Check for
Updates

The Power of Dominance Relations
in Branch-and-Bound Algorithms

TOSHIHIDE IBARAKI

Kyoto Umwversity, Kyoto, Japan

ABSTRACT A domunance relation D 1s a binary relation defined on the set of partial problems generated in a
branch-and-bound algonthm, such that P,DP, (where P; and P, are partial problems) imples that P; can be
excluded from consideration without loss of optimality of the given problem if P, has already been generated
when P; 1s selected for the test The branch-and-bound computation 1s usually enhanced by adding the test
based on a dominance relation

A dominance relation D' 1s saud to be stronger than a dominance relation D i P,DP, always imphes P,D' P;
Although it seems obvious that a stronger dominance relation makes the resulting algonthm more efficient,
counterexamples can easily be constructed. In this paper, however, four classes of branch-and-bound algo-
rithms are found 1 which a stronger dominance relation always gives a more efficient algonthm Thus indicates
that the monotonicity property of dominance relations would be observed mn a rather wide class of branch-and-
bound algonithms, thus encouraging the designer of a branch-and-bound algorithm to find the strongest
possible dommance relation.

KEY WORDS AND PHRASES' combinatonal optimization, branch-and-bound algorithms, dommance relations,
heuristic search, best-bound search, breadth-first search, depth-first search

CR CATEGORIES 3.64, 5.39, 5.49

1. Introduction

It is known that the branch-and-bound principle is applicable to a wide variety of
combinatorial optimization problems (e.g. [1, 12, 22, 24, 29]). The underlying idea is to
decompose a given problem, which is difficult to solve directly, into several partial
problems of smaller sizes. The decomposition may be repeatedly applied until tests
applied to the generated partial problems reveal that each undecomposed problem is
either solved or proved not to provide an optimal solution of the original problem.

The test of a partial problem is usually based on computing a lower bound on the
minimum objective value (when a minimal solution is sought). It is concluded that a
partial problem does not provide an optimal solution of the original problem if the
computed lower bound is greater than the objective value of the best feasible solution
currently available (i.e. the incumbent).

A generalization of the lower bound test is also possible if the available information on
partial problems can be used to show that a partial problem P, cannot provide a better
feasible solution than that obtainable from another partial problem P,. This relation is
denoted P;DP, and called a dominance relation. A test based on a dominance relation is
carried out as follows: Partial problem P; is excluded from consideration if a partial
problem P, such that P,DP; has already been generated. A formal description of a
branch-and-bound algorithm, including both types of tests, will be given in Section 3
after explaining each constituent of the algorithm in Section 2.

Theoretical treatment of dominance relations seems to have been initiated by Kohler

Copynight © 1977, Association for Computing Machinery, Inc General permission to republish, but not for
profit, all or part of this matenal 1s granted provided that ACM’s copyright notice 1s given and that reference 1s
made to the publication, to its date of 1ssue, and to the fact that repnnung privileges were granted by
permission of the Association for Computing Machinery

Author’s address® Department of Apphed Mathematics and Physics, Faculty of Engineering, Kyoto Univer-
sity, Kyoto, Japan

Journal of the Association for Computing Machnery, Vol 24, No 2, Apnl 1977, pp 264-279

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322003.322010&domain=pdf&date_stamp=1977-04-01

The Power of Dominance Relations in Branch-and-Bound Algorithms 265

and Steiglitz [18]. It 1s natural, however, to consider that similar ideas have been
heuristically used in many other branch-and-bound algorithms. Some dominance rela-
tions used in practical branch-and-bound algorithms will be discussed in Section 2.

It was defined in [18] that a dominance relation D’ is stronger than a dominance
relation D if P.DP,implies P.D'P, (i.e. D’ O D if a dommance relation D(D’) is regarded
as the set of pairs (P,, P,) such that P,DP,(P,D’P))). Although it seems intuitively obvious
that a stronger dominance relation makes a branch-and-bound algorithm more efficient,
counterexamples to this conjecture can be easily constructed as shown in [18] and in
Section 4 of this paper, if the whole class of branch-and-bound algorithms is considered.

This paper, however, discovers four subclasses of branch-and-bound algorithms in
which a stronger dominance relation always results in a more efficient algorithm in terms
of measures T and B, the numbers of partial problems decomposed before the algorithm
terminates and before an optimal solution is obtained, respectively. This would suggest
that the monotonicity property of the power of dominance relations can be observed in a
rather wide class of branch-and-bound algorithms. Thus the designer of a branch-and-
bound algorithm is encouraged to find the strongest possible dominance relation for the
class of problems to be solved (provided of course that the time required to calculate D
does not become predominant).

2. Constituents of Branch-and-Bound Algorithms

The eight constituents of a branch-and-bound algorithm, i.e. 8, f, 0,g,%,s,h, and D,
are introduced in this section. The construction of a branch-and-bound algorithm from
these constituents will be described in section 3. Since all but D were implicitly or
explicitly explained in papers such as [1, 3, 12, 14, 18, 22, 24, 29], they are only briefly
sketched here.

Assume that we are asked to obtain an optimal (minimal) solution (or all optimal
solutions) of problem P,. A finite rooted tree B = (P, &), where P is a set of nodes with
root P, € 2, and € is a set of arcs, represents the decomposition process of P, (assuming
that all possible decompositions are applied); node P, € P corresponds to partial
problem P, and (P,, P,) € & denotes that P, is generated from P, by a decomposition.!
The set of bottom nodes (leaf nodes) of B is denoted I . The depth of P;, denoted d(P,),
is the length of the path from P, to P, in . Note that only a small subset of 2 is usually
generated and tested prior to termination of a branch-and-bound algorithm.

Letf: @ — E U {=}, where E is the set of real numbers, denote the objective values of
optimal solutions of partial problems (nodes). f satisfies

f(P) =min{f(P,) |)= 1,2,...,k) 2.1)

if (P, P) €%, j=1,2,..., k. The set of optimal solutions of P, 1s denoted O(P,). O(P,)
satisfies

O(P)=U{OP) |f(P)=f(P),j=1,2,... k} (2.2)

Note that our final goal is to obtain f(Py) and O(P,) (or an element in O(Py)). (2.1)
implies that

ftP) = f(P,) for (P,, P,) € &. (2.3)

(B, O, f) is called the branching structure of P,. Note that f(P,) is not known until P, 1s
completely solved.
A lower bounding function g : P — E U {o} satisfies the following conditions.?

! In this case, P;1s called ason of P, P;is called a descendant of P, (P, 1s an ancestor of P,)) if P;= P, or P;1sa
son of a descendant of P, A descendant (ancestor) P, of P, 1s proper if P, # P,

* In some formalization of branch-and-bound algonthms (e.g [12]) it 15 assumed that g(P,) 1s also dependent on
other factors such as the imcumbent value z (1 € a more accurate bound 1s computed if the mitial tentative g(Py)
is smaller than but close to z) and the available computer ime This aspect 1s not considered 1n our definition.

266 TOSHIHIDE IBARAKI

(a) g(P) = f(P) for P, € 2.
(b) g(P) = fiP)for P,€ T.
(c) g(P;) = g(P;) for (P;, P)) € §.

