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This is the fourth in a series of papers devoted to certain aspects of proof in elementary 
mathematics as it has been affected by the computing machine. The three previous 
papers are Davis and Cerrutti [7] and Davis [5, 6]. The point of view taken m the present 
paper is that of  a person who is interested both in interpolatory funcnon theory and in 
computer science. 

1. A Geometrical Theorem from Antiquity 

In [7], a computer proof of the following classical theorem of Pappus was discussed. 
Take any two straight lines in the plane and select three points arbitrarily on each. 
Connect the points in a crisscross fashion as indicated. The three points of the intersec- 
tions of the crisscrosses are called the Pappus points for the original configuration, and 
the theorem states that the three Pappus points are collinear. The attack on this problem 
was through a brute application of coordinate geometry. 

Deliberately, no attempt was made to achieve simplifying reductions. The two lines 
were given symbolic parametric form. Six symbolic points were selected thereon. The 
coordinates of the three Pappus points were obtained as functions of the parameters by 
solving the three 2 × 2 systems. The Pappus points were then shown to he collinear. (See 
Figure 1 .) 

This project was undertaken as an exercise in programming in FORMAC, an algebraic 
symbol manipulation language, and to explore the possibility of theorem discovery in 
elementary geometry by this means. This particular theorem was selected because it is 
simple to state, lies at the foundation of  projective geometry (there are geometries in 
which the theorem is not true), has an interesting generalization (Pascal's theorem), but 
is difficult to prove with only high school geometry. 

2. Details o f  the Brute Force Analytics 

The coordinate geometry of the Pappus configuration is perhaps best programmed in the 
following way. Let a prototype crisscross be formed from the points with coordinates 
(a, b),  (c, d) ,  ( e , f ) ,  (g, h) as indicated in Figure 2. Set [1]j = h - b, [2] k = g - a, [3]p 
= e - c, [4] q = f - d, [5] r = aj - bk,  [6] s = cq - dp, [7] m = sk - pr, [8] n =/s  - qr, 
[9] w = qk  - pj. Then the x and y coordinates of the point of intersection of the crisscross 
are given, respectively, by m/w and n/w. Now let the three arbitrary points on the two 
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arbitrary lines be given coordinates (x~, y,) ,  t = 1, 2 . . . .  , 6 ,  as in Figure 3, and let the 
respective points of intersection of the three crisscrosses be (M1/W1, N1/W1), (M2/W2, 
N2/W2), (M3/W3, N3/W3). Here,  M1, N1, W1, etc. ,  equal m, n, w after an appropriate  
replacement of a, b, . . .  , h byxl ,  . . .  , Y6. The condition for the collinearity of the three 
Pappus points is now 

D E T =  M2 N2 I4, '2 = 0  
N3 

It should be clear that DET is apolynomial P in the variables x .  y,. This polynormal is 
the sum of several thousand monomials in the x, andy~; so the proof of Pappus 's  theorem 
by this means consists in the construction of DET and the verification that  it is identically 
zero. In [7] this construction and verification was carried out in the FORMAt language. 

3. Was a Formal Algebra Language Necessary? 

The reason a formal algebra language (such as FORraAC) was selected is as follows. What  
is desired is a proof  that is valid generally. Therefore it would not do merely to substitute 
specific numerical values for the coordinates and to verify numerically that  D E T  = 0. 
This would establish Pappus only in the specific numerical case selected. Now in the 
usual programming languages such as For t ran,  BASIC, and APL,  normally operated,  all 
varmbles must ultimately link back to numerical values. To perform formal algebra in 
them would reqmre special programming.  Therefore the computat ton was carried out  
within a language in which formal algebra is routinely available. (See Supplementary 
Note 1.1 ) 

Our  demand for generality is slmtlar to that frequently encountered by mathematics 

Supp lementa ry  Notes appea r  at the end  of  the pape r  
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teachers in elementary courses. A problem has been assigned in which something qmte 
general is to be established. The teacher reads the student's proof and then writes, "You  
have proved the statement only for n = 2 (or for (x, y) = (0, 0), or when T is a right 
triangle, etc.). Prove in general!"  

Now ~t turns out that, subject to some reservations developed below, it is not necessary 
to work entirely symbolically; the students'  idea of limited numerical verification can 
provide mathematically valid proofs. This is true not merely for the Pappus theorem but 
for all theorems of elementary algebraic analytic geometry which are equivalent to 
theorems of polynomial algebra. 

The link which enables us to reduce the problem to numerical computation is the so- 
called umqueness  theorem for  polynomials.  It wd! be stated first m one variable. 

Le tp (x )  = aox n + a lx  n-1 + • • • + an be a polynomial of degree less than or equal to n 
in the real (or complex) variable x. It Is assumed that a0 . . . . .  an are real (or complex) 
numbers. If now xl,  x2 . . . . .  xn+l are n + 1 distinct real (or complex) numbers and If 
p ( x l )  = 0, p(x2) = 0, . . .  , p(xn+l) = 0, then p ( x )  is identically 0. 

