
BagMinHash – Minwise Hashing Algorithm for Weighted Sets
Otmar Ertl
Linz, Austria

otmar.ertl@gmail.com

ABSTRACT
Minwise hashing has become a standard tool to calculate signa-
tures which allow direct estimation of Jaccard similarities. While
very e�cient algorithms already exist for the unweighted case, the
calculation of signatures for weighted sets is still a time consuming
task. BagMinHash is a new algorithm that can be orders of mag-
nitude faster than current state of the art without any particular
restrictions or assumptions on weights or data dimensionality. Ap-
plied to the special case of unweighted sets, it represents the �rst
e�cient algorithm producing independent signature components.
A series of tests �nally veri�es the new algorithm and also reveals
limitations of other approaches published in the recent past.

1 INTRODUCTION
Increasing amounts of data require e�cient algorithms to keep
processing times reasonably small. Sketching algorithms can be
used to trade accuracy for less computational costs. In case of tasks
such as near-duplicate detection, classi�cation, or clustering, which
are based on proximity computations between objects, locality-
sensitive hashing enabled large-scale applications by reducing the
dimensionality of high-dimensional data [16].

Various distance metrics can be used to model similarity. If
objects can be described as sets of features, a very popular metric
is the Jaccard distance 1 − J where the Jaccard similarity J of sets
A and B is de�ned as

J =
|A ∩ B |
|A ∪ B | . (1)

Minwise hashing was the �rst algorithm to calculate hash signa-
tures (also known as �ngerprints) of sets which can be directly
used for Jaccard similarity estimation [2]. It maps a set S to an
m-dimensional vector hS = (hS1,hS2, . . . ,hSm) with statistically
independent components. Ignoring potential hash collisions, the
probability that same components of two di�erent signatures hA
and hB for sets A and B have identical value is equal to the Jaccard
similarity

P(hAi = hBi) = J , ∀i ∈ {1, 2, . . . ,m}. (2)

�is property allows unbiased estimation of J given the fraction of
matching components

Ĵ (hA,hB) =
1
m

m∑
i=1
1(hAi = hBi) (3)

where 1 denotes the indicator function. �e variance of this esti-
mator is

Var(Ĵ (hA,hB)) = J (1 − J)/m, (4)
because the number of equal components is binomially distributed
with success probability J .

�e calculation of signatures of sizem using minwise hashing is
expensive, because the computation time scales like O(mn) with n

denoting the cardinality of the input set. Typical values form lie in
the range from 100 to 10 000 and n can be in the millions [29].

1.1 Advanced Minwise Hashing Techniques
One permutation hashing is able to reduce the computational costs
signi�cantly and has optimal time complexity O(m + n) [21]. How-
ever, this approach leads to biased Jaccard estimates for small n
compared tom . �is problem can be remedied by introducing a
postprocessing step called densi�cation [32]. Unfortunately, this
approach increases the variance of the estimator compared to (4),
because it breaks the statistical independence of individual signa-
ture components leading to correlated occurrences of matching
components.

Recent developments such as fast similarity sketching [7] with
time complexity O(m logm + n) or the SuperMinHash algorithm
[10] with time complexity O(m log2m + n) also lead to signature
component matches that are statistically dependent. But their cor-
relation is negative, which even reduces the variance and thus
improves the estimation error for small n. However, all these al-
gorithms cannot replace the original approach, if independence of
components is important.

An orthogonal technique that can be used with any minwise
hashing approach is b-bit hashing [19, 20]. It maps signature com-
ponents uniformly to b-bit integer values. �e higher probability
of matching signature components by chance introduces an esti-
mation bias which is compensated by the estimator

Ĵb (hbA,h
b
B) =

Ĵ (hbA,h
b
B) − 2

−b

1 − 2−b
=

(
1
m

∑m
i=1 1(hbAi = h

b
Bi)

)
− 2−b

1 − 2−b
.

Here hbA,h
b
B ∈ {0, 1, . . . , 2

b −1}m denote the signatures a�er reduc-
ing all components to b bits. �e corresponding loss of information
increases the variance

Var(Ĵb (hbA,h
b
B)) = Var(Ĵ (hA,hB)) +

1 − J
(2b − 1)m

where Var(Ĵ (hA,hB)) denotes the variance of the signature compo-
nents before reduction to b-bit values, which is given by (4) in case
of original minwise hashing. Hence, to get the same estimation
error, the signature sizem needs to be increased. Nevertheless, if
the Jaccard similarity J is not too small, the memory footprint of
the whole signature can be signi�cantly reduced. However, this
comes with higher computational costs for calculating the addi-
tional signature components. �erefore, a fast hashing scheme is
even more important for b-bit hashing.

1.2 Weighted Minwise Hashing
Sometimes it is more convenient to represent objects as bags also
known as multisets, where each element is associated with a non-
negative weight. For example, words or shingles in text documents

ar
X

iv
:1

80
2.

03
91

4v
2

 [
cs

.D
S]

 2
2

Ju
l 2

01
8

are o�en weighted according to a measure called term frequency–
inverse document frequency (TF-IDF) [16]. A similarity measure
for bags is the weighted Jaccard similarity which generalizes (1).
If two bags are described by weight functionswA andwB , respec-
tively, which return a nonnegative weight for each element of a
universe D, the weighted Jaccard similarity is given by

J =

∑
d ∈D min(wA(d),wB (d))∑
d ∈D max(wA(d),wB (d))

. (5)

If all weights are binary with values either zero or one, and we
de�ne sets A and B as A := {d ∈ D : wA(d) > 0} and B := {d ∈ D :
wB (d) > 0}, respectively, (5) will simplify to (1).

Finding signatures for the weighted case satisfying (2) is more
challenging. For integral weights it is possible to add a correspond-
ing number of replications and to apply conventional minwise hash-
ing [13]. �is is not e�cient, because elements with large weights
blow up the e�ective data size and hence also the computation time.
Some optimizations to reduce the number of replications and to
apply unweighted minwise hashing to real weights are described
in [11] and [12].

�e �rst algorithm inherently designed for real weights is based
on rejection sampling [3, 15]. A faster approach is consistent
weighted hashing with amortized time complexity O(mn) [25].
Here n = |{d ∈ D : w(d) > 0}| denotes the number of elements
having nonzero weight. A further development of this concept
called improved consistent weighted sampling (ICWS) achieves the
same time complexity as worst case and has become the state-of-
the-art algorithm for weighted minwise hashing [14].

Recently, a weighted hashing scheme was presented, which can
lead to signi�cant speedups [31]. �e algorithm requires the uni-
verse D to be �xed and that weight upper boundswmax(d) exist for
all d ∈ D. �e time complexity of this algorithm depends on the
sparsity s of the weighted set and is O(ms−1 + n). �e sparsity is
de�ned as s := (∑d ∈D w(d))/(∑d ∈D wmax(d)). If s−1 is small com-
pared to the number of elements with nonzero weights (s−1 � n),
the computation time can be signi�cantly smaller compared to the
ICWS algorithm. However, general applicability is limited by the
required a priori knowledge of sharp upper bounds for wmax(d).
Moreover, space requirements scale at least linearly with dimen-
sionality |D |.

1.3 Applications
Weighted minwise hashing is used in many applications such as
near duplicate image detection [4], duplicate news story detection
[1], source code deduplication [26], time series indexing [24], hi-
erarchical topic extraction [11], or malware classi�cation [29] and
detection [9]. Unfortunately, it was reported that weighted minwise
hashing using the ICWS algorithm can be very expensive due to
the O(mn) time complexity, which sometimes limits its application
[9, 29] or requires massive computing power using GPUs [26].

Recent works suggest to use weighted minwise hashing for ma-
chine learning too. As example, weighted minwise hashing was suc-
cessfully applied to train generalizedmin-max kernel support vector
machines [18, 22]. Furthermore, asymmetric locality-sensitive hash-
ing [33], which can be realized using weighted minwise hashing,
was used for e�cient deep learning [34]. Finally, it could also be

applied to random forests that are constructed using the weighted
Jaccard index as similarity measure [30].

2 PRELIMINARIES
�e aforementioned improvements on unweighted minwise hash-
ing [7, 10, 32] achieve much be�er time complexities than O(mn)
of the original approach [2]. �is was our main motivation to de-
velop an algorithm for the weighted case, which reduces the O(mn)
complexity of the ICWS algorithm in a similar fashion.

