
The Power of Dominance Relations

in Branch-and-Bound Algorithms

TOSHIHIDE IBARAKI

Kyoto Umversuy, Kyoto, Japan

AaSTRACX A dominance relauon D ~s a binary relauon defined on the set of parttal problems generated in a
branch-and-bound algorithm, such that P~DP, (where P~ and P, are partial problems) lmphes that Pj can be
excluded from consideration wtthout loss of opUmahty of the given problem if P, has already been generated
when Pj is selected for the test The branch-and-bound computation ss usually enhanced by adding the test
based on a dominance relation

A dominance relation D' Js sa~d to be stronger than a dominance relation D d P, DP, always Jmphes P~D'Pt
Although it seems obvious that a stronger dominance relatton makes the resulting algorithm more efficient,
counterexamples can easily be constructed. In this paper, however, four classes of branch-and-bound algo-
rithms are found m which a stronger dominance relation always gyves a more efftoent algorithm This mdrcates
that the monotomoty property of dominance relaaons would be observed m a rather wide class of branch-and-
bound algorithms, thus encouraging the designer of a branch-and-bound algorithm to find the strongest
possible dominance relaUon.

KEY WORDS AND PHRASES' combmatonal optlm~zaUon, branch-and-bound algorithms, dominance relaUons,
heuristic search, best-bound search, breadth-first search, depth-first search

CR CATErOIUES 3.64, 5.39, 5.49

1. Introduction

I t is known that the b ranch-and-bound pr inciple is appl icable to a wide var ie ty o f
combina tor ia l op t imiza t ion p rob lems (e.g. [1 , 1 2 , 22, 24, 29]). The under lying idea is to
decompose a g iven p rob lem, which is difficult to solve directly, into several part ial
p rob lems of smal ler sizes. The decompos i t ion may be repea ted ly appl ied until tests
appl ied to the genera ted part ial p rob lems reveal that each u n d e c o m p o s e d p rob lem is
e i the r solved o r p roved not to p rov ide an op t imal solut ion of the original p rob lem.

The test of a part ial p rob l em is usually based on comput ing a lower bound on the
m i n i m u m objec t ive va lue (when a min imal solut ion is sought) . I t is conc luded that a
par t ia l p r o b l e m does no t p rov ide an opt imal solut ion of the original p r o b l e m if the
compu ted lower bound is g rea te r than the ob jec t ive va lue o f the best feasible solut ion
current ly avai lable (i .e. the incumbent) .

A genera l iza t ion of the lower bound test is also possible if the avai lable in format ion on
part ial p rob lems can be used to show that a part ial p r o b l e m P, cannot p rov ide a be t t e r
feasible solut ion than that ob ta inab le f rom ano the r par t ia l p rob lem P~. This re la t ion is
deno ted PiDP, and called a dominance re la t ion . A test based on a dominance re la t ion is
carr ied ou t as follows: Part ial p rob l em Pj is exc luded f rom cons idera t ion if a part ial
p rob lem P~ such that P~DP~ has a l ready been gene ra t ed . A formal descr ipt ion o f a
b ranch-and-bound a lgor i thm, including bo th types of tests, will be given in Sect ion 3
af ter explaining each const i tuent of the a lgor i thm in Sect ion 2.

Theore t i ca l t r ea tmen t of dominance re la t ions seems to have been ini t ia ted by Koh le r

Copynght© 1977, Association for Computing Machinery, Inc General permission to republish, but not for
profit, all or part of this material is granted prowded that ACM's copyright nonce ~s g~ven and that reference ~s
made to the pubhcatton, to its date of issue, and to the fact that repnntmg privileges were granted by
permission of the AssociaUon for Computing Machinery
Author's address' Department of Apphed Mathematics and Physics, Faculty of Engmeenng, Kyoto Univer-
sity, Kyoto, Japan

Journal of the Association for Computing Machinery, Vol 24. No 2, April 1977. pp 264-279

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322003.322010&domain=pdf&date_stamp=1977-04-01

The Power of Dominance Relattons in Branch-and-Bound Algorithms 265

and Ste~glitz [18]. It is natural, however, to consider that similar ideas have been
heuristically used in many other branch-and-bound algorithms. Some dominance rela-
tions used in practical branch-and-bound algorithms will be discussed in Section 2.

I t was defined in [18] that a dominance relation D ' is stronger than a dominance
relation D if P~DPj implies P,D'P~ (i.e. D ' D D if a dominance relation D(D') is regarded
as the set of pairs (P,, P~) such that P, DP,(P,D'P,)). Although it seems intuiUvely obvious
that a stronger dominance relation makes a branch-and-bound algorithm more efficient,
counterexamples to this conjecture can be easily constructed as shown in [18] and in
Section 4 of this paper , if the whole class of branch-and-bound algorithms is considered.

This paper , however, discovers four subclasses of branch-and-bound algorithms in
which a stronger dominance relation always results in a more efficient algorithm in terms
of measures T and B, the numbers of partial problems decomposed before the algorithm
terminates and before an optimal solution is obtained, respectively. This would suggest
that the monotonici ty property of the power of dominance relations can be observed in a
rather wide class of branch-and-bound algorithms. Thus the designer of a branch-and-
bound algorithm is encouraged to find the strongest possible dominance relation for the
class of problems to be solved (provided of course that the t ime required to calculate D
does not become predominant) .

2. Constituents of Branch-and-Bound Algorithms

The eight constituents of a branch-and-bound algorithm, i.e. ~ , f , O, g, ~J, s, h, and D,
are introduced in this section. The construction of a branch-and-bound algorithm from
these constituents will be described in section 3. Since all but D were implicitly or
explicitly explained in papers such as [1, 3, 12, 14, 18, 22, 24, 29], they are only briefly
sketched here.

Assume that we are asked to obtain an optimal (minimal) solution (or all optimal
solutions) of problem P0. A finite rooted tree ~ = (~ , ~) , where 3 ~ is a set of nodes with
root Po E ~, and ~ is a set of arcs, represents the decomposit ion process of P0 (assuming
that all possible decomposit ions are applied); node P, ~ ~ corresponds to part ial
problem P, and (P,, P,) ~ ~ denotes that P, is generated from P, by a decomposition.1
The set of bottom nodes (leaf nodes) of ~ is denoted 3-. The depth of Pi, denoted d(P~),
is the length of the path from Po to P, in ~ . Note that only a small subset of ~ is usually
generated and tested prior to termination of a branch-and-bound algorithm.

L e t f : ~ ~ E U {oo}, where E is the set of real numbers, denote the objective values of
opt imal solutions of partial problems (nodes). f satisfies

f(P,) = min{f(P,) 11 = 1, 2 , . . . , k} (2.1)

if (P,, P~j) E ~, . /= 1, 2 k. The set of optimal solutions of P~ is denoted O(P,). O(PO
satisfies

O(P,) = U {O(P , ,) I f (P0 = f (e @ j = 1, 2 k}. (2.2)

Note that our final goal is to obtain f(Po) and O(Po) (or an element in O(Po)). (2.1)
implies that

f(P,) -< f(P,) for (P,, e,,) E ~. (2.3)

(~ , O, f) is called the branching structure of P0. Note that f(PO is not known until P, is
completely solved.

A lower bounding function g : ~ ~ E tO {~} satisfies the following conditions, z

i In this case, P~ is called a son of P, Pj is called a descendant of P, (P, Is an ancestor of P~) if P j = P, or Pj Is a
son of a descendant of P, A descendant (ancestor) Pj of P, is proper if P, 4~ P,
2 In some formahzatmn of branch-and-bound algorithms (e.g [12]) it is assumed that g(P,) is also dependent on
other factors such as the lmcumbent value z 0 e a more accurate hound is computed ff the initial tentaUve g(P~)
is smaller than ~ut close to z) and the available computer Ume This aspect is not considered m our defimUon.