The uniqueness theorem therefore operates as a reduction prmcwle  or a sampling 
principle, enabling us to reduce the ostensibly infinite task of verifying that p(x) = 0 for 
all x to that of verification for a finite number  o f  values of x 

A similar theorem is vahd for polynomials in several variables. Suppose for example 
that for fixed y,  p(x ,  y) is a polynomial in x of degree less than or equal to m,  and for 
fixed x of degree less than or equal to n m y .  In other words, let 

p(x ,  y) = ~ a,kx~y ~. 
J = l ,  , 7r~ 

P = I ,  , n 

We may rewrite it m the form 

p(x,  y)  = ao(x) + a l (x ) ' y  + a2(x)'y2 + . . .  + a,(x)y~ 

where the functions a,(x),  t = O, . . .  , n,  are all polynomials in x of degree less than or 
equal to m. Suppose now that Xl, • • • , xm+l are distinct and Yl, • • - , Yn+l are distinct. 
Then, i f p ( x , y , )  = 0 f o r i  = 1 . . . . .  m + 1 and]  = 1 , . . .  , n + 1, ~t follows t h a t p ( x , y )  is 
Identically 0 from the following argument. Let  i be fixed and consider ~,(y) = p(x,,  y).  
Now assume that 

0 = p ( x ,  y~) = ~ ( y , )  = ao(xO + a~(x,)y~ + . . .  + an(x,)y~ = O, 

] = 1 , 2  . . . . .  n +  1, ~ =  1 , 2  . . . .  , m + l .  

By the uniqueness theorem in one variable, since/~,(y) is of  degree less than or equal to 
n, all the coefficients ao(x,) . . . . .  an(x,) must vanish. This must be true for l = 1, 
2 , . . .  , m + 1. Since they, m turn, are polynommls of degree less than or equal to m,  
each of them vanishes for m + 1 points and hence vanishes identically. Therefore p(x ,  y)  
vanishes identically. 
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Note that the n u m b e r  of verif ications that  must  be carried out  is now (m + 1)(n + 1). 
In  general  let xl ,  xz . . . .  , xs be s i ndependen t  variables and let p(xt ,  xz . . . .  , Xs) be a 
polynomial  of degree less than or equal  to d, m xi, i = 1, . . .  , s. Suppose that  x,~, 
x,2, • • • , X~d,+l, i = 1, 2, . . .  , S, a r e s  sets of values that are distinct (as far as the second 
subscript is concerned) ;  then 

p(x~,,x2~ . . . . .  ,xs~) = 0 ,  t j ? = l  . . . .  , d r +  1, 

Us 1, , d s +  1 

impl iesp  ~ 0. Note that (d~ + 1)(d2 + 1). • • (ds + 1) individual  verifications are sufficient 
to reduce the problem.  (See Supplementa ry  Note 2.) The points  that  must  be subst i tu ted 
into p consti tute the product  set of  the points 

X l l  ~ • . . , X l d l + l ~  

X 2 1 ~  • . , ~ X 2 d 2 + l ~  

X s l ~  • . . ~ X s d s + l .  

Example 1. Consider  the famous  algebraic identi ty of Euler  which plays a key role m 
the " four-square"  problem.  

(a~ + a2~ + a~ + a24)(b~ + b~ + b~ + b24) = (albl - a2b2 - aabs - a4b4) 2 + (alb2 + azbl 
+ a3b4 - a4b3) ~ + (alb~ - a2b4 + a3bl + a4b2) 2 + (alb4 + a2b3 - a3bz + a4bl) z. 

The difference be tween  the lef t-hand and the r ight-hand sides is a polynomial  m s = 8 
variables and of degree at most  two in each variable.  Hence  this formal  ident i ty  may be 
proved by at most 3 s = 6561 numerica l  vertfications on,  say, the 8-fold product  set of 
( - 1 ,  0, 1). 

Several remarks  are in order .  Al though  this identi ty is crucial to the " four-square  
p rob lem,"  books on n u m b e r  theory never  prove it. Af ter  all, it is a " m e r e "  formal 
computa t ion  to show that a certain polynomial  consisting of 80 monomia l s  is ldenucal ly  
0. 2 There  is a similar ident i ty  with 16 variables.  (See Supplementary  Note  3 .) 

Nor does the verif ication of the identi ty provide the slightest insight into deeper  
meanings  which have been  found for the tdenttty.  (The four-square i dena ty  is equiva lent  
to [[Oxll2ilaz[I 2 = iIQ~Qz[I 2, where Q, are qua te rn ions  and where 110112 = [la + b i  + cj  + 
dk[[ 2 = a 2 + b 2 + c 2 + d 2. See, e.g. Curtiss [3].) Nor  does it provide any insight into how 
further  identittes of this k ind may be constructed.  It is a purely post hoc affair. 

Example 2. The  Pappus  theorem.  As observed m the second sect ion,  the proof  of 
Pappus is equiva lent  to verifying that D E T  ~- 0, where  D E T  is a polynomial  in the 
varmbles x~, . . .  , Y6 and where (x,, y,) lie by threes on two arbi trary lines. Parametr ize  
the two lines as l~ : x = t, y = 0; 12 : x = 7t ,  y = a t  + /3. T h e n  select (x2~+l,Y2,+l) = 
(t2,+~, 0), t = 0, 1, 2; (x2,, Y2,) = (Ttz,, at2, +/3) ,  i = 1, 2, 3. Thus  D E T  is a polynomial  in 
the nine independen t  variables a ,  fl, Y, t,, i = 1, 2, . . .  , 6. Hence  D E T  -= 0 may be 
proved by an  appropriately selected finite sample of values.  See Figure  3. 