In a branch-and-bound algorithm, g(P;) is computed when P; is generated. ¢ (C P)
denotes the set of partial problems which are incidentally solved or proved to be
infeasible? in the course of computation of g. ¥ satisfies the following conditions.

(A) g(P) = f(P)for P, € 4.

B)¥D7T.

(C) P, € Yimplies P, € 9if (P, P) € &.

Now let IT be the family of independent? sets in 2. s : I1 — P is a search function if

s(A) € o for A € I1. s determines the order in which partial problems are selected for
test. s is a heuristic search function basedonh : P — E, if

h(s(sA)) = min{h(P) | P, € o} 2.4

holds for o € II. In this case, s is denoted s,,. In particular, s = s, is called the best-bound
search function. Let

N(o) = {P, € A | d(P,) = max{d(P,) | P, € A}}. 2.5)
Then the depth-first search function based on h, denoted 5, satisfies
h@n(s0)) = min{h(P,) | P, € N(«A)}, $n(sf) € N(A). (2.6)

Finally a heuristic search function s, is also called a breadth-first search function if
d(sp(f)) = min{d(P,) | P, € o} holds. This is realized if d(P,) < d(P,) implies h(P,) < h(P;)
for P,, P; € ?. It is known that heuristic search is the most general among these since it
includes the other three as special cases [14].

We now turn to the last constituent of a branch-and-bound algorithm, the dominance
relation. A binary relation D C # X @ ((P,, P;) € D is also denoted P,DP,) is called a
dominance relation if D satisfies the following conditions.

(i). P.DP;/\ P, # P, imply f(P,) < f(P,) and that P, is not a proper descendant of P;,
in case all optimal solutions are sought,® or

(i)s P.DP, implies f(P,) = f(P,), in case a single optimal solution is sought.?

(ii) D is a partial ordering, i.e. transitive (P;DP, /\ P,DP, = P,DP,), reflexive
(P,DP,), and antisymmetric (P,DP, /\ P,DP, > P, = P).

(iii) P.DP, /\ P, # P; imply that some descendant P,. of P, satisfies P,,DP,, \ P,, #
P;. for any descendant P, of P;.

(iv)s In case a single optimal solution is sought, there exists no set of nodes (C P),

P,P,...,P, (k=2andP,,P,,...,P, are distinct), 2.7

Yert

generated in the branch-and-bound algorithm under consideration, such that (1) P,
is a proper descendant of P, or P, P,,, satisfy P,DP, A\f(P)=f(P,,), fort =
1,2,...,k,and(2) P, = P, (i.e. a closed path). (For k = 2, this condition prohibits
the case in which P,DP; \ f(Py) = f(P;) holds for a proper descendant P, of P,.)

By condition (i) of D, it is obvious that P; need not be solved if P, is already generated
and P,DP; holds; thus P, can be terminated. A dominance relation D may be interpreted
as an embodiment of the information on optimal solutions of partial problems obtainable
without actually solving them (i.e. computing f).

The above definition of a dominance relation is different from the original one of [18]
in that conditions (iii) and (iv); are not assumed in [18], while one more condition, the
consistency property with g (i.e. P,.DP; > g(P,) = g(P))), is assumed in [18]. Condition
(iii) is satisfied by most dominance relations used in practice (see examples given below).

3If P, € P 1s mfeasible, then f(P)) = = 1s assumed for convenience
* o C P is independent if no P; in &£ 1s a proper descendant of the others
® See the formal description of a branch-and-bound algorithm in Section 3

The Power of Dominance Relations in Branch-and-Bound Algorithms 267

Condition (iv); is necessary to prevent a deadlock in which all the nodes containing opti-
mal solutions are terminated by dominance relation D, and as a result no optimal solu-
tion is obtained by the algorithm.® This condition, however, is not used in the subsequent
discussion of this paper. The consistency property with g is also a quite natural assump-
tion. [t 1s assumed in many sections in the following.

Remark 2.1. Assume that a single optimal solution is sought. If AP,) = f(P) is
concluded for some reason, we can let either P,DP, or P,DP,. Note, however, that only
one of them is possible by antisymmetry of condition (i1). A convenient way to make the
resulting D a partial ordering is to let P,DP, if P, is tested before P,.

Some examples of dominance relations taken from the literature are given below.
These examples assume that only a single optimal solution is sought (i.e. conditions (1),
and (v); hold). Many other dominance relations are also used in practical branch-and-
bound algorithms (e.g. [2, 8, 10, 17, 23, 25-28, 31, 33]).

(A) n-job two-machine mean finishing time flow-shop problem [5, 16, 20]. Let a
partial problem P specify a partial schedule on a subset J(P) of n jobs, and let F,;(P) be
the finishing time of job j (€ J(P)) on machine k (= 1 or 2) under the partial schedule
specified by P. Then a dominance relation D may be defined as follows: P, DP, if and
only if J(P) = J(P,), max,e jpy Fpn(Py) < max,e p, Fp(P;) and EJEJ(Ps)Fﬂ(Ps) = e
Fi,(P,) (If equalities hold in the last two relations, we let P,DP, if P, is tested before P,
according to Remark 2.1.) D obviously satisfies conditions (i), and (ii). It satisfies
condition (iii) since, for a descendant P, of P, with J(P,) = J(P,) U S, the partial problem
P, which is the schedule P, followed by the set of jobs § scheduled in the same order as S
of Py, satisfies PsDP, as is easily shown. It is also possible to prove that condition (iv),
holds (though not given here since condition (iv), is not used in our discussion).

(B) n-job one-machine scheduling problem with deadlines [32). Each job j
(=1,2,...,n)has adeadhne d,, penalty p,, and processing time t,, and pays penalty p; if
it is not completed by its deadline. Find a schedule on one machine which minimizes the
total penalty. Let jobs be arranged such thatd, = d, = --- = d,. A partial problem P is
defined by a positive integer 1(P) (satisfying 1 = (P) = n) and a subset J(P) C
{1,2,...,1(P)}; P represents a partial schedule that first processes the jobs in J(P) in
increasing order and then processes the jobs not in J(P) after their deadlines. Then it is
possible to define that P,DP, if and only if i(Py) = (P), 2,expply = 2,cupyt; and
i pizi<irols = 2 jeacppa=i=uppP,- (If equalities hold in the last two relations, let
P;DP, if P, is tested before P;.)

(C) Problem of eight queens [9]. A partial problem P represents a pattern of m (<8)
queens put on a chessboard of size 8x8. Then P,DP, if and only if the patterns
represented by P, and P, are isomorphic and P; is tested before P,.

(D) Shortest path problem {15]. Find the shortest path from node 1 to node # on an
n-node network with nonnegative arc lengths. A partial problem P represents path 7(P)
from node 1 to node i(P) (1 < i(P) < n). Then P,DP, if and only if i(P;) = i(P;) and the
length) of (Py) 1s not greater than that of w(P,) (P; is tested before P; if their lengths are
equal).