266 TOSHIHIDE IBARAKI

(a) g(P~) _< f(Pi) for P, E ~ .
(b) g(P,) = f(P~) for Pt ~ 3 .
(c) g(Pj) ~. g(PO for (P~, P,) ~ ~.

In a branch-and-bound algorithm, g(P,) is computed when P~ is generated, cg (C ~)
denotes the set of partial problems which are incidentally solved or proved to be
infeasible ~ in the course of computation of g. ~ satisfies the following conditions.

(A) g(P,) = f(P,) for P, ~ ~.

(C) P, ~ cg implies Pj E ~ if (P~, P,) ~ ~.

Now let 1II be the family of independenP sets in ~ . s : IF[---> ~ is a search function if
s (~) ~ ~ for ~ ~ [I. s determines the order in which partial problems are selected for
test. s is a heuristic search function based on h : ~ ~ E , if

h(s(~¢)) = min{h(P,) [P, ~ ~ } (2.4)

holds for ~ ~ II. In this case, s is denoted sn. In particular, s = sg is called the best-bound
search function. Let

N(~¢) = {P, E ~¢1 d(P,) = max{d(Pj) [Pj ~ ~}}. (2.5)

Then the depth-first search function based on h, denoted gh, satisfies

h(gh(~)) = min{h(P,) { P, ~ N(~)} , gn(~) ~ N (~) . (2.6)

Finally a heuristic search function sn is also called a breadth-first search function if
d(sh(~)) = min{d(P,) { P, ~ ~ } holds. This is realized if d(P,) < d(Pj) implies h(P,) < h(Pj)
for P, , Pj E ~ . It is known that heuristic search is the most general among these since it
includes the other three as special cases [14].

We now turn to the last constituent of a branch-and-bound algorithm, the dominance
relation. A binary relation D C ~ × ~ ((P,, Pj) E D is also denoted P, DPj) is called a
dominance relation if D satisfies the following conditions.

(i)a P, DP~ A P~ ~ P~ implyf(P ,) < f(P~) and that P~ is not a proper descendant of Pj,
in case all opt{mal solutions are sought, 5 or

(i)s P, DP~ implies f(P,) _< f(P~), in case a single optimal solution is sought.~
(ii) D is a partial ordering, i.e. transitive (P~DP~ A P, DP~ ~ P, DP~), reflex{ve

(P~DP,), and antisymmetric (P, DP~/~ P~DP, ~ P, = P,).
(iii) P~DP~ A P~ -~ P~ ~mply that some descendant Pv of P~ satisfies PvDP~, A Pv

P~, for any descendant P~, of Pj.
(iv)s In case a single opt{mal solution is sought, there exists no set of nodes (C ~) ,

P,~, P,~, P~+, (k -> 2 and P,,, P~, . . . , P~ are distinct), (2.7)

generated in the branch-and-bound algorithm under consideration, such that (1) P,t
is a proper descendant of P,~+~ or P~, P~,+~ satisfy P,,DP~÷~/kf(P~) = f(P~,+), for t =
1 ,2 k, and (2) P,~+, = P,~ (i.e. a closed path). (For k = 2, this condition prohibits
the case in which P~DP~/kf(Pl) = f(P~) holds for a proper descendant P~ of P,.)

By condition (i) of D, it is obvious that P~ need not be solved if P, is already generated
and P, DP~ holds; thus P~ can be terminated. A dominance relation D may be interpreted
as an embodiment of the information on optimal solutions of partial problems obtainable
without actually solving them (i.e. computing .f).

The above definition of a dominance relation is different from the original one of [18]
in that conditions (iii) and (iV)s are not assumed in [18], while one more condition, the
consistency property with g (i.e. P~DP~ ~ g(P,) -< g(P~)), is assumed in [18]. Condition
(iii) is satisfied by most dominance relations used in practice (see examples gwen below).

If P, ~ ~ ~s infeasible, then f(P,) = oo ~s assumed for convenience
~ C ~ is independent {f no P~ m ~ ~s a p rope r descendan t o f the o thers
See the formal descnpUon of a b r a n c h - a n d - b o u n d a lgor i thm in Sect ion 3

The Power of Dominance Relations in Branch-and-Bound Algorithms 267

Condition (iv)~ is necessary to prevent a deadlock in which all the nodes containing opti-
mal solutions are terminated by dominance relation D, and as a result no optimal solu-
tion is obtained by the algorithm .6 This condition, however, is not used in the subsequent
discussion of this paper. The consistency property with g is also a quite natural assump-
tion. It ts assumed in many sections in the following.

Remark 2.1. Assume that a single optimal solution is sought. If f(PO = f(P~) is
concluded for some reason, we can let either P, DPj or P~DP, Note, however, that only
one of them is possible by antisymmetry of condition (ii). A convenient way to make the
resulting D a partial ordering is to let P, DP~ if P~ is tested before P~.

Some examples of dominance relations taken from the literature are given below.
These examples assume that only a single optimal solution is sought (i.e. conditions (0s
and (lV)s hold). Many other dominance relations are also used in practical branch-and-
bound algorithms (e.g. [2, 8, 10, 17, 23, 25-28, 31, 33]).

(A) n-lob two-machine mean finishing time flow-shop problem [5, 16, 20]. Let a
partial problem P specify a partial schedule on a subset J(P) ofn lobs, and let Fjk(P) be
the finishing time of job j (~ J(P)) on machine k (= 1 or 2) under the partial schedule
specified by P. Then a dominance relation D may be defined as follows: PsDPt if and
only ifJ(P~) -- J(Pt), max~a<epF~(Ps) -< max~Ejtp~)F32(Pt) and ~ea<p~)Fj~(Ps) --< ~,~stPt)
F~z(Pt) (If equahties hold in the last two relations, we let P~DPt if Ps is tested before Pt ,
according to Remark 2.1.) D obviously satisfies conditions (i)s and (ii). It satisfies
condition (iii) since, for a descendant Pt, of Pt with J(Pt,) = J(Pt) U S, the partial problem
Pc, which is the schedule P~ followed by the set of jobs S scheduled in the same order as S
of Pt,, satisfies Ps, DPt, as is easily shown. It is also possible to prove that condition (iV)s
holds (though not given here since condition (iv)~ is not used in our discussion).

(B) nqob one-machine scheduling problem with deadlines [32]. Each job j
(= 1, 2 , n) has a deadline de, penalty pj, and processing time t~, and pays penalty p~ if
it is not completed by its deadline. Find a schedule on one machine which minimizes the
total penalty. Let jobs be arranged such that d~ -< d2 -< " " -< d~. A partial problem P is
defined by a positive integer t(P) (satisfying I -< z(P) -< n) and a subset J(P) C
{1, 2 t(P)}; P represents a partial schedule that first processes the jobs in J(P) in
increasing order and then processes the jobs not in J(P) after their deadlines. Then it is
possible to define that P~DPt if and only if i(P~) = t(Pt), ~3~j(ps)ta ~ ~jej(t~,)b and
~a~e,>.a<_~,e,>p: -< Y,~J¢PO.I<-~<-,e,~P~. (If equalities hold in the last two relations, let
P, DPt if P~ is tested before Pt.)

(C) Problem of eight queens [9]. A partial problem P represents a pattern of m (-<8)
queens put on a chessboard of size 8×8. Then PsDPt if and only if the patterns
represented by P~ and Pt are isomorphic and P~ is tested before Pt.

(D) Shortest path problem [15]. Find the shortest path from node I to node n on an
n-node network with nonnegative arc lengths. A partial problem P represents path rr(P)
from node 1 to node i(P) (1 -< i(P) -< n). Then P, DPt if and only ifi(Ps) = i(Pt) and the
length of ¢r(Ps) is not greater than that of 7r(Pt) (Ps is tested before Pt if their lengths are
equal).