Both, original minwise hashing as well as the ICWS algorithm
calculate for every input element m di�erent independent hash
values, one for each signature component. Hence, n di�erent hash
values are computed for every signature component. �e smallest
of them �nally de�nes the corresponding signature value. If n �m,
an element is expected to generate at most one hash value small
enough to contribute to the signature. �erefore, in many cases, it
would be su�cient to determine for each input element only the
smallest hash value including its assigned signature component. If
this could be achieved in a more direct way, without the need to
calculate allm di�erent hash values �rst, a more e�cient signature
computation would be possible.

2.1 Discretization Error
�e ICWS algorithm is exact for any nonnegative real weights.
�is is a nice property from a theoretical point of view. However,
computers always approximate real numbers by values from a �nite
set. �erefore, we analyze the impact of weight discretization on
the Jaccard index calculation. Let V = {v0,v1, . . . ,vL} be the set
of discrete weight values satisfying 0 = v0 < v1 < . . . < vL . �e
weight functionw(d) can be approximated by

w̃(d) := vk(d) with k(d) := max({l : vl ≤ w(d)}). (6)

We assume that the discretization V is chosen in such a way that
for all occurring weightsw(d)

w̃(d) ≤ w(d) ≤ w̃(d)(1 + ε) (7)

is ful�lled, where ε � 1 is a small positive constant. If an ap-
proximation J̃ of the generalized Jaccard index (5) is calculated
using approximations w̃A and w̃B for weight functionswA andwB ,
respectively, following error bounds can be established

J (1 − ε) ≤ J (1 + ε)−1 ≤ J̃ ≤ J (1 + ε). (8)

�ey show that the relative error of J̃ is limited by ε . Since J ∈ [0, 1],
ε is also a bound for the absolute error.

Assumption (7) is nothing special as it is usually satis�ed by
�oating-point numbers as long as w(d) is neither subnormal nor
too large. As example, assume V represents the set of all non-
negative single-precision �oating-point numbers for which L =
0x7F7FFFFF = 2 139 095 039. If all occurring nonzero weights are
within the normal range of single-precision �oating-point numbers
which is roughly from 1.18E−38 to 3.40E38, (7) will be satis�ed and
ε will correspond to the machine epsilon which is approximately
1.19E−7.

It makes sense to compare the discretization error Jε to the
error introduced by estimating the weighted Jaccard index from
hash signatures using (3). According to (4) the standard error is√
J (1 − J)/m. �e discretization error Jε can be ignored as long as

2

ε �
√
(1 − J)/(Jm). For instance, consider an extreme case where

J is close to 1 andm is huge. As example, J = 1− 10−6 andm = 106,
for which the estimation error would be in the order of 10−6. �e
error is still one magnitude larger than the discretization error made
by using single-precision weights and can therefore be neglected.
�is example shows that single precision will be su�cient for most
applications.

�e assumption of discrete weights is important for our new
approach. As weight values are already discrete on computers, this
is not really a restriction or a disadavantage compared to existing
approaches, because one could simply chooseV based on the given
discretization. However, as demonstrated, a coarser choice will of-
ten be su�cient as long as the additional discretization error on the
Jaccard index remains small compared to the expected estimation
error.

2.2 Random Numbers
We assume an ideal hash function whose output can be treated
as uniformly distributed and truly random number. Hashing the
same input multiple times, but each time enriched with a di�erent
value from some prede�ned integer sequence, allows generating
a sequence of independent hash values. �erefore, an ideal hash
function can be used as ideal pseudorandom number generator
(PRNG) which produces random bit sequences of arbitrary length
as function of some given seed value. Hereina�er, we may write
randomnumber instead of pseudorandomnumber and alwaysmean
some value produced by a PRNG.

3 BAGMINHASH ALGORITHM
In the following we assume some �xed weight discretization V
as discussed in Section 2.1. As starting point towards our new
algorithm, we �rst consider the hash signature de�ned by

hi := min
(d,l)∈Q

xdli (9)

with Q :=
⋃
d ∈D

⋃k(d)
l=1 {(d, l)} =

⋃
d ∈D {d} × {1, 2, . . . ,k(d)} and

k(d) denoting the function introduced in (6). xdli are indepen-
dent exponentially distributed pseudorandom numbers xdli ∼
Exponential(α(vl −vl−1)) with rate parameter α(vl −vl−1) where
α is some positive constant. �e choice of α is arbitrary, because
scaling all xdli by the same factor preserves equalities between
signature components hi .

�e probability, that the i-th signature component is equal for
two di�erent weighted sets A and B, is given by

P(hAi = hBi) = P
(

min
(d,l)∈QA

xdli = min
(d,l)∈QB

xdli

)
=

P

(
min

(d,l)∈QA∩QB
xdli < min

(d,l)∈QA4QB
xdli

)
= P(y1i < y2i). (10)

Here we used that all random variables xdli must be di�erent as
they are drawn from a continuous distribution. y1i and y2i are
given by

y1i := min
(d,l)∈QA∩QB

xdli , y2i := min
(d,l)∈QA4QB

xdli .

�ey are both the minimum of independent exponentially dis-
tributed random variables. Consequently, y1i and y2i are also in-
dependent and exponentially distributed. �e corresponding rate
parameters λ1 and λ2 can be calculated as the sum of all contribut-
ing rates [28]

λ1 =
∑

(d,l)∈QA∩QB

α(vl −vl−1) = α
∑
d ∈D

vmin(kA(d),kB (d))

= α
∑
d ∈D

min(vkA(d),vkB (d)) = α
∑
d ∈D

min(w̃A(d), w̃B (d))

and similarly

λ2 = α
∑
d ∈D

max(w̃A(d), w̃B (d)) −min(w̃A(d), w̃B (d)).

Among independent exponentially distributed random numbers,
the probability, that one is the smallest, is proportional to the rate
parameter of its exponential distribution. Hence P(y1i < y2i) =
λ1/(λ1 + λ2) [28], which �nally gives in combination with (10)

P(hAi = hBi) =
∑
d ∈D min(w̃A(d), w̃B (d))∑
d ∈D max(w̃A(d), w̃B (d))

= J̃ .

�erefore, signatures de�ned by (9) allow unbiased estimation of
J̃ using (3). �ey can also be used to estimate J , if the error intro-
duced by the weight discretization can be neglected as discussed
in Section 2.1. �e number of equal components of two signatures
follows a binomial distribution with success probability J̃ , because
individual components of the same signature are, like for original
minwise hashing, statistically independent by de�nition.

Algorithm 1 is a straightforward implementation of signature
de�nition (9). First, the signature components are initialized with
in�nity. For each pair (d, l) a PRNG R is created with the pair as
seed to ensure independence. R is then used to generatem expo-
nentially distributed random values which are used to update the
signature components. �e parameter of R describes the distribu-
tion from which a random value is drawn using R as random bit
source. Obviously, Algorithm 1 is not very e�cient, because its
time complexity is O(Lmn). �is is much worse than O(mn) of the
ICWS algorithm, because L is expected to be huge. For example, L
is in the billions, if weights are discretized using single-precision
�oating-point numbers. In the oncoming sections we will describe
methods to make the calculation of the new signature much more
e�cient.

�e signature components de�ned by (9) are all nonnegative real
numbers. However, as mentioned in Section 1.1, integer values with
a prede�ned number of bits are o�en more preferable. Similar to
the proposal in [14], Algorithm 2 extracts b-bit integer values from
the real-valued signature. A PRNG is initialized for each signature
component with hi as seed. It is used to generate a uniform random
b-bit integer number which de�nes the value of the corresponding
component of the transformed signature.

