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AaSTRACX A dominance relauon D ~s a binary relauon defined on the set of parttal problems generated in a 
branch-and-bound algorithm, such that P~DP, (where P~ and P, are partial problems) lmphes that Pj can be 
excluded from consideration wtthout loss of opUmahty of the given problem if P, has already been generated 
when Pj is selected for the test The branch-and-bound computation ss usually enhanced by adding the test 
based on a dominance relation 

A dominance relation D' Js sa~d to be stronger than a dominance relation D d P, DP, always Jmphes P~D'Pt 
Although it seems obvious that a stronger dominance relatton makes the resulting algorithm more efficient, 
counterexamples can easily be constructed. In this paper, however, four classes of branch-and-bound algo- 
rithms are found m which a stronger dominance relation always gyves a more efftoent algorithm This mdrcates 
that the monotomoty property of dominance relaaons would be observed m a rather wide class of branch-and- 
bound algorithms, thus encouraging the designer of a branch-and-bound algorithm to find the strongest 
possible dominance relaUon. 
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1. Introduction 

I t  is known that  the b ranch-and-bound  pr inciple  is appl icable  to a wide  var ie ty  o f  
combina tor ia l  op t imiza t ion  p rob lems  (e.g.  [ 1 , 1 2 ,  22,  24,  29]).  The  under lying idea  is to 
decompose  a g iven p rob lem,  which is difficult to solve directly,  into several  part ial  
p rob lems  of  smal ler  sizes. The  decompos i t ion  may  be repea ted ly  appl ied  until  tests 
appl ied to the genera ted  part ial  p rob lems  reveal  that  each  u n d e c o m p o s e d  p rob lem is 
e i the r  solved o r  p roved  not  to p rov ide  an op t imal  solut ion of  the original  p rob lem.  

The  test of  a part ial  p rob l em is usually based on comput ing  a lower  bound  on the 
m i n i m u m  objec t ive  va lue  (when a min imal  solut ion is sought) .  I t  is conc luded  that  a 
par t ia l  p r o b l e m  does  no t  p rov ide  an opt imal  solut ion of  the original  p r o b l e m  if the 
compu ted  lower  bound  is g rea te r  than  the ob jec t ive  va lue  o f  the best  feasible solut ion 
current ly  avai lable  (i .e.  the  incumbent ) .  

A genera l iza t ion  of  the lower  bound  test  is also possible if the avai lable  in format ion  on 
part ial  p rob lems  can be used to show that  a part ial  p r o b l e m  P, cannot  p rov ide  a be t t e r  
feasible  solut ion than that  ob ta inab le  f rom ano the r  par t ia l  p rob lem P~. This  re la t ion is 
deno ted  PiDP, and called a dominance  re la t ion .  A test  based on a dominance  re la t ion  is 
carr ied ou t  as follows: Part ial  p rob l em Pj is exc luded  f rom cons idera t ion  if a part ial  
p rob lem P~ such that P~DP~ has a l ready  been  gene ra t ed .  A formal  descr ipt ion o f  a 
b ranch-and-bound  a lgor i thm,  including bo th  types  of  tests, will be given in Sect ion 3 
af ter  explaining each  const i tuent  of  the  a lgor i thm in Sect ion  2. 

Theore t i ca l  t r ea tmen t  of  dominance  re la t ions  seems to have  been  ini t ia ted by Koh le r  
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and Ste~glitz [18]. It is natural,  however,  to consider that similar ideas have been 
heuristically used in many other  branch-and-bound algorithms. Some dominance rela- 
tions used in practical branch-and-bound algorithms will be discussed in Section 2. 

I t  was defined in [18] that a dominance relation D '  is stronger than a dominance 
relation D if P~DPj implies P,D'P~ (i.e. D '  D D if a dominance relation D(D') is regarded 
as the set of pairs (P,, P~) such that P, DP,(P,D'P,)). Although it seems intuiUvely obvious 
that a stronger dominance relation makes a branch-and-bound algorithm more efficient, 
counterexamples to this conjecture can be easily constructed as shown in [18] and in 
Section 4 of this paper ,  if the whole class of branch-and-bound algorithms is considered. 

This paper ,  however,  discovers four subclasses of branch-and-bound algorithms in 
which a stronger dominance relation always results in a more efficient algorithm in terms 
of measures T and B, the numbers of partial  problems decomposed before the algorithm 
terminates  and before an optimal solution is obtained,  respectively. This would suggest 
that the monotonici ty property of the power of dominance relations can be observed in a 
rather wide class of branch-and-bound algorithms. Thus the designer of  a branch-and- 
bound algorithm is encouraged to find the strongest possible dominance relation for the 
class of problems to be solved (provided of course that  the t ime required to calculate D 
does not become predominant) .  

2. Constituents of  Branch-and-Bound Algorithms 

The eight constituents of a branch-and-bound algorithm, i.e. ~ , f ,  O, g,  ~J, s, h, and D, 
are introduced in this section. The construction of a branch-and-bound algorithm from 
these constituents will be described in section 3. Since all but D were implicitly or 
explicitly explained in papers  such as [1, 3, 12, 14, 18, 22, 24, 29], they are only briefly 
sketched here.  

Assume that we are asked to obtain an optimal (minimal) solution (or all optimal 
solutions) of problem P0. A finite rooted tree ~ = (~ ,  ~) ,  where 3 ~ is a set of nodes with 
root Po E ~,  and ~ is a set of arcs, represents  the decomposit ion process of P0 (assuming 
that all possible decomposit ions are applied);  node P, ~ ~ corresponds to part ial  
problem P, and (P,, P,) ~ ~ denotes  that P, is generated from P, by a decomposition.1 
The set of bottom nodes (leaf nodes) of ~ is denoted 3-. The depth of Pi, denoted  d(P~), 
is the length of the path from Po to P, in ~ .  Note that only a small subset of ~ is usually 
generated and tested prior to termination of a branch-and-bound algorithm. 

L e t f  : ~ ~ E U {oo}, where E is the set of real numbers,  denote the objective values of 
opt imal  solutions of partial  problems (nodes).  f satisfies 

f(P,) = min{f(P,) 11 = 1, 2 , . . . ,  k} (2.1) 

if (P,, P~j) E ~,  . /=  1, 2 . . . . .  k. The set of optimal solutions of P~ is denoted O(P,). O(PO 
satisfies 

O(P,) = U {O(P , , ) I f (P0  = f ( e @ j  = 1, 2 . . . . .  k}. (2.2) 

Note that our final goal is to obtain f(Po) and O(Po) (or an element in O(Po)). (2.1) 
implies that 

f(P,) -< f(P,) for (P,, e,,) E ~. (2.3) 

( ~ ,  O,  f)  is called the branching structure of P0. Note that  f(PO is not  known until P, is 
completely solved. 

A lower bounding function g : ~ ~ E tO {~} satisfies the following conditions, z 

i In this case, P~ is called a son of P, Pj is called a descendant of P, (P, Is an ancestor of P~) if P j  = P, or Pj Is a 
son of a descendant of P, A descendant (ancestor) Pj of P, is proper if P, 4~ P, 
2 In some formahzatmn of branch-and-bound algorithms (e.g [12]) it is assumed that g(P,) is also dependent on 
other factors such as the lmcumbent value z 0 e a more accurate hound is computed ff the initial tentaUve g(P~) 
is smaller than ~ut close to z) and the available computer Ume This aspect is not considered m our defimUon. 
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(a) g(P~) _< f(Pi) for P, E ~ .  
(b) g(P,) = f(P~) for Pt ~ 3 .  
(c) g(Pj) ~. g(PO for (P~, P,) ~ ~.  