Example  3. A n o t h e r  proposi t ion in e lementary  geometry  proved via "fini te sam- 
phng."  Occasionally,  special selection of the conf igurat ion may reduce the proposi t ion 
to triviahties.  Consider  the following theorem:  The  midpoints  of the sides of a tr iangle 
and the feet of al t i tudes he on a c o m m o n  circle. (This circle is called the "n ine -po in t  
circle" for the tr iangle.  The circle contains  numerous  other  special points  of interest  and  
the re levant  mathemat ica l  theory dates from the synthetic geometry of the early 1800s.)  
Place the triangle as indicated and think of a, b,  d as fixed while c is variable.  (See Figure 
4.) Since the general  equa t ion  of a circle tsA(x 2 + y2) + Bx + Cy + D = 0, it follows that 

2 The dec~smn problem for elementary polynomml algebra can be answered m the affirmatwe. It is one of the 
~romes of mathemaUcal exposltmn that ff a proof ~s mere routine, then mteUectuaUy tt ~sn't worth going 
through 
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the necessary and sufficient condition for four points (x,, Y0, i = 1, 2, 3, 4, to he on a 
common circle is that 

D = det(x~ 2 + y~, x,, y,, 1) = 0. 

Inserting (x~, y0  = (c, 0), (x2, Y2) = ((a + c) /2 ,  d/2),  (x3, Y3) = ((b + c) /2 ,  d/E),  (x4, Ya) 
= ((a + b) /2 ,  0), we find that D = D(c) is at most a cubic inc .  Hence, four verifications m 
c suffice to establish the proposition. Select c = a, c = (a + b ) / 2 ,  c = b, c = 2b - a. 
The proposition in each of the four special cases pictured in Figure 5 is visually apparent. 

4. Completeness as a Principle o f  Reductton 

The uniqueness theorem for polynomials which we have used as a principle of reduction 
or of sampling can be written asp(x,) = 0, i = 1, 2 . . . .  , N, impliesp -= 0. Within the 
context of the theory of linear spaces, this is a so-called completeness property, see e.g. 
Davis [4]. Let X be a linear space and let X* be its conjugate space (i.e. the space of 
hnear functionals defined over X). Then a set of elements {~,}, ~b, ~ X*, is called 
complete in X* if, when x E X, ~b,(x) = 0 for all i implies x = 0. (F. Deutsch has 
expressed this condition picturesquely: He says that if x is dead when tested by a 
complete set qb,, then it is really dead.) Thus a complete set of functionals serves as a 
reducer for the elements of X. It is a test set. 

If X has finite dimension N, then there is a complete set of N elements. If X is a 
normed linear space, completeness of {~b,} is related to closure, which asserts the 
possibility of approximating elements of X* by finite combinations of elements of {~b,}. 

Example  1 Let S be the space of all polynomialsp(x) = ~= 0  a,x'  of degree less than 
or equal to n.  This is of dimension n + 1. Ifx~ are distinct, the point evaluations ~b,(p) = 
p(xO,  t = 1, 2 . . . . .  n + 1, are complete. 

Example 2. With the same space as in Example 1, the derivatives 4',(P) = (1/il) 
p")(0), i = 0, 1, . . . .  n,  form a complete set. 

Similar examples hold in several variables. Note that whereas the functionals of 
Example 2 correspond in the context of this paper to proof by formal manipulation of 
coefficients (~b,(a0 + alx + azx 2 + "'" + anX") = a,), the functlonals of Example 1 
correspond to proof by numerical computation. 

Example  3. Let X consist of all trigonometric polynomials of the form t(x) = ao + 
~ = ~  (ak COS kx  + bk sin kx).  Then the 2n + 1 functionals 

fo ~ t(x)dx, = O, 1, . n 
COS kx  

4 , k ( t )  = s i n  k x  k . .  , 

constitute a complete set and similarly for algebraic polynomials using moments or 
coefficients'in orthogonal expansions. 

Example  4. Numerous examples can be based on Tschebyscheff systems. These 
include generalized polynomials ~ ~=la,xX,, )tl < )~2 < • • • and exponential polynomials 
~=la~e  x : ,  hi < h2 < • • • (see Karlin and Studden [11, p. 9]). 
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Example 5. Let  X designate all the funct ions of a complex var iablef(z)  = ~ = 0  a,z ~ 
that are all analytic in Izl < r for some fixed r .  Then ,  if Iz, I < r and  l im~® z~ = 0, ~b,(f) = 
f(z~) form a complete  set of funct ionals .  This  is the uniqueness theorem for analytic 
functions.  A similar set is complete  for analytic funct ions of several complex variables.  
The  "coeff icient"  funct ionals  qb,(f) = f")(O)/i! ,  i = 0, 1, . . .  , are of course complete .  
The space X is of course infinite d imens ional ,  and verification o f f  =-- 0 can be  reduced to 
a countable  set of  individual  verifications.  

5. Reduction tn the Presence o f  Noise; {en}-Completeness 

Let us suppose that the tests {~b,} cannot  be carried out  with absolute  fidelity bu t  always 
take place in the presence of noise. We are therefore led to consider  the possibility of 
[ ~,(x)l  _< ~,, all i, ~, small,  implying that x = 0. What  can funct ional  analysis tell us about  
this? 

If the n u m b e r  of tests is f imte,  say ~])1 . . . .  , ~bn, then,  strictly speaking,  the condi t ions  
] qb,(x)l _< e~ can never  imply t h a t x  = 0. Consider  for example p o l y n o m i a l s p  in one  real 
variable of degree less than or equal  to n ,  and n + 1 tests ~ , (p )  = p(x,)  w h e r e x ,  i = 
0, 1 . . . .  , n ,  are n + 1 distinct points .  If l,(x) designate the fundamen ta l  Lagrange 
polynomials  corresponding to x0, . . .  , x , ,  i .e.  if l,(x) are of degree n and ~b~(lj) = 
8 u, i, j = O, 1 . . . . .  n ,  then  we may write p(x) = ~ = 0  q~(p)lt(x); so if ~b,(p) are 
prescr ibed in advance as e~ =~ O, one  has here a nontr iv ia l  polynomial  satisfying the 
condit ions.  