3.1 Interpretation as Poisson Process
Since the random variables xdli in (9) are exponentially distributed
with rate parameter α(vl −vl−1), they can also be interpreted as �rst
points of independent Poisson processes Pdli with ratesα(vl−vl−1),
respectively. Poisson processes have some nice properties. Points
can be generated in ascending order, because distances between

3

Algorithm 1: Straightforward implementation of signature de�nition (9).
Input: w
Output: h1,h2, . . . ,hm
(h1,h2, . . . ,hm) ← (∞,∞, . . . ,∞)
forall d ∈ D such thatw(d) ≥ v1 do

forall l ∈ {1, 2, . . . ,L} such that vl ≤ w(d) do
R ← new PRNG with seed (d, l)
for i ← 1 tom do

x ← R[Exponential(α(vl −vl−1))]
if x < hi then hi ← x

Algorithm 2: Transformation of a real-valued signature into a b-bit hash signature.
Input: h1,h2, . . . ,hm
Output: hb1 ,h

b
2 , . . . ,h

b
m ∈ {0, 1, . . . , 2b − 1}

for i ← 1 tom do
R ← new PRNG with seed hi
hbi ← R[Uniform({0, 1, . . . , 2b − 1})]

successive points are independent and exponentially distributed.
Moreover, Poisson processes can be combined and split [28].

�ese properties can be exploited to generate the �rst points of all
Pdli in a di�erent but statistically equivalent way. We consider the
combined process Pdl :=

⋃m
i=1 Pdli which has rate αm(vl −vl−1).

While generating points for Pdl in ascending order, Pdl is split
again into them constituent subprocesses Pdli . �is can be done
by distributing each point of Pdl randomly and uniformly to one of
them subprocesses Pdli . As soon as we have assigned at least one
point to each of those subprocesses, which means we have found
all their �rst points, we are done. Since the constant α is a free
parameter, we set α := m−1 for simplicity such that Pdl has rate
vl −vl−1 in the following.

Algorithm 3 demonstrates this idea. For each pair (d, l) a Poisson
process Pdl with rate vl −vl−1 is simulated. A helper class given
by Algorithm 4 is used to represent the corresponding state. A
new Poisson process is initialized with starting point x = 0 and
with indices p = l − 1 and q = l which de�ne the rate as vq − vp .
Furthermore, since the Poisson process object requires an indepen-
dent random source for point generation, a new PRNG is created.
By choosing d and l as seed we ensure that all processes Pdl are
independent. �e helper class has a member function Next() for
generating the next point of the Poisson process by incrementing
x by a value drawn from an exponential distribution with rate pa-
rameter vq −vp . In addition, a uniform random number i drawn
from {1, 2, . . . ,m} de�nes the index of the subprocess Pdli the new
point belongs to. �e helper class also has some more functions as
well as an additional �eldw for the weightw(d) associated with d ,
which are not yet used in the context of Algorithm 3.

Instead of executing the while-loop until at least one point was
generated for allm subprocesses Pdli , Algorithm 3 keeps track of
hmax := max(h1,h2, . . . ,hm). By de�nition, points greater than
hmax are not able to change any of the values h1,h2, . . . ,hm . �ere-
fore, as soon as some point is greater than hmax the Poisson process
can be stopped. If hmax is simultaneously updated each time some
signature value hi is replaced by a lower value, hmax will decrease
over time and the termination condition is satis�ed earlier in sub-
sequent iterations of d and l .

Algorithm 3: Improved version of Algorithm 1 by generating random values in
ascending order for �xed d and l .
Input: w
Output: h1,h2, . . . ,hm
(h1,h2, . . . ,hm) ← (∞,∞, . . . ,∞)
forall d ∈ D such thatw(d) ≥ v1 do

forall l ∈ {1, 2, . . . ,L} such that vl ≤ w(d) do
R ← new PRNG with seed (d, l)
P ← new PoissonProcess(0, R, l − 1, l ,w(d))
P .Next()
while P .x ≤ hmax do

if P .x < hP .i then hP .i ← P .x

P .Next()

Algorithm 4: Helper class for the representation of the combined Poisson process
Pd,p :q =

⋃q
l=p+1 Pdl =

⋃q
l=p+1

⋃m
i=1 Pdli .

class PoissonProcess
�elds

x current point
R pseudorandom number generator
p, q de�ne the rate as vq −vp
w weight of d
i index of Pdli point x is belonging to

PoissonProcess(x ′, R′, p′, q′,w ′) constructor, initializes a new object
x ← x ′

R ← R′

p ← p′, q ← q′

w ← w ′

Next() generates the next point
x ← x + R[Exponential(vq −vp)]
i ← R[Uniform({1, 2, . . . ,m})]

Split() splits process into two parts
r ← b(p + q)/2c
R′ ← new PRNG with seed (x , r)
if R[Bernoulli((vr −vp)/(vq −vp))] = 1 then

P ′ ← new PoissonProcess(x , R′, r , q,w)
q ← r

else
P ′ ← new PoissonProcess(x , R′, p, r ,w)
p ← r

return P ′

Spli�able()
return p + 1 < q

PartiallyRelevant()
return vp+1 ≤ w

FullyRelevant()
return vq ≤ w

�e e�cient maintenance of hmax is demonstrated by Algo-
rithm 5. A binary tree is constructed overm leaf nodes with values
h1,h2, . . . ,hm , all starting from positive in�nity. �e value of a
parent node is de�ned to be the maximum of both children. �ere-
fore, the root node always represents hmax. If a Poisson process
generates some point x < hmax, an update of hi and also of its
ancestors might be necessary. Algorithm 5 makes a corresponding
bo�om-up traversal until no further change is necessary.

Conditioned on x < hmax the probability that some node is
replaced by a smaller value is less than the reciprocal number of
leaves in the corresponding subtree. �is means, given x < hmax,
the probability, that hi is updated, is (of course) at most 1. �e
probability, that the parent of hi is updated, is at most 1

2 , because
it is equally likely that the parent value is given by the sibling

4

of hi , and therefore an update of hi will not change the parent.
Continuing in this way shows that the expected number of node
updates is bounded by the geometric series 1 + 1/2 + 1/4 + . . . and
therefore takes amortized constant time and does not contribute to
the overall time complexity of Algorithm 3.

Hence, the complexity is primarily dominated by the number of
expected Next() calls. At the beginning, when all hi and therefore
also hmax are still in�nite, the while-loop is executed until all hi
have been updated at least once. Since points of Pdl are calculated
in ascending order, hmax will become �nite exactly when the last
in�nite signature value is overwri�en. �us, hmax will also have the
same value as the current point of P and the termination condition
of the while-loop will be immediately satis�ed a�er advancing to
the next point using P .Next(). In analogy of the coupon collector’s
problem [6], the average number of required steps until at least one
point is assigned to each signature component will bemHm where
Hm := 1 + 1

2 + . . . +
1
m = O(logm) denotes the m-th harmonic

number.
Dependent on the weight w(d) of the input element d , up to

L inner for-loop iterations are required. �erefore, the expected
number of Next() calls needed for the �rst input element is at most
L(1+mHm). �e number of required cycles will be lower for further
elements, because hmax decreases with the number of inserted
elements and the termination condition will be satis�ed earlier. �e
decrease of hmax will be faster, if elements with larger weights are
processed �rst, because the corresponding random points are likely
to be smaller than for elements with smaller weights. �erefore,
it is preferable to process input elements in descending and not
in ascending order of weight. If we assume random ordering, it
can be shown that the expected number of Next() calls needed for
the j-th input element is bounded by L(1 +mHm/j). �erefore, the
time complexity of Algorithm 3 is limited by

∑n
j=1 L(1+mHm/j) =

O(Lm log2m + Ln). �is is already a signi�cant improvement over
O(Lmn) of Algorithm 1 for n �m as we have eliminated the factor
m that accompanies n.

However, since L can be very large, further improvements are
necessary to compete with O(mn) of the ICWS algorithm. Algo-
rithm 3 is only useful for small L. In particular, by choosing L = 1
and V = {0, 1} binary weight values can be accurately described.
�erefore, Algorithm 3 can be used for the unweighted case and
represents an interesting alternative to the advanced minwise hash-
ing algorithms discussed in Section 1.1. �e reason is that the time
complexity O(m log2m + n) is comparable to other advanced min-
wise hashing algorithms discussed in Section 1.1. But, in contrast
to them, the signature components are statistically independent
like for original minwise hashing.

