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ABSTRACT. This paper considers immformally the relationship between computer aided mathematical proof,
formal algebraic languages, computation with transcendental numbers, and proof by sampling.
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This is the fourth in a series of papers devoted to certain aspects of proof in elementary
mathematics as it has been affected by the computing machine. The three previous
papers are Davis and Cerrutti [7] and Davis [5, 6]. The point of view taken in the present
paper is that of a person who is interested both in interpolatory function theory and in
computer science.

1. A Geometrical Theorem from Antiquity

In [7], a computer proof of the following classical theorem of Pappus was discussed.
Take any two straight lines in the plane and select three points arbitrarily on each.
Connect the points in a crisscross fashion as indicated. The three points of the intersec-
tions of the crisscrosses are called the Pappus points for the original configuration, and
the theorem states that the three Pappus points are collinear. The attack on this problem
was through a brute application of coordinate geometry.

Deliberately, no attempt was made to achieve simplifying reductions. The two lines
were given symbolic parametric form. Six symbolic points were selected thereon. The
coordinates of the three Pappus points were obtained as functions of the parameters by
solving the three 2X2 systems. The Pappus points were then shown to be collinear. (See
Figure 1.)

This project was undertaken as an exercise in programming in Formac, an algebraic
symbol manipulation language, and to explore the possibility of theorem discovery in
elementary geometry by this means. This particular theorem was selected because it is
simple to state, lies at the foundation of projective geometry (there are geometries in
which the theorem is not true), has an interesting generalization (Pascal’s theorem), but
is difficult to prove with only high school geometry.

2. Details of the Brute Force Analytics

The coordinate geometry of the Pappus configuration is perhaps best programmed in the
following way. Let a prototype crisscross be formed from the points with coordinates
(a,b),(c,d), (e,[), (g, h) as indicated in Figure 2. Set [1]j = h — b,[2]k =g — a,[3]p
=e—~c,[4lg=f—d,[5]lr =aj — bk,[6]s =cq —dp,[71m = sk — pr,[8]n =js ~ gr,
[9]w = gk — pj. Then the x and y coordinates of the point of intersection of the crisscross
are given, respectively, by m/w and n/w. Now let the three arbitrary points on the two
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arbitrary lines be given coordinates (x,,y,),t = 1,2, ..., 6, as in Figure 3, and let the

respective points of tersection of the three crisscrosses be (M1/W1, N1/W1), (M2/W2,
N2/W2), (M3/W3,N3/W3). Here, M1, N1, W1, etc., equal m, n, w after an appropriate
replacementofa,b, ..., hbyx,, ..., ye The condition for the collinearity of the three
Pappus points is now

M1 N1 w1

M2 N2 w2
M3 N3 W3

DET = =0

It should be clear that DET is a polynomial P in the variablesx,, y,. This polynomual is
the sum of several thousand monomials in the x, and y,; so the proof of Pappus’s theorem
by this means consists in the construction of DET and the verification that it is identically
zero. In [7] this construction and verification was carried out in the FORMAc language.

3. Was a Formal Algebra Language Necessary?

The reason a formal algebra language (such as ForMac) was selected is as follows. What
18 desired is a proof that 1s valid generally. Therefore it would not do merely to substitute
specific numerical values for the coordinates and to verify numerically that DET = 0.
This would establish Pappus only in the specific numerical case selected. Now in the
usual programming languages such as Fortran, Basic, and APL, normally operated, all
variables must ultimately link back to numerical values. To perform formal algebra in
them would require special programming. Therefore the computation was carried out
within a language in which formal algebra is routinely available. (See Supplementary
Note 1.1)

Our demand for generality 1s similar to that frequently encountered by mathematics

! Supplementary Notes appear at the end of the paper
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teachers in elementary courses. A problem has been assigned in which something quite
general is to be established. The teacher reads the student’s proof and then writes, “You
have proved the statement only for n = 2 (or for (x, y) = (0, 0), or when T is a right
triangle, etc.). Prove in general!”

Now 1t turns out that, subject to some reservations developed below, it is not necessary
to work entirely symbolically; the students’ idea of limited numerical verification can
provide mathematically valid proofs. This 1s true not merely for the Pappus theorem but
for all theorems of elementary algebraic analytic geometry which are equivalent to
theorems of polynomial algebra.