On  the other  hand ,  let t ing II }] designate any norm,  we have for any  such p ,  II P II ~ 
~=01~b~(p)ll[l~ll-< ~ = 0  ~,11l~11 • Now the norms  I1l~11 are dependen t  of ~ (they depend  
only on x0, • . .  , xn). Therefore  if the noise level on  a complete  set is small,  this compels  
IIp II to be correspondingly small.  In  this way one  obtains  an in te rpre ta t ion  for noisy 
verifications. 

If, however ,  the n u m b e r  of funct ionals  in the test set {+,} is infini te ,  then  the condi t ions  
[~b,(x)[ -< ~, may very well imply that x = 0. This is known as e,-completeness. The theory 
was in t roduced and  developed by Davis and  Fan  [8]. A n  instance of this p h e n o m e n o n  
will be shown in Section 8. 

6. Can the Problem Be Reduced to One Numerical Verification? 

We have seen that if the geometr ic  (or algebraic) p rob lem has been  reduced to the 
quest ion whether  p(x~, . . .  , xs) ~ O, the funct ion p be ing a polynomial ,  this can be 
verified by a finite n u m b e r  of numer ica l  evaluat ions  of p .  Can  it be reduced fur ther  to 
one numerica l  verif icat ion? The answer is yes, providing we extend our  concept  of 
eva lua t ion  to m e a n  someth ing  more  than  the usual  numer ica l  eva lua t ion  on  a finite 
comput ing  machine .  

To see this, let us suppose that  we deal initially with a polynomial  of one  variable  x of 
degree less than or equal  to n whose coefficients are integers (or rational numbers ) .  
Suppose that such a p  (x) is no t  identically 0 and tha tp  (~) = 0. T h e n  by  def ini t ion ~ is the 
root  of a polynomial  of degree less than or equal  to n and hence is an  algebraic n u m b e r  of 
degree less than or equal  to n .  Suppose now that ( is selected to be an algebraic n u m b e r  
of degree greater  than n or even  as a t ranscendenta l  n u m b e r  such as e or  7r. T h e n  the 
single e q u a t i o n p  (~:) = 0 impl iesp  --= 0. Thus ,  reduct ion  can take mere ly  one  "numer i ca l "  
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verification. Now let p(x ,  y)  be a polynomial of degree less than or equal to m in x and 
less than or equal to n In y and suppose that p(x, y) has integer (or rational) coefficients. 
We may write 

p(x ,  y)  = ao(x) + a,(x)y + ' ' '  + an(x)y n, 

where each coef f ic ient  a,(x) is a polynomial of degree less than or equal to m in x with 
integer or rational coefficients. Select ~ to be a number  which is not algebraic of degree 
less than or equal to m. Since the set of polynomials with rational coefficients is countable, 
it follows that the set of all possible values of a0(~), al(~) . . . .  , an(C) as a, runs over the 
polynomials with rational coefficients is countable. For ~ fixed, there are only a finite 
number  of valuesy such that ao(~) + a~(~)y + • • • + an(~)y" = 0. Hence, as a, runs over 
the rational polynomials, there are only a countable number of values y satisfying this 
equation. It is clearly possible to select a number  r/which IS not one of these. Therefore, 
p(~, ~) = 0 implies a0(~) = 0, al(~) = 0 . . . .  , a,(~) = 0, and each of these implies in turn 
that a0(x) ~ 0, al(x)  -= O, . . .  , an(x) -= O. Thusp(~ ,  ~) = 0 implies t h a t p  ~ 0. 

This argument is valid for polynomials in s variables, and we can sum it up by saying 
that it is possible to find algebraically independent  numbers and these numbers can be 
utilized as a reduction principle. (See Supplementary Note 4.) 

We postpone to a later section our discussion of the meaning of this result as far as 
computation is concerned. 

7. Transcendentality 

We shall next sketch a theory which allows complete proof "in one test." 
Let ~ be a set of functions, programs, or processes P with the following features: 
(a) The processes P all have a common domain D of inputs x. 
(b) To each input x in D there is determined a unique output P(x) lying in a range R of 

outputs. 
(c) A "zero" output in R has been distinguished and is designated by 0. 
The process P is said to be identically 0 (P = 0) if P(x) = 0 for all x in D. 
(d) ~ contains the zero process. 
Let th designate a "testing functional." The functional ~b will map elements of ~ into R. 

Very often, but  not always, ~b will be apo in t  evaluation. That is, ~b(P) = P ( a )  for some 
fixed a in D and all P in ~ .  

Definit ion.  The functional ~b is said to be transcendental over ~ if ~b(P) = 0 implies 
t ha tP  = 0. In other words, th(P) = 0 implies P(x) = 0 for allx in D. In the case where ~b is 
a point evaluation ~b(P) = P(et), this reduces to P(a) = 0 implies P(x) = 0 for all x. The 
appropriateness of the word "transcendental" will be seen from Example 2 below. 