In a branch-and-bound algorithm, g(P,) is computed when P~ is generated, cg (C ~ )  
denotes the set of  partial problems which are incidentally solved or proved to be 
infeasible ~ in the course of computation of g. ~ satisfies the following conditions. 

(A) g(P,) = f(P,) for P, ~ ~.  

(C) P, ~ cg implies Pj E ~ if (P~, P,) ~ ~. 

Now let 1II be the family of independenP sets in ~ .  s : IF[ ---> ~ is a search function if 
s ( ~ )  ~ ~ for ~ ~ [I. s determines the order in which partial problems are selected for 
test. s is a heuristic search function based on h : ~ ~ E ,  if 

h(s(~¢)) = min{h(P,) [ P, ~ ~ }  (2.4) 

holds for ~ ~ II.  In this case, s is denoted sn. In particular, s = sg is called the best-bound 
search function. Let 

N(~¢) = {P, E ~¢1 d(P,) = max{d(Pj) [ Pj ~ ~}}. (2.5) 

Then the depth-first search function based on h, denoted gh, satisfies 

h(gh(~)) = min{h(P,) { P, ~ N(~)} ,  gn(~) ~ N ( ~ ) .  (2.6) 

Finally a heuristic search function sn is also called a breadth-first search function if 
d(sh(~)) = min{d(P,) { P, ~ ~ }  holds. This is realized if d(P,) < d(Pj) implies h(P,) < h(Pj) 
for P, ,  Pj E ~ .  It  is known that heuristic search is the most general among these since it 
includes the other three as special cases [14]. 

We now turn to the last constituent of a branch-and-bound algorithm, the dominance 
relation. A binary relation D C ~ × ~ ((P,, Pj) E D is also denoted P, DPj) is called a 
dominance relation if D satisfies the following conditions. 

(i)a P, DP~ A P~ ~ P~ implyf(P , )  < f(P~) and that P~ is not a proper  descendant of Pj, 
in case all opt{mal solutions are sought, 5 or 

(i)s P, DP~ implies f(P,) _< f(P~), in case a single optimal solution is sought.~ 
(ii) D is a partial ordering, i.e. transitive (P~DP~ A P, DP~ ~ P, DP~), reflex{ve 

(P~DP,), and antisymmetric (P, DP~/~ P~DP, ~ P, = P,). 
(iii) P~DP~ A P~ -~ P~ ~mply that some descendant Pv of P~ satisfies PvDP~, A Pv 

P~, for any descendant P~, of Pj. 
(iv)s In case a single opt{mal solution is sought, there exists no set of nodes (C ~) ,  

P,~, P,~, . . . .  P~+, (k -> 2 and P,,, P~, . . .  , P~ are distinct), (2.7) 

generated in the branch-and-bound algorithm under consideration, such that (1) P,t 
is a proper  descendant of P,~+~ or P~, P~,+~ satisfy P,,DP~÷~/kf(P~) = f(P~,+), for t = 
1 ,2  . . . . .  k,  and (2) P,~+, = P,~ (i.e. a closed path). (For k = 2, this condition prohibits 
the case in which P~DP~/kf(Pl) = f(P~) holds for a proper  descendant P~ of P,.) 

By condition (i) of D, it is obvious that P~ need not be solved if P, is already generated 
and P, DP~ holds; thus P~ can be terminated.  A dominance relation D may be interpreted 
as an embodiment  of the information on optimal solutions of  partial problems obtainable 
without actually solving them (i.e. computing .f). 

The above definition of a dominance relation is different from the original one of [18] 
in that conditions (iii) and (iV)s are not assumed in [18], while one more condition, the 
consistency property with g (i.e. P~DP~ ~ g(P,) -< g(P~)), is assumed in [18]. Condition 
(iii) is satisfied by most dominance relations used in practice (see examples gwen below). 

If  P, ~ ~ ~s infeasible,  then f(P,) = oo ~s assumed  for  convenience  
~ C ~ is independent {f no  P~ m ~ ~s a p rope r  descendan t  o f  the o thers  
See the formal  descnpUon  of  a b r a n c h - a n d - b o u n d  a lgor i thm in Sect ion 3 
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Condition (iv)~ is necessary to prevent a deadlock in which all the nodes containing opti- 
mal solutions are terminated by dominance relation D, and as a result no optimal solu- 
tion is obtained by the algorithm .6 This condition, however,  is not used in the subsequent 
discussion of this paper.  The consistency property with g is also a quite natural assump- 
tion. It ts assumed in many sections in the following. 

Remark 2.1. Assume that a single optimal solution is sought. If f(PO = f(P~) is 
concluded for some reason, we can let either P, DPj or P~DP, Note,  however,  that only 
one of them is possible by antisymmetry of condition (ii). A convenient way to make the 
resulting D a partial ordering is to let P, DP~ if P~ is tested before P~. 

Some examples of dominance relations taken from the literature are given below. 
These examples assume that only a single optimal solution is sought (i.e. conditions (0s 
and (lV)s hold). Many other dominance relations are also used in practical branch-and- 
bound algorithms (e.g. [2, 8, 10, 17, 23, 25-28,  31, 33]). 

(A) n-lob two-machine mean finishing time flow-shop problem [5, 16, 20]. Let  a 
partial problem P specify a partial schedule on a subset J(P) ofn  lobs, and let Fjk(P) be 
the finishing time of job j (~ J(P)) on machine k (= 1 or 2) under the partial schedule 
specified by P. Then a dominance relation D may be defined as follows: PsDPt if and 
only ifJ(P~) -- J(Pt), max~a<epF~(Ps) -< max~Ejtp~)F32(Pt) and ~ea<p~)Fj~(Ps) --< ~,~stPt) 
F~z(Pt) (If equahties hold in the last two relations, we let P~DPt if Ps is tested before Pt ,  
according to Remark  2.1.) D obviously satisfies conditions (i)s and (ii). It  satisfies 
condition (iii) since, for a descendant Pt, of Pt with J(Pt,) = J(Pt) U S, the partial problem 
Pc, which is the schedule P~ followed by the set of jobs S scheduled in the same order as S 
of Pt,, satisfies Ps, DPt, as is easily shown. It is also possible to prove that condition (iV)s 
holds (though not given here since condition (iv)~ is not used in our discussion). 

(B) nqob one-machine scheduling problem with deadlines [32]. Each job j 
(= 1, 2 . . . .  , n) has a deadline de, penalty pj, and processing time t~, and pays penalty p~ if 
it is not completed by its deadline. Find a schedule on one machine which minimizes the 
total penalty. Let jobs be arranged such that d~ -< d2 -< " "  -< d~. A partial problem P is 
defined by a positive integer t(P) (satisfying I -< z(P) -< n) and a subset J(P) C 
{1, 2 . . . . .  t(P)}; P represents a partial schedule that first processes the jobs in J(P) in 
increasing order and then processes the jobs not in J(P) after their deadlines. Then it is 
possible to define that P~DPt if and only if i(P~) = t(Pt), ~3~j(ps)ta ~ ~jej(t~,)b and 
~a~e,>.a<_~,e,>p: -< Y,~J¢PO.I<-~<-,e,~P~. (If equalities hold in the last two relations, let 
P, DPt if P~ is tested before Pt.) 

