
An Iterative Global Structure-Assisted Labeled Network Aligner
Abdurrahman Yaşar

School of Computational Science and Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332
ayasar@gatech.edu

Ümit V. Çatalyürek
School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

umit@gatech.edu

ABSTRACT
Integrating data from heterogeneous sources is often modeled as
merging graphs. Given two ormore “compatible”, but not-isomorphic
graphs, the first step is to identify a graph alignment, where a poten-
tially partial mapping of vertices between two graphs is computed.
A significant portion of the literature on this problem only takes the
global structure of the input graphs into account. Only more recent
ones additionally use vertex and edge attributes to achieve a more
accurate alignment. However, these methods are not designed to
scale to map large graphs arising in many modern applications. We
propose a new iterative graph aligner, gsaNA, that uses the global
structure of the graphs to significantly reduce the problem size and
align large graphs with a minimal loss of information. Concretely,
we show that our proposed technique is highly flexible, can be used
to achieve higher recall, and it is orders of magnitudes faster than
the current state of the art techniques.
ACM Reference format:
Abdurrahman Yaşar and Ümit V. Çatalyürek. 2018. An Iterative Global
Structure-Assisted Labeled Network Aligner. In Proceedings of Special In-
terest Group on Knowledge Discovery and Data Mining, London, England,
August 18 (SIGKDD’18), 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The past decade witnessed unprecedented growth in the collection
of data on human activities, thanks to a confluence of factors in-
cluding relentless automation, exponentially reduced storage costs,
electronic commerce, geo-tagged personal technology devices and
social media. This provides an opportunity and a challenge to inte-
grate heterogeneous sources of data and collectively mine it. Many
of these datasets are semi-structured or unstructured, and naturally,
can be best modeled as graphs. Hence, the problem can be stated as
integrating, or merging graphs coming from multiple sources. The
focus of this paper is merging two graphs.

Merging two graphs involves identifying each vertex in a graph
with a corresponding vertex (i.e., representing the same entity)
in the other graph, whenever such corresponding vertices exist.
This problem, known as graph alignment, is a well-studied prob-
lem that arises in many application areas including computational

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGKDD’18, August 18, London, England
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

biology [12, 31], databases [22], computer vision [32], and net-
work security and privacy [13]. This is a challenging problem as
the underlying sub-graph isomorphism problem known to be NP-
Complete [14]. Once an alignment is identified, the final graph
merging is a linear time operation, hence we focus the subsequent
discussion on the alignment problem.

In the context of biological networks, such as protein protein
interaction (PPI) networks, graphs are smaller in size and usually,
there is a high structural similarity. We will show that the perfor-
mance of the methods for aligning such networks, both in terms of
the solution quality and execution time, needs significant improve-
ment to handle the graphs that are of interest in this work, which
are much larger and highly irregular. Some recent studies [34] align
more complex graphs, where vertices and edges are associated with
other metadata, such as types and attributes. The largest number of
vertices tested in these studies is only in the order of tens of thou-
sands, as the algorithms are of high time complexity. In addition,
many of these studies rely on a sparse similaritymatrix [2, 14, 15, 34]
whose computation requires quadratic (in terms of the number of
vertices) run time. Koutra et al. [15] try to overcome this problem
by grouping the vertices of the two graphs using their degrees.
However, if the graphs are not isomorphic or pseudo-isomorphic,
this kind of an approach leads to large errors.

Our primary goal is to develop a scalable algorithm to align
two large graphs. The graphs are assumed to be “similar” but not
isomorphic, in other words, they have different number of vertices
and edges, and adjacency structure of corresponding vertices might
be different. Graphs have additional metadata, such as types and
attributes, on the vertices and edges.

We propose a novel, fast network alignment algorithm, gsaNA,
for the graph alignment problem. We take a divide-and-conquer
approach and partition the vertices into buckets. We then com-
pare the vertices of the first graph in a bucket with the vertices
of the second graph that are in the same bucket. The novelty of
the proposed approach is to use the global structure of the graph
to partition the vertices into buckets. The intuition behind gsaNA
is that for two vertices u and v to map each other, they should
be positioned in a “similar location” in both graphs. To define the
notion of “similar location”, we identify some anchor vertices in
the graphs. These are reference vertices that are either known to
be true mappings or most likely to be. We use each vertex’s dis-
tance to a set of predetermined anchors as a feature. We further
use these distances to partition the problem space, to reduce the
computational complexity of the problem.

The contributions of this paper are as follows:
• We propose a global structure-based vertex positioning tech-
nique to partition the vertices into buckets, which reduces
the search space of the problem.

ar
X

iv
:1

80
3.

03
88

2v
1

 [
cs

.S
I]

 1
1

M
ar

 2
01

8

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGKDD’18, August 18, London, England Abdurrahman Yaşar and Ümit V. Çatalyürek

• We present an iterative algorithm to solve the graph align-
ment problem by incrementally mapping vertices of input
graphs. At each step of the algorithm, similarity scores be-
tween vertices can take the advantage of newly discovered
high-quality mappings.
• We propose generic similarity metrics for computing the
similarity of the vertices using structural properties and any
additional metadata available for vertices and edges.

Our experimental results show that our proposed algorithm,
gsaNA, produces about 1.4× better recall than Final [34], 5× better
recall than IsoRank [30], and 2.6× better recall than NetAlign [2],
2.7× better recall than Klau [14], when we don’t consider patho-
logical cases for NetAlign and Klau. gsaNA outperforms these
algorithms a couple of orders of magnitudes in the execution time.

2 GRAPH ALIGNMENT AND MERGE
A graph G = (V ,E,TV ,TE ,AV ,AE) consists of a set of vertices V ,
a set of edges E, two sets for vertex and edge types TV , TE , and
two sets for vertex and edge attributes AV , AE , where type and
attribute sets can be ∅. An edge e is referred as e = (u,v) ∈ E,
where u,v ∈ V . The neighbor list of a vertex u ∈ V is defined as
N [u] = {v ∈ V : (u,v) ∈ E}. When discussing two graphs, we will
use subscripts 1 and 2 to differentiate them if needed, and ignore
those subscript when the intent is clear in the context. For example,
N1[u] and N2[u ′] will represent the neighbor lists of vertices u and
u ′ in G1 and G2, respectively. Given a vertex x ∈ V or an edge
x ∈ E, a[x] represents the set of attributes of x , and t[x] represents
the type of x . In addition, LV and LE represent the list of existing
vertex and edge types respectively. We also use δ (u,v) to denote
the breath-first search (BFS) distance between vertices u, and v . S
represents the map of a small number of pre-known anchor vertices
between these two graphs.

Given two different graphs G1 and G2, the similarity score be-
tween two verticesu ∈ V1 andv ∈ V2 is denoted by σ : V 2 → R. We
will discuss different variations and components of σ in more detail
in Section 3.4. We define µ[u] : V1 → V2 as an injective mapping,
where µ[u] = v represents mapping of u ∈ V1 to v ∈ V2. If there
is no map, also refereed as nil mapping, we use µ[u] = ⊥. Table 1
displays the notations used in this paper.

