with the number of (a) edges in
the stream and (b) sketch dimensions K.

the running time (in seconds) vs. the number of edges in log-log
scales. We see that the points align with a line of slope 1, indicating
SL scales linearly with input size (as is desirable). Note also that SL
is fast and is able to process 2M edges in less than 2 minutes!

With #dimensions: We now vary the SpoTLIGHT sketch di-
mension K € {10, 20,...70,80} and measure the time taken to
compute sketches for 0.5M edges. Fig. 8b, plotting the running time
(in seconds) with the number of dimensions, reveals that SL scales
linearly with the dimensionality of SPOTLIGHT sketch.

These are consistent with our expectations based on Lem. 5.5.

Q3. Discoveries

We provide a complete analysis of SL and baselines on the labeled
DARPA dataset; in the interest of space, we only summarize the
discoveries due to SL on ENrRON and NycTax1 datasets, omitting
baseline results.

6.2.1 DARPA. Leveraging ground truth, we now delve deeper
into why the baselines perform poorly compared to SL on DARPA
dataset. Fig. 9 plots the anomaly scores (higher is anomalous) of
all methods along with ground truth (spikes in the ‘ideal’ black
curve). Our explanation will use Fig. 10, which plots the number
of attack (red) and non-attack (green) edges over time ¢t. In these
figures, t < 0 corresponds to the initialization period for SL and EW,
resulting in zero anomaly score. We now examine each baseline
separately.

EW: Around t={150, 450, 650, 850, 1000}, Fig. 10 shows several
spikes (of height 10*~10°) in attack weight (red); these are sig-
nificantly higher than the non-attack weight (green) which never
exceeds 10%. Hence, these ‘large’ anomalies are easily detected by
tracking only the total edge weight (green spikes in Fig. 9). How-
ever, EW fails to detect anomalous graphs in which the total weight
of edges is comparable to that observed at many prior graphs —
e.g., anomalies around t={1, 300, 500}. On the other hand, SL keeps
track of the total weight of edges in several local regions within the
graph; since attack edges are concentrated in regions of the graph
where non-attack edges typically do not occur, these are detected
by SL, even if the weight of attack edges is small, e.g., at t=1.

RHSS: RHSS scores each graph based on the likelihood of its
edges computed based on its prior occurrence, preferential attach-
ment and homophily. Simply put, (graphs containing) edges which
are seen before or which connect high degree nodes or nodes hav-
ing many common neighbors are non-anomalous. However, we find
that these assumptions are more suited to slowly-evolving social
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Figure 10: Understanding (un)detected anomalies in DARPA
using the number of attack and non-attack edges over time.

networks rather than highly dynamic settings. To see why, consider:
(a) Repeated attacks: neptune attack occurs at 33 different times,
including ¢ = —204, which is within the initialization period. Once
RHSS has ‘seen’ all neptune attack edges, subsequent occurrences,
however rare and dense, are not found anomalous. (b) Repeatedly
attacking (victimized) nodes: Once a node has (been) attacked suffi-
ciently many times, it attains a high degree; consequently, further
attacks by (or on) it are ‘likely’ (due to preferential attachment) and
non-anomalous.

STA: STA computes a single graph decomposition model to
summarize the data seen so far — admittedly, a much harder problem
than anomaly detection — and scores the anomalousness of each

3 A SYN flood denial of service attack to which every TCP/IP implementation is vul-
nerable to some extent. See www.ll.mit.edu/ideval/docs/attackDB.html.


www.ll.mit.edu/ideval/docs/attackDB.html.
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Figure 11: Anomaly detection on ENRON dataset

graph as the error incurred in reconstructing it from the model. The
assumption of a single normal behavior does not apply to dynamic
settings (such as this) - e.g., in Fig. 10, it is as normal for the number
of non-attack edges to be around 1000 as it is to be 0 — consequently,
STA is very sensitive in practice and leads to numerous false alarms.

6.2.2 ENnroN. Fig. 11 plots the anomaly score vs. time for ENRON
dataset, after initializing SL based on the first 256 days (05/12/99-
01/22/00) with shingle length 7 (weekly periodicity). We examine
the top 6 non-consecutive time durations having the highest anom-
aly scores. As we show below, these anomalies correspond to major
events — either company-wide emails or public announcements
triggering excitement or confusion — in the ENRON time line*.