The link which enables us to reduce the problem to numerical computation is the so-
called uniqueness theorem for polynomials. It will be stated first m one variable.

Letp(x) = agx™ + a;x™* + - - - + a,, be a polynomial of degree less than or equal to n
in the real (or complex) variable x. It 1s assumed that a,, . . . , a, are real (or complex)
numbers. If now x,, x,, ..., x,,, are n + 1 distinct real (or complex) numbers and if
plxy) =0,p(xy) =0, ..., p(xayy) = 0, then p(x) is identically 0.

The uniqueness theorem therefore operates as a reduction principle or a sampling
principle, enabling us to reduce the ostensibly infinite task of verifying that p(x) = 0 for
all x to that of verification for a finite number of values of x

A similar theorem is valid for polynomials in several variables. Suppose for example
that for fixed y, p(x, y) is a polynomial in x of degree less than or equal to m, and for
fixed x of degree less than or equal to » 1n y. In other words, let

pi,y) = X aupxiy.
Jj=1, . ., m
s n

We may rewrite it 1n the form

px,y) = aglx) + a(x):y + a3(x)-y* + - + axx)y”,

where the functions a,(x),: = 0, ..., n, are all polynomials in x of degree less than or
equal to m. Suppose now that x,, ..., x4, are distinct and y,, ..., y,., are distinct.
Then, ifp(x,,y,) =0fori=1,... ,m+tandj=1,...,n + 1, itfollows thatp(x, y) is
identically O from the following argument. Let i be fixed and consider p,(y) = p(x,, y).
Now assume that

0 =p(xu y:) =I31()’;) = ao(xz) + al(xz).YJ R an(xt)y;l = 0’
i=L2,....,an+1,1=12,...,m+ 1.

By the uniqueness theorem in one variable, since §,(y) 1s of degree less than or equal to
n, all the coefficients aq(x,), ... , a,(x,) must vanish. This must be true for: = 1,
2, ..., m + 1. Since they, 1n turn, are polynomals of degree less than or equal to m,
each of them vanishes for m + 1 points and hence vanishes identically. Therefore p(x, y)
vanishes identically.
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Note that the number of verifications that must be carried out is now (m + 1)(n + 1).

In general let x,, x,. . . . , x, be s independent variables and let p(x,, x,, ... , x;) be a
polynomial of degree less than or equal to d, in x;, i = 1, ... ,s. Suppose that x,,,
Xy oo s X1, i =1,2, ..., 5, ares sets of values that are distinct (as far as the second

subscript is concerned); then
fi=1,...,dy+1,
P&Eaps X2gss - - xs:,) =0, H
s=1,...,d,+1
implies p = 0. Note that (d, + 1)(d, + 1) - - (d,; + 1) individual verifications are sufficient

to reduce the problem. (See Supplementary Note 2.) The points that must be substituted
into p constitute the product set of the points

X115 <+ - 5 X1dy+1>
X21s « oo 5 Xody+1s
Xsts o<« s xsds‘f—l'

Example 1. Consider the famous algebraic 1dentity of Euler which plays a key role in
the “four-square” problem.

(@% + a§ + a} + a%)(b% + b} + b3 + bl) = (a;:b, — ash, — azh; — a by + (a1b, + asb,
+ azh, — aby)? + {aiby — asby + azh, + aby)® + (a,by + aby — asby + aby)’

The difference between the left-hand and the right-hand sides is a polynomial ms = 8
variables and of degree at most two in each varniable. Hence this formal identity may be
proved by at most 38 = 6561 numerical verifications on, say, the 8-fold product set of
(-1,0,1).

Several remarks are in order. Although this identity is crucial to the “four-square
problem,” books on number theory never prove it. After all, it is a “mere” formal
computation to show that a certain polynomial consisting of 80 monomials is identically
0.2 There is a similar identity with 16 variables. (See Supplementary Note 3.)

Nor does the verification of the identity provide the slightest msight into deeper
meanings which have been found for the identity. (The four-square identity is equivalent
to |0, IP11Q: |7 = [10:Q: |, where Q, are quaternions and where |Q|] = |fa + bi + cj +
dk|? = a® + b* + ¢* + d2. See, e.g. Curtiss [3].) Nor does 1t provide any insight into how
further identities of this kind may be constructed. It is a purely post hoc affair.