Definition 2.1 (Graph Alignment Problem). Given two graphs
G1 = (V1,E1, . . .) andG2 = (V2,E2, . . .), the graph alignment prob-
lem is to find an injective mapping that maximizes:∑

∀u,µ[v],⊥
σ (u, µ[u]). (1)

As we will discuss in Section 3.4, σ can also recursively depend
on µ[v], hence optimization problem in hand is more complex than
the standard maximum weighted graph matching [33].

Given two graphs G1 and G2 (see Figure 1 for a toy example),
there may be some vertices which are different and should not
mapped. For instance, consider the problem of merging two social
networks, such as Facebook and Twitter, although they have differ-
ent purposes and different structures, an important portion of their
users have an account in both networks, while the others do not.

Symbol Description
V Vertex set
E Edge set

TV Vertex type set
TE Edge type set
t[x] Type of the vertex x ∈ V or the edge x ∈ E
AV Vertex attribute set
AE Edge attribute set
a[x] Attribute of the vertex x ∈ V or the edge x ∈ E
LV List of vertex types
LE List of edge types

Ni [u] Neighbor list of vertex u in graph Gi
δ (u,v) Distance between u,v ∈ V
σ (u,v) Similarity score for u ∈ V1 and v ∈ V2

µ[u] Mapping of u ∈ V1 in V2
S = S1 ∪ S2 Anchor (seed) set where S2 = {v : µ[u] = v,v ∈ S1}

Table 1: Notations used in this paper.

0 1

23 4 e

ca

b 4d

5 6 f

+

0 1

23 4

5 6

4

f

e

Figure 1: A toy example showing graph merge problem.

3 ITERATIVE GLOBAL STRUCTURE
ASSISTED NETWORK ALIGNMENT

Figure 2 presents an overview of the proposed gsaNA algorithm.
As illustrated in the figure, gsaNA is composed of three phases
that are executed iteratively until a stable solution is found. Below
we give a high-level overview of each of these phases, then in the
following subsections, we discuss them in detail.

Quad Tree
Creation

Finding
Neighbor Buckets

Local Similarity
Computation

Mapping

Graph 1

Graph 2

Finding
Central Anchors

Finding
Vantage Anchors

Ordering
Vantage Anchors

Anchor Selection

Partitioning

Mapping If
 m

a
p

p
in

g
 i
m

p
ro

v
e
d

Figure 2: Overview of the gsaNA algorithm.

Anchor Selection: Anchors are a small subset of vertices whose
mappings are known. These anchors can be given by the user or
they can be computed by gsaNA at the beginning. Our goal here is
to identify a smaller subset of anchors, that we call vantage anchors,
that can be used as reference points in the rest of the algorithm. This
is done in three steps. First, for a given set of input anchors, gsaNA
computes the central anchors in both graphs. Second, the remaining

An Iterative Global Structure-Assisted Labeled Network Aligner SIGKDD’18, August 18, London, England

anchors are assigned to the closest central anchor. This helps us
to classify anchor vertices. If two anchors are close to the same
central anchor, then they cannot be good candidates to distinguish
the vertices. gsaNA chooses vantage anchors from these assigned
anchors. Finally, gsaNA pairs each vantage anchor with the most
“distant ones”, orders and places them onto a unit circle to be used
in the next phase. Figure 3 illustrates this process.

Central Anchors

Vantage Anchors

Graph 1 Graph 2

(a)

x

y

x

global position
of vertex

position of vertex
to vantage anchor

pairs

vantage anchor
pairs(-1, 1)

(1, -1)

(b)

Figure 3: (a) Vantage anchor selection, (b) positioning of vantage an-
chors to unit circle, and vertex position computation.

Partitioning: In this phase, vertices are partitioned into buckets
on a 2D plane using their distances to the vantage anchors pairs.
The intuition is that for a vertex u to be mapped to a vertexv in the
other graph, their distances to the selected vantage anchor pairs
should be similar. Hence, in this step, first, each vertex’s distances
to vantage anchors are computed. Then, for each pair of vantage
point position of the vertex on this 2D plane is computed. These
positions define a polygon for each vertex. Finally, a single location
is calculated by computing the centroid of this polygon. These
final locations are used to partition the vertices into buckets. Due
to the skewed and irregular structure of the graphs we expect
the distribution of the positions will be skewed on this 2D plane.
Therefore gsaNA partitions the plane with quad-trees [10].

Mapping: The last phase of the algorithm is to compute pairwise
similarity among the vertices of the two graphs that fell into the
same bucket. Then compute a potentially partial mapping. The
process is repeated for all non-empty buckets.

Iterations. The recall of gsaNA depends on the quality of the
selected vantage anchors pairs. After computing a mapping, we
have more information available for the alignment. By leveraging
this information, we can recompute the vantage anchors, partition
the vertices and map them. This way, we can choose better vantage
anchors and decrease the number of false hits. We iteratively do
these steps until the mapping is stable, i.e., it does not change more
than a small fraction (we used 2% in our experiments). As initial
anchors, we pick the highest scored mappings, and we double the
number of anchors we use in each iteration, but we put an upper
bound on that (1,000), and go back to initial anchors if we exceed
that. Alg. 1 presents high-level pseudo-code of gsaNA.

3.1 Anchor Selection
The size of the anchor set plays important role in gsaNA. We cannot
request a complete mapping, but we need a few good anchors

Algorithm 1: gsaNA(G1,G2, S1)
µ ← µa , µp ← ∅
a ← |S1 | ▷ Initialize a as the size of the anchors set
k ← 3 ▷ Initialize k number of top similar vertices per vertex
n ← 20 ▷ Initialize maximum number of iterations
ϵ ← 1.02 ▷ Minimum changes for next iteration
while (n > 0) and (|µ | / |µp | > ϵ) do

µp ← µ ▷ Store current mapping in µp
▷ Computation of shortest paths from seed anchors
for each u ∈ S1 do

▷ For each “new” seed anchor perform a BFS
if δ (u, .) is not computed before then

δ (u, .) ← BFS (G1, u), δ (µ[u], .) ← BFS (G2, µ[u])
SC ← findCentralAnchors(G1, S1, δ, 1)
SV ← findVantageAnchors(S1 \ SC , SC , δ)
OV ←pairAndOrder(SV , δ)
Q ← QTree((−1, 1), (1, −1))
T ← insertVertices(V1 ∪V2, OV , Q, δ)
P ← topSimilars(T , k, σ)
µ ← map(P, µ, σ)
▷ Append highest similar vertices as new new anchors
if a > 1000 then

S1 = {u : µa [u] = v }
a ← |S1 |

for i = 1 to a do
S1 ∪ {u }, where u ← argmaxu∈V1\S1 σ (u, v)

a ← 2 × a
n ← n − 1

return µ

Anchor Sel.

Partitioning

Mapping

to start with. If an anchor set is not given by the user, we set
|S | = 4×log(max(|V1 |, |V2 |)), and bootstrap the algorithm by finding
2×|S | highest degree vertices in both graphs, and then by computing
an initial mapping based on the similarity scores among them (see
Section 3.4).