Example  1. Let D designate the real numbers.  Let ~ designate the set of linear 
functions P(x) = o'x, tr real. Then the functional ~(P)  = P(a)  is transcendental over 9 a if 
a is any nonzero real number  since qb(P) = 0 means that P(ct) = O. But P(ct) = czo-. Hence 
(r = 0. Hence P = 0. 

Example  2. Let D designate the set of real numbers.  Let ~ be the set of all 
polynomials P (of unlimited degree) with rational coefficients. Then,  if cz is a transcen- 
dental number  in the usual sense (for example ct = 2.718 . . .  or ct = 3.14159 . . . ) ,  the 
functional tr(P) = p(a)  is transcendental over ~ since $(P) = 0 implies P(tz) = 0. This 
would force a to be the root of a polynomial equation with rational coefficients. This 
contravenes the usual definition of transcendental numbers.  

Example  3. Let D designate the set of column vectors x with two real components 
x = (~2')" Let ~ designate the set of all 2×2  matrices P with rational entries: 

P = (~i ~ ) .  Let P(x) mean the matrix product .Px. Then the functional th(P) = 

P(lv2 ) is transcendental over ~ since $(P) = 0 means that P(~)  = (0°), or Pil + P12 x/2 
= O, Pzl + P2~ ~/2 = 0. Hence, since Po are rational, Pu = 0 and P = 0. 

This of course may be extended to n ×n matrices. Any vector whose components are 
linearly independent  over the rationals will serve to define the transcendental functional. 
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Example 4. Le t  D consist of the set of cont inuously  dl f ferent lable  real  funct ions x(t) 
def ined  on some a -< t <- b. Le t  ~ conmst of  all opera to rs  of  the form P(x) = cr(dx/dt), (r 
real .  Let  a(t) be any funct ion in D that  is not  identically constant .  Then  4)(/)) = P(c0 = 
o'(dc~/dt) is t ranscendenta l  over  ~ since ~b(P) = 0 implies  (p(da/dt) ~ O. N o w  ifo" :~ 0, 
then (dc~/dt) = 0, so that  a(t)  = constant .  This is impossible ;  so o" = 0. 

Example 5. This may be  ex tended .  Let  D consist of  all infinitely di f ferent iable  
funct ions on 0 < a < t < b. Le t  ~ consist of all differential  opera tors  of the  fo rm 

P(x) = P(t,  x ,  x ' ,  x", . . . .  x(k)), 

k = 1, 2 . . . . .  where  P is a non tnv la l  po lynomia l  in the indicated variables.  Le t  F(t) be 
the classical Euler ian  G a m m a  funct ion.  Then  the functional  ~b(P) = P(F(t)) is a t ranscen- 
dental  over  ~ .  This is true because  it ~s known that  F(t) does  not  satisfy any such 
algebraic differential  equatxon (Holder -Os t rowsk i  t heo rem) .  Such funct ions  have been  
called transcendentally transcendental. (Ordinary  t ranscendenta l  funct ions  such as e t, 
sin t, e tc . ,  satisfy algebraic  different ial  equat ions . )  

Example 6. H e r e  is an example  which is not  analytical .  Let  V* consist of  all f n i t e  
strings of symbols where  the individual  symbols have been  selected f rom an a lphabet  of  
symbols V. Le t  ~ consist of  the  processes  P0, Pi ,  . . .  , P®, where  the P~ opera te  as 
follows. For  a n y x ,  Pax = the null string = 0. For  n f imte ,  Pn(x) is the string that  results 
by delet ing the first n e lements  of  x .  If n is g rea te r  than or  equal  to the n u m b e r  of  
e lements  in the string x ,  then P,(x) = O. 

This system has no point  evaluat ions  that are t ranscendenta l .  Suppose  that  ~b(P) = 
P(x). Suppose fur ther  that  Pk(x) = 0; then  it fol lows only that  k is g rea te r  than o r  equal  to 
the number  of  symbols in the string x .  H o w e v e r ,  if V* is en la rged  to conta in  infinite 
strings of  symbols and if a Is any infimte string, then ~b(P) = P(~)  is t ranscendenta l .  This 
is true because ~b(P) = 0 means  that  P(~)  is the null string. But  P0, P1 . . . .  can dele te  only 
a finite number  of  symbols.  The re fo re  ~b(P) = 0 implies P = P~ = 0. 

8. Transcendentals Generated by Functional Norms 

One  of the basic proper t ies  of  a norm in a n o r m e d  space X with e lements  x Is that  [I x 1t = 
0 i m p h e s x  = 0. This leads us immedmte ly  to many examples  of  t ranscendenta l  functlon- 
als. 

Cons ider  for example  the n o r m e d  l inear  space 9 ~ consisting of  all cont inuous  funct ions 
of a real var iablex( t )  def ined on a fixed interval  D : a <- t <_ b. De f ine  IIx II z = fbalx(t)12dt. 
Then  ~b(x) = f°~lx(t)[2dt is t ranscendental  over  ~ .  The re  is no point  evaluat ion over  
wMch coincides with ~b. H o w e v e r ,  ~b may be approx imated  by point  functionals  in many  
ways. For  example  let tl, t2, . • • be any sequence  of  points  which is equidis t r ibuted  m 
[a, b] (see e.g. Davis and Rabinowitz  [9, p. 298]). Then  

b N 

qb(x) = ( Ix(t)l~dt = lira ( I / N )  ~ ]x(tk)} 2, for a l lx  ~ ~ .  
Ja 

The  set of  points  {tk} must be eve rywhere  dense in [a, b];  so the point  functionals  ~bk(x) = 
x(tk), k = 1, 2, . . .  , form a comple te  set over  ~ .  But  there is more  than this. Suppose  
that  ~7, > 0 and lim,_~ ~, = 0. T h e n  ( l / N )  ~ = 1  Ix(t~)l 2 < ~N, N = 1, 2, . . .  , imphes  
that  f~ I x(t)12dt = 0 and hence  x(t) =- O. These  inequaht ies  can be wri t ten as ~kN=l I X(tk)l 2 
< ~NN, N = 1, 2, . . . .  Hence ,  ff constants  ~k are taken  so small  that  