(C) Problem of  eight queens [9]. A partial problem P represents a pattern of m (-<8) 
queens put on a chessboard of size 8×8.  Then PsDPt if and only if the patterns 
represented by P~ and Pt are isomorphic and P~ is tested before Pt. 

(D) Shortest path problem [15]. Find the shortest path from node I to node n on an 
n-node network with nonnegative arc lengths. A partial problem P represents path rr(P) 
from node 1 to node i(P) (1 -< i(P) -< n). Then P, DPt if and only ifi(Ps) = i(Pt) and the 
length of ¢r(Ps) is not greater than that of 7r(Pt) (Ps is tested before Pt if their lengths are 
equal). 

It is not difficult to regard the Dijkstra algorithm for the shortest path problem [6, 7] 
as a branch-and-bound algorithm with the above dominance relation (D) [15], though it 
was not originally given in the framework of branch-and-bound. This point may be ex- 
tended to most other dynamic programming algorithms based on the principle of opti- 
mality [4], as pointed out by [19, 27]. (In [19], the dynamic programming algorithm for 
the traveling salesman problem [13] is formulated as a branch-and-bound algorithm. 
[27] contains a further general discussion.) Thus it should be noted that a dominance 
relation adds another dimension of flexibility in designing a branch-and-bound algo- 
rithm, sometimes enabling us to exploit a special structure of a given problem to improve 
the efficiency of the resulting algorithm. 

6 Reference [18] uses a different mechamsm to prevent a deadlock 
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3. Branch-and-Bound Algorithms : General Description 

In this section the constituents discussed previously are assembled into a branch-and- 
bound algorithm. Two types of algorithms are given; the first one obtains all optimal 
solutions of a given problem P0, while the second one obtains only a single optimal 
solution. 

Branch-and-bound algorithm Aa = ((~,  O, 13, (~, g), D, s). All opumal solutions. 
Remark. N C ~ denotes the set of the partial problems currently generated. A node 

in N is active if it is yet neither tested nor decomposed into smaller partial problems. 
denotes the set of currently active nodes, which is always independent as easily proved. 
denotes the set of the best feasible solutions currently available and is called the 
incumbent; z is its objective value (incumbent value). Upon termination, ¢~ stores O(Po) 
and z stores its objective value. It is assumed that O(P,) is calculated as a' by-product of 
testing P, in case P, ~ ~ holds. 

Ala (Inmalize) 7" M ~-- {P0}, N ,-- {P0}, z ~-- o% ~ ~ ~3 (empty) 

A2a (Search): If  M = 0 ,  go to A9a; otherwise let P, ~-- s(M) and go to A3a 

A3a (cg test). If  Pt ~ ~ ,  go to A7a, otherwise go to A4a. 

A4a (Lower bound test) If g(P,) > z, go to A8a, otherwise go to A5a 

A5a (Dommance test)" If there exists Pk (~ P~) ~ N such that PkDP~, go to A8a; otherwise go to A6a 

A6a (Decompose): Generate sons P,~, P~, . . . . .  P~k of Pt Return to A2a after letting M ~-- M t.J 

{P.,, P~ . . . . .  P,~} - {e,} and N ~-- ~ U {e,,, Pa, . , P,~ }. 

ATa (Improve): Go to A8a after letting 

1 0 if z < f(P~) (= g(P~)), 
~ OUO(P~) i f z = f ( P ~ ) ,  

(O(Pt) ff z > f(et); 
z ~-- mm[z,f(P~)]. 

A8 a (Terminate POs: Return to A2a after iettmg .d ~ M - {P~}. 

A9a (Halt): Halt O(Po) = ¢7 and f(P0) = z; P0 is mfeastble if O = O.  

The finiteness and the validity of the above procedure are not proved here since proofs 
for similar procedures may be found in survey papers such as [3, 18, 22, 24, 29]. Note 
that z decreases monotonically from its initial value z = 0o to the final value z = f(Po), as 
the computation proceeds. 

At this point it may be interesting to note 9 that the lower bound test can be regarded as 
a special case of the dominance test (with a certain modification); step A4a is equivalent 
to step m 5 a  with N in the statement replaced by N - M and with dominance relation D 
defined by PkDP, if Pk E ~ and g(Pk)( = f(Pk)) < g(P,). 

The above algorithm is slightly modified if only a single optimal solution of P0 is 
sought. 

Branch-and-bound algorithm As = ((~, O ,f), (~,g),  D, s). Single optimal solution. 
Remark. It is assumed that an element in O(P~) is calculated as a by-product of 

testing P~ in case P~ ~ ~ holds. 

Als,  A2s, A3d Same as Ala ,  A2a, A3a wtth A,~a m their statements replaced by Ats, respectwely. 

A4s: If g(P~) >_ z, go to A8~, otherwise go to A5~ 

A5~, A6~: Same as A5~, A6a with A~a replaced by Ass, respectively. 

A7s: Go to A8s after letting 

{x ~f z ~_ f(P~), 
t3 ~ }, where x ~ O(P~), otherwise, 
z ~ rain[z, f(P~)]. 

7 ~ stands for the assignment operaUon represented by := in Algol. 
s Pt is called terminated ff Pi C ~ m A3 a, g(Pi) > z m A4a, or PkDP, for some Pk ~ .A t̀  in A5a 
9 Due to W.H Kohler (private commumcatton) 
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A8~, Ags: Same as A8a, A9a with Ata replaced by Ats and with O(Po) = ~ replaced by O(P0) in A9. 

Throughout this paper, the efficiency of a branch-and-bound algorithm A is measured 
by the following two parameters. 

T(A): The number of nodes decomposed in A6a (A6s) prior to termination A9a 
(A9s). 

B (A): The number of nodes decomposed in A6a (A6s) prior to the last modification of 
~7 occurred in A7a (A7s). 

T(A) is closely related to the total computation time of A and has been one of the most 
popular measures (e.g. [18, 30]). B(A) is related to the computation time required until 
all optimal solutions (a single optimal solution if A = As) are stored in O. This is 
important in practical applications in which the computation may be cut off prior to 
termination A9~ (or A9s) due to the insufficiency of the available computer time. 
Obviously it is desirable to design a branch-and-bound algorithm with smaller T(A) and 
B(A). 

It should be noted here that T(A) (or B(A)) does not always reflect the exact 
computation time actually required since T(A) may be made small at the cost of 
increasing the time required for testing each partial problem. To know the behavior of 
T(A) and B (A) at least provides a useful guideline for designing an efficient branch-and- 
bound algorithm, however, since the time required for testing a partial problem can 
usually be estimated more accurately than the number of nodes T(A) or B(A). Further- 
more, the actual computation time does not seem to be a measure which is theoretically 
tractable. 