Given a centrality metric, we define set of central anchors SC
as the l = log(|S |) vertices within the anchor set S which have
the highest centrality measures, and not “too close to each other”.
Among many centrality measures [11], we use the degree centrality.
Alg. 2 presents the pseudo-code for this step.

Algorithm 2: findCentralAnchors(G, S,δ (·, ·), t)
▷ δ is a distance function, t is distance threshold
▷ First find non-close anchors
S ′ ← ∅
for each u ∈ S do

if ∀v ∈ S ′, δ (u, v) > t then
S ′ ← {u }

l ← log(|S |) ▷ Size limit of central anchors
▷ Get l anchors with the highest degree
C ← ∅
for i = 1 to l do

C ← {u }, where u ← argmaxu∈S ′\C |N [u] |
return C

SIGKDD’18, August 18, London, England Abdurrahman Yaşar and Ümit V. Çatalyürek

gsaNA uses the central anchors to classify the rest of the an-
chors, where a subset of them is selected as vantage anchors. gsaNA
uses the vantage anchors as the main reference points to partition
the vertices of the graphs. Pseudo-code for finding vantage anchors
is presented in Alg. 3. To identify them, for each non-central an-
chor, we first find the closest central anchor and assign non-central
anchor to it. Then in order to evenly distribute vantage anchors
over the graph, we limit the number of vantage anchors per cen-
tral anchor, with the minimum number of assigned anchors to any
central anchor. After, for each central anchor, among the assigned
non-central anchors, we select the anchors that are farthest to it.
Here, when needed, we break the ties by picking the anchor that is
farthest than all other central anchors (this is not displayed in the
algorithm).

Algorithm 3: findVantageAnchors(S ′,C,δ)
∀c ∈ C, S ′V [c] ← ∅ ▷ Initialize vantage anchor list
for each u ∈ S ′ do

S ′V [c] ← {u }, where c ← argminc∈C δ (u, c)
a ← minc∈C |S ′V [c] | ▷ limit num. of vantage anchors
SV ← ∅
for each c ∈ C do

for i = 1 to a do
SV ← {u }, where u ← argmaxu∈S ′V [c] δ (u, c)

return SV

Once anchors are assigned to the central anchors, we call Alg. 4 to
pair the assigned anchors using the distance function δ and order
them. Each vantage anchor is paired with the farthest vantage
anchor. Then, one of the pairs is selected as the first pair. The rest
of the pairs are ordered based on the distance of their first vertex
to previous pair’s first vertex.

Algorithm 4: pairAndOrder(SV ,δ)
cnt ← 0 ▷ Initialize counter for ordered pairs
for each u ∈ SV do

v ← argmaxv,u∈SV δ (u, v)
OV [cnt] ← [u, v]
cnt ← cnt + 1
SV ← SV \ {u, v }
if |SV | ≤ 1 then

break
for i = 2 to cnt do

j ← argmini≤j≤cnt δ (OV [i − 1][1], OV [j][1])
swap(OV [i], OV [j])

return OV

3.2 Partitioning
The ordering of the vantage anchors are used to place them on a
unit circle. The first pair is assumed to be “placed” at (1, 0) and
(-1, 0), then second pair is placed on the unit circle with rotating
π/(|S |/2) in counter-clockwise (see Figure 3(b)). Then, we compute
the “position” of a vertex by placing the vertex as the corner of a
right-angle triangle that is composed of the vertex and the vantage
anchor pairs. So its distance to vantage anchors is scaled with the

distance between vantage points and a point is computed using
simple trigonometric functions. We repeat this process for every
vantage anchor pairs. We then compute a final global position for
the vertex as the centroid of the polygon defined by these locations
as corners. The algorithm for this computation is displayed in Alg. 5.
To partition vertices of the two input graphs, we simply compute a
global position of each vertex using this algorithm, and then insert
them into a quadtree. If a bucket exceeds pre-defined size limit, B,
then that bucket is split into four. This continues until all of the
vertices are inserted.

Algorithm 5: getVertexPosition(u,OV ,δ)
θi ← θ ← π / |OV |
poly ← ∅
for p ∈ OV do

▷ distances between anchors and u
a ← δ (u, p[0]), b ← δ (u, p[1]), c ← δ (p[0], p[1])
▷ compute angle between p[0] and u
α ← arccos(a2 + c2 − b2)/(2 × ac)
▷ compute x and y coordinates of u
x ← p[0].x − a × cos(α), y ← a × sin(α)
poly .inser t (Rotate((x, y), θi)) ▷ rotate and insert into l
θi ← rot + θ

return Centroid (poly)

3.3 Mapping
Mapping is the third phase of our iterative algorithm, and the goal
is to compute a mapping between vertices of the two graphs. As we
have stated in Sec. 2, mapping step can be modeled as a maximum
weighted bipartite graph matching [33] problem. However, since
our overall algorithm is an iterative one, we will be sensitive and
only finalize mappings that are most likely be the true mappings in
each iteration, hoping that in further iterations, with more mapping
information becomes available, similarity scores will reflect those
and we can make better mappings. Our mapping algorithm (Alg. 6)
starts with computing similarity scores for each vertex v ∈ V2 in
a non-empty bucket B of the quadtree with vertex u ∈ V1 that is
either in the same bucket, or in one of the “neighboring” buckets.
We check neighbor buckets to make sure that vertices are close
to the border of the buckets are handled appropriately. After we
identified top k similar vertices (stored in P[v]), we compute a
mapping, potentially a partial one, using Alg. 7. For each vertex,
u ∈ V2, we get v ∈ V1 such that v has the highest similarity score
among the other candidates for u. Then we check the previously
assigned mapping of v . If it had no mapping or previous mapping
similarity score was less than what we have now, we mark v as
mapped to u. We repeat this procedure until there is no change in
mapping. In short, our greedy mapping algorithm only considers
the top k best mappings, and only accept mapping both vertices
agrees that their best “suitor” is each other.

3.4 Similarity Metrics
Our similarity score is composed ofmultiple components, some only
depend on graph structure, some depends also on the additional
metadata (types and attributes). Given two graphs G1 and G2 the

An Iterative Global Structure-Assisted Labeled Network Aligner SIGKDD’18, August 18, London, England

Algorithm 6: topSimilars(Q,k,σ)
▷ For each vertex keep a priority list with top k elements.
P [v] ← ∅, for ∀v ∈ V2
for each non-empty B ∈ Q do

for each v ∈ B ∧ v ∈ V2 do
for each u ∈ Neiд(B) ∧ u ∈ V1 do

P [v].inser t (u) ▷ Only keeps top k
return P

Algorithm 7: map(P , µ,σ)
µp ← ∅
while µp , µ do

µp ← µ
for each u ∈ V2 where P [u] , ∅ do

v ← P [u].pop() ▷ Pop the current best for u
if µ[v] = ⊥ or σ (v, u) > σ (v, µ[v]) then

µ[v] = u
return µ

similarity of two vertices, u ∈ V1 and v ∈ V2, our composite score
is a simple average of six components as follows:

σ (u,v) = τ

6
× (α + ∆ + τV + τE +CV +CE) (2)

where Table 2 lists the description of each component in this equa-
tion. Using these metrics we try to cover different graph characteris-
tics which may help to increase final recall. Graph structure scores
will be always available, and we include additional components
when they are available. For example, when there is no additional
metadata is available, our similarity score will reduce to average of
two structural components:

σ (u,v) = 1
2
× (α + ∆). (3)

Table 2: Components of the similarity function.