It is not difficult to regard the Dijkstra algorithm for the shortest path problem [6, 7]
as a branch-and-bound algorithm with the above dominance relation (D) [15], though it
was not originally given in the framework of branch-and-bound. This point may be ex-
tended to most other dynamic programming algorithms based on the principle of opti-
mality [4], as pointed out by [19, 27]. (In [19], the dynamic programming algorithm for
the traveling salesman problem [13] is formulated as a branch-and-bound algorithm.
[27] contains a further general discussion.) Thus it should be noted that a dominance
relation adds another dimension of flexibility in designing a branch-and-bound algo-
rithm, sometimes enabling us to exploit a special structure of a given problem to improve
the efficiency of the resulting algorithm.

6 Reference [18] uses a different mechamsm to prevent a deadlock

268 TOSHIHIDE IBARAKI

3. Branch-and-Bound Algorithms : General Description

In this section the constituents discussed previously are assembled into a branch-and-
bound algorithm. Two types of algorithms are given; the first one obtains all optimal
solutions of a given problem P0, while the second one obtains only a single optimal
solution.

Branch-and-bound algorithm Aa = ((~, O, 13, (~, g), D, s). All opumal solutions.
Remark. N C ~ denotes the set of the partial problems currently generated. A node

in N is active if it is yet neither tested nor decomposed into smaller partial problems.
denotes the set of currently active nodes, which is always independent as easily proved.
denotes the set of the best feasible solutions currently available and is called the
incumbent; z is its objective value (incumbent value). Upon termination, ¢~ stores O(Po)
and z stores its objective value. It is assumed that O(P,) is calculated as a' by-product of
testing P, in case P, ~ ~ holds.

Ala (Inmalize) 7" M ~-- {P0}, N ,-- {P0}, z ~-- o% ~ ~ ~3 (empty)

A2a (Search): If M = 0 , go to A9a; otherwise let P, ~-- s(M) and go to A3a

A3a (cg test). If Pt ~ ~ , go to A7a, otherwise go to A4a.

A4a (Lower bound test) If g(P,) > z, go to A8a, otherwise go to A5a

A5a (Dommance test)" If there exists Pk (~ P~) ~ N such that PkDP~, go to A8a; otherwise go to A6a

A6a (Decompose): Generate sons P,~, P~, P~k of Pt Return to A2a after letting M ~-- M t.J

{P.,, P~ P,~} - {e,} and N ~-- ~ U {e,,, Pa, . , P,~ }.

ATa (Improve): Go to A8a after letting

1 0 if z < f(P~) (= g(P~)),
~ OUO(P~) i f z = f (P ~) ,

(O(Pt) ff z > f(et);
z ~-- mm[z,f(P~)].

A8 a (Terminate POs: Return to A2a after iettmg .d ~ M - {P~}.

A9a (Halt): Halt O(Po) = ¢7 and f(P0) = z; P0 is mfeastble if O = O.

The finiteness and the validity of the above procedure are not proved here since proofs
for similar procedures may be found in survey papers such as [3, 18, 22, 24, 29]. Note
that z decreases monotonically from its initial value z = 0o to the final value z = f(Po), as
the computation proceeds.

At this point it may be interesting to note 9 that the lower bound test can be regarded as
a special case of the dominance test (with a certain modification); step A4a is equivalent
to step m 5 a with N in the statement replaced by N - M and with dominance relation D
defined by PkDP, if Pk E ~ and g(Pk)(= f(Pk)) < g(P,).

The above algorithm is slightly modified if only a single optimal solution of P0 is
sought.

Branch-and-bound algorithm As = ((~, O ,f), (~,g), D, s). Single optimal solution.
Remark. It is assumed that an element in O(P~) is calculated as a by-product of

testing P~ in case P~ ~ ~ holds.

Als, A2s, A3d Same as Ala , A2a, A3a wtth A,~a m their statements replaced by Ats, respectwely.

A4s: If g(P~) >_ z, go to A8~, otherwise go to A5~

A5~, A6~: Same as A5~, A6a with A~a replaced by Ass, respectively.

A7s: Go to A8s after letting

{x ~f z ~_ f(P~),
t3 ~ }, where x ~ O(P~), otherwise,
z ~ rain[z, f(P~)].

7 ~ stands for the assignment operaUon represented by := in Algol.
s Pt is called terminated ff Pi C ~ m A3 a, g(Pi) > z m A4a, or PkDP, for some Pk ~ .A t̀ in A5a
9 Due to W.H Kohler (private commumcatton)

The Power of Dominance Relations in Branch-and-Bound Algorithms 269

A8~, Ags: Same as A8a, A9a with Ata replaced by Ats and with O(Po) = ~ replaced by O(P0) in A9.

Throughout this paper, the efficiency of a branch-and-bound algorithm A is measured
by the following two parameters.

T(A): The number of nodes decomposed in A6a (A6s) prior to termination A9a
(A9s).

B (A): The number of nodes decomposed in A6a (A6s) prior to the last modification of
~7 occurred in A7a (A7s).

T(A) is closely related to the total computation time of A and has been one of the most
popular measures (e.g. [18, 30]). B(A) is related to the computation time required until
all optimal solutions (a single optimal solution if A = As) are stored in O. This is
important in practical applications in which the computation may be cut off prior to
termination A9~ (or A9s) due to the insufficiency of the available computer time.
Obviously it is desirable to design a branch-and-bound algorithm with smaller T(A) and
B(A).

It should be noted here that T(A) (or B(A)) does not always reflect the exact
computation time actually required since T(A) may be made small at the cost of
increasing the time required for testing each partial problem. To know the behavior of
T(A) and B (A) at least provides a useful guideline for designing an efficient branch-and-
bound algorithm, however, since the time required for testing a partial problem can
usually be estimated more accurately than the number of nodes T(A) or B(A). Further-
more, the actual computation time does not seem to be a measure which is theoretically
tractable.

In the subsequent discussion, subscripts a and s are added, e.g. An, As, A/s, Ta(A), and
Ba(A), to distinguish algorithms for all optimal solutions and a single optimal solution,
respectively. Conversely, no subscript is added if it is not necessary to distinguish them;
A refers to either algorithm Aa or algorithm As, T(A) to either Ta(A) or Ts(A), and so
forth.

4. Power of Dominance Relations

Let D and D ' be dominance relations on ~. If

D' D D (I.e. P, DPj implies P,D'Pj),

D' is said to be stronger than D. In view of the motivation for introducing dominance
relations, it seems intuitively obvious that a stronger dominance relation makes the
resulting branch-and-bound algorithm more efficient: Branch-and-bound algorithms A
= ((~, O, f) , (~, g), D, s) and A ' = ((~, O, f) , (~, g), D ' , s) with D' D D always satisfy
T(A') --< T(A) and B(A') -< B(A). This monotonicity property of dominance relations,
however, does not generally hold (as first observed in [18] under a somewhat different
assumption on dominance relations). In this section it is shown that the monotonicity
property is not generally observed for branch-and-bound algorithms with heuristic search
functions (note that heuristic search is the most general among search strategies as
mentioned in Section 2). However, such monotomcity is guaranteed if a search function
belongs to one of the following four special classes: Class of heuristic search functions
with some additional property (Section 5), class of best-bound search functions with D
satisfying the consistency property with g (Section 6), class of breadth-first search
functions on some restricted branching structures (Section 7), and class of depth-first
search functions with minor modifications (Section 8).

THEOREM 4.1. Let A = ((~, O, f) , (@,g), D,sn)and A' = ((~, O, f) , (@,g), D',sh)
be branch-and-bound algorithms with a heuristic search function sh, and let D' D D. This
does not generally imply Ta(A') ~: Ta(A), Ts(A') --< Ts(A), Ba(A') <- Ba(A), or Bs(A') <-
Bs(A).