In the subsequent discussion, subscripts a and s are added, e.g. An, As, A/s, Ta(A), and 
Ba(A), to distinguish algorithms for all optimal solutions and a single optimal solution, 
respectively. Conversely, no subscript is added if it is not necessary to distinguish them; 
A refers to either algorithm Aa or algorithm As, T(A) to either Ta(A) or Ts(A), and so 
forth. 

4. Power of  Dominance Relations 

Let D and D '  be dominance relations on ~.  If 

D' D D (I.e. P, DPj implies P,D'Pj), 

D' is said to be stronger than D. In view of the motivation for introducing dominance 
relations, it seems intuitively obvious that a stronger dominance relation makes the 
resulting branch-and-bound algorithm more efficient: Branch-and-bound algorithms A 
= ((~, O, f ) ,  (~, g), D, s) and A '  = ((~, O, f) ,  (~, g), D ' ,  s) with D'  D D always satisfy 
T(A') --< T(A) and B(A') -< B(A). This monotonicity property of dominance relations, 
however, does not generally hold (as first observed in [18] under a somewhat different 
assumption on dominance relations). In this section it is shown that the monotonicity 
property is not generally observed for branch-and-bound algorithms with heuristic search 
functions (note that heuristic search is the most general among search strategies as 
mentioned in Section 2). However, such monotomcity is guaranteed if a search function 
belongs to one of the following four special classes: Class of heuristic search functions 
with some additional property (Section 5), class of best-bound search functions with D 
satisfying the consistency property with g (Section 6), class of breadth-first search 
functions on some restricted branching structures (Section 7), and class of depth-first 
search functions with minor modifications (Section 8). 

THEOREM 4.1. Let A = ((~, O, f ) ,  (@,g), D,sn)and A'  = ((~, O, f) ,  (@,g), D',sh) 
be branch-and-bound algorithms with a heuristic search function sh, and let D' D D. This 
does not generally imply Ta(A') ~: Ta(A), Ts(A') --< Ts(A), Ba(A') <- Ba(A), or Bs(A') <- 
Bs(A ). 

PROOF. Consider the branching structure (~,  O, f) and h : ~ ---, E shown in Figure 1 
(O(P~) is not indicated since it is not relevant to T orB).  For simplicity, it is assumed that 
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f=4 f :2  f=5 f=4 f=3 f=3 f=2 f= l  
h=0.3 h=0.2 h=l.2 h= l . l  h=2.2 h=2.1 h=3.2 h=3.1 

FIG, 1. Branching structure (~, O, f) and h used m the proof of Theorem 4 1 (A broken arrow in&cares 
dominance relatton D' It is assumed that g = f and ~ = 9- ) 

= ff  and g(P,) = f(P,)  for each P, ~ ~ .  Let D '  and D be given by 

D = {(P, PC [ P, ~ ~} (D is the identity relation), 
D '  = D U {(P4, P~)} O {(P,, P~) [ P,, P~ E ~J,f(P,) < f ( P , ) } .  

In other words, D '  is the identity relation augmented with (P4, P1) (indicated in Figure 1 
by a broken arrow) and those defined on nodes in ~ .  Obviously D '  D D.  Computation 
processes of A and A '  are illustrated in Figure 2 (a) and (b), respectively, in which node 
numbers indicate the order of testing the generated nodes, and z indicates the incumbent 
value when the corresponding node is selected in step A2. Note that P~ of Figure 2 (b) is 
terminated in step A5 by dominance relation P4D'P~. From Figure 2 (a, b) it follows that 

T~(A ) = Ts(A ) = B~(A ) = Bs(A ) = 3, 
T~(A') = Ts(A') = B~(A')  = Bs(A ') = 4. Q .E .D.  

Note that sh in the above A and A '  is a depth-first search function. Thus the 
monotonlcity of dominance relations does not hold even if branch-and-bound algorithms 
are restricted to those with depth-first search functions. 

5. Nonmis leading  Heuristic Search 

A heuristic function h : ~ ~ E Is called nonmis leading if 

h(P,) < h(P~) imphes f(P,) _< f(P~) for P,, P~ ~ ~ .  (5.1) 

It is known that a branch-and-bound algorithm with a nonmisleading heuristic function is 
most efficient [11, 14]. Although it is not reasonable to assume that such a heuristic 
function is easily obtainable (since tt requires the complete knowledge of f ) ,  it is 
considered as a theoretical goal when we design a heuristic function for a branch-and- 
bound algorithm. In addition, it is shown in [14] that a heuristic function which is close to 
nonmisleading always makes the performance of  the resulting algorithm close to the 
most efficient one. Thus the investigation of  the effect of  dominance relations on 
algorithms with nonmisleading heuristic functions would help one to understand the be- 
havior of branch-and-bound algorithms which are very successfully designed by using 
almost nonmisleading heuristic functions. 

In the following we assume for simplicity (but without loss of generality) that 

h(P,)  ~ h(P~) for P, ~s p, (5.2) 

(by using an appropriate tie breaking rule if necessary), 

h(P,)  > h (P~) if P, is a proper descendant of  1",. (5.3) 
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(a) Computation process by A (b) Computation process by A' 

Fro. 2 ComputaUon processes by branch-and-bound algorithms A and A' used m the proof of Theorem 4 1 

(Given a heuristic function h' it is possible to prove the existence of a heuristic function h 
such that h satisfies (5.2) and (5.3) and sh = sh, [14].) 

LEMMA 5.1. Let A = ( (~ ,  O , f ) ,  (~, g), D, sh) be a branch-and-bound algorithm, and 
let 6f = P,,P,2 • • • P,s (where P,~ = Po) be the sequence o f  the generated nodes arranged in 
the order o f  selection in step A2.  Then h(P~k) < h(P~) holds for k < l (-<s). In addition, 
f(P~) -< ff(P,) holds for k < l (-<s) i f  h is nonmisleading. 

PROOF. Assume that P, and P~ are generated in A and h(PO < h(P~). Then any 
ancestor Pk of P, satisfies h(Pk) < h(P,) < h(Pj) by (5.3). This shows that P~ and hence P~ 
are already generated when Pj is selected. Thus P~ is selected prior to P~ since h(P~) < 
h(P~), proving the first half. The second half is immediate  from the definition of a 
nonmisleading heuristic function. Q . E . D .  

Before proving the next theorem,  one more definition is introduced.  A dominance rela- 
tion D is consistent with g if 

(v) PtDP~ implies (1)g(P , )  < g(P~), or (2 )g (e , )  = g(P~) and P, is selected before P~. 
THEOREM 5.2. Let A = ((~3, O, f) ,  (~, g), D, sh) and A '  = ((~, O, f ) ,  (~, g), D' ,  sh) 

be branch-and-bound algorithms based on a nonmisleading heuristic function h. I f  D' 
D and D' is consistent with g, then it holds that Ta(A' ) --< Ta(A) and Ba(A')  -< B~(A). 

PROOF. Let  ~ = P~P,2 . . .  P~, and 6e' = P~P~ . . .  p~, be the sequences of nodes 
selected in A and A ' ,  respectively. We show that 5Q' is a subsequence of ,Se when all 
optimal solutions are sought. Let  M(P~) and M'(P~) denote the sets of active nodes,  and 
z(P,) and z'(P,) denote the incumbent values, when P, is selected in A and A '  respec- 
tively. 