Symbol Description
τ : Type similarity
α : Anchor similarity
∆ : Relative degree distance [15]
τV : #Same/#Total types of adjacent vertices
τE : #Same/#Total types of adjacent edges
CV : Vertex attribute similarity
CE : Edge attribute similarity

In a typed graph, types of the vertices are very important; for
instance, one would not want to map a human in a graph with a
shop in another graph. For this reason, we define type similarity, τ ,
as a boolean metric (1 or 0), and it checks if the types of the vertices
are the same or not.

Anchor similarity, α(u,v), is defined as the ratio of the number
of common anchors among the neighbors of u and v to the total
number of anchors in them. Formally, it is defined as:

α(u,v) = |{w : w ∈ N1[u] ∧ µ[w] ∈ N2[v] ∧w ∈ S1}|
|{w : w ∈ N1[u] ∪ N2[v] ∧w ∈ S}|

(4)

We borrow the relative degree distance from [15]:

∆(u,v) =
(
1 +

2 × ||N1[u]| − |N2[v]| |
| |N1[u]| + |N2[v]| |

)−1
(5)

The next two components takes type distributions of the neigh-
boring vertices and edges into account. Let us define tc[u, l] as
the number of neighbors of u of the type l , i.e., tc[u, l] = |{u ′ :
u ′ ∈ Ni [u]} ∧ t[u ′] = l}|. Then we define neighborhood vertex type
similarity, τV (u,v), follows:

τV (u,v) =

∑
l ∈LV

min(tc[u, l], tc[v, l])∑
l ∈LV

max(tc[u, l], tc[v, l]) (6)

Neighborhood edge type similarity, τE , is also defined in a similar
way; we omit the equation for simplicity.

When the vertices and/or edges have attributes, we take those
into account with attribute similarity metrics. Formally we define
vertex attribute similarity, CV , like a weighted, generalized Jaccard
similarity, such that:

CV (u,v) =
∑
c ∈a[u]∩a[v]minw(c)∑
c ∈a[u]∪a[v]maxw(c) (7)

wherew(c) represents the weight of a non-numeric attribute.
When edge attributes are are non-numeric, we also define edge

attribute similarity, CE , very similar to Eq. 7. When attributes are
numeric, we define CE as follows:

CE (u,v) =
∑
u′∈N1[u]

∑
v ′∈N2[v] close((u,u

′), (v,v ′))
|N1[u]| × |N2[v]|

where close(e, e ′) is a boolean function, and it is 1 when value
|val(e)−val(e)| < ε for all numeric attributes, and 0 otherwise. Here,
val(e) denotes the value of edge attribute, and ε is pre-determined
threshold.

4 RELATEDWORK
Solution methods proposed in the literature for graph alignment
can be roughly classified into four basic categories [6, 9]: spectral
methods [19, 26, 28, 30], graph structure similarity methods [1, 17,
21, 23, 24], tree search or tabu search methods [5, 16, 20, 29], and
integer linear programming (ILP) methods [2, 8, 14]. All of these
works have scalability issues. Our algorithms leverage global graph
structure and reduces the problem space and augment that with
semantic information to alleviate most of the scalability issues.

As an example of spectral methods, IsoRank [30]—one of the
earliest global alignment work in computational biology—suggests
an eigenvalue problem that approximates the objective of finding
the maximum common subgraph. After finding the vertex sim-
ilarity matrix, IsoRank finds the alignment by solving the maxi-
mumweighted bipartite matching. IsoRank finds a 1/2-approximate
matching using a greedy method, which aligns pair of vertices in
the order of highest estimated similarity. IsoRank was extended to
multiple networks in [19], where pairwise similarity matrices are
computed and an iterative spectral clustering is used to output set
of vertices, one from each network, that aligns with each other. It
is noted that it cannot handle more than five networks.

SIGKDD’18, August 18, London, England Abdurrahman Yaşar and Ümit V. Çatalyürek

In [14], named as Klau in our experiments, the problem of find-
ing the mapping with the maximum score is posed as an integer
quadratic program. It is solved by an integer linear programming
(ILP) formulation via a sequence of max-weight matching problems.
Authors use Lagrangian relaxation to solve this problem approxi-
mately in a more reasonable time. However, the ILP based solutions
will not scale to larger problem sizes.

NetAlign [2] formulates the network alignment problem as an
integer quadratic programming problem to maximize the number of
“squares”. A near-optimal solution is obtained by finding the max-
imum a posteriori assignment using belief propagation heuristic
and message-passing algorithms which yield near optimal results
in practice. Another message passing network alignment algorithm
on top of belief propagation is proposed by Bradde et al. [4]. In [15]
Koutra et al. propose to align two bipartite graphs with a fast pro-
jected gradient descent algorithm which exploits the structural
properties of the graphs.

In a more recent work, Zhang et al. propose Final [34] to solve
attributed network alignment problem. Final extends the concept
of IsoRank [30], and make it capable to benefit from attribute infor-
mation of the vertices and edges to solve this problem. In addition
to graph’s vertex, edge and attribute sets Final adds an optional
input called prior knowledge matrix (H) in which each entry gives
likelihood to align two vertices. Final is one of the most recent
works which solves attributed graph alignment problem and out-
performs [2, 14, 15, 30].

5 EXPERIMENTAL EVALUATION
In this section, we first present several experiments in order to
identify the performance trade-offs of the parameters of gsaNA.

We then compare the performance of proposed gsaNA algo-
rithm gsaNA against four state-of-the-art mapping algorithms:
IsoRank [30], Klau [14], NetAlign [2], and Final [34], each briefly
described in the previous section. We also present performance of
these algorithms and gsaNA when there are errors in the graph
structure or in the attributes. In our experiments we used Matlab
implementations of these algorithms [25, 35].

Experiments were carried out on machine that has 2 16-core
Intel Xeon E5-2683 2.10GHz processors, 512GB of memory, 1TB
disk space, running Ubuntu GNU/Linux with kernel 4.8.0. gsaNA
is implemented in C++ and complied with GCC 5.4.

5.1 Dataset
We use real-world graphs obtained from [7, 27, 35]. We also gener-
ated different size of DBLP [27] graphs. The properties of graphs
are listed in Table 3 and we briefly describe them below.