Example 2. The Pappus theorem. As observed in the second section, the proof of
Pappus 1s equivalent to verifying that DET = 0, where DET is a polynomial in the
variables x,, . . . , y¢ and where (x,, y,) lie by threes on two arbitrary lines. Parametrize
the two lines asl, :x = ¢,y = 0; [, :x = yt,y = at + B. Then select (x5,11,¥5.41) =
(t241, 0), 1 =0,1,2; (x4, y2) = (ytn, aty, + B), i = 1, 2, 3. Thus DET is a polynomial in
the nine independent variables «, 8, v, 2, i = 1,2, ..., 6. Hence DET = 0 may be
proved by an appropriately selected finite sample of values. See Figure 3.

Example 3. Another proposition in elementary geometry proved via “finite sam-
pling.” Occasionally, special selection of the configuration may reduce the proposition
to trivialities. Consider the following theorem: The midpoints of the sides of a triangle
and the feet of altitudes lie on a common circle. (This circle is called the “nine-point
circle” for the triangle. The circle contains numerous other special points of interest and
the relevant mathematical theory dates from the synthetic geometry of the early 1800s.)
Place the triangle as indicated and think of a, b, d as fixed while ¢ is variable. (See Figure
4.) Since the general equation of a circle 1s A (x? + y?) + Bx + Cy + D = 0, 1t follows that

% The decision problem for elementary polynomial algebra can be answered in the affirmative. It 1s one of the
rontes of mathematical exposition that if a proof 1s mere routine, then intellectually it 1sn’t worth gowng
through
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the necessary and sufficient condition for four points (x,, y,), i = 1, 2, 3,4, tohe on a
common circle 1s that

D = det(x} + y, x,, y,, 1) = 0.

Inserting (x,, yy) = (c, 0), (x3,y2) = ((@ +¢)/2,d/2), (x3,y3) = (b +¢)/2,d/2), (x4, y4)
= ((a + b)/2,0), we find that D = D(c) is at most a cubic in ¢. Hence, four verifications in
¢ suffice to establish the proposition. Selectc = a,¢ = (a + b)/2,c =b,c =2b — a.
The proposition in each of the four special cases pictured in Figure 5 is visually apparent.

4. Completeness as a Principle of Reduction

The uniqueness theorem for polynomials which we have used as a principle of reduction
or of sampling can be written as p(x,) = 0, i = 1,2, ..., N, implies p = 0. Within the
context of the theory of linear spaces, this is a so-called completeness property, see e.g.
Davis [4]. Let X be a linear space and let X* be its conjugate space (i.e. the space of
hnear functionals defined over X). Then a set of elements {¢}, ¢, € X*, is called
complete in X* if, when x € X, ¢,(x) = 0 for all ; implies x = 0. (F. Deutsch has
expressed this condition picturesquely: He says that if x is dead when tested by a
complete set ¢,, then it is really dead.) Thus a complete set of functionals serves as a
reducer for the elements of X. It 1s a test set.

If X has finite dimension N, then there 1s a complete set of N elements. If X is a
normed linear space, completeness of {¢,} is related to closure, which asserts the
possibility of approximating elements of X* by finite combinations of elements of {¢,}.

Example 1  Let X be the space of all polynomials p(x) = X%, a,x* of degree less than
or equat to n. Ths is of dimension n + 1. If x, are distinct, the point evaluations ¢,(p) =
plx),e=1,2,...,n + 1, are complete.

Example 2. With the same space as in Example 1, the derivatives ¢, (p) = (1/i})
p¥0),i=0,1,....n, form a complete set.

Similar examples hold i several variables. Note that whereas the functionals of
Example 2 correspond in the context of this paper to proof by formal manipulation of
coefficients (b, (@, + ax + a,x2 + -+ + a,x™ = a,), the functionals of Example 1
correspond to proof by numerical computation.

Example 3. Let X consist of all trigonometric polynomials of the form #(x) = a, +
Su_, (ax cos kx + by sin kx). Then the 2n + 1 functionals

™ cos kx
(t)=f Hx)dx, k=0,1,...,n
b ,  sinkx

constitute a complete set and similarly for algebraic polynomials using moments or
coefficients 1n orthogonal expansions.