To use induction, first note that P~ = P~, (= P0) and M(P,~) = M'(Pj~). Then assume 
that 6e,~ = p~,pj~. . ,  pj~ (q < t; ff q = t, the proof  is done) is a subsequence of ~ ,  = 
P~P~ . . .  P,~ (p < s) and M'(P~+,) C sc(e,~+~). Two cases are possible. 

(a) P,~+, ~ PJ~+v Then Pip+, E M(P,~÷~) but P,~+~ ~5 M'P(j~+~) since h(P,p+) < h(P~) for 
each P~ ( -~P~)  E M'(P~+) (C M(P~+)) by the definition of heuristic search. P~+~ may 

then be terminated in A3a, A4a, A5a, or decomposed in A6a. In either case, we have two 
sequences, Se~ = PJ~Pa2 " ' '  P~ and SPp+i = P,~P,~ . . .  P~P~+~, such that ~ is a subse- 
quence of 5ep+l and M'(Pj~+) C M(P,~+). 

(b) P,~+, = P~,+v First note that ei ther both P,~+~ and P~+~ are terminated or  none of 
them are terminated in step A3~ (~  test). 

To consider step A4a (lower bound test), note that Lemma 5.1 implies that the first 
incumbent Pk ( E  ~)  obtained i n A  or A '  satisfiesf(Pk) = f(Po), z or z' (initially oQ) is then 
set to f(Po) and keeps the same value thereafter .  From this observation z(P~+~) = z' (P~q.) 
is proved as follows. First if z(P,~.) = oo then z '(Pa~+,) = oo since 6f~ is a subsequence of 
6ep. Second if z(P,~+,) = f(Po) then some P~ (1 -< v -< p) in ~p satisfies P~, ~ rg andf(P~o) 
= f(Po). Since any ancestor P~,, of Pt,, satisfies P,,, q~ ~,  g(P,=) <- f(P,~) = f(Po) holds and 
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no Pa ~ ~ satisfies PaDP,~ (see condition (i)a of a dominance relation), P,u is not 
terminated in step A3a, A4a, or A5a of A ' .  Thus M'(P~q+,) C M(P,~+,) O.e. 
P~,, P~o ~ M'(Pj~+)) implies that P~ has also been selected in .9~'. Thus z'(P~,+,) = f(Po). 

z(P,~+,) = z (P,,+,) and g(P,~+,) = g(P~+) (since P,~+, = Pj~+) then implies that P~+, is 
terminated in step A4a of A if and only if P~÷, is terminated in step A4a of A ' .  

Next we turn to step A5a (dominance test). Assume that P,~+, is terminated in A5a of 
A,  i.e. P, flP,~+, holds for some r <- p (note thatP, flP,~+, ~f(e,~) < f(P,~+~) ~ h(P,~) < 
h(P,~+,) ~ r < p + 1 (by Lemma 5.1)). IfP,~ = PJd for some d -< q, we have Pj, D'P~+, by 
D '  ~ D. Thus Pig+, is also terminated in A5a of A '. On the other hand, i f~ .  is not in 6e~, 
a proper ancestor P3,, (v ~_ q) of P,~ (in ~ )  must have been tested and terminated in step 
A5~ o f A ' .  (See Figure 3.) (Note that P3~ = P,, for somea < r since 5e~ is a subsequence 
of fi"p. P~ was not terminated in A since a proper descendent P,. is generated. Thus ~ 
(= P,)  is not terminated in step A3~ or step A4~ of A ' . )  This shows that there exists P~,,, 
in ~ such that P~D'P~o as shown in Figure 3. P~ has a descendent P~ satisfying 
P~D'P,~ by condition (iii). First assume that P~ is generated in A ' .  Then PjD'P~+, 
follows from transitivity (see condition (ii)), and P~ has already been generated when 
P,~+, is tested since P,~ D'P~+, ~ f(P,,) < f(P,~+,) ~ h(Pj~) < h(P,q+,). Thus P,~+~ is also 
terminated in A'.  On the other hand, if P,~ is not generated in A'  (i.e. a proper ancestor 
is terminated in A5~ o f A '  since, if a proper ancestor P,~ of Pj~ is terminated in A4~, we 
have z'(Pj~+) _< z'(P~) < g(P,) _< g(P~) _< g(PJ~,l) (by the consistency of D with g) and 
P~÷a is also terminated in A4a, a contradiction), repeat the same argument. We will have 
a sequence of nodes Pk,(= P,~÷,), Pk~(= P,), Pk~(= P,) ,  Pk4,. • such t h a t . . ,  
Pk, D'Pk3/~ Pk4 ~ Pka, Pkfl'Pk~/~ Pka ~s Pk2, P~D'Pk, /~ P~ ~ P~. Note that all nodes 
P~,, P~, . . .  are distinct since otherwise D'  ts not a partml ordering. Therefore, this 
process does not continue indefinitely since ~ has only finite nodes, showing again that 
P¢¢+~ is terminated in A ' .  

The above argument proves that P~o+l is terminated in A'  if P,~+, is terminated in A. 
Thus we have 5e,~+~ = p~,p~ . . .  p~p~,+~ and 5av+~ = P,,P,~ . . .  P~P~o+~ such that 5e,~+~ is a 
subsequence of 5~v+~ and M'(P~¢+) C M(P,~+). 

By repeating this induction step (a) or (b), we will eventually reach 6e' and ~ such that 
5 e' is a subsequence of 5 e. This proves Ta(A') _< Ta(A) and Ba(A') -< B~(A). Q.E.D. 

THEOREM 5.3. Let A and A '  be defined as in Theorem 5.2. I f  D' ~ D and D' is 
consistent with g, then it holds that 

Ts(A')--< Ts(A) + l a~ClYd'l, Bs(A')-< Bs(A) + ]~ O.g rl , 

where 

FIG. 3. 

Ju Pi =P 
p+l Jq+l 

Relations of nodes used m the proof of Theorem 5 2. (Broken arrows indicate dominance relation 
3 '3  
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= {P, ~ .~ I f(e,) = f (Po)/~ P, ~ ~} ,~0 (5.4) 

Y{ = {P~ ~ ~ I g(P,) = f(P0)} . '°  (5.5) 

PROOF. When a single optimal solution is sought by A or A ' ,  the proof of Theorem 
5.2 should be slightly changed since PiDPj imphes onlyf(P,) --< f ( P )  (rather thanf(P,) < 
t iP ) )  and step A4s is active ifg(P,) -> z (rather thang(P,) > z). Thus a node Pj withf(P)  = 
f(Po) may possibly be terminated in step A5s or in step A4s if P, DPj(or P,D'P~) or g(P~) = 
t i P )  = z(= f(Po)) holds, respectively. 