Douban Online-Offline [35]: These two graphs are extracted sub-
networks of the original dataset [37]. The original dataset contains
50k users and 5M edges. Both networks are constructed using users’
co-occurrences in social gatherings. In [34] people are treated as,
(i) ’contacts’ of each other if the cardinality of their common event
participations is between ten and twenty times, (ii) ’friends’ if the
cardinality of their common event participation is greater than 20.
The constructed offline and online network has 1,118 and 3,906

vertices respectively. The location of a user is used as the vertex at-
tribute, and ’contacts’/’friends’ as the edge attribute. In [34] degree
similarity is used to construct prior preference matrix H .

Flickr-Lastfm [35]: These two graphs are extracted subnetworks
of the original versions [36]. The original versions contain 216K ,
136K users and 9M , 1.7M edges respectively. [34, 36] construct an
alignment scenario for original dataset by subtracting a small sub-
network for their ground-truth. The two subnetworks have 12,974
nodes and 15,436 nodes, respectively. In extracted subnetworks,
the gender of a user (male, female, unknown) considered as the
vertex attribute. [34, 36] sort nodes by their PageRank scores to
label vertices as “opinion leaders”, “middle class”, and “ordinary
users”. Edges are attributed by the level of people they connect
to (e.g., leader with leader). The user name similarity is used to
construct prior preference matrix H .

Flickr-Myspace [35]: These two graphs are extracted subnetworks
of the original dataset [36]. Original datasets contains 216K , 854K
users and 9M , 6.5M edges respectively. [34, 36] construct an align-
ment scenario for original dataset by subtracting a small subnet-
work for their ground-truth. The two subnetworks have 6,714 nodes
and 10,733 nodes, respectively. The vertex and edge attributes com-
puted using the same process described for Flickr-Lastfm.

Facebook-Facebook: We use Snap’s [18] facebook-ego graph. First,
we randomly permute this graph and remove 20% of the edges. Then,
we add 10% new vertices and randomly add 10% edges to create the
second network.

DBLP (2014-2017): We downloaded consecutive years of DBLP
graphs from 2014 [7] to 2017 [27]. The ground-truth between these
two graphs is created using authors’ key element. Vertices are
authors and two authors have an edge if they have co-authored
information. For each publication, DBLP records a cross-ref like
‘conf/iccS/2010’. We use this cross-ref information to create vertex
attributes by splitting a cross-ref by ‘/’ and unionizing initial charac-
ter of each word as the vertex attribute. Edge attribute between two
vertices is the mean of the publication years of co-authored papers
between two authors. The other DBLP graphs listed in Table 3,
the ones with suffixes (0) through (4), are smaller subgraphs of the
original DBLP graph, centered around highest degree vertex.

5.2 gsaNA: Structure Assisted Partitioning
Figure 4 shows the density heat maps of four real-world datasets
after the vertices are positioned onto 2D using the techniques pre-
sented in Section 3.2. Each of the sub-figures presents a square
from (−1, 1) to (1,−1). Vertices’ coordinates are found using Alg. 5.
We have partitioned this space as a uniform grid with bucket sizes
of 0.1 × 0.1, then counted the number of vertices in each bucket.
Darker color represents higher number of vertices in that bucket.

The first thing we observe from Figure 4 is that our partitioning
algorithm is working, that is, it enables us to partition the ver-
tices into different buckets by mapping them into a 2D and then
partitioning that plane with space partitioning techniques. As ex-
pected, uniform density, in other words, load-balance partitioning
of buckets, is almost always impossible because of the skewness
of the real-world graphs. Therefore instead of using a grid-like
partitioning, we use quadtree [10] based partitioning.

An Iterative Global Structure-Assisted Labeled Network Aligner SIGKDD’18, August 18, London, England

Table 3: Properties of the datasets. ⟨ |N [x] | ⟩ represents average vertex degree, and |µ | represent the size of ground truth mapping.

Data Set |V | |E | ⟨|N [x]|⟩ max(|N [x]|) |N [x]| < 3 |µ | |LV | |LE | |S1 | AV AE

Douban-Online 3,906 16,328 4.18 124 1,467 (38%) 1,118 538 2 48 ✗ ✗Douban-Offline 1,118 3,022 2.71 38 638 (57%)
Facebook-1 4,038 88,234 21.86 696 173 (4%) 4,011 5 1 48 ✗ ✗Facebook-2 4,438 79,411 17.89 615 196 (4%)
Lastfm 15,436 32,638 2.11 1,952 13,961 (91%) 452 3 3 56 ✓ ✗Flickr 12,974 32,298 2.49 1,736 10,383 (81%)
Myspace 10,733 21,767 2.03 326 10,120 (94%) 267 3 3 54 ✓ ✗Flickr 6,714 14,666 2.18 1,278 5,836 (87%)
DBLP-17 (0) 59,006 665,800 11.28 2,322 3,098 (5%) 27,029 1 1 68 ✓ ✓DBLP-14 (0) 43,936 368,983 8.40 1,782 3,248 (7%)
DBLP-17 (1) 118,012 1,287,928 10.91 2,322 7,086 (6%) 60,902 1 1 68 ✓ ✓DBLP-14 (1) 87,873 705,725 8.03 1,782 7,230 (8%)
DBLP-17 (2) 236,025 2,232,274 9.46 2,322 17,364 (7%) 130,786 1 1 72 ✓ ✓DBLP-14 (2) 175,746 1,322,910 7.43 1,782 17,688 (10%)
DBLP-17 (3) 491,719 4,089,071 8.31 2,322 51,035 (10%) 294,531 1 1 75 ✓ ✓DBLP-14 (3) 366,137 2,542,331 6.94 1,782 46,853 (13%)
DBLP-17 (4) 983,438 6,685,519 6.80 2,322 148,408 (15%) 649,500 1 1 79 ✓ ✓DBLP-14 (4) 732,275 4,268,145 5.83 1,782 128,641 (18%)
DBLP-17 1,966,877 9,059,634 4.61 2,322 616,386 (31%)
DBLP-14 1,464,539 5,906,792 4.03 1,782 491,206 (34%) 1,440,379 1 1 83 ✓ ✓

DBLP-15 1,620,196 6,828,586 4.22 2,168 528,949 (33%) 1,601,443 1 1 83 ✓ ✓

DBLP-16 1,783,746 7,841,210 4.40 2,149 571,703 (32%) 1,772,129 1 1 83 ✓ ✓

0

50

100

150

200

250

(a) Facebook
0

40

80

120

160

200

(b) Douban

0

50

100

150

200

(c) Flickr-lastfm
0

40

80

120

160

200

(d) Flickr-Myspace

Figure 4: Density Heat Maps

5.3 gsaNA: Scope of Bucket Comparison
In Table 4 we compare the performance of gsaNA under two set-
tings: first, during mapping gsaNA only considers vertices in the
same bucket; second gsaNA looks neighbors of each bucket for
possible mappings. In order to quantify this, we define Hit Count
as the ratio of the number of µ[v] = u mappings considered (i.e.,

gsaNA computed a similarity score between u andv , it may or may
not map them) to the number of such true mappings.