N 

~ < n N N ,  N =  1 , 2  . . . .  
k = l  

(for example  0 < ek -< l /z /k) ,  then ~b~(x) = x(t~) provides  an i l lustration of a sequence  of  
funct~onals that  are e~-complete. 

9. Transeendentals and Computatton 

Let  us re turn to the ques t ion of  the verif icat ion of  a t heo rem by means  of  a single 
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numerical evaluation. In the Pappus theorem (and similar theorems) the polynomials in 
question have rational coefficients; we therefore know it is possible to prove the theorem 
by the following strategy: Verify the theorem in the case of a configuration with 
transcendental  (algebraically independent)  coordinates;  this will then imply the truth of  
the theorem for all configurations 

Brushing under the rug the difficult theoretical  question of which expl io t  sets of 
numbers are algebraically independent ,  3 we observe next that even when we are pro- 
vided with such a set, we must then compute with them. Such numbers are mfimte 
nonrecurring decimals, and we must compute with them to infinite precision. This is 
manifestly impossible on real-world computing machines with finite word lengths, finite 
memories,  and finite running times. The best one can do is to plug in finite decimal 
approximations.  Thus, ff one employed the number  e, one might insert e~ = 2.71, e2 = 
2 . 7 1 8 , . . .  , etc. The theorem must check out for each of these lnserttons. Hence,  if the 
ultimate goal is to verify that P ~ 0 where P is a polynomml in its arguments,  then we 
have overkill here because,  as seen, this decision can already be reached with only a 
finite number  of point evaluations.  If  P is not a polynomial  but is analytic m its 
arguments,  then it makes sense, but there ts no particular virtue m deahng with a 
transcendental  configuration. 

10. Transcendentals and Random Numbers 

In various parts of  Monte Carlo theory,  for example in the theory of numerical integra- 
tion by means of sampling (see e.g. Davis and Rabinowitz [9, p. 298]), there is a gray 
region of useful confusion between random numbers,  pseudorandom numbers,  algebrai- 
cally independent  numbers,  equidistr ibuted numbers,  and finite deoma l  approximations 
to all of these. 

In the present context let us agree to replace a transcendental (algebraically indepen- 
dent) configuration by a random configuration, interpreting the latter uncritically as a 
finite but jumbled mess of  digits. Our  strategy then becomes: Verify the theorem m the 
case of jumbled coordinates;  this will imply (with high probabdi ty)  the truth of the 
theorem in general.  The more verifications, the higher the probabil i ty.  

Example. To get a feeling for how this works, return to the Pappus theorem. We shall 
verify by computer the truth of Pappus for the configuration (xl, Yl) = (13, 240), (x3, x4) 
= (2, 53), (xs, ys) = (37, 648); (xz, y2) = (51, 1202), (x,, y4) = (7, 190), (x6,y6) = (23, 558). 
The first three points he on the line y = 17x + 19, while the last three lie o n y  = 23x + 
29. 

The program was laid out  as in Section 2. The computer  was asked to output  D E T  
(DET = 0 means verification) as well as the expansion of D E T  = D1 - D~ + D3 in terms 
of the minors of the first row of DET.  The output  for the above configuration read 

D1 = -497 152 518 511 616 
-Dz = 396 537 652 008 960 

Da = 100 614 866 502 656 
DET = 0 

These are exact 15-figure integers. Note the substantial build-up of the lengths of the 
integers starting from numbers of around 2-3 figures. An  insertion of, say, 10-digit 
integers at the (x,, y,) stage would compel us to go to multiple precision programming.  
Note also the " random"  jumble of digits in Dj ,  D~, D3, leading all but the most 
hardbi t ten skeptic to believe that the remarkable  identity D1 - D2 + D2 = 0 ts due to a 
general tendency and not to pure coincidence. (See Supplementary Note 5.) 

We may speak of this as a principle of  scientific induction: I f  something is true for a 
random configuration o f  circumstances it is generally true. 

Example. Consider,  for example,  the so-called "Theorem of Napoleon ,"  often 

3 The reader interested m pursuing this quesUon should consult Baker [1] and Zhldlovsky [14] 
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ascribed to Napoleon Bonaparte (who was a good student of mathematics as a boy). Let 
equilateral triangles be erected on the sides of any triangle (see Figure 6). Then the 
centers of the equilateral triangles form a triangle which is also equilateral. One might 
very well imagine the young Napoleon fooling around with paper, pencil, ruler, and 
compass, and starting from a random inner triangle, discovering experimentally that cl, 
c2, c3 is equilateral. This discovery would then suffice to assure the truth of the general 
theorem, with high probability. (See Supplementary Note 6.) 

11. The Transcendental as Pure Symbol 

We began this paper by inquiring whether symbolic algebra could be replaced by 
arithmetic computation. We decided that this was indeed possible. In order to push the 
point to extremes, we went on to conclude that if computation with transcendentals is 
allowed, then only one verification is needed. Thus infinite precision arithmetic with 
transcendentals is equivalent to finite precision arithmetic with pure symbols. 