Example 4. Numerous examples can be based on Tschebyscheff systems. These
include generalized polynomials 3 2;a,x™, X, < A, < ... and exponential polynomials
Sr,ae™, Ay < Ay < ... (see Karlin and Studden [11, p. 9]).
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Example 5. Let X designate all the functions of a complex variable f(z) = Y% ¢ a,z"
that are all analytic in |z| < r for some fixed r. Then, if |z,| < r and lim;_,.. z, = 0, $,(f) =
f(z;) form a complete set of functionals. This is the uniqueness theorem for analytic
functions. A similar set is complete for analytic functions of several complex variables.
The “coefficient” functionals ¢,(f) = f*(0)/i!,i = 0,1, ..., are of course complete.
The space X is of course infinite dimensional, and verification of f = 0 can be reduced to
a countable set of individual verifications.

5. Reduction in the Presence of Noise; {€,}-Completeness

Let us suppose that the tests {¢,} cannot be carried out with absolute fidelity but always
take place in the presence of noise. We are therefore led to consider the possibility of
| p.(x)| = €, all i, ¢ small, implying that x = 0. What can functional analysis tell us about
this?

If the number of tests is finite, say ¢,, . . . , ¢,, then, strictly speaking, the conditions
| $.(x)] = €, can never imply that x = 0. Consider for example polynotnials p in one real
variable of degree less than or equal to n, and n + 1 tests ¢,(p) = p(x,) wherex,, i =

0,1, ..., n, are n + 1 distinct points. If /,(x) designate the fundamental Lagrange
polynomials corresponding to x,, ..., x,, i.e. if /,(x) are of degree n and ¢(;) =
8, i, =0,1,...,n, then we may wrte p(x) = X%y ¢(p)lix); so if ¢(p) are

prescribed in advance as ¢, # 0, one has here a nontrivial polynommal satisfying the
conditions.

On the other hand, letting || || designate any norm, we have for any such p, ||p|l =
2hole@lLll = Zroe|l] . Now the norms ||/,|| are dependent of ¢, (they depend
only onx,, ..., x,). Therefore if the noise level on a complete set is small, this compels
|p |l to be correspondingly small. In this way one obtains an interpretation for noisy
venifications.

If, however, the number of functionals in the test set {¢,} 1s infinite, then the conditions
|@.(x)| = e, may very well imply thatx = 0. This is known as e,-completeness. The theory
was introduced and developed by Davis and Fan [8]. An instance of this phenomenon
will be shown in Section 8.

6. Can the Problem Be Reduced to One Numerical Verification?

We have seen that if the geometric (or algebraic) problem has been reduced to the
question whether p(x,, ..., x,) = 0, the function p being a polynomial, this can be
verified by a finite number of numerical evaluations of p. Can it be reduced further to
one numerical verification? The answer is yes, providing we extend our concept of
evaluation to mean something more than the usual numerical evaluation on a finite
computing machine.

To see this, let us suppose that we deal initially with a polynomial of one varable x of
degree less than or equal to n whose coefficients are integers (or rational numbers).
Suppose that such a p(x) is not identically 0 and that p(£) = 0. Then by definition £ is the
root of a polynomial of degree less than or equal to n and hence is an algebraic number of
degree less than or equal to n. Suppose now that £ 1s selected to be an algebraic number
of degree greater than n or even as a transcendental number such as e or 7. Then the
single equation p (£) = 0 impliesp = 0. Thus, reduction can take merely one ‘“‘numerical”
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verification. Now iet p(x, y) be a polynomial of degree less than or equal to m in x and
less than or equal to n 1n y and suppose that p(x, y) has integer (or rational) coefficients.
We may write

p(x, y) = apx) + a,(x)y + - + a,x)y®

where each coefficient a,(x) is a polynomial of degree less than or equal to m inx with
integer or rational coefficients. Select ¢ to be a number which 1s not algebraic of degree
less than or equal to m . Since the set of polynomials with rational coefficients is countable,

it follows that the set of all possible values of ao(£), a,(€), . . . , a,(£) as a, runs over the
polynomials with rational coefficients is countable. For ¢ fixed, there are only a finite
number of values y such that go(€) + a,(&)y + - - - + a,(é)y” = 0. Hence, as g, runs over

the rational polynomials, there are only a countable number of values y satisfying this
equation. It is clearly possible to select a number n which s not one of these. Therefore,
p(€, m) = 0implies ay(¢) = 0,a,(6) =0, . .., a,(&€) = 0, and each of these implies in turn
that ay(x) = 0,a,(x) =0, ..., a,(x) = 0. Thus p(&, n) = 0 implies that p = 0.