For the settings, we measure the recall, hit count and gain for
alignment of DBLP(2014-2016) vs DBLP(2017) graphs. We define
gain as the ratio of the pair of vertices which we do not compute a
similarity score to the total pair of vertices.

DBLP Graphs
14 vs 17 15 vs 17 16 vs 17

Without Neighbors
Recall 31% 32% 41%

Hit Count 40% 55% 63%
Gain ≈ 99.97 % ≈ 99.98% ≈ 99.98%

With Neighbors
Recall 47% 58% 66%

Hit Count 88% 92% 95%
Gain ≈ 99.85 % ≈ 99.85% ≈ 99.86%
Table 4: Scope of bucket comparisons.

We have following observations, first, the quality of mapping, i.e.
recall, improves with the decrease in the year differences between
two graphs. This is an expected result, for example, 2016 graph is
more similar to 2017 graph than 2014 graph. Second, the hit count
rate decreases almost half when gsaNA only considers vertices
within the same bucket. A similar, though not as much, decrease is
also observed in recall. Third, hit count is sufficiently high for the
second case. Forth, the gain is very high in both cases, i.e., gsaNA
approximately compares only 1/5000 of possible vertex pairs in
the first case, and only 1/1000 in the second case. Based on these

SIGKDD’18, August 18, London, England Abdurrahman Yaşar and Ümit V. Çatalyürek

results, we set the default of gsaNA to consider neighbors of each
bucket for possible mappings.

5.4 gsaNA: Effects of Bucket Size
In this section, we study the effects of bucket size on the recall and
execution time. Figures 5(a) and 5(b) plot theHit Count and execution
time of gsaNA as a function of bucket and graph size. We observe
from Figures 5(a) and 5(b) that run time increase is sub-linear in the
size of buckets within each dataset. Quad-tree style partitioning is
one of the key factors that determine the number of comparisons
which affects the run time. When we double the bucket size the
number of buckets and average number of vertices per bucket does
not double. This explains the sub-linear trend with respect to the
bucket sizes. We observe from Figure 5(b) that number of edges
affects runtime because it affects the complexity of our similarity
function. For instance, running time increases in average about 5×
between DBLP(0) and DBLP(1) graphs and 2.3× between DBLP(4)
DBLP, while the number of edges increase in average about 1.9×
and 1.4× respectively. We also observe from Figures 5(a) and 5(b)
that Hit Count slightly increases with increasing bucket sizes.

Briefly, recall is the ratio of the correct mapping found by gsaNA
to the number of ground truth mapping. Figures 5(c) and 5(d) show
the trend in recall as a function of different bucket sizes for different
graphs. From the figures, we observe that increasing the bucket size
increases the recall, but there is a diminishing return as expected.
Recall increases about 8% on the average with increasing bucket
sizes from 250 to 2000 and only 4% when bucket sizes from 500
to 2000. Based on these results we picked bucket size 500 as our
default for further experiments.

5.5 Comparison against state-of-the-art
Here, we compare our proposed algorithm, gsaNA, with four state-
of-the-artmapping algorithms: IsoRank [30], Klau [14], NetAlign [2],
and Final [34].

In the experiments presented in Section 5.5.1 to 5.5.4 (Figures 6(a)-
7(b) respectively) we also take additional metadata information,
such as vertex and edge attributes, types, etc., whenever it exist.
NetAlign [3] and Klau [14] require an additional bipartite graph,
representing the similarity scores between two input graphs’ ver-
tices. Final [34]’s goal is to leverage the additional metadata infor-
mation and improve IsoRank [30]. Therefore, in these experiments
Final’s [34] prior preference matrix H is used for Douban, Flickr-
Lastfm and Flickr-Myspace graphs for all other algorithms. We
have used H as gsaNA’s CV for Flickr-Lastfm and Flickr-Myspace
graphs, since they reflected vertex attribute similarity, and vertex
attributes were not provided separately. In Facebook, each vertex
considered as possible mapping between top similar (computed as
σ = τ × ∆, see Section 3.4) s vertices, where s is randomly selected
number in the range of [5, 15].

In DBLP(0), first a similarity matrix is generated using CV and
then all elements smaller than 0.9 set as 0. Both for Facebook
and DBLP(0) after deciding possible mappings we have also added
ground truth for not to miss any information. In order to be fair, and
help to improve IsoRank’s result, we also set its similarity matrix’s
elements corresponding to 0 elements in H as 0 as well.

5.5.1 Anchors are not known. Figure 6(a) plots the results where
we assume anchors are not given to gsaNA by the user, and gsaNA
computes anchors as described in Sec. 3.1. As seen in the figure,
gsaNA outperforms all of the algorithms in terms of recall. On
the average, gsaNA produces about 1.3× better recall than Final,
9× better recall than NetAlign, 5× better recall than IsoRank and
8× better recall than Klau. However, NetAlign and Klau performs
really poor on Douban dataset, therefore if we omit this dataset
gsaNA produces 2.3× and 2.4× better results than NetAlign and
Klau, respectively.

5.5.2 Anchors are known. Figure 6(b) presents the results where
the anchor set is given by the user. We set these anchors’ similarity
score as 1.0 in all the other algorithms we compare too. We observe
that gsaNA’s recall increases in Facebook and DBLP(0) graphs
because wrong initial anchor mapping are corrected. However,
Flickr-Myspace graphs’ recall slightly decreases gsaNA produces
about 1.4× better recall than Final, 9× better recall than NetAlign,
5× better recall than IsoRank and ≈ 8× better recall than Klau.
Same as previous experiment if we omit Douban dataset gsaNA
produces 2.6× and 2.7× better results than NetAlign and Klau,
respectively.

5.5.3 Execution Time. Figure 6(c) displays the execution time
results, in log-scale, of the algorithms we compare. In this figure,
the pre-processing time of computing similarity bipartite graph for
NetAlign and Klau andH matrix for Final is not included (we have
directly used the H matrix provided with Final implementation).
We would like to note that, computation of those similarity scores
requires a significant time. Another point we need to remind, gsaNA
is written in C++ while the other algorithms are implemented in
Matlab. Hence, it may not be appropriate to compare individual
absolute results, but still these results should be good to provide
some insights to trends of the execution time.

For small graphs, all algorithms are “fast enough” to use in prac-
tice. However, for DBLP(0), which the smallest of our DBLP graphs,
as you can see other algorithms becomes orders of magnitudes
slower. gsaNA can solve our largest DBLP graph, 32 times larger
than DBLP(0), almost with same time they take for DBLP(0).

5.5.4 Effect of Errors. In Figure 7(a) we present results when
there is structural error in the input graphs. We randomly remove
5%, 10%, 15% and 20% of the edges from both graphs, then for each
case we re-run the systems. Since we observed only small amount
of change in the results, and recall of mapping decreased with
increasing error rate, in all experiments, we simply plotted them
as a stacked bar results, that is there are 4 horizontal lines in each
bar depicting 5%, 10%, 15% and 20% error, from top to bottom. We
expect, at some point, gsaNA will be effected from structural error
because eventually shortest paths are going to change, and hence
partitioning. However, as seen in the figure, removing edges up
to 20% did not significantly change the partitioning because the
results doesn’t significantly changed, i.e. still gsaNA has good hit
count ratio.