Example. Consider the algebraic number field consisting of numbers of the form a + 
bx/2, where a and b are rational numbers. Infimte precision arithmetic can be carried out 
in this field by making the identification a + bx/2 ~ (a, b). Then (a, b) + (c, d)  = (a + c, 
b + d), (a, b) × (c, d) = (ac + 2bd, ad + bc) would be the appropriate rules for + and ×.  
Thus .,/2 is functioning as the pure symbol (0, 1). Within this arrangement, there is no 
possibility of making the identification (0, 1) --~ 1.414 . . . .  

The parallelism between transcendentals and pure symbols is reflected, for example, 
in the portion of algebra dealing with field extenstons. Witness this theorem: 

THEOREM. I f  a zs transcendental over a field F, the subfield generated by F and o~ is 
isomorphic to the field F(x  ) o f  all rational forms in an indeterminate x wtth coefficients in 
x. The tsomorphtsm may be chosen so that ct ~ x and c ~ c for each c in F. 

If we decided to work with transcendentals to "infinite precision" by the device of 
introducing a pure symbol, then if we make computations with 7r or e (3 .14159 . . .  or 
2 .718 . . . ) ,  keeping the former as pure symbols, we are precisely back in the original 
position of operating with formal algebra. Thus this policy brings us full circle back to 
where we started. The practical policy of working with approximations leads us, on the 
other hand, to heuristics, probabilities, and analogies between transcendental numbers 
and " random" numbers. 

Cl 

FIG 6 
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12. E n o r m o u s  Integers as Symbols ,  Programs,  and Transcendentals 

Let us consider first some specific integers whose size is ridiculously large. As  the 
numbers which appear  in physics or cosmology appear  to lie well within the range 10 ±s°°, 
we shall seek integers far above this limit of physical significance. There is A = 244~a - 1 

10 In31 which at one time held the record as the largest known prime. The G6del  
numbers which play such an important  role in the theory of provabili ty are a rich source 
of integers that are beyond the limit of physical significance. There is Skewes number  
S = 10 z°'°~' which once played a role in the theory of  prime number  distribution. 

If one wants to generate large numbers rapidly,  a fine device to employ is the i terative 
scheme stressed by Hugo Steinhaus and Leo Moser.  Let f l (a)  = a a. For  n = 1, 2 . . . . .  let 
f~+l(a) = f o .~.). of~(a), where the symbol on the right designates a functional composi- 
tions. The integer M = fa(2) is known as the mega and M* = fu(2) is known as the moser.  
The mind boggles at the size of the mega (the reader  would do well to try to compute  
f3(2)) and,  as for the moser,  it is out of sight. 

Now there appears  to be a vital difference between integers such as 7 , 2 1 1 ,  or even A 
(which has only 1331 digits) and integers such as S, M, M*, etc. ,  in that one can 
physically perform arithmetic at the primitive level with the former,  but one cannot 
perform it with the lat ter .  Thus one can find 7 × 211 or 17 × A and express the result as 
a decimal integer. However ,  if one asks for 211 + M or 53 × (S + M + M*), then this is 
not possible physically. 4 We must leave it at the symbolic level. Of course,  we may 
replace 53 x (S + M + M*) by (53 x S) + (53 × M) + (53 × M*), but then we are 
manipulating S, M, M* as mere symbols. We cannot verify this identi ty or even M + M* 
= M* + M, though we might assert their truth on the grounds of general  propert ies  
shared by all integers. Let  us say that integers of the former type are integers m esse; they 
can be written down. The integers of the latter type are integers in posse; they cannot be 
written down. One cannot draw a dividing line between the two types; perhaps the 
notion of fuzzy sets mlght be useful here.  A n  integer in posse such as S or M or M* is 
really a program,  and it is a program that can be stated in a small number  of hnes in some 
computer  language.~ 

Suppose now, returning to the numerical verification of  the Pappus theorem, that one 
were to specify six points on two lines whose coordinates are all integers in posse. Then 
we could not verify the critical equation D E T  = 0 by direct computat ion at the primitive 
level. What  one would do is to observe that inasmuch as D E T  as a function of its atomic 
symbols is identically 0, then D E T  must also be zero when integers in posse are 
substituted into it. 

Thus we arrive at the vague idea that certain statements about  integers in posse can be 
true if and only if the statements are identically true. As  we have seen, this is the 
characteristic behavior of the transcendental .  

Some of this vagueness may be dispelled by constructing a mathematical model.  Let  
~ ( + , .  , Z, ~ )  be a structure built up in the following way. Let  Z designate a fixed subset 
of the set of all positive, negative, and zero integers. The elements of Z will represent the 
integers in esse. Let ~ be a set of  symbols (finite or infinite in number)  which are to play 
the role of programs or  integers in posse. The following rules are observed:  

(1) O ~ Z .  0 5 ~ .  
(2) I f n  E Z a n d P E ~ t h e n n  + e a n d P + n  ~ .  
(3) I f n  ~ Z a n d n ~  0 a n d P ~ , t h e n n P ~ .  
(4) I f P E @ , t h e n 0 . P =  P . 0 = 0 .  
(5) If P1 and P2 ~ ~ ,  then P~ + P2 and P~P~ E ~ .  