It is not difficult to regard the Dijkstra algorithm for the shortest path problem [6, 7]
as a branch-and-bound algorithm with the above dominance relation (D) [15], though it
was not originally given in the framework of branch-and-bound. This point may be ex-
tended to most other dynamic programming algorithms based on the principle of opti-
mality [4], as pointed out by [19, 27]. (In [19], the dynamic programming algorithm for
the traveling salesman problem (13] is formulated as a branch-and-bound algorithm.
[27] contains a further general discussion.) Thus it should be noted that a dominance
relation adds another dimension of flexibility in designing a branch-and-bound algo-
rithm, sometimes enabling us to exploit a special structure of a given problem to improve
the efficiency of the resulting algorithm.

§ Reference {18] uses a different mechanism to prevent a deadlock

268 TOSHIHIDE IBARAKI

3. Branch-and-Bound Algorithms: General Description

In this section the constituents discussed previously are assembled into a branch-and-
bound algorithm. Two types of algorithms are given; the first one obtains all optimal
solutions of a given problem P,, while the second one obtains only a single optimal
solution.

Branch-and-bound algorithm A, = (%, O,), (4, g), D,s). All optimal solutions.

Remark. N C P denotes the set of the partial problems currently generated. A node
in X is active if it is yet neither tested nor decomposed into smaller partial probiems. &
denotes the set of currently active nodes, which is always independent as easily proved. &
denotes the set of the best feasible solutions currently available and is called the
incumbent;, z is its objective value (incumbent value). Upon termination, © stores O(P,)
and z stores its objective value. It is assumed that O(P)) is calculated as a by-product of
testing P, in case P, € ¥ holds.

Al, (Intialize)’- of « {Py}, N < {Py}, z «— ©, O «— & (empty)

A2, (Search): If o = (J, go to A9,; otherwise let P, « s(sf) and go to A3,

A3, (% test). If P, € ¢, go to A7, otherwise go to Ad,.

A4, (Lower bound test) If g(P,) > z, go to A8,, otherwise go to A5,

AS, (Domiance test) If there exists P, (# P;) € N such that PyDP,, go to A8,; otherwise go to A6,

A6, (Decompose): Generate sons P, Py, ... , P, of P; Return to A2, after letting of « of U
{Pus Piu ~-’Pik} - {Pz}a“dw(—‘MU(PuyPiu . >PI,‘ }
AT, (Improve): Go to A8, after letting
4 if z < f(P) (= g(P)),
O« {0 U OWP) ifz=f(P),
O(P) if z > f(Py);
z « mn[z, f(P)].
A8, (Terminate P;)®: Return to A2, after letting of <— &/ — {P3}.
A9, (Halt): Halt O(Pg) = O and f(P,) = z; P, is infeasible if ¢ = &.

The finiteness and the validity of the above procedure are not proved here since proofs
for similar procedures may be found in survey papers such as [3, 18, 22, 24, 29]. Note
that z decreases monotonically from its initial value z = ® to the final value z = f(P,), as
the computation proceeds.

At this point it may be interesting to note® that the lower bound test can be regarded as
a special case of the dominance test (with a certain modification); step A4, is equivalent
to step A5, with ¥ in the statement replaced by &' — & and with dominance relation D
defined by P,DP, if P, € 4 and g(Py)(= f(Py) < g(P).

The above algorithm is slightly modified if only a single optimal solution of P, is
sought.

Branch-and-bound algorithm A, = (B, 0,),(4,8), D,s). Single optimal solution.

Remark. 1t is assumed that an element in O(P)) is calculated as a by-product of
testing P; in case P, € ¢ holds.

Al,, A2;, A3 Same as Al,, A2,, A3, with Az, in their statements replaced by Ai,, respectively.
Adg: If g(P) = z, go to AS;, otherwise go to A5,
AS5,, A6, Same as AS,, A6, with Az, replaced by Ar, respectively.
AT Go to A8, after letting
0 {0 if z < f(P),

{x}, where x € O(P)), otherwise,
z « minfz, f(PY].

7 « stands for the assignment operation represented by = in Algol.
8 P, 1s called terminated xf P, € 4 n A3, g(P) > z m Ad4,, or P,DP, for some P, € N in A5,
® Due to W.H Kobhler (private communication)

The Power of Dominance Relations in Branch-and-Bound Algorithms 269

A8, AY,: Same as A8,, A9, with Ay, replaced by Ay, and with O(P,) = € replaced by O(P,) 1 A9.

Throughout this paper, the efficiency of a branch-and-bound algorithm A is measured
by the following two parameters.

T(A): The number of nodes decomposed in A6, (A6;) prior to termination A9,
(A9,).

B(A): The number of nodes decomposed in A6, {A6,) prior to the last modification of
O occurred in A7, (AT7,).

T(A) is closely related to the total computation time of A and has been one of the most
popular measures {(e.g. [18, 30]). B(A) is related to the computation time required until
all optimal solutions (a single optimal solution if A = A;) are stored in 0. This is
important in practical applications in which the computation may be cut off prior to
termination A9, (or A9;) due to the insufficiency of the available computer time.
Obviously it is desirable to design a branch-and-bound algorithm with smaller 7(A) and
B(A).

It should be noted here that T(A) (or B(A)) does not always reflect the exact
computation time actually required since T(A) may be made small at the cost of
increasing the time required for testing each partial problem. To know the behavior of
T(A) and B(A) at least provides a useful guideline for designing an efficient branch-and-
bound algorithm, however, since the time required for testing a partial problem can
usually be estimated more accurately than the number of nodes T(4) or B(A). Further-
more, the actual computation time does not seem to be a measure which is theoretically
tractable.

In the subsequent discussion, subscripts g and s are added, e.g. 4,4, A, Als, To{A), and
B,(A), to distinguish algorithms for all optimal solutions and a single optimal solution,
respectively. Conversely, no subscript is added if it is not necessary to distinguish them;
A refers to either algorithm A, or algorithm A;, T(A) to either T,(4) or T(A), and so
forth.

4. Power of Dominance Relations

Let D and D’ be dominance relations on 2. If
D' DD (1e. PDP;implies P.D'P;),

D’ is said to be stronger than D. In view of the motivation for introducing dominance
relations, it seems intuitively obvious that a stronger dominance relation makes the
resulting branch-and-bound algorithm more efficient: Branch-and-bound algorithms A
=((8,0,f),(%,g),D,s)and A’ = (%, O,f), (¥Y,g), D',s) with D' D D always satisfy
T(A") = T(A) and B(A') = B(A). This monotonicity property of dominance relations,
however, does not generally hold (as first observed in [18] under a somewhat different
assumption on dominance relations). In this section it is shown that the monotonicity
property is not generally observed for branch-and-bound algorithms with heuristic search
functions (note that heuristic search is the most general among search strategies as
mentioned in Section 2). However, such monotonicity is guaranteed if a search function
belongs to one of the following four special classes: Class of heuristic search functions
with some additional property (Section 5), class of best-bound search functions with D
satisfying the consistency property with g (Section 6), class of breadth-first search
functions on some restricted branching structures (Section 7), and class of depth-first
search functions with minor modifications (Section 8).

THeoreM 4.1. Let A = ((8,0,f),(%,g), D,sp)and A’ = (B, 0,f), (4, 8), D', sy)
be branch-and-bound algorithms with a heuristic search function sy, and let D' D D. This
does not generally imply T,(A’) = T (A), T{A') = T{A), BA') = B,(A),or BfA') =
By(A).