In Figure 7(b) we present results when there are errors in at-
tributes. Since we had used H matrices provided by Final as our
attribute similarity, basically we randomly changed 5%, 10%, 15%
and 20% of the non-zero elements ofH . And for each case we re-run

An Iterative Global Structure-Assisted Labeled Network Aligner SIGKDD’18, August 18, London, England

Douban Lastfm Myspace Facebook
Graphs

0

20

40

60

80

100

H
it

 C
o
u
n
t

(%
)

9
 i
te

rs
.

9
 i
te

rs
.

9
 i
te

rs
.

9
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

250 500 1000 2000

0

10

20

30

40

50

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

250 500 1000 2000

(a) Hit Count: 1st set of Graphs

DBLP(1) DBLP(2) DBLP(3) DBLP(4) DBLP
Graphs

0

20

40

60

80

100

H
it

 C
o
u
n
t

(%
)

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

250 500 1000 2000

0

20

40

60

80

100

120

140

160

180

E
x
e
cu

ti
o
n
 T

im
e
 (

h
)

250 500 1000 2000

(b) Hit Count: 2nd set of Graphs

Douban Lastfm Myspace Facebook
Graphs

0

10

20

30

40

50

60

70

80

90

R
e
ca

ll
(%

)

9
 i
te

rs
.

9
 i
te

rs
.

9
 i
te

rs
.

9
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

250 500 1000 2000

(c) Recall: 1st set of Graphs

DBLP(1) DBLP(2) DBLP(3) DBLP(4) DBLP
Graphs

0

10

20

30

40

50

60

R
e
ca

ll
(%

)

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

4
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

5
 i
te

rs
.

250 500 1000 2000

(d) Recall: 2nd set of Graphs

Figure 5: Figures 5(a) and 5(b) plot the Hit Count (left axis) and Execution Time (right axis), and Figures 5(c) and 5(d) plot the Recall, as a
function of different graph and bucket sizes. Each bar represents a different bucket size. Number of iterations of gsaNA for each instance is
printed at the bottom of each bar, and hit count or recall at each iteration is depicted as stacked results.

gsaNA Final NetAlign IsoRank Klau
Systems

0

10

20

30

40

50

60

70

80

90

R
e
ca

ll
(%

)

1
2
 i
te

rs
.

5
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

7
 i
te

rs
.

Douban

Flickr-Lastfm

Flickr-Myspace

Facebook

DBLP(0)

(a) Anchors are not known

gsaNA Final NetAlign IsoRank Klau
Systems

0

10

20

30

40

50

60

70

80

90

R
e
ca

ll
(%

)

9
 i
te

rs
.

4
 i
te

rs
.

2
 i
te

rs
.

2
 i
te

rs
.

6
 i
te

rs
.

Douban

Flickr-Lastfm

Flickr-Myspace

Facebook

DBLP(0)

(b) Anchors are known

gsaNA Final NetAlign Klau IsoRank
Systems

100

101

102

103

104

105

E
x
e
cu

ti
o
n
 T

im
e
 (

s)
 (

lo
g
)

Douban

Lastfm

Myspace

Facebook

DBLP(0)

(c) Execution Time

Figure 6: Figures 6(a) to 6(b) plot the Recall of the systems under conveyed scenarios. Figure 6(c) plots the Execution Time. In each plot (left
axis) represents Recall or Execution Time . Each bar represents a different graph.

gsaNA Final NetAlign IsoRank Klau
Systems

0

10

20

30

40

50

60

70

80

90

R
e
ca

ll
(%

)

Douban

Flickr-Lastfm

Flickr-Myspace

Facebook

(a) Structural Noise

gsaNA Final NetAlign IsoRank Klau
Systems

0

10

20

30

40

50

60

70

80

90

R
e
ca

ll
(%

)

Douban

Flickr-Lastfm

Flickr-Myspace

Facebook

(b) Attributed Noise

Figure 7:Recall under noise. In each plot (left axis) representsRecall
or Execution Time . Each bar represents a different graph.

all the algorithms, except Klau [14], since the errors in attributes
do not affect it. As expected other systems’ recalls, including that
of gsaNA, decrease when we increase the noise. We also observe
that interestingly while removing edges randomly doesn’t affect
IsoRank, adding noise to its similarity matrix changes its final re-
call. This experiment, as expected showed that largest changes in
the recall were in gsaNA and Final, especially in Flickr-Lastfm

and Flickr-Myspace data sets, since those are the algorithms that
incorporates the attribute similarity.

6 CONCLUSION
We have developed an iterative graph alignment framework called
gsaNA, which leverages the global structure-based vertex position-
ing technique to reduce the problem size, and produces high quality
alignments that outperforms the state-of-the-art. As the graph sizes
increases, the runtime performance of the proposed algorithm be-
comes more pronounced, and becomes order of magnitudes faster
than the existing algorithms, without a significant decrease in the
performance. As a future work, our goal is parallelize gsaNA to
take advantage of multi-node and/or multi-core architectures. Many
parts of the algorithm, like initial distance computations from mul-
tiple anchors, and pairwise similarity computation, which are the
most two time consuming part of the gsaNA, can be easily paral-
lelized. We also would like to explore techniques to extend gsaNA
to solve multi graph alignment problem.

ACKNOWLEDGMENT
We would like to extend our gratitude to Dr. Bora Uçar for his valu-
able comments and feedbacks for the initial draft of this manuscript.

SIGKDD’18, August 18, London, England Abdurrahman Yaşar and Ümit V. Çatalyürek

REFERENCES
[1] Ahmet E Aladağ and Cesim Erten. 2013. SPINAL: scalable protein interaction

network alignment. Bioinformatics 29, 7 (2013), 917–924.
[2] Mohsen Bayati, Margot Gerritsen, David F Gleich, Amin Saberi, and Ying Wang.

2009. Algorithms for large, sparse network alignment problems. In IEEE Interna-
tional Conference on Data Mining (ICDM). 705–710.

[3] Mohsen Bayati, Devavrat Shah, and Mayank Sharma. 2005. Maximum weight
matching via max-product belief propagation. In International Symposium on
Information Theory (ISIT). 1763–1767.

[4] Serena Bradde, Alfredo Braunstein, Hamed Mahmoudi, Francesca Tria, Martin
Weigt, and Riccardo Zecchina. 2010. Aligning graphs and finding substructures
by a cavity approach. EPL (Europhysics Letters) 89, 3 (2010), 37009.

[5] Leonid Chindelevitch, Cheng-Yu Ma, Chung-Shou Liao, and Bonnie Berger. 2013.
Optimizing a global alignment of protein interaction networks. Bioinformatics
(2013), btt486.

[6] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. Thirty
years of graph matching in pattern recognition. International journal of pattern
recognition and artificial intelligence 18, 03 (2004), 265–298.

[7] Erik Demaine and MohammadTaghi Hajiaghayi. 2017. BigDND: Big Dynamic
Network Data. http://projects.csail.mit.edu/dnd/. (2017).