3.2 In-Order Point Generation
�e individual treatment of processes Pdl is responsible for the
factor L in the time complexity of Algorithm 3. To eliminate or at
least to reduce this factor, we need to process all Pdl for a given
input element d in a collective fashion. We consider the combined
process Pd :=

⋃L
l=1 Pdl which has rate

∑L
l=1vl − vl−1 = vL . In

this context we will call the processes Pdl elementary subprocesses.
�e idea is now to generate points for Pd in ascending order. To
comply with (9) we must �lter points that belong to elementary

Algorithm 5: To e�ciently keep track of the global maximum hmax :=
max(h1,h2, . . . ,hm)while values hi are successively decreased over time, the array is
extended by hm+1, . . . ,h2m−1 which correspond to the parent nodes in a binary tree
spanned over h1,h2, . . . ,hm . hm+ di/2e is the parent of hi . A parent node is de�ned
as the maximum of its children hi = max(h2(i−m)−1,h2(i−m)) for i > m. If a leaf node
hi with i ≤ m is replaced by a smaller value x < hi , following procedure will be
necessary to update the root node h2m−1 which also represents hmax.
Input: x , i
h ← x

while h < hi do
hi ← h

i ←m + di/2e calculate parent index
if i ≥ 2m then break
h ← max(h2(i−m)−1,h2(i−m))

subprocesses Pdl which satisfyvl ≤ w(d). In the following, we will
call these elementary subprocesses and also their points relevant.

�e properties of Poisson processes allow iterative spli�ing of
Pd until we arrive at some elementary subprocess. For this, we
introduce the notation Pd,p :q :=

⋃q
l=p+1 Pdl , which means that

Pd = Pd,0:L and Pdl = Pd,l−1:l . Assume we have a process Pd,p :q
for which the �rst point x has already been generated. If it is
not an elementary process, which is equivalent to p + 1 < q, it is
called spli�able and can be divided into two subprocesses Pd,p :r
and Pd,r :q with p < r < q. �e probability that x is a point of Pd,p :r
or Pd,r :q is proportional to the corresponding rates, respectively.
Hence, the result of a Bernoulli trial can be used to decide to which
subprocess the point x actually belongs to. �e �rst point of the
other subprocess can be generated by adding to x a random number
drawn from an exponential distribution with rate parameter equal
to the rate of that subprocess.

Algorithm 4 shows how the spli�ing operation can be realized.
�e Split() method �rst calculates the split index as r = b(p +q)/2c,
such that the weight index range is divided into two parts of almost
equal size. A Bernoulli trial with success probability (vr −vp)/(vq −
vp) determines whether x is a point of Pd,p :r . If not, x must belong
to Pd,r :q . �e parent process object can be reused for the elected
subprocess by simply adjusting either q or p, respectively. A new
process object P ′ is needed to represent the second subprocess. It
is initialized with starting point x and a new PRNG. Independence
can be ensured by using x together with the spli�ing index r as
seed. �e spli�ing index makes the seed unique, because further
spli�ings are not possible with same index. �e object of the second
child P ′ is �nally returned by the Split() method. A call to P ′.Next()
must follow later to get the �rst point of P ′.

In order to calculate the relevant points of Pd in ascending order,
we �rst generate the very �rst point of Pd . Next, we determine, to
which elementary subprocess the point belongs to. �e correspond-
ing subprocess can be found through iterative spli�ing, always
proceeding with the child that contains the point of the parent pro-
cess. �is procedure corresponds to searching for the smallest point
in a binary tree, where each node is equal to the minimum of both
children. �e next smallest point of Pd can be found analogously.
Among all subprocesses, which resulted from all spli�ings so far,
we choose the subprocess with smallest current point and restart
the same spli�ing procedure as before from there. In this way all
points of Pd and its associated elementary subprocesses Pdl can be
found in ascending order.

5

Algorithm 6: BagMinHash 1.
Input: w
Output: h1,h2, . . . ,hm
(h1,h2, . . . ,hm) ← (∞,∞, . . . ,∞)
forall d ∈ D such thatw(d) ≥ v1 do

R ← new PRNG with seed d
P ← new PoissonProcess(0, R, 0, L,w(d))
P .Next()
if P .FullyRelevant() and P .x < hP .i then hP .i ← P .x

create new min-heap for Poisson processes P with P .x as key
while P .x ≤ hmax do

while P .Spli�able() and P .PartiallyRelevant() do
P ′ ← P .Split()
if P .FullyRelevant() and P .x < hP .i then hP .i ← P .x

if P ′.PartiallyRelevant() then
P ′.Next()
if P ′.FullyRelevant() and P ′.x < hP ′.i then hP ′.i ← P ′.x
if P ′.x ≤ hmax then push P ′ to heap

if P .FullyRelevant() then
P .Next()
if P .x < hP .i then hP .i ← P .x

if P .x ≤ hmax then push P to heap
if heap is empty then break
P ← pop from heap

Since we are only interested in relevant points, we must omit
irrelevant ones. However, vL is o�en much larger thanw(d), which
makes point-wise �ltering not very e�cient. Luckily, the hierar-
chical structure allows e�cient skipping of irrelevant points. A
subprocess Pd,p :q only contains relevant points, if at least one of its
elementary processes is relevant, which is the case if vp+1 ≤ w(d).
In this case, we say Pd,p :q is partially relevant. If Pd,p :q is not
partially relevant, it does not contain any relevant points and can
immediately be discarded without further processing. We also
de�ne a subprocess Pd,p :q to be fully relevant, if all its elemen-
tary subprocesses and corresponding points are relevant, which is
the case if vq ≤ w(d). Full relevance implies partial relevance. If
a process is an elementary subprocess and therefore not further
spli�able, partial and full relevance will be equivalent.

Algorithm 6 called BagMinHash 1 implements the described
procedure. �e algorithm loops over all elements having nonzero
discrete weight (w(d) ≥ v1). For each element d a new Poisson
process object P is created that represents Pd . �e weight w(d)
is passed to the Poisson process object, which is needed by the
PartiallyRelevant() and FullyRelevant() member functions. A�er
generating the �rst point and updating the corresponding signature
value in case P is already fully relevant, a while-loop is started.
�erein, the process is split as long as possible and as long as it is
partially relevant. A�er each split operation, P and also its sibling P ′
are checked for full relevance. If this is the case, the corresponding
signature value hP .i or hP ′.i and if necessary also hmax are updated.
�ese early updates allow leaving the outer while-loop as soon
as possible. If the sibling P ′ is partially relevant, it needs to be
processed later and must be saved in the meantime. However, since
the current point of P ′ represents a lower bound for all its further
points, P ′ can be discarded as a whole, if P ′.x is already larger than
hmax. Otherwise, we put P ′ into a min-heap with P ′.x as key. In this
way the subprocess with smallest current point can be e�ciently
retrieved later.

�e inner while-loop can be le� due to two reasons: First, if P is
no longer partially relevant, which may be the consequence of the
last split operation, we can immediately discard P . Second, if P is
no longer spli�able and corresponds to an elementary subprocess,
while P is still partially relevant, it must also be fully relevant. In
this case, we generate the next point of P , update the corresponding
signature value if necessary, and push it into the min-heap. In both
cases we continue with the process having the smallest current
point, which can be retrieved from the min-heap. Once the point of
the current process is larger than hmax, which also means that all
remaining points of any other processes are larger, we are �nished
as further signature value updates can be ruled out.

�e time complexity of this algorithm can be bounded by
O(φ(m,L) + (logL)(log logL)n) where φ denotes a function inde-
pendent of n. �e reason is that for large data sizes n �m, point
generation can be stopped most of the time a�er �nding the small-
est relevant point. �e corresponding binary search over all L
elementary subprocesses explains the logL factor. �e min-heap
insertions and removals contribute the log logL factor. Hence, if
logL is much smaller thanm, the new approach is potentially much
faster than ICWS.

3.3 Optimization
�e new algorithm can be further optimized. �e processing time
for inserting a new element d decreases with the number of already
inserted elements, because hmax is continuously decreasing. In
particular, the processing time of the very �rst element takes a
lot of time, because at least one point needs to be found for each
signature position. However, if there are much more input elements
to come, it is very likely that most of these signature values are
overwri�en by points from subsequent input elements. �erefore,
we can save some computation time, if we divide the processing
of individual input elements into two phases. In a �rst phase, we
calculate only the smallest relevant point of Pd for each input
element d and store any subprocesses, which result from spli�ings
and which have �rst points not greater than hmax, in a bu�er for
later processing. If there are enough input elements n �m, hmax
will already be very small a�er the �rst step. In a second phase,
we put all bu�ered processes into a new min-heap, which allows
processing them in order of their current points. Subprocesses of
further spli�ings are again pushed into this min-heap. As soon as
hmax is smaller than the �rst element of the min-heap, the signature
computation is �nished.