Proor. Consider the branching structure (8, O, f) and h : ? — E shown in Figure 1
(O(P)) is not indicated since it is not relevant to T or B). For simplicity, it is assumed that

270 TOSHIHIDE IBARAKI

=4 f=2 =5 f=4 f=3 =3 f=2 f=I
h=0.3 h=0.2 h=1.2 h=1.1 h=2.2 h=2.1 h=3.2 h=3.1

Fic. 1. Branching structure (%, O, f) and h used i the proof of Theorem 4 1 (A broken arrow mdicates
domunance relation D' It is assumed thatg = fand ¥ = 7)

¢ = J and g(P,) = f(P,) for each P, € . Let D’ and D be given by

D ={(P, P)| P.€ P} (Disthe identity relation),
D'=DuU {(ch Pl)} U {(Pu P]) l P,PE (g:f(Pt) <f(PJ)} .

In other words, D' is the identity relation augmented with (P, P;) (indicated in Figure 1
by a broken arrow) and those defined on nodes in 4. Obviously D’ O D. Computation
processes of A and A’ are illustrated in Figure 2 (a) and (b), respectively, in which node
numbers indicate the order of testing the generated nodes, and z indicates the incumbent
value when the corresponding node is selected in step A2. Note that P, of Figure 2 (b) is
terminated in step AS by dominance relation P,D' P;. From Figure 2 (a, b) it follows that

T(A) = T(A) = B4(A) = BA) =3,
T(A') = T(A") = BJA") = B(A) = 4. Q.E.D.

Note that s, in the above A and A’ is a depth-first search function. Thus the
monotonicity of dominance relations does not hold even if branch-and-bound algorithms
are restricted to those with depth-first search functions.

5. Nonmisleading Heuristic Search
A heuristic function 4 : # — E 15 called nonmisleading if

h(P) < h(P,) imphes f(P,) < f(P) for P,, P, € . (5.1

It is known that a branch-and-bound algorithm with a nonmisleading heuristic function is
most efficient [11, 14]. Although it is not reasonable to assume that such a heuristic
function is easily obtainable (since 1t requires the complete knowledge of f), it is
considered as a theoretical goal when we design a heuristic function for a branch-and-
bound algorithm. In addition, it is shown in [14] that a heuristic function which is close to
nonmisleading always makes the performance of the resulting algorithm close to the
most efficient one. Thus the investigation of the effect of dominance relations on
algorithms with nonmisleading heuristic functions would help one to understand the be-
havior of branch-and-bound algorithms which are very successfully designed by using
almost nonmisleading heuristic functions.
In the following we assume for simplicity (but without loss of generality) that

h(P,) # h(P;) for P, + P,
(by using an appropriate tie breaking rule if necessary),
h(P,) > h(P,) if P, is a proper descendant of P,. (5.3)

(5.2)

The Power of Dominance Relations in Branch-and-Bound Algorithms 271

Z=0o =00

(a) Computation process by A (b) Computation process by A'
Fig. 2 Computation processes by branch-and-bound algorithms A and A’ used in the proof of Theorem 4 1

(Given a heuristic function &' it is possible to prove the existence of a heuristic function &
such that / satisfies (5.2) and (5.3) and s, = 53, [14].)

LemMMA 5.1. LetA = ((®,0,f),(9,8), D, s;) be a branch-and-bound algorithm, and
let ¥ =P, P,...P,(where P, = P,) be the sequence of the generated nodes arranged in
the order of selection in step A2. Then h(P,)) < h(P,) holds for k <1 (=s). In addition,
f(P,) = f(P,) holds for k < I (=s) if h is nonmisleading.

Proor. Assume that P, and P, are generated in A and A(P,) < h(P;). Then any
ancestor P, of P, satisfies #(P,) < h(P,) < h(P)) by (5.3). This shows that P; and hence P,
are already generated when P, is selected. Thus P, is selected prior to P, since h(P,) <
h(P;), proving the first half. The second half is imnlediate from the definition of a
nonmisleading heuristic function. Q.E.D.

Before proving the next theorem, one more definition is introduced. A dominance rela-
tion D is consistent with g if

(v) P,DP, implies (1) g(P,) < g(P,), or (2)g(P,) = g(P,) and P, is selected before P,.

THEOREM 5.2. Let A = ((8,0,/),(%,8), D,spyand A’ = (B, O,f), (4, 8), D', sp)
be branch-and-bound algorithms based on a nonmisleading heuristic function h. If D' D
D and D' is consistent with g, then it holds that T,(A’) = T,(A) and B,(A') = B,(A).

Proor. Let ¥ = PP, ... P, and ¥ = P, P, ... P, be the sequences of nodes
selected in A and A’, respectively. We show that &' is a subsequence of ¥ when all
optimal solutions are sought. Let (P, and &' (P,) denote the sets of active nodes, and
2(P,) and z'(P,) denote the incumbent values, when P, is selected in A and A’ respec-
tively.

To use induction, first note that P, = P, (= Py) and s{(P,) = «'(P,,). Then assume
that ; = PP, ... P, (g <t;1f g = ¢, the proof is done) is a subsequence of ¥, =
P,P,...P_(p <s)and A'(P,,) C A(P,,). Two cases are possible.

(@ P,,,# P, .Then P, € (P,)but P, & (P,)since h(P

" ,m) < h(P,)) for
each P, (#¥P,,) € «'(P,) (C (P,)) by the definition of heuristic search. P, , may

q+y P+‘l) P+1
then be terminated in A3,, A4,, AS5,, or decomposed in A6,. In either case, we have two
sequences, ¥y = P, P, ... P, and &, = P, P, ... PP, ., such that &, is a subse-
quence of ¥4, and sd’(P,m) C AP,

(b) P, =P,, . Firstnote that either both P,
them are terminated in step A3, (¥ test).

To consider step A4, (lower bound test), note that Lemma 5.1 implies that the first
incumbent P;, (€ %) obtained in A or A’ satisfies f{Py) = f(Py). z or 2’ (initially) is then
set to f(Py) and keeps the same value thereafter. From this observation z(P,,,) = z'(P,)
1s proved as follows. First if z(P,,,)) = » thenz'(P, ,,) = since ¥, is a subsequence of
Fp- Second if z(P, |} = f(P,) then some P, (1 = v = p) in &, satisfies P, € 4 and f(P,,)
= f(Py). Since any ancestor P, of P, satisfies P, & 9, g(P,) = f(P,) = f(P,) holds and

and P,

1os, AL€ terminated or none of

272 TOSHIHIDE IBARAKI

no P, € P satisfies P,DP, (see condition (i), of a dominance relation), P, is not
terminated in step A3,, Ad,, or A5, of A’. Thus (P,) C P,) (e.
P, P, & dA'(P;,,)) implies that P; has also been selected in 5. Thus z'(P, .) = f(P,).
z(,m) z (P,) and g(P,) = g(P,) (since P, = Jqﬂ) then implies that P, is
terminated in step A4, of A if and only if P, ,, is terminated in step A4, of A'.