PROOF. Consider the branching structure (~, O, f) and h : ~ ---, E shown in Figure 1
(O(P~) is not indicated since it is not relevant to T orB). For simplicity, it is assumed that

270 TOSHIHIDE IBARAKI

f=4 f :2 f=5 f=4 f=3 f=3 f=2 f= l
h=0.3 h=0.2 h=l.2 h= l . l h=2.2 h=2.1 h=3.2 h=3.1

FIG, 1. Branching structure (~, O, f) and h used m the proof of Theorem 4 1 (A broken arrow in&cares
dominance relatton D' It is assumed that g = f and ~ = 9-)

= ff and g(P,) = f(P,) for each P, ~ ~ . Let D ' and D be given by

D = {(P, PC [P, ~ ~} (D is the identity relation),
D ' = D U {(P4, P~)} O {(P,, P~) [P,, P~ E ~J,f(P,) < f (P ,) } .

In other words, D ' is the identity relation augmented with (P4, P1) (indicated in Figure 1
by a broken arrow) and those defined on nodes in ~ . Obviously D ' D D. Computation
processes of A and A ' are illustrated in Figure 2 (a) and (b), respectively, in which node
numbers indicate the order of testing the generated nodes, and z indicates the incumbent
value when the corresponding node is selected in step A2. Note that P~ of Figure 2 (b) is
terminated in step A5 by dominance relation P4D'P~. From Figure 2 (a, b) it follows that

T~(A) = Ts(A) = B~(A) = Bs(A) = 3,
T~(A') = Ts(A') = B~(A') = Bs(A ') = 4. Q .E .D.

Note that sh in the above A and A ' is a depth-first search function. Thus the
monotonlcity of dominance relations does not hold even if branch-and-bound algorithms
are restricted to those with depth-first search functions.

5. Nonmis leading Heuristic Search

A heuristic function h : ~ ~ E Is called nonmis leading if

h(P,) < h(P~) imphes f(P,) _< f(P~) for P,, P~ ~ ~ . (5.1)

It is known that a branch-and-bound algorithm with a nonmisleading heuristic function is
most efficient [11, 14]. Although it is not reasonable to assume that such a heuristic
function is easily obtainable (since tt requires the complete knowledge of f) , it is
considered as a theoretical goal when we design a heuristic function for a branch-and-
bound algorithm. In addition, it is shown in [14] that a heuristic function which is close to
nonmisleading always makes the performance of the resulting algorithm close to the
most efficient one. Thus the investigation of the effect of dominance relations on
algorithms with nonmisleading heuristic functions would help one to understand the be-
havior of branch-and-bound algorithms which are very successfully designed by using
almost nonmisleading heuristic functions.

In the following we assume for simplicity (but without loss of generality) that

h(P,) ~ h(P~) for P, ~s p, (5.2)

(by using an appropriate tie breaking rule if necessary),

h(P,) > h (P~) if P, is a proper descendant of 1",. (5.3)

The Power o f Dominance Relations in Branch-and-Bound Algorithms

Z=Oo

z ==///~ =~~z=2 z=2

z=2 z=~ z =] z=2

z = ~ o ~ z = 4 z=3

z=4 z =oo z=3 z:4 z=l z=3

271

(a) Computation process by A (b) Computation process by A'

Fro. 2 ComputaUon processes by branch-and-bound algorithms A and A' used m the proof of Theorem 4 1

(Given a heuristic function h' it is possible to prove the existence of a heuristic function h
such that h satisfies (5.2) and (5.3) and sh = sh, [14].)

LEMMA 5.1. Let A = ((~ , O , f) , (~, g), D, sh) be a branch-and-bound algorithm, and
let 6f = P,,P,2 • • • P,s (where P,~ = Po) be the sequence o f the generated nodes arranged in
the order o f selection in step A2. Then h(P~k) < h(P~) holds for k < l (-<s). In addition,
f(P~) -< ff(P,) holds for k < l (-<s) i f h is nonmisleading.

PROOF. Assume that P, and P~ are generated in A and h(PO < h(P~). Then any
ancestor Pk of P, satisfies h(Pk) < h(P,) < h(Pj) by (5.3). This shows that P~ and hence P~
are already generated when Pj is selected. Thus P~ is selected prior to P~ since h(P~) <
h(P~), proving the first half. The second half is immediate from the definition of a
nonmisleading heuristic function. Q . E . D .

Before proving the next theorem, one more definition is introduced. A dominance rela-
tion D is consistent with g if

(v) PtDP~ implies (1)g(P ,) < g(P~), or (2)g (e ,) = g(P~) and P, is selected before P~.
THEOREM 5.2. Let A = ((~3, O, f) , (~, g), D, sh) and A ' = ((~, O, f) , (~, g), D' , sh)

be branch-and-bound algorithms based on a nonmisleading heuristic function h. I f D'
D and D' is consistent with g, then it holds that Ta(A') --< Ta(A) and Ba(A') -< B~(A).

PROOF. Let ~ = P~P,2 . . . P~, and 6e' = P~P~ . . . p~, be the sequences of nodes
selected in A and A ' , respectively. We show that 5Q' is a subsequence of ,Se when all
optimal solutions are sought. Let M(P~) and M'(P~) denote the sets of active nodes, and
z(P,) and z'(P,) denote the incumbent values, when P, is selected in A and A ' respec-
tively.

To use induction, first note that P~ = P~, (= P0) and M(P,~) = M'(Pj~). Then assume
that 6e,~ = p~,pj~. . , pj~ (q < t; ff q = t, the proof is done) is a subsequence of ~ , =
P~P~ . . . P,~ (p < s) and M'(P~+,) C sc(e,~+~). Two cases are possible.

(a) P,~+, ~ PJ~+v Then Pip+, E M(P,~÷~) but P,~+~ ~5 M'P(j~+~) since h(P,p+) < h(P~) for
each P~ (-~P~) E M'(P~+) (C M(P~+)) by the definition of heuristic search. P~+~ may

then be terminated in A3a, A4a, A5a, or decomposed in A6a. In either case, we have two
sequences, Se~ = PJ~Pa2 " ' ' P~ and SPp+i = P,~P,~ . . . P~P~+~, such that ~ is a subse-
quence of 5ep+l and M'(Pj~+) C M(P,~+).

(b) P,~+, = P~,+v First note that ei ther both P,~+~ and P~+~ are terminated or none of
them are terminated in step A3~ (~ test).

To consider step A4a (lower bound test), note that Lemma 5.1 implies that the first
incumbent Pk (E ~) obtained i n A or A ' satisfiesf(Pk) = f(Po), z or z' (initially oQ) is then
set to f(Po) and keeps the same value thereafter . From this observation z(P~+~) = z' (P~q.)
is proved as follows. First if z(P,~.) = oo then z '(Pa~+,) = oo since 6f~ is a subsequence of
6ep. Second if z(P,~+,) = f(Po) then some P~ (1 -< v -< p) in ~p satisfies P~, ~ rg andf(P~o)
= f(Po). Since any ancestor P~,, of Pt,, satisfies P,,, q~ ~, g(P,=) <- f(P,~) = f(Po) holds and

272 TOSHIHIDE IBARAKI

no Pa ~ ~ satisfies PaDP,~ (see condition (i)a of a dominance relation), P,u is not
terminated in step A3a, A4a, or A5a of A ' . Thus M'(P~q+,) C M(P,~+,) O.e.
P~,, P~o ~ M'(Pj~+)) implies that P~ has also been selected in .9~'. Thus z'(P~,+,) = f(Po).

z(P,~+,) = z (P,,+,) and g(P,~+,) = g(P~+) (since P,~+, = Pj~+) then implies that P~+, is
terminated in step A4a of A if and only if P~÷, is terminated in step A4a of A ' .