BagMinHash 2 shown as Algorithm 7 implements the described
optimization and is logically equivalent to BagMinHash 1. �e �rst
for-loop represents the �rst phase of the improved approach. As
soon as the smallest relevant point is found for an input element d ,
which is the case once the �rst fully relevant subprocess has been
found, the iterative spli�ing process is stopped. All subprocesses,
that have been forked from Pd so far, are stored in a bu�er before
continuing with the next input element. �e second step starts
with the construction of a min-heap �lled with all the subprocesses
that have been collected in the bu�er while processing all input
elements in the �rst phase. �en, these subprocesses are processed
as in Algorithm 6 until all remaining processes have points larger
than hmax.

6

Algorithm 7: BagMinHash 2, an optimized variant of Algorithm 6.
Input: w
Output: h1,h2, . . . ,hm
(h1,h2, . . . ,hm) ← (∞,∞, . . . ,∞)
create empty bu�er
forall d ∈ D such thatw(d) ≥ v1 do

create new min-heap for Poisson processes P with P .x as key
R ← new PRNG with seed d
P ← new PoissonProcess(0, R, 0, L,w(d))
P .Next()
if P .FullyRelevant() and P .x < hP .i then hP .i ← P .x

while P .x ≤ hmax do
while P .Spli�able() and P .PartiallyRelevant() and not P .FullyRelevant() do

P ′ ← P .Split()
if P .FullyRelevant() and P .x < hP .i then hP .i ← P .x

if P ′.PartiallyRelevant() then
P ′.Next()
if P ′.FullyRelevant() and P ′.x < hP ′.i then hP ′.i ← P ′.x
if P ′.x ≤ hmax then push P ′ to heap

if P .FullyRelevant() then
push P to heap
break

if heap is empty then break
P ← pop from heap

add all heap elements P with P .x ≤ hmax to bu�er
create new min-heap from all bu�er elements P with P .x ≤ hmax
while not heap is empty do

P ← pop from heap
if P .x > hmax then break
while P .Spli�able() and P .PartiallyRelevant() do

P ′ ← P .Split()
if P .FullyRelevant() and P .x < hP .i then hP .i ← P .x

if P ′.PartiallyRelevant() then
P ′.Next()
if P ′.FullyRelevant() and P ′.x < hP ′.i then hP ′.i ← P ′.x
if P ′.x ≤ hmax then push P ′ to heap

if P .FullyRelevant() then
P .Next()
if P .x < hP .i then hP .i ← P .x

if P .x ≤ hmax then push P to heap

In order to keep space requirements for the bu�er small, it can be
realized as max-heap. In this way, since hmax is decreasing during
the �rst step, subprocesses with points greater than hmax can be
immediately evicted in an e�cient way.

4 EXPERIMENTAL RESULTS
For our tests we have implemented both variants of the BagMin-
Hash algorithm using C++1. Since BagMinHash assumes an ideal
PRNG, its implementation requires some special care. We have cho-
sen to use the xxHash64 hashing algorithm [5], which we applied to
the given seed in combination with values from a prede�ned integer
sequence to get as many di�erent 64-bit random numbers as needed.
To keep the number of hash function evaluations small, we tried to
use as few random bits as possible to generate random numbers for
di�erent distributions as required by BagMinHash. Bernoulli trials
are realized using an algorithm that takes only two random bits on
average [8]. Uniform discrete values can be e�ciently generated
as described in [23]. Moreover, we used the ziggurat algorithm to

1Source code that has been used to produce the results presented in this paper is made
available on h�ps://github.com/oertl/bagminhash.

produce exponentially distributed random numbers without the
need of costly logarithm evaluations [27].

In our experiments we primarily used the set of nonnegative
single-precision �oating point numbers as described in Section 2.1
for weight discretization. However, double-precision is used for all
calculations and the representation of points of Poisson processes.
Moreover, we assumed that all input elements are 64-bit integers.
�is corresponds to a universe D with dimensionality |D | = 264,
which is large enough for most real-world applications. Any bag
from a di�erent universe can be mapped to a bag of 64-bit integers
by hashing its elements.

4.1 Veri�cation
For the veri�cation of the BagMinHash algorithmwe used synthetic
data. �e reason is that it is di�cult to extract many pairs of
input vectors from real data sets that have some prede�ned Jaccard
index. Furthermore, a couple of recently published algorithms with
theoretical �aws have been wrongly justi�ed by tests on real-world
data. As we will see these algorithms did not pass our tests, which
is an indication that our tests are quite selective.

Each of our test cases is characterized by a bag of weight pairs⋃
u {(wAu ,wBu)}. Each pair stands for some unique input element

d which has weight wA(d) = wAu in the �rst bag A and weight
wB (d) = wBu in the second bag B, respectively. Since we are free
to choose the elements that are associated with the weight pairs,
we can simply draw 64-bit random numbers. In this way we can
generate as many pairs of bags as needed for our evaluations. All of
them will have the same Jaccard similarity. To avoid that elements
are processed in some particular order, the elements of a bag are
always shu�ed before hashing.

Table 1 lists all test cases together with the corresponding Jaccard
similarity, which we used to test our new BagMinHash algorithm
and to compare it to other weighted minwise hashing algorithms.
We also varied the signature sizem ∈ {4, 16, 64, 256, 1024, 4096}. For
each test case c = 10 000 pairs of bags have been generated. For each
pair an estimate Ĵj of the Jaccard similarity was obtained using the
corresponding hash signatures and (3). We calculated the empirical
mean squared error (MSE) as M̂SE = 1

c
∑c
j=1(Ĵj − J)2. Since hash

collisions can be ignored for 64-bit signature values, the number of
matching signature positions follows a binomial distribution with
success probability J . �e expectation and the variance of M̂SE can
be derived asE(M̂SE) = J (1−J)

m and Var(M̂SE) = J 2(1−J)2
m2c

(
2 − 6

m

)
+

J (1−J)
m3c , respectively. �ese formulas can be used to normalize M̂SE,

which yields the corresponding z-score

z-score =
(
M̂SE − E(M̂SE)

)
/
√
Var(M̂SE).

Table 1 shows the empirical MSEs and the corresponding z-
scores of our simulations for various algorithms. In case of BagMin-
Hash we got identical results for both variants, which is expected
as both variants are logically equivalent. �e results do not show
any evidence for unexpected behavior, because all z-scores have
magnitudes smaller than 3. Values with larger magnitudes would
have been shown in red color. We also applied BagMinHash with
binary weight discretization (V = {0, 1}, L = 1) to test cases with

7

https://github.com/oertl/bagminhash

Table 1: Analysis of the estimation error of various weightedminwise hashing algorithms for di�erent test cases and di�erent
hash sizes. �e empirical mean squared errors �MSE and corresponding z-scores have been calculated from 10 000 random
examples, respectively. �MSE values with magnitude greater than 3 indicate exceptional behavior and are colored red.