Next we turn to step AS, (dominance test). Assume that P, is terminated in A5, of
A,ie. P, DP, holds for some r < p (note that P, DP, = f(P,)) <f(P,) = h(P,) <
(P,)=>r<p+1(byLemma5.1)).IfP, =P;, forsomed =gq,wehave P, D'P, by
D' D D. Thus P, ,, is also terminated in A5, ofA ’. On the other hand, if P,_ 1s notin ¥y,
a proper ancestor P, (v = ¢) of P, (in #) must have been tested and terminated in step
A5, of A", (See Figure 3.) (Note that P, = P, for somea <r since ¥, is a subsequence
of #,. F,, was not terminated in A since a proper descendent P, is generated. Thus P;,
(= P,) is not terminated in step A3, or step A4, of A’.) This shows that there exists P,
in &, such that P, D'P, as shown in Figure 3. P, has a descendent P, satisfying
P, D' P, by condition (iii). First assume that P, is generated in A'. Then P, D'P,
follows from transitivity (see condition (ii)), and P, has already been generated when
P, . is tested since P, D'P, = f(P,) < f(P,,) = h(P;) <h(P,,). Thus P, isalso
terminated in A’. On the other hand, if P, is not generatedin A’ (i.e. a proper ancestor
is terminated in A5, of A’ since, if a proper ancestor P, of P;, is terminated in A4,, we
have z’(P,“) =z'(P;) <g(P,) = g(P,) = g(PF;,) (by the consistency of D with g) and
P;,,, is also terminated in A4, a COIltl‘adlCthﬂ) repeat the same argument. We will have
a sequence of nodes Py(= P,.), Pi(= P,), Pr(=P,), Py, . .such that. .,
Py D' P, N\ Py, # Py, P, D'Pi, N\ Py, # Py, P,D' P N\ Py, # Py,. Note that all nodes
Py,, P:,, ... are distinct since otherwise D’ 1s not a partial ordering. Therefore, this
process does not continue indefinitely since 8 has only finite nodes, showing again that
P,,,, is terminated in A’.

The above argument proves that P, , is terminated in A’ if P, is terminated in A.
Thus we have ¥y, = P,P,, ... P, P, | and For1 = PyPy, ... P P, suchthat &, isa
subsequence of ¥, and &’ (PJ +2) C P,).

By repeating this induction step (a) or (b), we will eventually reach &' and & such that
" is a subsequence of ¥. This proves To(A’) < T,(A) and B,(A") = B,(4). Q.E.D.

THEOREM 5.3. Let A and A' be defined as in Theorem 5.2. If D' O D and D' is
consistent with g, then it holds that

TA)=TA) + | FNHK|, BA)<BA) +|FNK|,

where

Fic. 3. Relations of nodes used m the proof of Theorem 5 2. (Broken arrows indicate dommance relation
D)

The Power of Dominance Relations in Branch-and-Bound Algorithms 273
F={P.€ P|f(P) = f(P) \ P, & G}, (5.4)
K ={P. € P|g(P) = f(P)}.* (5.5

Proor. When a single optimal solution is sought by A or A’, the proof of Theorem
5.2 should be slightly changed since P;,DP; imples only f(P,) < f(P,) (rather than f(P,) <
f(P)) and step A4 is active if g(P,) = z (rather thang(P,) > z). Thus a node P, withf(P,) =
f(P,) may possibly be terminated in step A5, or in step A4, if P,DP{or P,.D'P) org(P,) =
f(P) = z(= f(Py)) holds, respectively.

To see how those nodes P, with f(P,) = f(P,) are treated in A or A’ first note that they
are located in the initial portions of ¥ and &', respectively, by Lemma 5.1. Denote such
portions consisting of nodes P, with f{P,) = f(Py) by &; and ¥} , respectively. Let ¥* =
Py Py, ... P, be the sequence of all nodes P, € P with f(Py) = f(P,) arranged in the
increasing order of 4. By Lemma 5.1, #; and] are subsequences of #*. Let P, be the
first node satisfying .

Py, € 4 and P, appears in & (5.6)
Then there exists Py (c = b) such that
Py, € 4 and Py, appears in ¥}, 5.7

as proved below. If (5.7) is false, z = = holds in A until some P,, € ¢ such thatd > b is
selected. Thus a proper ancestor of each P satisfying P, € ¢ and ¢ =< b must have been
terminated in step A5 of A. By considering D’ D D and the case of ¢ = b, this implies
that a proper ancestor of Py, is also terminated in A’ (apply an argument similar to the
last half of case (b) in the proof of Theorem 5.2). This is a contradiction to (5.6).

From (5.6) and (5.7), it is possible for a node P, with f(P,) = f(P,) to be decomposed in
A’ but terminated in A (by step Ad,) if

f(Pl) =f(P0) =g(P1) and Ple(gw (58)
since the incumbent value z in A may possibly be set to f(P,) earlier than z' in A’. Once
zZ(P,) = 2'(P,) = f(Py) holds for P, = P, (in ¥ and &', respectively), however, an
argument similar to the proof of Theorem 5.2 can be applied to the rest portions of ¥
and &'; any P, (in that portion of ¥’) decomposed in A’ is also decomposed in A.
Consequently any P, which is decomposed in A’ but not decomposed in A satisfies (5.8).
This proves T((A') = T{A) + | FN K |and BA') = BA) + | gNK|. QE.D.

It should be noted that | # N % | is usually very small. ’

COROLLARY 5.4. Assume that there exists exactly one path in B from Pyto P, € G
such that f(P) = f(Py). Then T{A’) = T{A), B(A') = B4(A) holds in Theorem 5.3.

Proor. Obvious since ¥; = ¥y = S* = P, Py, ... Py, where Py, = Py, P, = P
corresponds to such a path. Q.E.D.

6. Best-Bound Search

In this section it is shown that the monotonicity property of dominance relations is also
observed for branch-and-bound algorithms using best-bound search functions. Two
lemmas are first proved. Essentially the same property as Lemma 6.1 was also proved in
[21].

LemMMA 6.1. LetA = ((B,0,/),(9,g), D,s,) be a branch-and-bound algorithm with
best-bound search. Let ¥ = P, P, . .. P, be the sequence of nodes arranged in the order of
selection in step A2. Then g(P,) < g(P,) holds for k <[(=s).

Proor. Similar to the proof of Lemma 5.1, with & replaced by g. (Also note
condition (c) of g 1n Section 2). Q.E.D.

LemMma 6.2. A node P, € P may be decomposed in A = ((B, 0,1), (9, g), D, s,) only
f P, € F — G holds, where

10 Note that f(P,) 1s the optimal value of the original problem P,

274 TOSHIHIDE IBARAKI

F ={P.€P|g(P) = flPy)} . (6.1)

Proor. Itis obvious from Lemma 6.1 that the first P, € ¢ selected in A satisfies f(P)
= g(P;) = f(P,). Thus a node P, with P; € 4 or g(P,) > f(P,) is always terminated in step
A3 or step A4, since z = f(Py) holds by Lemma 6.1 when P, with g(P) > f(P,) is
selected. Q.E.D.

Note that Lemmas 6.1 and 6.2 hold for both cases of all optimal solutions and a single
optimal solution.