Next we turn to step A5a (dominance test). Assume that P,~+, is terminated in A5a of
A, i.e. P, flP,~+, holds for some r <- p (note thatP, flP,~+, ~f(e,~) < f(P,~+~) ~ h(P,~) <
h(P,~+,) ~ r < p + 1 (by Lemma 5.1)). IfP,~ = PJd for some d -< q, we have Pj, D'P~+, by
D ' ~ D. Thus Pig+, is also terminated in A5a of A '. On the other hand, i f~ . is not in 6e~,
a proper ancestor P3,, (v ~_ q) of P,~ (in ~) must have been tested and terminated in step
A5~ o f A ' . (See Figure 3.) (Note that P3~ = P,, for somea < r since 5e~ is a subsequence
of fi"p. P~ was not terminated in A since a proper descendent P,. is generated. Thus ~
(= P,) is not terminated in step A3~ or step A4~ of A ' .) This shows that there exists P~,,,
in ~ such that P~D'P~o as shown in Figure 3. P~ has a descendent P~ satisfying
P~D'P,~ by condition (iii). First assume that P~ is generated in A ' . Then PjD'P~+,
follows from transitivity (see condition (ii)), and P~ has already been generated when
P,~+, is tested since P,~ D'P~+, ~ f(P,,) < f(P,~+,) ~ h(Pj~) < h(P,q+,). Thus P,~+~ is also
terminated in A'. On the other hand, if P,~ is not generated in A' (i.e. a proper ancestor
is terminated in A5~ o f A ' since, if a proper ancestor P,~ of Pj~ is terminated in A4~, we
have z'(Pj~+) _< z'(P~) < g(P,) _< g(P~) _< g(PJ~,l) (by the consistency of D with g) and
P~÷a is also terminated in A4a, a contradiction), repeat the same argument. We will have
a sequence of nodes Pk,(= P,~÷,), Pk~(= P,), Pk~(= P,) , Pk4,. • such t h a t . . ,
Pk, D'Pk3/~ Pk4 ~ Pka, Pkfl'Pk~/~ Pka ~s Pk2, P~D'Pk, /~ P~ ~ P~. Note that all nodes
P~,, P~, . . . are distinct since otherwise D' ts not a partml ordering. Therefore, this
process does not continue indefinitely since ~ has only finite nodes, showing again that
P¢¢+~ is terminated in A ' .

The above argument proves that P~o+l is terminated in A' if P,~+, is terminated in A.
Thus we have 5e,~+~ = p~,p~ . . . p~p~,+~ and 5av+~ = P,,P,~ . . . P~P~o+~ such that 5e,~+~ is a
subsequence of 5~v+~ and M'(P~¢+) C M(P,~+).

By repeating this induction step (a) or (b), we will eventually reach 6e' and ~ such that
5 e' is a subsequence of 5 e. This proves Ta(A') _< Ta(A) and Ba(A') -< B~(A). Q.E.D.

THEOREM 5.3. Let A and A ' be defined as in Theorem 5.2. I f D' ~ D and D' is
consistent with g, then it holds that

Ts(A')--< Ts(A) + l a~ClYd'l, Bs(A')-< Bs(A) +]~ O.g rl ,

where

FIG. 3.

Ju Pi =P
p+l Jq+l

Relations of nodes used m the proof of Theorem 5 2. (Broken arrows indicate dominance relation
3 '3

The Power o f Dominance Relations in Branch-and-Bound Algorithms 273

= {P, ~ .~ I f(e,) = f (Po)/~ P, ~ ~} ,~0 (5.4)

Y{ = {P~ ~ ~ I g(P,) = f(P0)} . '° (5.5)

PROOF. When a single optimal solution is sought by A or A ' , the proof of Theorem
5.2 should be slightly changed since PiDPj imphes onlyf(P,) --< f (P) (rather thanf(P,) <
t iP)) and step A4s is active ifg(P,) -> z (rather thang(P,) > z). Thus a node Pj withf(P) =
f(Po) may possibly be terminated in step A5s or in step A4s if P, DPj(or P,D'P~) or g(P~) =
t i P) = z(= f(Po)) holds, respectively.

To see how those nodes P, withf(P,) = f(Po) are treated in A or A ' , first note that they
are located in the initial portions of .90 and .Se', respectively, by Lemma 5.1. Denote such
portions consisting of nodes P, withf(P,) = f(Po) by ~ i and 5e;, respectively. Let ~* =
P~P~ . . • Pk, be the sequence of all nodes Pk E ~ with f(Pk) = f(Po) arranged in the
increasing order o fh . By Lemma 5.1,5el and Se~ are subsequences of b °*. Let Pkb be the
first node satisfying ,

Pkb E Cg and Pk~ appears in ~ . (5.6)

Then there exists Pk~ (c <- b) such that

Pk~ ~ c~ and Pk~ appears in ~i, (5.7)

as proved below. If (5.7) is false, z = oo holds in A until some Pka ~ cg such that d > b is
selected. Thus a proper ancestor of each Pk~ satisfying Pkc E ~ and c -< b must have been
terminated in step A5~ of A. By considering D' ~ D and the case of c = b, this implies
that a proper ancestor of Pk~ is also terminated in A ' (apply an argument similar to the
last half of case (b) in the proof of Theorem 5.2). This is a contradiction to (5.6).

From (5.6) and (5.7), it is possible for a node P, withf(P,) = f(Po) to be decomposed in
A ' but termmated in A (by step A4~) if

f(P,) = f(Po) = g(P,) and P~ ~ cg, (5.8)

since the incumbent value z in A may possibly be set to f(Po) earlier than z' in A ' . Once
z(P,~) = z'(P~) = f(Po) holds for P,~ = P~ (in ~ and ~ ' , respectively), however, an
argument similar to the proof of Theorem 5.2 can be applied to the rest portions of 5e
and 5e'; any P, (in that portion of ~ ') decomposed in A ' is also decomposed in A.
Consequently any P, which is decomposed in A ' but not decomposed inA satisfies (5.8).
This proves T~(A') -< T,(A) + I P N Y[I and B~(A') _< B~(A) + Io¢ N Yg" I • Q.E.D.

It should be noted that [~ f-I Y/" [is usually very small.
COROLLARY 5.4. Assume that there exists exactly one path in 93 from Po to P~ E

such that f (P) = f(Po). Then T,(A') --< Ts(A), B,(A') -< Be(A)holds in Theorem 5.3.
PROOF. Obvious since ~ i = 5e~ = 5e* = Pk~Pk~ . . . Pke, where Pk~ = Po, Pk~ = PJ

corresponds to such a path. Q.E .D.

6. Best-Bound Search

In this section it is shown that the monotonicity property of dominance relations is also
observed for branch-and-bound algorithms using best-bound search functions. Two
lemmas are first proved. Essentially the same property as Lemma 6.1 was also proved in
1211.

LEMMA 6.1. Let A = ((~, O , f) , (~, g), D, so) be a branch-and-bound algorithm with
best-bound search. Let b ° = P~lP~ . . . P,, be the sequence o f nodes arranged in the order o f
selectton in step A2. Then g(P,~) -< g (P ,) holds for k < 1 (-<s).

PROOV. Similar to the proof of Lemma 5.1, with h replaced by g. (Also note
condition (c) of g in Section 2). Q .E .D.

L~MMA 6.2. A node P, ~ ~ m a y be decomposed in A = ((~, O , f) , (Cg, g), D, su)only
t f P~ E ~ - ~ holds, where

~0 Note that f(Po) ~s the optmml value of the original problem P0

274 TOSHIHIDE IBARAKI

,~ = { P I E ~ [g(P,) -< f (P 0) } • (6 .1)

PROOF. It is obvious from Lemma 6.1 that the first P, ~ ~ selected in A satisfies f(P,)
= g(Pi) ~- f(Po). Thus a node P, with Pj ~ ~ or g(P,) > f(Po) is always terminated in step
A3 or step A4, since z = f(Po) holds by Lemma 6.1 when P, with g(Pj) > f(Po) is
selected. Q.E.D.