BagMinHash (�oat) BagMinHash (binary) ICWS [14] 0-bit [17] CCWS [35] PCWS [36] I2CWS [37]

test case m E(M̂SE) M̂SE z-score M̂SE z-score M̂SE z-score M̂SE z-score M̂SE z-score M̂SE z-score M̂SE z-score

{(1, 10)}
J = 0.1

4 2.25E−2 2.19E−2 −1.49 N/A N/A 2.23E−2 −0.43 8.10E−1 1.93E3 1.00E−2 −3.07E1 2.25E−2 −0.04 2.23E−2 −0.44
16 5.63E−3 5.75E−3 1.44 N/A N/A 5.55E−3 −0.91 8.10E−1 9.39E3 1.00E−2 5.11E1 5.67E−3 0.55 5.70E−3 0.82
64 1.41E−3 1.42E−3 0.75 N/A N/A 1.38E−3 −1.30 8.10E−1 3.99E4 1.00E−2 4.24E2 1.41E−3 0.12 1.42E−3 0.76
256 3.52E−4 3.48E−4 −0.66 N/A N/A 3.50E−4 −0.36 8.10E−1 1.62E5 1.00E−2 1.93E3 3.59E−4 1.45 3.42E−4 −1.94
1024 8.79E−5 8.85E−5 0.50 N/A N/A 8.91E−5 1.00 8.10E−1 6.51E5 1.00E−2 7.96E3 8.95E−5 1.28 8.56E−5 −1.82
4096 2.20E−5 2.26E−5 1.91 N/A N/A 2.18E−5 −0.44 8.10E−1 2.61E6 1.00E−2 3.21E4 2.18E−5 −0.65 2.19E−5 −0.09

{(9, 10)}
J = 0.9

4 2.25E−2 2.27E−2 0.40 N/A N/A 2.24E−2 −0.33 1.00E−2 −3.07E1 8.10E−1 1.93E3 2.25E−2 0.02 2.28E−2 0.77
16 5.62E−3 5.77E−3 1.66 N/A N/A 5.66E−3 0.46 1.00E−2 5.11E1 8.10E−1 9.39E3 5.66E−3 0.42 5.60E−3 −0.35
64 1.41E−3 1.39E−3 −1.00 N/A N/A 1.36E−3 −2.15 1.00E−2 4.24E2 8.10E−1 3.99E4 1.38E−3 −1.21 1.41E−3 0.19
256 3.52E−4 3.55E−4 0.63 N/A N/A 3.50E−4 −0.40 1.00E−2 1.93E3 8.10E−1 1.62E5 3.54E−4 0.55 3.52E−4 0.07
1024 8.79E−5 8.63E−5 −1.30 N/A N/A 8.70E−5 −0.76 1.00E−2 7.96E3 8.10E−1 6.51E5 9.02E−5 1.87 8.79E−5 −0.02
4096 2.20E−5 2.20E−5 0.11 N/A N/A 2.16E−5 −1.13 1.00E−2 3.21E4 8.10E−1 2.61E6 2.20E−5 0.24 2.18E−5 −0.66

{(3, 20), (30, 7)}
J = 0.2

4 4.00E−2 4.01E−2 0.09 N/A N/A 4.07E−2 1.19 8.04E−2 7.04E1 4.00E−2 0.00 3.45E−2 −9.50 3.32E−2 −1.18E1
16 1.00E−2 1.00E−2 0.00 N/A N/A 9.88E−3 −0.83 3.73E−2 1.92E2 4.00E−2 2.11E2 1.09E−2 6.48 2.00E−2 7.05E1
64 2.50E−3 2.51E−3 0.35 N/A N/A 2.52E−3 0.53 2.63E−2 6.72E2 4.00E−2 1.06E3 4.87E−3 6.69E1 1.69E−2 4.07E2
256 6.25E−4 6.21E−4 −0.51 N/A N/A 6.38E−4 1.47 2.35E−2 2.59E3 4.00E−2 4.45E3 3.47E−3 3.22E2 1.62E−2 1.76E3
1024 1.56E−4 1.55E−4 −0.73 N/A N/A 1.58E−4 0.86 2.28E−2 1.02E4 4.00E−2 1.80E4 3.08E−3 1.32E3 1.59E−2 7.13E3
4096 3.91E−5 3.87E−5 −0.60 N/A N/A 3.89E−5 −0.35 2.26E−2 4.08E4 4.00E−2 7.23E4 2.99E−3 5.34E3 1.59E−2 2.87E4

{(0, 2), (3, 4), (6, 3), (2, 4)}
J = 0.5

4 6.25E−2 6.20E−2 −0.66 N/A N/A 6.41E−2 2.07 6.82E−2 7.47 2.50E−1 2.45E2 6.74E−2 6.34 8.17E−2 2.51E1
16 1.56E−2 1.54E−2 −0.83 N/A N/A 1.54E−2 −1.08 2.19E−2 2.96E1 2.50E−1 1.10E3 2.09E−2 2.47E1 3.86E−2 1.07E2
64 3.91E−3 3.80E−3 −1.90 N/A N/A 3.88E−3 −0.43 1.10E−2 1.29E2 2.50E−1 4.49E3 8.76E−3 8.86E1 2.78E−2 4.37E2
256 9.77E−4 9.84E−4 0.53 N/A N/A 9.64E−4 −0.89 8.12E−3 5.19E2 2.50E−1 1.81E4 5.91E−3 3.58E2 2.53E−2 1.76E3
1024 2.44E−4 2.44E−4 −0.15 N/A N/A 2.42E−4 −0.49 7.51E−3 2.11E3 2.50E−1 7.24E4 5.25E−3 1.45E3 2.46E−2 7.05E3
4096 6.10E−5 6.18E−5 0.91 N/A N/A 6.06E−5 −0.55 7.33E−3 8.42E3 2.50E−1 2.90E5 5.09E−3 5.83E3 2.44E−2 2.82E4

{(4, 2)15, (1, 4)10, (12, 0)5}
J = 0.25

4 4.69E−2 4.73E−2 0.60 N/A N/A 4.66E−2 −0.45 4.69E−2 0.08 6.25E−2 2.46E1 4.30E−2 −6.10 4.40E−2 −4.52
16 1.17E−2 1.17E−2 −0.22 N/A N/A 1.17E−2 −0.18 1.17E−2 0.16 6.25E−2 3.10E2 1.18E−2 0.77 2.54E−2 8.36E1
64 2.93E−3 2.99E−3 1.46 N/A N/A 2.93E−3 0.03 3.03E−3 2.44 6.25E−2 1.44E3 4.55E−3 3.92E1 2.04E−2 4.24E2
256 7.32E−4 7.24E−4 −0.82 N/A N/A 7.32E−4 0.01 8.08E−4 7.33 6.25E−2 5.97E3 2.63E−3 1.84E2 1.92E−2 1.78E3
1024 1.83E−4 1.84E−4 0.43 N/A N/A 1.82E−4 −0.62 2.53E−4 2.69E1 6.25E−2 2.41E4 2.13E−3 7.52E2 1.89E−2 7.21E3
4096 4.58E−5 4.53E−5 −0.68 N/A N/A 4.52E−5 −0.90 1.15E−4 1.08E2 6.25E−2 9.65E4 1.99E−3 3.01E3 1.88E−2 2.89E4⋃1000

u=0 {(1.001u , 1.002u)}
J = 0.538308

4 6.21E−2 6.14E−2 −1.02 N/A N/A 6.18E−2 −0.37 6.14E−2 −0.94 2.84E−1 2.90E2 6.75E−2 6.99 1.02E−1 5.28E1
16 1.55E−2 1.57E−2 0.98 N/A N/A 1.56E−2 0.53 1.55E−2 −0.33 2.82E−1 1.25E3 1.98E−2 2.03E1 5.99E−2 2.09E2
64 3.88E−3 3.78E−3 −1.90 N/A N/A 3.88E−3 −0.02 3.83E−3 −0.97 2.81E−1 5.09E3 7.93E−3 7.42E1 4.97E−2 8.41E2
256 9.71E−4 9.82E−4 0.79 N/A N/A 9.68E−4 −0.22 9.60E−4 −0.82 2.81E−1 2.04E4 4.96E−3 2.91E2 4.72E−2 3.37E3
1024 2.43E−4 2.48E−4 1.40 N/A N/A 2.36E−4 −1.81 2.36E−4 −2.07 2.81E−1 8.19E4 4.31E−3 1.19E3 4.67E−2 1.35E4
4096 6.07E−5 6.09E−5 0.30 N/A N/A 6.10E−5 0.43 6.10E−5 0.36 2.81E−1 3.28E5 4.12E−3 4.74E3 4.66E−2 5.42E4

{(0, 1), (1, 0), (1, 1)}
J = 0.333333

4 5.56E−2 5.53E−2 −0.41 5.59E−2 0.46 5.50E−2 −0.74 5.57E−2 0.24 5.63E−2 1.02 5.67E−2 1.57 5.60E−2 0.60
16 1.39E−2 1.39E−2 0.06 1.39E−2 −0.11 1.41E−2 0.95 1.37E−2 −1.05 1.41E−2 1.29 1.39E−2 −0.20 1.38E−2 −0.44
64 3.47E−3 3.44E−3 −0.58 3.48E−3 0.06 3.50E−3 0.66 3.42E−3 −1.05 3.43E−3 −0.81 3.45E−3 −0.52 3.61E−3 2.85
256 8.68E−4 8.70E−4 0.17 8.55E−4 −1.09 8.84E−4 1.33 8.60E−4 −0.64 8.76E−4 0.65 8.77E−4 0.73 8.66E−4 −0.13
1024 2.17E−4 2.13E−4 −1.24 2.13E−4 −1.45 2.25E−4 2.45 2.20E−4 0.86 2.18E−4 0.20 2.21E−4 1.24 2.15E−4 −0.54
4096 5.43E−5 5.50E−5 0.98 5.36E−5 −0.80 5.44E−5 0.21 5.43E−5 0.08 5.52E−5 1.27 5.39E−5 −0.44 5.43E−5 0.02