To see how those nodes P, withf(P,) = f(Po) are treated in A or A ' ,  first note that they 
are located in the initial portions of .90 and .Se', respectively, by Lemma 5.1. Denote  such 
portions consisting of nodes P, withf(P,) = f(Po) by ~ i  and 5e;, respectively. Let ~* = 
P~P~ . .  • Pk, be the sequence of all nodes Pk E ~ with f(Pk) = f(Po) arranged in the 
increasing order o fh .  By Lemma 5.1,5el and Se~ are subsequences of b °*. Let Pkb be the 
first node satisfying , 

Pkb E Cg and Pk~ appears in ~ .  (5.6) 

Then there exists Pk~ (c <- b) such that 

Pk~ ~ c~ and Pk~ appears in ~i,  (5.7) 

as proved below. If (5.7) is false, z = oo holds in A until some Pka ~ cg such that d > b is 
selected. Thus a proper ancestor of each Pk~ satisfying Pkc E ~ and c -< b must have been 
terminated in step A5~ of A.  By considering D'  ~ D and the case of c = b, this implies 
that a proper ancestor of Pk~ is also terminated in A '  (apply an argument similar to the 
last half of case (b) in the proof of Theorem 5.2). This is a contradiction to (5.6). 

From (5.6) and (5.7), it is possible for a node P, withf(P,) = f(Po) to be decomposed in 
A '  but termmated in A (by step A4~) if 

f(P,) = f(Po) = g(P,) and P~ ~ cg, (5.8) 

since the incumbent value z in A may possibly be set to f(Po) earlier than z' in A ' .  Once 
z(P,~) = z'(P~) = f(Po) holds for P,~ = P~ (in ~ and ~ ' ,  respectively), however, an 
argument similar to the proof of Theorem 5.2 can be applied to the rest portions of 5e 
and 5e'; any P, (in that portion of ~ ' )  decomposed in A '  is also decomposed in A.  
Consequently any P, which is decomposed in A '  but not decomposed inA satisfies (5.8). 
This proves T~(A') -< T,(A) + I P N Y[ I and B~(A') _< B~(A) + Io¢ N Yg" I • Q.E.D.  

It should be noted that [ ~ f-I Y/" [ is usually very small. 
COROLLARY 5.4. Assume that there exists exactly one path in 93 from Po to P~ E 

such that f ( P )  = f(Po). Then T,(A') --< Ts(A), B,(A') -< Be(A)holds in Theorem 5.3. 
PROOF. Obvious since ~ i  = 5e~ = 5e* = Pk~Pk~ . . .  Pke, where Pk~ = Po, Pk~ = PJ 

corresponds to such a path. Q.E .D.  

6. Best-Bound Search 

In this section it is shown that the monotonicity property of dominance relations is also 
observed for branch-and-bound algorithms using best-bound search functions. Two 
lemmas are first proved. Essentially the same property as Lemma 6.1 was also proved in 
1211. 

LEMMA 6.1. Let A = ((~,  O , f ) ,  (~, g), D, so) be a branch-and-bound algorithm with 
best-bound search. Let b ° = P~lP~ . . . P,, be the sequence o f  nodes arranged in the order o f  
selectton in step A2. Then g(P,~) -< g (P , )  holds for k < 1 (-<s). 

PROOV. Similar to the proof of Lemma 5.1, with h replaced by g. (Also note 
condition (c) of g in Section 2). Q .E .D.  

L~MMA 6.2. A node P, ~ ~ m a y  be decomposed in A = ((~,  O , f ) ,  (Cg, g), D, su)only 
t f  P~ E ~ - ~ holds, where 

~0 Note that f(Po) ~s the optmml value of the original problem P0 
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,~ = { P I E  ~ [ g(P,) -< f ( P 0 ) }  • (6 .1 )  

PROOF. It is obvious from Lemma 6.1 that the first P, ~ ~ selected in A satisfies f(P,) 
= g(Pi) ~- f(Po). Thus a node P, with Pj ~ ~ or g(P,) > f(Po) is always terminated in step 
A3 or step A4, since z = f(Po) holds by Lemma 6.1 when P, with g(Pj) > f(Po) is 
selected. Q.E.D. 

Note  that Lemmas 6.1 and 6.2 hold for both cases of all optimal solutions and a single 
optimal solution. 

THEOREM 6.3. Let A = ((~,  O, f ) ,  (~, g), D, so) and A '  = ((~,  O, f ) ,  (~, g), D' ,  so) 
be branch-and-bound algorithms with best-bound search, where D' satisfies condition 
(v). I f D '  D D, then 

Ta(A') <- Ta(A), B~(A') -< B~(A), 
Ts(A') -< Ts(A) + I X - ~ I , B,(A')  -< B,(A) + lYe-el. 

( X  was defined in (5.5).) 
PROOF. First consider the case of all optimal solutions. By Lemma 6.2, assume that 

P, ~ 2T - ~ is not decomposed in A. Since g(Pi) -< f(Po) -< z, step A4a (lower bound test) 
is not active for P, and hence P, must be terminated in step A5a (dominance test), i.e. 
there exist Pk ~ )¢'(P,) such that PkDP,, where ,N'(P,) denotes the set of the generated 
nodes when P, is selected in step A2a. Now assume that the same P, is decomposed in A ' .  
If Pk ~ )¢"(Pt), where .A/" is similarly defined, then PkD'P, by D' D D, a contradiction. 
Thus let Pk q~ df'(P,). Then a proper ancestor Pj of Pk must have been terminated in A5a 
of A '  by PlD'P~ for some P~ E .A/"(P~). (Note step A4a is not active for Pj since g(Pj) -< 
g(Pk) ~ f(Po).) By condition (iii), Pi has a descendant Pt such that PtD'Pk (and hence 
PtD'P,), where Pt E df'(Pk) by condition (v), if Pt is generated in A ' .  Thus P, is 
terminated in A5a of A ' ,  again a contradiction. If a proper ancestor of Pt is terminated in 
A ' ,  repeat the same argument; this process does not continue indefinitely since ~ has 
only finite nodes. Consequently it is proved that P, can be decomposed in A '  only if it is 
decomposed in A. This and Lemmas 6.1 and 6.2 show that ~ '  is a subsequence of ~ ,  
where ~(,5 °') is the subsequence of nodes arranged in the order of selection in A2a of 
A(A ' ) .  n Thus Ta(A') <- Ta(A) and Ba(A') --< Ba(A). 

When only a single optimal solution is sought, a slight modification similar to the proof 
of Theorem 5.3 is necessary. A stronger dominance relation may tend to delay the time 
of obtaining the first incumbent solution P, ~ @. Thus a node P, may be terminated in 
A4s of A,  but not in A4s of A '  if 

g(e,) = f(Po), e~ q~ ~ (6.2) 

and z(P,) = f(Po) hold. The number of such nodes is at most [ 5V - @ I • This proves the 
results for Ts and Bs. Q.E.D.  

[ ~r _ ~ i is usually very small. It is actually zero, if for example g(P~) ~ g(P,) holds for 
e , , e , ~ - ~ 3 .  

7. Breadth-First Search 

In this section we consider a special class of branching structures such that 

P, E f f  (i.e. P, is a bottom node) ¢:~ d(P,) = n (7.1) 

for some positive integer n, and assume that 

(g = 3 .  12 (7.2) 

We further assume that D satisfies the following condition in addition to conditions (i)- 
(iv) of Section 2. 