2000: (1) Dec 13-14: Skilling announced as CEO. 2001: (2) May
23: Enron completes its millionth transaction via Enron Online. (3)
Sep 28: Lay to employees: ‘Third quarter is looking great.” (4) Oct
7-Nov 22: Wall Street Journal article reveals Enron’s precarious
state. One ton Enron documents shredded. Fastow ousted. SEC
launches formal investigation. Restructuring of $690M obligation
is announced. 2002: (5) Jan 23-30: Lay resigns as chairman and
CEO. Baxter commits suicide. Cooper takes over as CEO. (6) Feb
7-8: Fastow, Kopper and Skilling testify before Congress.

6.2.3 NvycTaxi. Fig. 12 plots the anomaly score vs. time for Nyc-
Tax1 dataset, after initializing SL based on the first 256 hours (~ 10
days) of Nov 2015 with shingle length 24 (daily periodicity). As be-
fore, we examine the top 6 non-consecutive time durations having
the highest anomaly scores.

The most anomalous period (Jan 23-24) coincided with the Janu-
ary 2016 United States blizzard which produced a historic 3 feet of
snow and rendered normal traffic operation impossible. The next
three anomalies (around Nov 27, Dec 25, Jan 1) corresponded to
festival periods — Thanksgiving, Christmas, New Year — presumably
due to unusual traffic patterns around Manhattan (closed offices,
Macy’s Thanksgiving parade, New Year parties) and airports (peo-
ple flying in/out of JFK and LaGuardia). The next two anomalies
(Nov 14, Nov 29-30) are more interesting because they do not co-
incide with holidays or weather conditions, and as such, are not
expected to be anomalous.

To further understand why Nov 14 and Nov 29-30 were flagged,
we derive an anomaly score per sketch dimension from RRCF and
propagate the anomalousness to NYC zones. Thus, the anomaly score
of a zone is the sum of anomaly scores of all dimensions it par-
ticipates in. The most anomalous zones during these dates turned
out to be Bedford on Nov 14 and LaGuardia airport on Nov 29-30.
Digging deeper, we discovered that these locations popped up in
several archived new articles on these dates. At 12pm Nov 14, ‘huge

4verified using www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html
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Figure 12: Anomaly detection on NycTax1 dataset

fire [ripped] through Bedford-Stuyvesant building™ threatening
its collapse and creating unusual traffic in/out of the area. On Nov
29-30 (Sunday after Thanksgiving), ‘thousands [were] delayed at
airport in an attempt to return home after Thanksgiving’® caus-
ing the usual morning rush hour traffic at LaGuardia to persist
throughout the day with over an hour-long wait times for taxis.

Thus, the sudden (dis)appearance of large dense subgraphs de-
tected by SL on real-world data have a practical significance, from
network attacks in IP-IP communication logs to holidays, abnormal
weather or local traffic conditions in transportation logs.

6.3 Discussion

Why do SL/EW perform better than STA/RHSS? STA and RHSS
make strict modeling assumptions, e.g., stable community struc-
ture or homophily, restricting their scope to limited settings, e.g.,
slowly evolving graphs, friendship networks. In contrast, EW and
SL use a less restrictive definition of anomaly which is applicable
to a wider variety of highly dynamic settings. Can the detected
anomalies be attributed to few nodes? Yes, by explicitly main-
taining the node to sketch dimension mapping and following the
‘anomalousness propagation’ heuristic in Sec. 6.2.3.

7 CONCLUSION AND FUTURE WORK

We presented a simple, scalable, easy-to-code algorithm called SpoT-
LicHT for sketching a graph. SPOTLIGHT sketches facilitate fast and
reliable identification of anomalies, where an anomaly is the sudden
appearance (or disappearance) of a large dense directed subgraph.
Theoretical analysis provides concrete settings where there is a
provable distance gap in the sketch of a graph where m edges are
scattered at random throughout the graph (dispersed) vs. the sketch
of a graph where m edges are added in a smaller subgraph (focused).
The distance gap sets the stage for classic anomaly detection algo-
rithms to spot the more distant graph. Experiments on a variety
of real-world datasets demonstrate that SPOTLIGHT outperforms
prior approaches in terms of both precision and recall. Yet, many
new opportunities remain. Adaptive data-driven sketches, while
harder to analyze, may yield better results in practice. Interpretabil-
ity and anomaly attribution are also important questions. Finally,
the trajectory of an anomaly is vital to both understand and predict.
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APPENDIX (PROOFS FROM SEC. 5.1)
Let1 < k < K be a sketch dimension with query subgraph (S;, D}).
Define binary random variables ris = I[s € Sl,c] and upg =1[d €

Z)I’c], where I[-] is the identity function.