THEOREM 6.3. Let A = ((8,0,1),(4,8), D,sp)and A’ = (8B, 0,f),(9,g), D', s,)
be branch-and-bound algorithms with best-bound search, where D’ satisfies condition
(v).If D' D D, then

To(A') = To(A), Bo(A') < By(A),
T(A) ST{A) + | ¥ -~ %|,BA)=BfA) + | X -9].

(% was defined in (5.5).)

Proor. First consider the case of all optimal solutions. By Lemma 6.2, assume that
P, € % — % is not decomposed in A . Since g(P;) = f(Py) = z, step A4, (lower bound test)
is not active for P, and hence P, must be terminated in step AS, (dominance test), i.e.
there exist P, € N (P) such that P,DP,, where N (P;) denotes the set of the generated
nodes when P, is selected in step A2,. Now assume that the same P, is decomposed in A’.
If P, € N'(P,), where N’ is similarly defined, then P,,D’P; by D' D D, a contradiction.
Thus let P, € X'(P,). Then a proper ancestor P;of P, must have been terminated in A5,
of A’ by P,D'P, for some P, € N'(P,). (Note step A4, is not active for P; since g(P;) =
g(Py) = f(P,).) By condition (iii), P; has a descendant P, such that P,D'P, (and hence
P.D'P), where P, € N'(Py) by condition (v), if P; is generated in A'. Thus P, is
terminated in A5, of A’, again a contradiction. If a proper ancestor of P, is terminated in
A', repeat the same argument; this process does not continue indefinitely since % has
only finite nodes. Consequently it is proved that P, can be decomposed in A’ only if it is
decomposed in A. This and Lemmas 6.1 and 6.2 show that &' is a subsequence of &,
where F(&') is the subsequence of nodes arranged in the order of selection in A2, of
A(A"). 1 Thus To(A') = T4(A) and B,(A’) = By(A).

When only a single optimal solution is sought, a slight modification similar to the proof
of Theorem 5.3 is necessary. A stronger dominance relation may tend to delay the time
of obtaining the first incumbent solution P, € 4. Thus a node P, may be terminated in
A4 of A, but not in Ad, of A’ if

gP) =fip), P.EY (6.2)

and z(P,) = f(P,) hold. The number of such nodes is at most | # — 4 | . This proves the
results for Ty and B,. Q.E.D.

| % — 4 | is usually very small. It is actually zero, if for example g(P,) # g(P,) holds for
P,P,e? - 4.

7. Breadth-First Search
In this section we consider a special class of branching structures such that

P, € J (i.e. P,is a bottom node) & d(P) = n 79
for some positive integer n, and assume that
§=9.12 (7.2)

We further assume that D satisfies the following condition in addition to conditions (i)-
(iv) of Section 2. ‘
11 Here we assume that the same tie-breaking rule is used to define s, 1n A and A’, when g(P,) = g(Py) holds for

P, # P
12 This condition can be relaxed to” P, € ¥ — I mmplies f(P;) = « (1 ¢ P;1s infeasible).

The Power of Dominance Relations in Branch-and-Bound Algorithms 275

(vi) P.DP, implies d(P,) = d(P,).

The above condttions are satisfied in many practical problems. For example, domi-
nance relations (A) and (B) discussed in Section 2 satisfy condition (vi).

It is not difficult to show that if a branch-and-bound algorithm with breadth-first
search is applied to a problem satisfying (7.1) and (7.2), the lower bound test (step A4)
is not effective since z(P,) = « holds for all P, € ? — 4.

This leads to the next theorem.

THEOREM 7.1 LetA = ((8,0,f),(4.8), D,s))and A' = (B, 0,/), (4, g), D', sp) be
branch-and-bound algorithms where sy is a breadth-first search function. Let T, G satisfy
(7.1), (7.2), and let D satisfy condition (vi). If D’ D D, then

To(A') = To(A), Bo(A') = Bo(A), T(A') = T(A), and B(A') = B(A). (7.3)

Proor. First note that T,(A) = B,(A) = TJ{A) = By(A) and T,(A') = B,(A’) =
T{(A") = B{A") hold by assumption (7.1) and (7.2). Assume that a partial problem
P, € ? — J 15 not decomposed in A. Since neither step A3 (by P, € 9) nor step A4 (by
the comment given above) is effective for P,, P; must have been terminated in step
A5 (dominance test), i.e. P,DP, holds for some P, € A(P,). Then by an argument
similar to the end of part (b) in the proof of Theorem 5.2 (or the proof of Theorem
6.3), it can be proved that P,D’P, holds for some P; € ¥’ (P,) (condition (vi) 1s required
to show this); thus P, is also terminated in step AS of A’. Consequently only a subset
of the nodes decomposed in A is also decomposed in A’. This proves (7.3), since
breadth-first search applied to a problem satisfying (7.1) and (7.2) first selects the
nodes in ? — ¢ and then the nodes in 4 (note that no node in 9 is decomposed in A or
A'). QED.

Although a branch-and-bound algorithm with breadth-first search is not efficient
without dominance test (since the lower bound test is almost useless even if (7.1), (7.2)
are not assumed; see also [14]), it should be emphasized that the algorithm can be very
efficient if a very strong dominance relation is available. The algorithm for scheduling
problems proposed by Sahni [32] is such an example.

8. Depth-Furst Search

As stated after Theorem 4.1, the monotonicity property of dominance relations does not
hold for branch-and-bound algorithms with depth-first search. The monotonicity can be
recovered, however, if step A5 of the branch-and-bound algorithm described in Section
3 and the definition of a dominance relation given in Section 2 are slightly modified.

Modified AS (Dominance test)- If there exists P, (#P,) € ¥ — o such that P,DP,, go to A8, otherwise go to
A6.

Namely, P, € X in the original A5, and A5, is replaced by P, € & — of (= the set of
nodes which have been generated and tested).

We further assume that D satisfies the following condition in addition to conditions
(i)-(iv) of Section 2.

(vii) P,.DP, and P, # P, imply that P, is not a descendant of P,.

Before proceeding to the main result, two lemmas concerning properties of depth-first
search are given.

LemMa 8.1. Let A = ((B,0,0),(9,g), D,s,) be a branch-and-bound algorithm with
a depth-first search function based on h : P — E (either A5 or the modified AS is used),
andlet ¥ = P, P, ... P,_bethe sequence of nodes arranged in the order of selection in step
A2 of A. Assume that P, is the first node which satisfies p < q and is not a descendant of
P, . Then all proper descendants of P;, eventually generated in A are located in & between
P, and P, .

Proor. Denote by «(P,p) the set of active nodes when P, 1s selected. Then P, €
(P,)) since P, is not a descendant of P, . In other words, P, had the higher priority

276 TOSHIHIDE IBARAKI

than P, in the selection by depth-first search. This means d(P;) = d(P,). Since any
proper descendant P, of P; satisfies d(P) > d(P,) (= d(P,)), P, is selected prior to P;,
according to depth-first search. Q.E.D.