Note that Lemmas 6.1 and 6.2 hold for both cases of all optimal solutions and a single
optimal solution.

THEOREM 6.3. Let A = ((~, O, f) , (~, g), D, so) and A ' = ((~, O, f) , (~, g), D' , so)
be branch-and-bound algorithms with best-bound search, where D' satisfies condition
(v). I f D ' D D, then

Ta(A') <- Ta(A), B~(A') -< B~(A),
Ts(A') -< Ts(A) + I X - ~ I , B,(A') -< B,(A) + lYe-el.

(X was defined in (5.5).)
PROOF. First consider the case of all optimal solutions. By Lemma 6.2, assume that

P, ~ 2T - ~ is not decomposed in A. Since g(Pi) -< f(Po) -< z, step A4a (lower bound test)
is not active for P, and hence P, must be terminated in step A5a (dominance test), i.e.
there exist Pk ~)¢'(P,) such that PkDP,, where ,N'(P,) denotes the set of the generated
nodes when P, is selected in step A2a. Now assume that the same P, is decomposed in A ' .
If Pk ~)¢"(Pt), where .A/" is similarly defined, then PkD'P, by D' D D, a contradiction.
Thus let Pk q~ df'(P,). Then a proper ancestor Pj of Pk must have been terminated in A5a
of A ' by PlD'P~ for some P~ E .A/"(P~). (Note step A4a is not active for Pj since g(Pj) -<
g(Pk) ~ f(Po).) By condition (iii), Pi has a descendant Pt such that PtD'Pk (and hence
PtD'P,), where Pt E df'(Pk) by condition (v), if Pt is generated in A ' . Thus P, is
terminated in A5a of A ' , again a contradiction. If a proper ancestor of Pt is terminated in
A ' , repeat the same argument; this process does not continue indefinitely since ~ has
only finite nodes. Consequently it is proved that P, can be decomposed in A ' only if it is
decomposed in A. This and Lemmas 6.1 and 6.2 show that ~ ' is a subsequence of ~ ,
where ~(,5 °') is the subsequence of nodes arranged in the order of selection in A2a of
A(A ') . n Thus Ta(A') <- Ta(A) and Ba(A') --< Ba(A).

When only a single optimal solution is sought, a slight modification similar to the proof
of Theorem 5.3 is necessary. A stronger dominance relation may tend to delay the time
of obtaining the first incumbent solution P, ~ @. Thus a node P, may be terminated in
A4s of A, but not in A4s of A ' if

g(e,) = f(Po), e~ q~ ~ (6.2)

and z(P,) = f(Po) hold. The number of such nodes is at most [5V - @ I • This proves the
results for Ts and Bs. Q.E.D.

[~r _ ~ i is usually very small. It is actually zero, if for example g(P~) ~ g(P,) holds for
e , , e , ~ - ~ 3 .

7. Breadth-First Search

In this section we consider a special class of branching structures such that

P, E f f (i.e. P, is a bottom node) ¢:~ d(P,) = n (7.1)

for some positive integer n, and assume that

(g = 3 . 12 (7.2)

We further assume that D satisfies the following condition in addition to conditions (i)-
(iv) of Section 2.

11 H e r e we assume that the same Ue-breakmg rule is used to define so m A and A ' , when g(P~) = g(P~) holds for

P, * Pj
12 Thts condmon can be relaxed to- Pt E ~ - 8- implies f(P~) = oo 0 e Pt is infeasible).

The Power o f Dommance Relations m Branch-and-Bound Algorithms 275

(vi) P, DP, implies d(P,) -< d(P,).
The above conditions are satisfied in many practical problems. For example, domi-

nance relauons (A) and (13) discussed in Section 2 satisfy condition (vi).
It is not difficult to show that if a branch-and-bound algorithm with breadth-first

search is applied to a problem satisfying (7.1) and (7.2), the lower bound test (step A4)
is not effective since z(P,) = ~ holds for all P, ~ ~ - ~.

This leads to the next theorem.
THEOREM 7.1 Let A = ((~, O, f) , (~, g), D, sh) and A ' = ((~, O , f) , (~, g), D' , sn) be

branch-and-bound algorithms where sh is a breadth-first search function. Let i f , ~ satisfy
(7.1), (7.2), and let D satisfy condttion (vi). I f D ' D D, then

Ta(A') -< Ta(A), Ba(A') -< Ba(A), Ts(A') -< Ts(A), and Bs(A') -< B,(A). (7.3)

PROOF. First note that T~(A) = B~(A) = T , (A) = B , (A) and Ta(A') = Ba(A') =
Ts(A') = Bs(A') hold by assumption (7.1) and (7.2). Assume that a partial problem
P, E ~ - ff is not decomposed in A. Since neither step A3 (by P~ ~ c~) nor step A4 (by
the comment given above) is effective for P,, Pi must have been terminated in step
A5 (dominance test), i.e. PkDP~ holds for some Pk E .~(P0. Then by an argument
similar to the end of part (b) in the proof of Theorem 5.2 (or the proof of Theorem
6.3), it can be proved that PtD' P, holds for some Pt E • ' (P ,) (condition (vi) is required
to show this); thus P, is also terminated in step A5 of A ' . Consequently only a subset
of the nodes decomposed in A is also decomposed in A ' . This proves (7.3), since
breadth-first search applied to a problem satisfying (7.1) and (7.2) first selects the
nodes in ~ - ~ and then the nodes in ~ (note that no node in ~ is decomposed in A or
A ') . Q .E .D.

Although a branch-and-bound algorithm with breadth-first search is not efficient
without dominance test (since the lower bound test is almost useless even if (7.1), (7.2)
are not assumed; see also [14]), it should be emphasized that the algorithm can be very
efficient if a very strong dominance relation is available. The algorithm for scheduling
problems proposed by Sahni [32] is such an example.

8. Depth-Ftrst Search

As stated after Theorem 4.1, the monotonicity property of dominance relations does not
hold for branch-and-bound algorithms with depth-first search. The monotonicity can be
recovered, however, if step A5 of the branch-and-bound algorithm described in Section
3 and the definition of a dominance relation given in Section 2 are slightly modified.

Modified A5 (Dominance test)" If there exists Pk (~P,) ~ .N" - ..~ such that PkDP~, go to A8, otherwtse go to
A6.

Namely, Pk E N in the original A5a and A5s is replaced by Pk E A r -- M (= the set of
nodes which have been generated and tested).

We further assume that D satisfies the following condition in addition to conditions
(i)-(iv) of Section 2.

(vii) P, DP, and P, ~ P, imply that P, is not a descendant of P~.
Before proceeding to the main result, two lemmas concerning properties of depth-first

search are given.
LEMMA 8.1. Let A = ((~, O, f), (~, g), D, gh) be a branch-and-bound algorithm with

a depth-first search function based on h : ~ ~ E (either A 5 or the modified A 5 is used),
and let 5 e = P~P~ . . . P~, be the sequence o f nodes arranged m the order o f selection in step
A 2 o f A . Assume that P,~ is the first node which satisftes p < q and is not a descendant o f
P, . Then all proper descendants o f Pi, eventually generated in A are located in 5e between
P,. and P~ .

PROOV. Denote by ~¢(P,.) the set of active nodes when P,. is selected. Then P,~ E
za/(P,~) since P,. is not a descendant of P~. In other words, P~. had the higher priority

276 TOSHIHIDE IBARAKI

than P,~ in the selection by depth-first search. This means d(P~) ~_ d(P~). Since any
proper descendant P~ of Pt,, satisfies d(P~) > d(P,~) (>- d(P,~)), P, is selected prior to P~
according to depth-first search. Q .E .D .