11 H e r e  we assume that the same Ue-breakmg rule is used to define so m A and A ' ,  when g(P~) = g(P~) holds for  

P, * Pj 
12 Thts condmon  can be relaxed to- Pt E ~ - 8- implies f(P~) = oo 0 e Pt is infeasible).  
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(vi) P, DP, implies d(P,) -< d(P,). 
The above conditions are satisfied in many practical problems. For example, domi- 

nance relauons (A) and (13) discussed in Section 2 satisfy condition (vi). 
It is not difficult to show that if a branch-and-bound algorithm with breadth-first 

search is applied to a problem satisfying (7.1) and (7.2), the lower bound test (step A4) 
is not effective since z(P,) = ~ holds for all P, ~ ~ - ~.  

This leads to the next theorem. 
THEOREM 7.1 Let A = ((~,  O,  f ) ,  (~, g), D, sh) and A '  = ((~, O , f ) ,  (~, g), D' ,  sn) be 

branch-and-bound algorithms where sh is a breadth-first search function. Let  i f ,  ~ satisfy 
(7.1), (7.2), and let D satisfy condttion (vi). I f  D '  D D, then 

Ta(A') -< Ta(A), Ba(A') -< Ba(A), Ts(A') -< Ts(A), and Bs(A') -< B,(A).  (7.3) 

PROOF. First note that T~(A) = B~(A) = T , (A)  = B , (A)  and Ta(A')  = Ba(A' )  = 
Ts(A') = Bs(A') hold by assumption (7.1) and (7.2). Assume that a partial problem 
P, E ~ - ff  is not decomposed in A. Since neither step A3 (by P~ ~ c~) nor step A4 (by 
the comment given above) is effective for P,, Pi must have been terminated in step 
A5 (dominance test), i.e. PkDP~ holds for some Pk E .~(P0.  Then by an argument 
similar to the end of part (b) in the proof of Theorem 5.2 (or the proof of Theorem 
6.3), it can be proved that PtD' P, holds for some Pt E • ' (P , )  (condition (vi) is required 
to show this); thus P, is also terminated in step A5 of A ' .  Consequently only a subset 
of the nodes decomposed in A is also decomposed in A ' .  This proves (7.3), since 
breadth-first search applied to a problem satisfying (7.1) and (7.2) first selects the 
nodes in ~ - ~ and then the nodes in ~ (note that no node in ~ is decomposed in A or 
A ' ) .  Q .E .D.  

Although a branch-and-bound algorithm with breadth-first search is not efficient 
without dominance test (since the lower bound test is almost useless even if (7.1), (7.2) 
are not assumed; see also [14]), it should be emphasized that the algorithm can be very 
efficient if a very strong dominance relation is available. The algorithm for scheduling 
problems proposed by Sahni [32] is such an example. 

8. Depth-Ftrst Search 

As stated after Theorem 4.1, the monotonicity property of dominance relations does not 
hold for branch-and-bound algorithms with depth-first search. The monotonicity can be 
recovered, however, if step A5 of the branch-and-bound algorithm described in Section 
3 and the definition of a dominance relation given in Section 2 are slightly modified. 

Modified A5 (Dominance test)" If there exists Pk (~P,) ~ .N" - ..~ such that PkDP~, go to A8, otherwtse go to 
A6. 

Namely, Pk E N in the original A5a and A5s is replaced by Pk E A r -- M (=  the set of 
nodes which have been generated and tested). 

We further assume that D satisfies the following condition in addition to conditions 
(i)-(iv) of Section 2. 

(vii) P, DP, and P, ~ P, imply that P, is not a descendant of P~. 
Before proceeding to the main result, two lemmas concerning properties of depth-first 

search are given. 
LEMMA 8.1. Let A = ((~, O, f), (~, g), D, gh) be a branch-and-bound algorithm with 

a depth-first search function based on h : ~ ~ E (either A 5 or the modified A 5 is used), 
and let 5 e = P~P~ . . . P~, be the sequence o f  nodes arranged m the order o f selection in step 
A 2  o f  A .  Assume that P,~ is the first node which satisftes p < q and is not a descendant o f  
P, . Then all proper descendants o f  Pi, eventually generated in A are located in 5e between 
P,. and P~ . 

PROOV. Denote by ~¢(P,.) the set of active nodes when P,. is selected. Then P,~ E 
za/(P,~) since P,. is not a descendant of P~. In other words, P~. had the higher priority 
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than P,~ in the selection by depth-first search. This means d(P~) ~_ d(P~).  Since any 
proper  descendant P~ of Pt,, satisfies d(P~) > d(P,~) (>- d(P,~)), P, is selected prior to P~ 
according to depth-first search. Q .E .D .  

LEMMA 8.2. Let A ,  P,,,, Pap be defined as in Lemma 8.1, except that A uses the 
modified A5  and D satisfies conditton (vii) given above. Denote the incumbent value when 
P, is selected by z(P~). Then 

z( P , )  = min[ z( P,,,) , f(P,~)] . (8.1) 

PROOF. To prove by induction, assume that the l emma is true for any subsequence of 
5 ¢, P q P , . . .  P,,, with t < w. For w = 2, this is trivially true. Furthermore,  if P,~ is a 
descendant of any P,,, t < w, the lemma ~s immediately extended to the sequence 
P , P , ~ . . .  P , .  So assume that P,~ (1 ~ p -< t) and P,~ = P,q satisfy the lemma statement.  
Note that 

z(P,q) -< z(P,~), z(P,q) -> min[z(P,,),f(P,~)] (8.2) 

follow from Lemma  8.1. Let  Psi, PJ . . . . .  , Per be the descendants of P,~ such that P~k ~ c~ 
andf(P~k ) = f (P , ) ,  k = 1, 2 , . . .  , r. By Lemma  8.1, either P3k is selected prior to P~q or a 
proper ancestor of PJk is terminated for some reason. If one of P~ . . . . . .  Per is actually 
selected, then z(P,q) -< f(P,~) (see steps A3 and A7 of A)  and hence z(P,q) = 
min[z(P,) ,  f(P,~)] by (8.2). 

Assume then that each P~k (k = 1, 2 . . . .  , r) has a proper  ancestor which is terminated. 
If a proper  ancestor Pa of P~ (note that Pa is a descendant of P,~) is terminated by A4 
(lower bound test), then z(Pa) --< g(Pa) ~ f(Pa) = f(P~)" Thus z(P,~) -< z(Pa) --< f(P,~) 
and (8.1) is proved from (8.2). 

Finally assume that Pa is terminated in the modified A5 (dominance test). This implies 
that there exist Pb such that PbDPa and Pb is selected prior to Pa, arid hence prior to P~. 
(When all optimal solutions are sought, Pb is not a descendant ofP,~ sincef(Pb) <f(Pa) = 

f(P,~) by condition (i)a of D.  Thus Pb is selected prior to P,.  by Lemma  8.1. When a 
single optimal solution is sought, Pb may be a descendant ofP,~ satlsfyingf(Pb) = f(Pa) = 

f(P,~,). (Note that Pb is not an ancestor of Pa by condition (vii).) In this case Pb is 
already decomposed since Pb E 2( -- ~ .  Thus there exists a proper  descendant Pc of Pb 
such that Pc is a proper  ancestor of some P~ (1 -< u -< r) and terminated in the modified 
A5. Regarding Pc as P~, apply the same argument  as above.  Repeating this, we will 
eventually have P~ and Pb as described above.)  Relative positions of Pa, Pb, P~,, P~, P~ 
are dlustrated in Figure 4. Note that Pb is not an ancestor of P,~ by condition (vii) and 
PbDPa. Thus z( P,~) -< min[z(P~), f(Pb)] (by Induction hypothesis) -< f (  Pt,) -< f (  Pa) = 
f (P~) .  Consequently (8.1) follows from (8.2). Q .E .D .  