{(0, 1)30, (1, 0)10, (1, 1)160}
J = 0.8

4 4.00E−2 3.98E−2 −0.39 3.92E−2 −1.47 4.00E−2 −0.07 3.97E−2 −0.44 4.02E−2 0.37 4.02E−2 0.37 4.02E−2 0.29
16 1.00E−2 9.95E−3 −0.33 1.00E−2 0.33 1.00E−2 0.28 9.81E−3 −1.33 9.81E−3 −1.34 9.95E−3 −0.34 1.01E−2 0.93
64 2.50E−3 2.55E−3 1.28 2.42E−3 −2.32 2.56E−3 1.81 2.45E−3 −1.48 2.50E−3 0.12 2.48E−3 −0.63 2.52E−3 0.58
256 6.25E−4 6.19E−4 −0.66 6.16E−4 −1.02 6.23E−4 −0.25 6.17E−4 −0.89 6.31E−4 0.64 6.07E−4 −2.00 6.31E−4 0.68
1024 1.56E−4 1.54E−4 −1.10 1.55E−4 −0.40 1.57E−4 0.18 1.56E−4 0.05 1.55E−4 −0.54 1.52E−4 −2.07 1.57E−4 0.24
4096 3.91E−5 3.94E−5 0.66 3.85E−5 −0.98 3.89E−5 −0.25 3.95E−5 0.86 3.93E−5 0.43 3.92E−5 0.27 3.82E−5 −1.53

{(0, 1)300, (1, 0)500, (1, 1)1200}
J = 0.6

4 6.00E−2 5.97E−2 −0.38 5.96E−2 −0.56 5.92E−2 −1.05 5.86E−2 −1.90 6.07E−2 0.88 6.13E−2 1.78 6.02E−2 0.21
16 1.50E−2 1.52E−2 0.97 1.51E−2 0.29 1.49E−2 −0.43 1.49E−2 −0.45 1.47E−2 −1.36 1.51E−2 0.71 1.50E−2 −0.05
64 3.75E−3 3.78E−3 0.52 3.83E−3 1.49 3.70E−3 −0.90 3.73E−3 −0.38 3.75E−3 −0.01 3.81E−3 1.18 3.73E−3 −0.33
256 9.37E−4 9.30E−4 −0.54 9.53E−4 1.17 9.52E−4 1.08 9.36E−4 −0.12 9.36E−4 −0.10 9.36E−4 −0.14 9.32E−4 −0.41
1024 2.34E−4 2.32E−4 −0.70 2.37E−4 0.79 2.34E−4 0.00 2.32E−4 −0.58 2.40E−4 1.55 2.33E−4 −0.56 2.33E−4 −0.35
4096 5.86E−5 5.76E−5 −1.24 5.93E−5 0.81 5.89E−5 0.41 5.78E−5 −0.99 5.89E−5 0.32 5.76E−5 −1.25 5.95E−5 1.12

only weights equal to 0 or 1. Again, no anomalies have been ob-
served and the theoretically predicted MSEs have been con�rmed.
As expected, the ICWS also passes all our test cases.

Much more interesting are a couple of algorithms that have been
recently presented as supposed improvements over ICWS. �ey
share the same time complexity O(mn) of the ICWS algorithm, but
introduce some modi�cations to save a couple of operations. As
example, 0-bit hashing [17] was proposed to simplify the genera-
tion of integer signature values and to avoid a post-processing step

like Algorithm 2. It was reported that the resulting signatures ap-
proximate (2) reasonably well in practice. Unfortunately, a rigorous
analysis of the validity range of this approximation was not made.
Our results show that the algorithm has problems for n < m except
for test cases with binary weights.

�ere is also a series of recently published modi�cations of
ICWS algorithm that did not pass our tests either: Canonical
consistent weighted sampling (CCWS) [35], practical consistent
weighted sampling (PCWS) [36], and improved ICWS (I2CWS) [37].

8

Figure 1: Average calculation time for random bags of size n
with weights drawn from an exponential distribution with
rate 1.

When looking for the reason, we discovered theoretical �aws de-
scribed in the following using the notation of the corresponding
papers. In [35] the samples of yk are drawn from [Sk − rk , Sk]
instead from [0, Sk] which, however, is necessary for consistent
sampling. In [36] the expression pdf(y,a) = 1

S (yu
−1
1)e

−(yu−11)a is
turned into pdf(y,a) = 1

S (Se
−Sa) by replacing yu−11 by its expecta-

tion E(yu−11) = S which is an invalid transformation. And �nally, in
[37] the proof of consistency assumes that tSk∗2 = tTk∗2

follows from
yk∗ ≤ Tk∗ ≤ Sk∗ , which is not true either. Incorrect argumentation
even led to the claim that the ICWS algorithm is wrong, which we
could neither con�rm theoretically nor empirically.

4.2 Performance
We still need to check if BagMinHash is really fast in practice.
�erefore, we measured the performance for various signature
sizesm ∈ {256, 1024, 4096, 16384} and bag sizes n ranging from 1
to 107. For each case we randomly generated 100 bags of 64-bit
random integer numbers with weights drawn from an exponential
distribution with rate parameter 1. �e average calculation times
on an Intel Core i5-2500K CPU for both BagMinHash variants
and ICWS are shown in Fig. 1. �e calculation time of ICWS is
extrapolated for n > 10000 by utilizing its perfect proportional
scaling with n.

�e BagMinHash algorithms are signi�cantly slower than ICWS
for small n. �e reason can be seen when considering the case
n = 1 for which, on average, the BagMinHash algorithms require
the generation ofmHm = O(m logm) points until at least one point
is found for every signature component as discussed in Section 3.1.
Furthermore, the iterative spli�ing of the Poisson process to gen-
erate one point contributes at least an additional logL factor. In
contrast, the calculation time for ICWS is only proportional tom
in this case.

Figure 2: �e average space requirements in terms of stored
Poisson process objects as de�ned in Algorithm 4.

However, the BagMinHash algorithms are orders of magnitude
faster for n �m, where their calculation times are approaching a
linear function of n. �e gap to the calculation time of the ICWS
algorithm increases withm, which indicates that the dominating
term in the time complexity of BagMinHash does not depend on
m. �e optimization described in Section 3.3 and implemented by
BagMinHash 2 leads to a signi�cant improvement of the calcula-
tion time for intermediate input sizes n. �e break-even point of
BagMinHash 2 compared to ICWS is around n = 100.

As shown in Fig. 2, we also investigated the space requirements
in terms of Poisson process objects, that need to be simultaneously
kept in memory. �e maximum space required by BagMinHash 1
is dominated by the heap size needed for processing the very �rst
element. Since the �rst element is faced with the largest hmax val-
ues, more points need to be generated and more Poisson process
spli�ings are necessary than for later elements. �is explains why
the space requirements are essentially independent of n. Our Bag-
MinHash 2 implementation uses a max-heap as bu�er, which allows
e�cient discarding of process objects whilehmax is decreasing. �is
is the reason, why the space requirements are not very di�erent to
those of BagMinHash 1. Since the observed values are small enough
and also the dependence onm seems to be at most quasilinear, the
space requirements are not an issue for today’s computers. We did
not investigate the space requirements of ICWS. It only needs some
vectors of sizem, which is negligible in practice.

�e presented performance results refer to the single-precision
weight discretization discussed in Section 2.1. Since the discretiza-
tionV can be freely chosen, it can be optimized to achieve a certain
precision, if all non-zero weights are from some known value range.
For example, if an estimation error of ε is acceptable for the Jaccard
index, one could choose vl = v1(1 + ε)l−1 with 1 ≤ l ≤ L together
with appropriate v1 > 0 and L to cover the desired value range.
In this way (7) will be satis�ed, while minimizing L and thus also
computational costs.