LEMMA 8.2. Let A , P,,,, Pap be defined as in Lemma 8.1, except that A uses the
modified A5 and D satisfies conditton (vii) given above. Denote the incumbent value when
P, is selected by z(P~). Then

z(P ,) = min[z(P,,,) , f(P,~)] . (8.1)

PROOF. To prove by induction, assume that the l emma is true for any subsequence of
5 ¢, P q P , . . . P,,, with t < w. For w = 2, this is trivially true. Furthermore, if P,~ is a
descendant of any P,,, t < w, the lemma ~s immediately extended to the sequence
P , P , ~ . . . P , . So assume that P,~ (1 ~ p -< t) and P,~ = P,q satisfy the lemma statement.
Note that

z(P,q) -< z(P,~), z(P,q) -> min[z(P,,),f(P,~)] (8.2)

follow from Lemma 8.1. Let Psi, PJ , Per be the descendants of P,~ such that P~k ~ c~
andf(P~k) = f (P ,) , k = 1, 2 , . . . , r. By Lemma 8.1, either P3k is selected prior to P~q or a
proper ancestor of PJk is terminated for some reason. If one of P~ Per is actually
selected, then z(P,q) -< f(P,~) (see steps A3 and A7 of A) and hence z(P,q) =
min[z(P,) , f(P,~)] by (8.2).

Assume then that each P~k (k = 1, 2 , r) has a proper ancestor which is terminated.
If a proper ancestor Pa of P~ (note that Pa is a descendant of P,~) is terminated by A4
(lower bound test), then z(Pa) --< g(Pa) ~ f(Pa) = f(P~)" Thus z(P,~) -< z(Pa) --< f(P,~)
and (8.1) is proved from (8.2).

Finally assume that Pa is terminated in the modified A5 (dominance test). This implies
that there exist Pb such that PbDPa and Pb is selected prior to Pa, arid hence prior to P~.
(When all optimal solutions are sought, Pb is not a descendant ofP,~ sincef(Pb) <f(Pa) =

f(P,~) by condition (i)a of D. Thus Pb is selected prior to P,. by Lemma 8.1. When a
single optimal solution is sought, Pb may be a descendant ofP,~ satlsfyingf(Pb) = f(Pa) =

f(P,~,). (Note that Pb is not an ancestor of Pa by condition (vii).) In this case Pb is
already decomposed since Pb E 2(-- ~ . Thus there exists a proper descendant Pc of Pb
such that Pc is a proper ancestor of some P~ (1 -< u -< r) and terminated in the modified
A5. Regarding Pc as P~, apply the same argument as above. Repeating this, we will
eventually have P~ and Pb as described above.) Relative positions of Pa, Pb, P~,, P~, P~
are dlustrated in Figure 4. Note that Pb is not an ancestor of P,~ by condition (vii) and
PbDPa. Thus z(P,~) -< min[z(P~), f(Pb)] (by Induction hypothesis) -< f (Pt,) -< f (Pa) =
f (P~) . Consequently (8.1) follows from (8.2). Q .E .D .

TrIEOREt~ 8.3. Let A = ((~, O , f) , (~ ,g) , D,£h)and A ' = ((~, O , f) , (~ ,g) , D' ,gh)
be branch-and-bound algorithms with a depth-first search funcnon based on h : ~ ~ E,
where A and A ' use the modified step A5, and D, D' satisfy condition (vii). Then i f D' D
D and D' is consistent with g, it follows that

Ta(A') --< T~(A), Ba(A') <- B,~(A), Ts(A') -< Ts(A), Bs(A') -< Bs(A).

PROOF. Let 6e = p~ lp~ . . . P~3, 5f' = P~Pj~.. . Pn be the sequences of nodes arranged
in the order of selection inA a n d A ' , respectively. It will be shown by induction that 5e' is
a subsequence of 5e. First note that P,~ = P~ (= P0), ~/(P,~) = ~/'(P~,) (= {P0}) and z(P,,)
= z'(P~) (= oo) hold, where ~g(P0 and z(PO is the set of active nodes and the incumbent
value when P, is selected in A; J ' (P 0 and z'(P,) are similarly defined for A ' .

Now assume that Sf~ = Pj~Pj~ . . . P,~ (b < t since otherwise the proof is done) is a
subsequence of 5% = P,~P~ . . . P~, and that PJb = P~, ~4(P~) = ~ ' (P ~) and z(P,~) =
z'(P,b). Obviously the induction can proceed one step if either P,~ and P~ are both
terminated or both are decomposed. Thus assume that exactly one of P~ and P~ is
terminated. By assumption that P~ = P~b and z(Pi~) = z(Pjb), such a case occurs only ff

The Power of Dominance Relations in Branch-and-Bound Algorithms

P ~ Piq
k \ / / \

\ \ / X
///'x \£ ~. X\ \

/ \
/ \

/ \
/ \

/ \
/ \

PJk
(f(Pjk):f(Pip))

277

FIG. 4. Re la twe post t ton of nodes used m the p roo f of L e m m a 8.2

one of P,a and PJb is terminated in the modified step A5. First assume that P~, is
terminated in A by P, pDP,o for some P,p (p < a). If P,, = P~q holds for some q < b, then
PjD'Pjb and hence Pj~ is also terminated, a contradiction. On the other hand, if such Pjq
does not exist, a proper ancestor P,r of Pjq (r < b) must have been terminated in the
modified step A5. Thus there exist Pen (u < r < b) in Se' such that PjuD'Pjr. This implies
by condition (iii) that a descendant P,v of Pj~ satisfies PjD'P~ (and hence PjvD'P:b). If
Pj0 is generated in A ' , it is selected prior to P~b since Pj~ (satisfying r < b) is not a
descendant of Pju by condition (vii) and hence selected after P30 by Lemma 8.1. Thus PJb
is terminated in A' by PjoD'P~b. If on the other hand a proper ancestor of P~, is
terminated in the modified step A5 (since, if it is terminated in A4, the consistency of D '
with g implies that P,b is also terminated in A4, a contradiction) apply the same
argument; after a finite number of iterations it is shown that some P~ (w < b) satisfies
PjD'P~b. Consequently, P:~ is terminated in A ' if P,, is terminated in A.

Finally consider the case in which P,~ is not terminated but PJb is terminated in the
modified step A5. Then proper descendants of P~, are located in .90 between P,, and the
first node, denoted P'k' which is not a descendant of P,,, by Lemma 8.1. Then P~k = P~b+a
since M(P~,) = ..d'(Pjb) by assumption (note A and A ' have the same search function Sn),
and

M(e'k) = M(P ') - {P'~} = ~ ' (P ,) - {PJb} = M'(P'o+)"

z(P~k) = z'(P~+) is proved as follows. First note that Pj~ satisfying q < b and P)qD'P)b is
not an ancestor of PJo (condition (vii)) and f(P~) <- f(P~b)(= f(P,~)) (condition (i)a or
(i)~ of a dominance relation). Thus z'(P~b) --< f(P~) (by Lemma 8.2) --<f(PJb) and hence

z'(P~b+) = min[z'(P:o), f(P~b)] = z ' (P~)

by Lemma 8.2. Since P~ is also located before P,° in 5e~ (since 5¢~ is a subsequence of
5ca), it holds similarly that

z(P,k) = min[z(P,~),f(P,~)] = z(P,) = z'(P:~).

This proves z~P, k) = z'(P~b+,).
AS a result, we now have two sequences

5fk = PqP,~. . . P , . . . P,k and 5%+, = PjPj~ . . . P~bP~b+,

278 TOSHIHIDE IBARAKI

such that 5e~+1 is a subsequence of 5ek, P,k = P,~+~, M(P,k) = ~ ' (P,o+) , and z(P,) =
z'(P,b+). This shows by induction that 6 e' is a subsequence of 6 e, and T~(A') _<
Ta(A), Ts(A') -< Ts(A), and Ba(A') -< Ba(A). (Note that this proof is applicable to both
cases of all optimal solutions and a simple optimal solution.)