TrIEOREt~ 8.3. Let A = ((~,  O , f ) ,  (~ ,g ) ,  D,£h)and  A '  = ((~,  O , f ) ,  (~ ,g) ,  D' ,gh)  
be branch-and-bound algorithms with a depth-first search funcnon based on h : ~ ~ E,  
where A and A '  use the modified step A5,  and D, D' satisfy condition (vii). Then i f  D' D 
D and D' is consistent with g, it follows that 

Ta(A') --< T~(A), Ba(A') <- B,~(A), Ts(A') -< Ts(A), Bs(A') -< Bs(A). 

PROOF. Let 6e = p~ lp~ . . .  P~3, 5f' = P~Pj~.. .  Pn be the sequences of  nodes arranged 
in the order of selection inA a n d A ' ,  respectively. It  will be shown by induction that 5e' is 
a subsequence of 5e. First note that P,~ = P~ (= P0), ~/(P,~) = ~/'(P~,) (= {P0}) and z(P,,) 
= z'(P~) (= oo) hold, where ~g(P0 and z(PO is the set of active nodes and the incumbent 
value when P, is selected in A;  J ' ( P 0  and z'(P,) are similarly defined for A ' .  

Now assume that Sf~ = Pj~Pj~ . . .  P,~ (b < t since otherwise the proof  is done) is a 
subsequence of 5% = P,~P~ . . .  P~,  and that PJb = P~,  ~4(P~) = ~ ' ( P ~ )  and z(P,~) = 
z'(P,b ). Obviously the induction can proceed one step if either P,~ and P~ are both 
terminated or both are decomposed.  Thus assume that exactly one of P~ and P~ is 
terminated. By assumption that P~ = P~b and z(Pi~) = z(Pjb), such a case occurs only ff 
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one of P,a and PJb is terminated in the modified step A5. First assume that P~, is 
terminated in A by P, pDP,o for some P,p (p < a). If P,, = P~q holds for some q < b, then 
PjD'Pjb and hence Pj~ is also terminated, a contradiction. On the other hand, if such Pjq 
does not exist, a proper ancestor P,r of Pjq (r < b) must have been terminated in the 
modified step A5. Thus there exist Pen (u < r < b) in Se' such that PjuD'Pjr. This implies 
by condition (iii) that a descendant P,v of Pj~ satisfies PjD'P~ (and hence PjvD'P:b). If 
Pj0 is generated in A ' ,  it is selected prior to P~b since Pj~ (satisfying r < b) is not a 
descendant of Pju by condition (vii) and hence selected after P30 by Lemma 8.1. Thus PJb 
is terminated in A'  by PjoD'P~b. If on the other hand a proper ancestor of P~, is 
terminated in the modified step A5 (since, if it is terminated in A4, the consistency of D '  
with g implies that P,b is also terminated in A4, a contradiction) apply the same 
argument; after a finite number of iterations it is shown that some P~ (w < b) satisfies 
PjD'P~b. Consequently, P:~ is terminated in A '  if P,, is terminated in A.  

Finally consider the case in which P,~ is not terminated but PJb is terminated in the 
modified step A5. Then proper descendants of P~, are located in .90 between P,, and the 
first node, denoted P'k' which is not a descendant of P,,, by Lemma 8.1. Then P~k = P~b+a 
since M(P~,) = ..d'(Pjb) by assumption (note A and A '  have the same search function Sn), 
and 

M(e'k) = M(P ' )  - {P'~} = ~ ' ( P , )  - {PJb} = M'(P'o+)" 

z(P~k) = z'(P~+) is proved as follows. First note that Pj~ satisfying q < b and P)qD'P)b is 
not an ancestor of PJo (condition (vii)) and f(P~) <- f(P~b)( = f(P,~)) (condition (i)a or 
(i)~ of a dominance relation). Thus z'(P~b ) --< f(P~) (by Lemma 8.2) --<f(PJb) and hence 

z'(P~b+) = min[z'(P:o), f(P~b)] = z ' (P~) 

by Lemma 8.2. Since P~ is also located before P,° in 5e~ (since 5¢~ is a subsequence of 
5ca), it holds similarly that 

z(P,k ) = min[z(P,~),f(P,~)] = z(P,) = z'(P:~). 

This proves z~P, k ) = z'(P~b+, ). 
AS a result, we now have two sequences 

5fk = PqP,~. . .  P , . . .  P,k and 5%+, = PjPj~ . . .  P~bP~b+, 
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such that 5e~+1 is a subsequence of 5ek, P,k = P,~+~, M(P,k) = ~ ' (P,o+) ,  and z(P,)  = 
z'(P,b+). This shows by induction that 6 e' is a subsequence of 6 e, and T~(A') _< 
Ta(A), Ts(A') -< Ts(A), and Ba(A') -< Ba(A). (Note that this proof is applicable to both 
cases of all optimal solutions and a simple optimal solution.) 

To show B,(A') -~ B,(A), let P,~ be the first node in 5e such that P,, ~ ~q and If(P,,) = 
f(Po). Then P,r = PJ, holds for some P,, in 5e' (note that this proves B~(A') -< B~(A)) since 
no proper  ancestor Pj, of P,, is terminated in A '  as proved next: (a) z ' ( g )  = z(P,) -> 
z(Pj)  = z(P,,) > f(Po) = f(P,,) -> g ( e , )  = g(P, )  >- g(Pjo) holds by assumpuon on P,, 
(= P , ) ,  and hence steps A3, A4 are not active for Pj~ m A' ;  (b) there exists no P, 
satisfyingf(P~) < f(P,,,) (= f(Po)) and hence P,D'P,~ is possible only f i r (P , )  = f ( P , )  
and P~ Is not a proper  ancestor of P,~ by conditions (i)s and (vi0 of a dominance relation. 
Then a descendent P,,  of Pj satisfying P , ~  ~ , f ( P , . )  = f(Po) must have been selected 
before P~, by Lemma  8.2, a contradiction to the fact that b °' is a subsequence of 6e and 
P,, (= P , )  is the first node in ~ such that P~E ~ andf(P~,) =f(Po).  This proves that step 
A5 is not active for P,~ in A ' .  Q E.D. 

9. Conclusion 

In this paper we have found the following four subclasses of branch-and-bound algo- 
rithms in which a stronger dominance relation always results in a more efficient algo- 
rithm m terms of measures T and B: (1) those using heurisuc search with nonmisleading 
heuristic functions; (2) those using best-bound search; (3) those using breadth-first 
search, where branching structures satisfy restrictions (7.1) and (7.2); and (4) those 
using depth-first search. Note that some restrictions on D are added in all cases, and step 
A5 of the algorithm is slightly modified in (4). 

These results would indicate that a stronger dominance relation usually provides a 
more efficient algorithm for most of the branch-and-bound algorithms practically en- 
countered, though it is not always true as shown in Theorem 4.1. 
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