PrOOF OF LEM. 5.1. FromFig. 4a, vk (Gs)-v(G) = X2, rks, Ukd;-
Thus, d(Gs. G) = L5_, E [res, (X2 uka,)?] = Kmpg+Km(m—1)pg?.
From Fig. 4b, vi(Gm) — vk(G) = X1, 'ks;Uka; and so we have
d(Gm.G) = P E (X2 ks, uka,)?| = Kmpg + Km(m — 1)p*q?.
Thus, d(Gs. G) > d(Gm. G) + O (Km?) . [

The other results are based on Lem. .1 stated and proved below.

LEMMA .1. Let G be an arbitrary graph and let G’ be obtained
by adding m(< n?) unit-weight edges (in expectation) uniformly
to any nxn region of G by sampling each of the n? possible edges
independently with probability m/n®. Assuming n is large and p=q,
2pm

4

n
Further, ifn > m, Var [J(Q, g’)] =0 (Kp4m2 (1+ 2p°m +p4m2)),
where the expectation and variance have been taken over the random
coin tosses of the edge addition process.

E[d(G.G")] = Kp*m (1 + +p2m)

PARTIAL PrOOF. Let A = [Ag4] denote the adjacency of edges
added to G to get G'. Then, d(G,G’) = E [(Zs.4 rksAsatika)?]
where the expectation is taken over the coin tosses of the algorithm,
ie, {res. uka} Y k. s,d. Using E [rrs] =E [ug 4] =p. This simplifies to
d(g, Q/) = P2 Zs,d Asd+P3 Zs,d;td’ AsdAsal""p3 Zs#s’,d AsdAs’d+
Pt Tsts.drd AsdAsar- To get B [d(G, G')| where the expectation
is now taken over the randomness of edge addition, i.e., Agg, we
substitute E[A;4] = m/n? for 1 < s < n,1 < d < n (and other-
wise zero) to derive Eq. (4). Variance calculation, while similar and
straight-forward, is omitted in the interest of space. [ |

ProoF oF THM. 5.2 USING LEM. .1. Eq. (4) is decreasinginn. W

ProOF OF THM. 5.3 USING LEM. .1. Let p = E [d_(g, QER)] and
0% = Var [J(Q, QER)] Invoking Chebyshev’s inequality, we have
with probability 1-6: |d(G, Ger) — u| < Yo?/6. Thus, if we flag a
graph G’ as anomalous if |d(G, G') — u| > o2/, we erroneously
flag 6 fraction of the control group as anomalies (false positive
rate). In order to detect Gpc as an anomaly at this threshold, we
need d(G, Gpc) — p1 — € > y/o2/8. Under the stated assumptions,
d(G,Grc) — p ~ 2Kp°n® and 6% ~ Kp*n(1 + 2n%p? + n*p*). Thus,
we derive a quadratic inequality in K resulting in the following,
which can then be relaxed using a? + b? > 2ab to obtain Eq. (3). B

1+ n2p?

4pn\/3

L€
2p3n3

1+ n?p?
P +

4pn\/3

K>

ProoOF OF COR. 5.4. Setting the first derivative of RHS of Eq. (3)
to zero, we get n°p> — np, = 6€d (second derivative at p, > 0). W


http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Method
	4.1 SpotLight graph sketching
	4.2 Anomaly detection in the SpotLight space

	5 Theoretical Analysis
	5.1 Guarantees for SpotLight sketches
	5.2 Running time and memory analysis

	6 Experiments
	6.1 Datasets
	6.2 Experimental Setup
	6.3 Discussion

	7 Conclusion and Future Work
	Acknowledgments
	References