LemMa 8.2. Let A, P, P, be defined as in Lemma 8.1, except that A uses the
modified AS and D satisfies condinon (vii) given above. Denote the incumbent value when
P, is selected by z(P)). Then

2(P,) = min[z(P,)), f(P,)] . 8.1)

Proor. To prove by induction, assume that the lemma is true for any subsequence of
&, P,P,... P, witht <w. Forw = 2, this is trivially true. Furthermore, if P, is a
descendant of any P, , ¢t < w, the lemma 1s immediately extended to the sequence
P, P, ... P, . Soassume that P, (1 <p =y)and P,, = P, satisfy the lemma statement.
Note that

z(P) = z(P,), z(P,)= min[z(P,), f(P,)] (8.2)

follow from Lemma 8.1. Let P,,, P;,, . .. , P, be the descendants of P, such that P,, € ¢
andf(P,) =f(P,), k=1,2,...,r. By Lemma 8.1, either P,_isselected priorto P, ora
proper ancestor of P, is terminated for some reason. If one of P,,, ..., P, is actually
selected, then 2(P,) = f(P,) (see steps A3 and A7 of A) and hence z(P,) =
min[z(P,), f(P,)] by (8.2).

Assume then thateach P, (k =1, 2, ..., r) has a proper ancestor which is terminated.
If a proper ancestor P, of P, (note that P, is a descendant of P,) is terminated by A4
(lower bound test), then z(P,) =< g(P,) = f(P,) = f(P,,). Thus z(P,) = z(P,) = f(P,,)
and (8.1) is proved from (8.2).

Finally assume that P, is terminated in the modified A5 (dominance test). This implies
that there exist P, such that P,DP, and P, is selected prior to P,, and hence prior to P, .
(When all optimal solutions are sought, P, is not a descendant of P, since f(Py) < f(P,) =
f(P,,) by condition (i), of D. Thus P, is selected prior to P,, by Lemma 8.1. When a
single optimal solution is sought, P, may be a descendant of P, satisfying f(P,) = f(P,) =
f(P,,). (Note that P, is not an ancestor of P, by condition (vii).) In this case P, is
already decomposed since P, € &' — . Thus there exists a proper descendant P, of P,
such that P, is a proper ancestor of some P, (1 < u = r) and terminated in the modified
AS. Regarding P, as P,, apply the same argument as above. Repeating this, we will
eventually have P, and P, as described above.) Relative positions of P,, Py, P, , P, , P,,
are 1llustrated in Figure 4. Note that P, is not an ancestor of P, by condition (vii) and
P,DP,. Thus z(P,) = min[z(P,), f(P;)] (by induction hypothesis) < f(P,) = f(P,) =
f(P,,). Consequently (8.1) follows from (8.2). Q.E.D.

TueoreMm 8.3. Let A = ((B, O,f), (4,8), D,sn)and A’ = (B, 0,1, (%, g), D', 5)
be branch-and-bound algorithms with a depth-first search function based on h : # — E,
where A and A’ use the modified step A5, and D, D' satisfy condition (vii). Then if D' O
D and D’ is consistent with g, it follows that

Ty(A') = TA), BJA") = BA), T(A') = T(A), B{A") = B,(A).

Proor. Let¥=P,P, ... P, ,% = P,P, ... P, bethe sequences of nodes arranged

in the order of selectionin A and A’, respectively. It will be shown by induction that &' is
a subsequence of &. First note that P, = P, (= Py), 4(P,) = «'(P,) (= {Py}) and z(P,)
= 7'(P,) (= ®) hold, where A(P,) and z(P,) is the set of active nodes and the incumbent
value when P, is selected in A; f'(P,) and z'(P,) are similarly defined for A’.

Now assume that &, = P, P, ... P, (b <t since otherwise the proof is done) is a
subsequence of ¥, = P, P, ... P, ,and that P, = P, , s{(P,) = '(P,) and z(P,) =
z'(P,,). Obviously the induction can proceed one step if either P,, and P, are both
termimated or both are decomposed. Thus assume that exactly one of P, and P, is
terminated. By assumption that P, = P, and z(P;) = z(P,), such a case occurs only if

The Power of Dominance Relations in Branch-and-Bound Algorithms 277

(F(P)=F(P,)

Fig. 4. Relative posttion of nodes used 1n the proof of Lemma 8.2

one of P, and P, is terminated in the modified step AS5. First assume that P; is
terminated in A by P, DP, for some P, (p <a).If P, = P, holds for some g < b, then
P; D'P, and hence P, is also terminated, a contradiction. On the other hand, if such P;,
does not exist, a proper ancestor P, of P, (r < b) must have been terminated in the
modified step AS. Thus there exist P, (u <r < b) in &' such that P, D'P, . This implies
by condition (iii) that a descendant P, of P, satisfies P; D'P, (and hence P, D'P,). If
P; is generated in A', 1t is selected prior to P, since P, (satisfying r < b) is not a
descendant of P, by condition (vi1) and hence selected after P, by Lemma 8.1. Thus P,
is terminated in A’ by P, D'P,. If on the other hand a proper ancestor of P, is
terminated in the modified step A5 (since, if it is terminated in A4, the consistency of D’
with g implies that P, is also terminated in A4, a contradiction) apply the same
argument; after a finite number of iterations it is shown that some P, (w < b) satisfies
P; D'P,;. Consequently, P, is terminated in A’ if P, is terminated in A.

Finally consider the case in which P, is not terminated but P, is terminated in the
modified step A5. Then proper descendants of P, are located in & between P, and the
first node, denoted P, , which is not a descendant of P, , by Lemma 8.1.Then P, = P,
since sf(P;) = &'(P;,) by assumption (note A and A’ have the same search function § v
and

‘Qg(Plk) = d(P:a) - {Pla} = ‘d’(PJD) - {ij} = .Sﬂ’(P,bH)-
z(P,) = z'(P,,,) is proved as follows. First note that P, satisfyingg <b and P, D'P, is
not an ancestor of P, (condition (vii)) and f(P,) = AP,)(= f(P,)) (condition (i), or
(i)s of a dominance relation). Thus z'(P,) =< f(P,) (by Lemma 8.2) = f(P,) and hence
Z'(P,,,) = min[z'(P,), (P,)] = z'(P,)

by Lemma 8.2. Since P, is also located before P, in ¥, (since &3 is a subsequence of
Fa), 1t holds similarly that

z(P,) = min[z(P,), f(P)] = z(P,) = 2'(P,).

This proves zP,) = z'(P,,).
As a result, we now have two sequences

Fx=P,P,...P,...P, and Fp., = PP, ... PP

Ip+1

278 TOSHIHIDE IBARAKI

such that #;,, is a subsequence of %, P, = P, , s(P,) = o'(P,), and z(P,) =
z'(P,,). This shows by induction that &' is a subsequence of &, and T, (A") =
T,(A), T(A') = T(A), and B,(A") = B,(A). (Note that this proof is applicable to both
cases of all optimal solutions and a simple optimal solution.)