9

5 CONCLUSION
We have presented BagMinHash, a new weighted minwise hash-
ing algorithm for the calculation of hash signatures that can be
used to estimate the generalized Jaccard similarity of weighted sets.
Without being less accurate, BagMinHash is orders of magnitude
faster for large input than the current state of the art. �erefore,
we expect that our new approach will improve the performance
of existing applications and also enable new use cases for which
computational costs had been a limiting factor so far.

REFERENCES
[1] O. Alonso, D. Fe�erly, and M. Manasse. 2013. Duplicate News Story Detection

Revisited. In Proc. 9th Asia Information Retrieval Societies Conf. (AIRS). 203–214.
[2] A. Z. Broder. 1997. On the Resemblance and Containment of Documents. In Proc.

Compression and Complexity of Sequences. 21–29.
[3] M. S. Charikar. 2002. Similarity estimation techniques from rounding algorithms.

In Proc. 34th Symp. on �eory of Computing (STOC). 380–388.
[4] O. Chum, J. Philbin, and A. Zisserman. 2008. Near Duplicate Image Detection:

Min-Hash and TF-IDF Weighting. In Proc. British Machine Vision Conf. (BMVC).
812–815.

[5] Y. Collet. 2016. xxHash – Extremely Fast Hash Algorithm.
h�ps://github.com/Cyan4973/xxHash.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to
Algorithms. MIT Press.

[7] S. Dahlgaard, M. B. T. Knudsen, and M. �orup. 2017. Fast Similarity Sketching.
In Proc. 58th Symp. on Foundations of Computer Science (FOCS). 663–671.

[8] L. Devroye. 1986. Non-Uniform Random Variate Generation. Springer, New York.
[9] J. Drew, M. Hahsler, and T. Moore. 2017. Polymorphic Malware Detection Using

Sequence Classi�cation Methods and Ensembles. EURASIP J. on Information
Security (2017), 2:1–2:12.

[10] O. Ertl. 2017. SuperMinHash – A New Minwise Hashing Algorithm for Jaccard
Similarity Estimation. (2017). arXiv:1706.05698

[11] S. Gollapudi and R. Panigrahy. 2006. Exploiting Asymmetry in Hierarchical Topic
Extraction. In Proc. 15th Int. Conf. on Information and Knowledge Management
(CIKM). 475–482.

[12] B. Haeupler, M. S. Manasse, and K. Talwar. 2014. Consistent Weighted Sampling
Made Fast, Small, and Easy. arXiv:1410.4266

[13] T. Haveliwala, A. Gionis, and P. Indyk. 2000. Scalable Techniques for Clustering
the Web. In Proc. 3rd Int. Workshop on the Web and Databases (WebDB). 129–134.

[14] S. Io�e. 2010. Improved Consistent Sampling, Weighted Minhash and L1 Sketch-
ing. In Proc. 10th Int. Conf. on Data Mining (ICDM). 246–255.

[15] J. Kleinberg and E. Tardos. 2002. Approximation Algorithms for Classi�cation
Problems with Pairwise Relationships: Metric Labeling and Markov Random
Fields. J. of the ACM 49, 5 (2002), 616–639.

[16] J. Leskovec, A. Rajaraman, and J. D. Ullman. 2014. Mining of Massive Datasets.
Cambridge University Press.

[17] P. Li. 2015. 0-Bit Consistent Weighted Sampling. In Proc. 21th Int. Conf. on
Knowledge Discovery and Data Mining (KDD). 665–674.

[18] P. Li. 2017. Linearized GMM Kernels and Normalized Random Fourier Features.
In Proc. 23rd Int. Conf. on Knowledge Discovery and Data Mining (KDD). 315–324.

[19] P. Li and A. C. König. 2010. b-Bit Minwise Hashing. In Proc. 19th Int. Conf. on
World Wide Web (WWW). 671–680.

[20] P. Li and A. C. König. 2011. �eory and Applications of b-bit Minwise Hashing.
Communications of the ACM 54, 8 (2011), 101–109.

[21] P. Li, A. Owen, and C. Zhang. 2012. One Permutation Hashing. In Proc. 26th
Conf. on Advances in Neural Information Processing Systems (NIPS). 3113–3121.

[22] P. Li and C.-H. Zhang. 2017. �eory of the GMM Kernel. In Proc. 26th Int. Conf.
on World Wide Web (WWW). 1053–1062.

[23] J. Lumbroso. 2013. Optimal Discrete Uniform Generation from Coin Flips, and
Applications. (2013). arXiv:1304.1916

[24] C. Luo and A. Shrivastava. 2016. SSH (Sketch, Shingle, & Hash) for Indexing
Massive-Scale Time Series. In Proc. of Machine Learning Research, Vol. 55. 38–58.

[25] M. Manasse, F. McSherry, and K. Talwar. 2010. Consistent Weighted Sam-
pling. Technical Report. h�ps://www.microso�.com/en-us/research/publication/
consistent-weighted-sampling/

[26] V. Markovtsev and E. Kant. 2017. Topic Modeling of Public Repositories at Scale
Using Names in Source code. (2017). arXiv:1704.00135

[27] G. Marsaglia and W. W. Tsang. 2000. �e Ziggurat Method for Generating
Random Variables. J. of Statistical So�ware 5, 8 (2000), 1–7.

[28] M. Mitzenmacher and E. Upfal. 2005. Probability and Computing: Randomiza-
tion and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge
University Press.

[29] E. Ra� and C. Nicholas. 2017. Malware Classi�cation and Class Imbalance via
Stochastic Hashed LZJD. In Proc. 10th ACM Workshop on Arti�cial Intelligence
and Security (AISec). 111–120.

[30] S. Sathe and C. C. Aggarwal. 2017. Similarity Forests. In Proc. 23rd Int. Conf. on
Knowledge Discovery and Data Mining (KDD). 395–403.

[31] A. Shrivastava. 2016. Simple and E�cient Weighted Minwise Hashing. In Ad-
vances in Neural Information Processing Systems 29 (NIPS). 1498–1506.

[32] A. Shrivastava. 2017. Optimal Densi�cation for Fast and Accurate Minwise
Hashing. In Proc. 34th Int. Conf. on Machine Learning (ICML). 3154–3163.

[33] A. Shrivastava and P. Li. 2015. Asymmetric Minwise Hashing for Indexing Binary
Inner Products and Set Containment. In Proc. 24th Int. Conf. on World Wide Web
(WWW). 981–991.

[34] R. Spring and A. Shrivastava. 2017. Scalable and Sustainable Deep Learning via
Randomized Hashing. In Proc. 23rd Int. Conf. on Knowledge Discovery and Data
Mining (KDD). 445–454.

[35] W. Wu, B. Li, L. Chen, and C. Zhang. 2016. Canonical Consistent Weighted
Sampling for Real-Value Weighted Min-Hash. In Proc. 16th Int. Conf. on Data
Mining (ICDM). 1287–1292.

[36] W. Wu, B. Li, L. Chen, and C. Zhang. 2017. Consistent Weighted Sampling Made
More Practical. In Proc. 26th Int. Conf. on World Wide Web (WWW). 1035–1043.

[37] W. Wu, B. Li, L. Chen, C. Zhang, and P. S. Yu. 2017. Improved Consistent
Weighted Sampling Revisited. (2017). arXiv:1706.01172

10

http://arxiv.org/abs/1706.05698
http://arxiv.org/abs/1410.4266
http://arxiv.org/abs/1304.1916
https://www.microsoft.com/en-us/research/publication/consistent-weighted-sampling/
https://www.microsoft.com/en-us/research/publication/consistent-weighted-sampling/
http://arxiv.org/abs/1704.00135
http://arxiv.org/abs/1706.01172

	Abstract
	1 Introduction
	1.1 Advanced Minwise Hashing Techniques
	1.2 Weighted Minwise Hashing
	1.3 Applications

	2 Preliminaries
	2.1 Discretization Error
	2.2 Random Numbers

	3 BagMinHash Algorithm
	3.1 Interpretation as Poisson Process
	3.2 In-Order Point Generation
	3.3 Optimization

	4 Experimental Results
	4.1 Verification
	4.2 Performance

	5 Conclusion
	References