To show B,(A') -~ B,(A), let P,~ be the first node in 5e such that P,, ~ ~q and If(P,,) =
f(Po). Then P,r = PJ, holds for some P,, in 5e' (note that this proves B~(A') -< B~(A)) since
no proper ancestor Pj, of P,, is terminated in A ' as proved next: (a) z ' (g) = z(P,) ->
z(Pj) = z(P,,) > f(Po) = f(P,,) -> g (e ,) = g(P,) >- g(Pjo) holds by assumpuon on P,,
(= P ,) , and hence steps A3, A4 are not active for Pj~ m A' ; (b) there exists no P,
satisfyingf(P~) < f(P,,,) (= f(Po)) and hence P,D'P,~ is possible only f i r (P ,) = f (P ,)
and P~ Is not a proper ancestor of P,~ by conditions (i)s and (vi0 of a dominance relation.
Then a descendent P,, of Pj satisfying P , ~ ~ , f (P , .) = f(Po) must have been selected
before P~, by Lemma 8.2, a contradiction to the fact that b °' is a subsequence of 6e and
P,, (= P ,) is the first node in ~ such that P~E ~ andf(P~,) =f(Po). This proves that step
A5 is not active for P,~ in A ' . Q E.D.

9. Conclusion

In this paper we have found the following four subclasses of branch-and-bound algo-
rithms in which a stronger dominance relation always results in a more efficient algo-
rithm m terms of measures T and B: (1) those using heurisuc search with nonmisleading
heuristic functions; (2) those using best-bound search; (3) those using breadth-first
search, where branching structures satisfy restrictions (7.1) and (7.2); and (4) those
using depth-first search. Note that some restrictions on D are added in all cases, and step
A5 of the algorithm is slightly modified in (4).

These results would indicate that a stronger dominance relation usually provides a
more efficient algorithm for most of the branch-and-bound algorithms practically en-
countered, though it is not always true as shown in Theorem 4.1.

ACKNOWLEDGMENTS. The author wishes to thank Professors H. Mine and T. Hasegawa
of Kyoto University for their support. He is also indebted to Professor W.H. Kohler of
the University of Massachusetts and to two anonymous reviewers for their helpful
comments. Some of the references involving the use of practical dominance relations
were pointed out to the author by one of the reviewers.

REFERENCES

1 A~IN, N Optimum seeking with branch and bound Manage. Sct. 13 (1966), B176-B185
2 AnRENS, J H , AND FINKE, G Merging and sorting apphed to the zero-one knapsack problem Oper

Res 23 (1975), 1099-1109.
3 BALAS, E A note on the branch-and-bound prmople Oper Res. 16 (1968), 442-445
4 BELLMAN, R E Dynamtc Programming Princeton U Press, Princeton, N J , 1957.
5 CONWAY, R W , MAXWELL, W L., AND MILLER, L W Theory of Scheduhng Addison-Wesley, Read-

mg, Mass, 1967
6 DUKSTRA, E W A note on two problems m connexion wtth graphs Numer. Math. I (1959), 269-271
7 DREYFUS, S E. An appraisal of some shortest path algorithms. Oper Res. 17 (1969), 394-411
8 ELMAOnRABY, S E The one-machine sequencing problem with delay cost J lndust Eng. 19 (1968),

105-108
9 FILLMORE, J P , ANO W~LLIAMSON, S G On backtracking- A combinatorial description of the algo-

rithm SIAM J Compt 3 (1974), 41-55
10 Fox, B L. Discrete optlmzzaOon vm marginal analysis Manage Sct. 13 (1966), 210-216
11 Fox, B L , AND SCnRAOE, L E The value of various strategies m branch-and-bound. Res Rep , U of

Chicago, CMcago, I11., 1972
12 GEOFFmON, A . M , AND MARST~N, R E Integer programming algorithms: A framework and state-of-

the-art survey. Manage. Sct. 18 (1972), 465-491.
13 HELD, M , AND KARP, R. A dynamic programming approach to sequencing problems J. SIAM 10

(1962), 196-210
14 IBARAKI, T Theoretical comparisons of search strategies m branch-and-bound algorithms Int J Comptr

and Inform Scl 5 (1976), 315-344

The Power of Dominance Relations in Branch-and-Bound Algorithms 279

15. IBARAKI, T On the computational efficiency of branch-and-bound algorithms. Working Paper, Dep.
Applied Math and Physics, Kyoto U , Kyoto, Japan, 1975 (To appear in./. Oper. Res Soc. Japan)

16 IGNALL, E., AND SCHgAGE, L E Application of the branch and bound technique to some flow-shop
sequencing problems Oper Res. 13 (1965), 400-412.

17. INGARGIOLA, G , AND KORSH, J F An algorithm for the solution of 0-1 loading problems. Oper. Res 23
(1975), 1110-1119

18 KOnLER, W . H , AND STEmLrrZ, K. Charactenzatlon and theoreucal comparison of branch-and-bound
algorithms for permutation problems. J. ACM 21, 1 (Jan. 1974), 140-156.

19 KOHLER, W.H Exact and approximate algorithms for permutation problems Ph D. Dlss., Pnnceton
U , Pnnceton, N J , 1972

20 KOnLER, W H., AND STEmLrrz, K Exact, approximate, and guaranteed accuracy algorithms for the
flow-shop problem n/2/F/F J ACM22, 1 (Jan. 1975), 106-114

21. KOWALSKI, R. Search strategies for theorem proving. Machine Intelhgence 5, B. Meltzer and D. Mlchie,
Eds., American ElseVIer, New York, 1970, pp 181-201

22. LAWLER, E.L., AND WOOD, D.E. Branch-and-bound methods- A survey. Oper. Res 14 (1966), 699-
719.

23. MINE, H , IBARAKI, T , AND KISE, H. Algonthms for a scheduling problem (in Japanese) J Oper. Res.
Soe. Japan 18 (1974), 23-37.

24 MrrrEN, L.G Branch-and-bound methods" General formulation and properties Oper. Res. 18 (1970),
24-34

25. MnrrEN, L G , AND TSOU, C.A Efficient solution procedures for certain scheduling and sequencing
problems. Proc. Syrup. Theory of Scheduling and Its Applications, S E. EImaghraby, Ed., Lecture Notes
in Econ. and Math. Systems, Vol. 86, Springer-Verlag, Berlin, 1973.

26. MOroN, T.L., AND MARSTEN, R E An algorithm for nonlinear knapsack problems. Tech. Rep No 95,
Oper. Res. Ctr , M I T., Cambridge, Mass , 1974

27 MOroN, T L , AND MAaSTEN, R E. Branch-and-bound strategies for dynamic programming. Working
Paper No 750-74, Sloan School of Management, M I.T , Cambridge, Mass., 1975.

28. NEMHAUSER, G.L., AND ULLMAU, Z. Discrete dynamic programming and capital allocation. Manage.
Scl. 15 (1969), 494-505

29 Nn..ssoN, N J Problem-Solving Methods m Amfieml Intelhgence. McGraw-Hill, New York, 1971.
30 POHL, 1 First results on the effect of error in heuristic search. Machine Intelligence 5, B Meltzer and D

Michie, Eds., Amencan ElseVIer, New York, 1970, p 219-236
31. PROSCHAN, F., AND BRAY, T A Optimal redundancy under multiple constraints Oper Res. 13 (1965),

800-814.
32 SAnNI, S.K Algorithms for scheduling independent tasks. J ACM 23, 1 (Jan 1976), 116-127.
33. WEINGARTNER, H.M., AND NESS, D N. Methods of solution of the multidimensional 0/1 knapsack

problem. Oper. Res 15 (1967), 83-103.

RECEIVED JUNE 1975; REVISED MARCH 1976

~]ournal of the Assoc~atmn for Computing Machinery, Vol 24, No 2, Apnl t977