To show By(A') = By(A), let P, be the first node in & such that P, € ¢ and f(P,) =

f(Py). Then P, = P; holds for some P, in & (note that this proves B{(A’) = B,(A)) since
no proper ancestor P, of P, is terminated in A’ as proved next: (a) z'(P) = z(P,) =
2(P;) = z(P,) > f(Py) = f(P,) = g(P,)) = g(P,,) = g(P;,) holds by assumption on P,
(= P,,), and hence steps A3, A4 are not active for P;, m A’; (b) there exists no P,
satisfying f(P,) < f(P,,) (= f(Py)) and hence P,D'P, is possible only if f(P,) = f(P,)
and P, 1s not a proper ancestor of P, by conditions (i), and (vir) of a dominance relation.
Then a descendent P,, of P, satisfying P, € 9, f(P,) = f(P,) must have been selected
before P, by Lemma 8.2, a contradiction to the fact that ¥ is a subsequence of & and
P, (= P,) is the first node in & such that P; € ¢ and f(P,) = f(P,). This proves that step
AS is not active for P, inA’. QE.D.

9. Conclusion

In this paper we have found the following four subclasses of branch-and-bound algo-
rithms in which a stronger dominance relation always results in a more efficient algo-
rithm 1 terms of measures T and B: (1) those using heuristic search with nonmisleading
heuristic functions; (2) those using best-bound search; (3) those using breadth-first
search, where branching structures satisfy restrictions (7.1) and (7.2); and (4) those
using depth-first search. Note that some restrictions on D are added in all cases, and step
A5 of the algorithm is slightly modified in (4).

These results would indicate that a stronger dominance relation usually provides a
more efficient algorithm for most of the branch-and-bound algorithms practically en-
countered, though it is not always true as shown in Theorem 4.1.

ACKNOWLEDGMENTS. The author wishes to thank Professors H. Mine and T. Hasegawa
of Kyoto University for their support. He is also indebted to Professor W.H. Kohler of
the University of Massachusetts and to two anonymous reviewers for their helpful
comments. Some of the references involving the use of practical dominance relations
were pointed out to the author by one of the reviewers.

REFERENCES

1 AcIN, N Optimum seeking with branch and bound Manage. Sci. 13 (1966), B176-B185
2 Anrens, J H , anp Finke, G Merging and sorting applied to the zero-one knapsack problem Oper
Res 23 (1975), 1099-1109.

3 BaLas, E A note on the branch-and-bound principle Oper Res. 16 (1968), 442-445

BeLiMaN, R E Dynamic Programming Princeton U Press, Princeton, N J , 1957.

5 CoNway, RW , MaxwgLL, W L., aND MILLER, L W Theory of Scheduling Addison-Wesley, Read-

mg, Mass , 1967

DuxstrA, E W A note on two problems in connexion with graphs Numer. Math. 1 (1959), 269-271

DreYFUS, S E. An appraisal of some shortest path algonthms. Oper Res. 17 (1969), 394-411

ErLmacHRABY, S E The one-machine sequencing problem with delay cost J Indust Eng. 19 (1968),

105-108

9 Fuimore. J P, aND WiLLiaMsoN, S G On backtrackmg® A combinatorial description of the algo-

rithm SIAM J Compt 3 (1974), 41-55

10 Fox, B L. Discrete optimization via marginal analysis Manage Sci. 13 (1966), 210-216

11 Fox, B L, aND ScHraGE, L E The value of various strategies in branch-and-bound. Res Rep , U of
Chicago, Chicago, 1l1., 1972

12 GEOFFRION, A.M , aND MARSTEN, R E Integer programming algorithms: A framework and state-of-
the-art survey. Manage. Sci. 18 (1972), 465-491.

13 Hewp, M, anD Kare, R. A dynamic programming approach to sequencing problems J. SIAM 10
(1962), 196-210

14 Iearaki, T Theoretical comparisons of search strategies in branch-and-bound algonthms Int J Comptr
and Inform Sca 5 (1976), 315-344

B

[+ R e

The Power of Dominance Relations in Branch-and- Bound Algorithms 279

15.

16

17.

18

19

20

21.

22.

23.

24

25.

26.

27

28.

29
30

31.

32

33.

IBaraki, T On the computational efficiency of branch-and-bound algorithms. Working Paper, Dep.
Applied Math and Physics, Kyoto U , Kyoto, Japan, 1975 (To appear in J. Oper. Res Soc. Japan)
Ienatr, E., anD Scurace, L E Application of the branch and bound technique to some flow-shop
sequencing problems Oper Res. 13 (1965), 400-412.

INGARGIOLA, G , AND KorsH, J F An algonthm for the solution of 0-1 loading problems. Oper. Res 23
(1975), 1110-1119

KoniEr, W.H , anD StrIGLITZ, K. Charactenzation and theoretical companson of branch-and-bound
algonithms for permutation problems. J. ACM 21, 1 (Jan. 1974), 140-156.

Konrer, W.H Exact and approximate algorithms for permutation problems Ph D. Diss., Princeton
U, Pnnceton, NJ , 1972

KoHLER, W H., anD StEicLITZ, K Exact, approximate, and guaranteed accuracy algorithms for the
flow-shop problem n/2/F/F J ACM 22, 1 (Jan. 1975), 106-114

KowaLski, R. Search strategies for theorem proving. Machine Intelligence 5, B. Meltzer and D. Michie,
Eds., Amernican Elsevier, New York, 1970, pp 181-201

LawLER, E.L., AND Woop, D.E. Branch-and-bound methods- A survey. Oper. Res 14 (1966), 699~
719.

Ming, H , Isaraxi, T, anp Kise, H. Algonthins for a scheduling problem (in Japanese) J Oper. Res.
Soc. Japan 18 (1974), 23-37.

MirieN, L.G Branch-and-bound methods* General formulation and properties Oper. Res. 18 (1970),
24-34

MirteN, L G, anp Tsou, C.A Efficient solutton procedures for certain scheduling and sequencing
problems. Proc. Symp. Theory of Scheduling and Its Applications, S E. Elmaghraby, Ed., Lecture Notes
in Econ. and Math. Systems, Vol. 86, Springer-Verlag, Berlin, 1973.

Morin, T.L., AND MARsTEN, R E An algorithm for nonlinear knapsack problems. Tech. Rep No 95,
Oper. Res. Ctr , M I T., Cambridge, Mass , 1974

MoriN, T L, aNp MarsteN, R E. Branch-and-bound strategies for dynamic programming. Working
Paper No 750-74, Sloan School of Management, M 1.T , Cambndge, Mass., 1975.

NEMHAUSER, G.L., AND ULLMAN, Z. Discrete dynamic programming and capital allocation. Manage.
Set. 15 (1969), 494-505

NiLssoN, N J Problem-Solving Methods in Artficial Intelligence. McGraw-Hill, New York, 1971.
Pont, 1 First results on the effect of error 1n heuristic search. Machine Intelligence 5, B Meltzer and D
Michie, Eds., Amencan Elsevier, New York, 1970, p 219-236

ProscHAN, F., AND Bray, T A Optimal redundancy under multiple constraints Oper Res. 13 (1965),
800-814.

SanNi, S.K Algonthms for scheduling independent tasks./J ACM 23, 1 (Jan 1976), 116-127.
WEINGARTNER, H.M., aND NEiss, D N. Methods of solution of the multidimensional 0/1 knapsack
problem. Oper. Res 15 (1967), 83-103.

RECEIVED JUNE 1975; REVISED MARCH 1976

tlournal of the A for Comp Mach v, Vol 24, No 2, Apnl 1977