[8] Mohammed El-Kebir, Jaap Heringa, and Gunnar W Klau. 2011. Lagrangian
relaxation applied to sparse global network alignment. In IAPR International
Conference on Pattern Recognition in Bioinformatics. Springer, 225–236.

[9] Ahed Elmsallati, Connor Clark, and Jugal Kalita. 2016. Global Alignment of
Protein-Protein Interaction Networks: A Survey. IEEE Transactions on Computa-
tional Biology and Bioinformatics 13, 4 (2016), 689–705.

[10] Raphael A Finkel and Jon Louis Bentley. 1974. Quad trees a data structure for
retrieval on composite keys. Acta informatica 4, 1 (1974), 1–9.

[11] Linton C. Freeman. 1978. Centrality in social networks conceptual clarification.
Social Networks 1, 3 (1978), 215 – 239.

[12] Takashi Ito, Tomoko Chiba, Ritsuko Ozawa, Mikio Yoshida, Masahira Hattori,
and Yoshiyuki Sakaki. 2001. A comprehensive two-hybrid analysis to explore
the yeast protein interactome. Proceedings of the National Academy of Sciences
98, 8 (2001), 4569–4574.

[13] Syed A Jafar et al. 2011. Interference alignment A new look at signal dimensions
in a communication network. Foundations and Trends® in Communications and
Information Theory 7, 1 (2011), 1–134.

[14] Gunnar W. Klau. 2009. A new graph-based method for pairwise global network
alignment. BMC Bioinformatics 10, 1 (2009), S59.

[15] Danai Koutra, Hanghang Tong, and David Lubensky. 2013. Big-align: Fast bipar-
tite graph alignment. In IEEE International Conference on Data Mining (ICDM).
389–398.

[16] Segla Kpodjedo, Philippe Galinier, and Giulio Antoniol. 2014. Using local similar-
ity measures to efficiently address approximate graph matching. Discrete Applied
Mathematics 164 (2014), 161–177.

[17] Oleksii Kuchaiev, Tijana Milenković, Vesna Memišević, Wayne Hayes, and Nataša
Pržulj. 2010. Topological network alignment uncovers biological function and
phylogeny. Journal of the Royal Society Interface 7, 50 (2010), 1341–1354.

[18] Jure Leskovec and Andrej Krevl. 2017. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. (2017).

[19] Chung-Shou Liao, Kanghao Lu, Michael Baym, Rohit Singh, and Bonnie Berger.
2009. IsoRankN: spectral methods for global alignment of multiple protein
networks. Bioinformatics 25, 12 (2009), i253–i258.

[20] Dasheng Liu, Kay Chen Tan, Chi Keong Goh, and Weng Khuen Ho. 2007. A
multiobjective memetic algorithm based on particle swarm optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 37 (2007), 42–50.

[21] Noël Malod-Dognin and Nataša Pržulj. 2015. L-GRAAL: Lagrangian graphlet-
based network aligner. Bioinformatics (2015), btv130.

[22] SergeyMelnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity flooding:
A versatile graph matching algorithm and its application to schema matching. In
IEEE International Conference on Data Engineering (ICDE). 117–128.

[23] Vesna Memišević and Nataša Pržulj. 2012. C-GRAAL: C ommon-neighbors-based
global GRA ph AL ignment of biological networks. Integrative Biology 4, 7 (2012),
734–743.

[24] Tijana Milenkovic, Weng Leong Ng, Wayne Hayes, and Natasa Przulj. 2010.
Optimal network alignment with graphlet degree vectors. Cancer informatics 9
(2010), 121.

[25] Netalign 2017. netalign : Network Alignment codes. https://www.cs.purdue.edu/
homes/dgleich/codes/netalign/. (2017).

[26] Behnam Neyshabur, Ahmadreza Khadem, Somaye Hashemifar, and
Seyed Shahriar Arab. 2013. NETAL: a new graph-based method for global
alignment of protein–protein interaction networks. Bioinformatics 29, 13 (2013),
1654–1662.

[27] University of Trier. 2017. DBLP: Computer Science Bibliography. http://dblp.
dagstuhl.de/xml/release/. (2017).

[28] Rob Patro and Carl Kingsford. 2012. Global network alignment using multiscale
spectral signatures. Bioinformatics 28, 23 (2012), 3105–3114.

[29] Vikram Saraph and Tijana Milenković. 2014. MAGNA: maximizing accuracy in
global network alignment. Bioinformatics 30, 20 (2014), 2931–2940.

[30] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2007. Pairwise global alignment of
protein interaction networks by matching neighborhood topology. In Annual
International Conference on Research in Computational Molecular Biology. 16–31.

[31] Peter Uetz, Loic Giot, Gerard Cagney, Traci A. Mansfield, et al. 2000. A compre-
hensive analysis of protein–protein interactions in Saccharomyces cerevisiae.
Nature 403, 6770 (2000), 623–627.

[32] Paul Viola and William M Wells III. 1997. Alignment by maximization of mutual
information. International journal of computer vision 24, 2 (1997), 137–154.

[33] Douglas B. West. 2001. Introduction to graph theory. Pearson.
[34] Si Zhang and Hanghang Tong. 2016. FINAL: Fast Attributed Network Alignment.

In ACM International Conference on Knowledge Discovery and Data mining. 1345–
1354.

[35] Si Zhang and Hanghang Tong. 2017. FINAL: Fast Attributed Network Alignment.
https://github.com/maffia92/FINAL-network-alignment-KDD16. (2017).

[36] Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, and Philip S. Yu. 2015. COSNET:
Connecting Heterogeneous Social Networks with Local and Global Consistency.
In ACM International Conference on Knowledge Discovery and Data mining. 1485–
1494.

[37] Erheng Zhong, Wei Fan, Junwei Wang, Lei Xiao, and Yong Li. 2012. ComSoc:
Adaptive Transfer of User Behaviors over Composite Social Network. In ACM
International Conference on Knowledge Discovery and Data mining. 696–704.

http://projects.csail.mit.edu/dnd/
http://snap.stanford.edu/data
https://www.cs.purdue.edu/homes/dgleich/codes/netalign/
https://www.cs.purdue.edu/homes/dgleich/codes/netalign/
http://dblp.dagstuhl.de/xml/release/
http://dblp.dagstuhl.de/xml/release/
https://github.com/maffia92/FINAL-network-alignment-KDD16

	Abstract
	1 Introduction
	2 Graph Alignment and Merge
	3 Iterative Global Structure Assisted Network Alignment
	3.1 Anchor Selection
	3.2 Partitioning
	3.3 Mapping
	3.4 Similarity Metrics

	4 Related Work
	5 Experimental Evaluation
	5.1 Dataset
	5.2 gsaNA: Structure Assisted Partitioning
	5.3 gsaNA: Scope of Bucket Comparison
	5.4 gsaNA: Effects of Bucket Size
	5.5 Comparison against state-of-the-art

	6 Conclusion
	References