4 Even the most  hardblt ten Platomst  among mathemat~cmns must  at some point  deal  with the l imitations 
imposed by the physical world For example,  mathemat ical  proofs and lectures are all reqmred to be of fimte 
length,  and by fimte one means m practice something that  can be expressed by, say, ten volumes of symbols. 
One wonders what status therefore could be g~ven a proof  contaimng a mega of symbols 
5 To generate  fn(2) m APL reqmres no more than 8 s tatements .  One works by writing a program which calls 
~tself. Of  course, ff one tried to run the program for fa(2), it would never  output  m the hfet~me of the 
programmer.  
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N o t e  t ha t  the  b e h a v i o r  of  this  sys tem imi ta t e s  the  b e h a v i o r  of  the  t r ans f in i t e  ca rd ina l  

R0, insofar  as n + No = R0, R0 + n = R0, R0 + R0 = R0, R0"~0 = Ro. 
We nex t  cons ide r  po lynomia l s  ~r(x) = aox  ~ + a l x  ~-1 + " .  + an,  where  a,  a n d x  ~ f t .  I f  

now the  coeff ic ients  are  r e s t r i c t ed  to lie in Z ,  t h e n  any  P ~ ~ is a t r a n s c e n d e n t a l  o v e r  this  
set  of  po lynomia l s .  For  suppose  7r(P) = a o P  n + a l P  n-~ + " . .  + a , _ ~ P  + an = 0. Suppose  
tha t  for  some  k # n ,  ak ~ 0. T h e n  a k P  "-k  ~ ~ .  T h e n ,  by  the  above  ru les ,  or(P) E ~ and  
h e n c e  c a n n o t  be  0. T h e r e f o r e  a0 = a t  = • • • = a,,_~ = 0. H e n c e  also a,~ = 0. T h u s  ~-(P) = 

0 implies ~- = 0. (See S u p p l e m e n t a r y  No te  7.)  

S u p p l emen tary  No tes  

1 The distinction, if any, between numbers and symbols (variables) may well be disputed. Certainly in the 
usual languages this distinction is preserved at the compile level by the use of attributes by which the identifier 
is declared to be a number  (in one of a variety of forms), a string, a label,  a variable, a logical constant,  etc 

2. For a discussion of polynomial  evaluation via the divxsion algorithm and its relat ion to the fast Fourier 
transform, see Flduccla [10] 

3 The identity in 16 variables is ascribed variously to Cayley and to Brioschi It  reads as follows 

where 

xr  Y,~= zL 
t=O t = 6  ~=0 

Z o = ~ X , Y , ,  
l = 0  

Z,  = X<~Y~ - YoX, + X,+tY,+5 - X~+~Y~+i + X,+2Y~+3 - Xi+z'~+2 + X~+4Y(+~ - X(++Y,+4. 

The radices are reduced mod 7 An mterpretaUon for this ldenuty can be found within the theory of Cayley 
algebras or wlthm the theory of spmors (see, e g Cartan [2, p. 121]). One of the principal theorems m th~s area 
ts that no further xdentmes of th~s type are possible 

4 There are other ways of arranging for a reduction to "one"  numerical verification The one presented 
here fits m best as an analogue of samphng 

The point here is not  to fred comphcated proofs of simple theorems,  but  to focus at tention on the properties 
and ~mphcatlons of a cer tam kind of methodology.  

5 One can argue that the presence of an unusual numerical  circumstance is indicative of an underlying 
theory which explains i t  Consider for example the amusing instance presented m Mart in Gardner ' s  column m 
the Apri l  1975 issue of Scientific A m e r i c a n .  

The number  of G = e ~v16z is conjectured to be an integer Now, a multiple precision computat ion shows that  
G consists of 18 digits to the left of the decimal point,  followed by 12 9s to the right of the decimal point.  The 
13th digit to the right of the decimal point Is 2, spoiling the conjecture 

An explanation of the coincidence of 12 9s can be given within the theory of class number  of quadratic 
number fields and expansions m terms of the Klein absolute modular  invariant Historically this theory dates 
from the late 1890s and preceded  any high accuracy computat ion of G. The number  G is known to be 
transcendental  as a result of the Gelfand-Schneider theorem (early 1930s). 

Returning to the example of the text, one may very well ask. What really does this computat ion prove9 Does 
it prove (a) the truth of Pappus's theorem (already known since 350 A D ) or only (b) that  the hardware/  
software combination is doing what ~t is supposed to be doing (presumably the manufacturer  has checked this 
out) and (el that  the Pappus program I wrote is correct 0 t  can' t  really be proved correct;  only that  it is not  
demonstrated to be mcorrect) 9 

According to the view which stresses an experimental  or experiential  criterion of mathematical  truth (see 
Davis [5 .6] ) ,  it does all of these things simultaneously. 

Dmgnostic programming is frequently carried out by the insertion of randomized inputs 
6 Here  is a further example of "sampling"  on a " t ranscendental"  element,  a way of predicting the 

presidental election: There is a certain congressional district In the country which has gone with the winner for 
about a century Merely sample this district On election night,  reporters always report  on this district. Of  
course, we might even go further and look for a " t ranscendental"  household and accept its verdict.  This type of 
sampling has been called "purposive"  selection and is not generally recommended 

7 The finiteness of enormous integers such as S, M, M*, etc., has been quest ioned by numerous authors. 
The hst includes Borel,  FrSchet, Mannoury,  Ringer, and van Dantzig (see Kmo, Myhlll, and Vesley [12, p. 41). 
Yessenm-Volpm [12] uses the expression "feasible" number  to express a meaning that comes close to our  
numbers "in esse " 
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