This argument is valid for polynomials in s variables, and we can sum it up by saying
that it is possible to find algebraically independent numbers and these numbers can be
utilized as a reduction principle. (See Supplementary Note 4.)

We postpone to a later section our discussion of the meaning of this result as far as
computation is concerned.

7. Transcendentality

We shall next sketch a theory which allows complete proof “in one test.”

Let 2 be a set of functions, programs, or processes P with the following features:

(a) The processes P all have a common domain D of inputs x.

(b) To each inputx in D there 1s determined a unique output P(x) lying in a range R of
outputs.

(c) A “zero” output in R has been distinguished and is designated by 0.

The process P is said to be identically 0 (P = 0) if P(x) = O for all x in D.

(d) 2 contains the zero process.

Let ¢ designate a “testing functional.” The functional ¢ will map elements of & into R.
Very often, but not always, ¢ will be a point evaluation. That is, ¢ (P) = P(e«) for some
fixed @ in D and all P in .

Definition. The functional ¢ is said to be transcendental over P if (P} = 0 implies
that P = 0. In other words, ¢(P) = 0 implies P(x) = 0 for all x in D. In the case where ¢ is
a point evaluation ¢(P) = P(a), this reduces to P(a) = 0 implies P(x) = O for all x. The
appropriateness of the word ““‘transcendental” will be seen from Example 2 below.

Example 1. Let D designate the real numbers. Let 2 designate the set of linear
functions P(x) = ox, o real. Then the functional ¢(P) = P(a) is transcendental over P if
a is any nonzero real number since ¢(P) = 0 means that P(«) = 0. But P(a) = ao. Hence
o =0.Hence P=0.

Example 2. Let D designate the set of real numbers. Let ? be the set of all
polynomials P (of unlimited degree) with rational coefficients. Then, if « is a transcen-
dental number 1n the usual sense (for example a = 2.718 ... or & = 3.14159 .. ), the
functional o(P) = p(«) is transcendental over P since ¢(P) = 0 implies P(a) = 0. This
would force a to be the root of a polynomial equation with rational coefficients. This
contravenes the usual definition of transcendental numbers.

Example 3. Let D designate the set of column vectors x with two real components
x = (§1). Let &P designate the set of all 2x2 matrices P with rational entries:
P=(tu %p). Let P(x) mean the matrix product Px. Then the functional ¢(P) =
P(%,) is transcendental over 2 since ¢(P) = 0 means that P(L,) = (§), or py; + p1s V2
= 0, ps + Py v2 = 0. Hence, since p,, are rational, p, = 0 and P = 0.

This of course may be extended to nxXn matrices. Any vector whose components are
linearly independent over the rationals will serve to define the transcendental functional.
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Example 4. Let D consist of the set of continuously differentiable real functions x()
defined on somea = ¢ < b, Let P consist of all operators of the form P(x) = o(dx/dr), o
real. Let a(f) be any function in D that is not identically constant. Then ¢(P) = P(a) =
o(da/dt) is transcendental over & since ¢p(P) = 0 implies ¢(da/dt) = 0. Now if & # 0,
then (da/dt) = 0, so that a(¢) = constant. This is impossible; so o = 0.

Example 5. This may be extended. Let D consist of all infinitely differentiable
functions on 0 < a <t < b. Let 2 consist of all differential operators of the form

Pix) = Pit,x,x', x", ..., x®),

k=1,2,..., where Pis a nontrivial polynomial in the indicated variables. Let I'(r) be
the classical Eulerian Gamma function. Then the functional ¢(P) = P(I'(?)) is a transcen-
dental over ?. This is true because 1t 1s known that I'(t) does not satisfy any such
algebraic differential equation (Holder-Ostrowski theorem). Such functions have been
called transcendentally transcendental. (Ordinary transcendental functions such as ¢!,
sin t, etc., satisfy algebraic differential equations.)

Example 6. Here is an example which 1s not analytical. Let V* consist of all finite
strings of symbols where the individual symbols have been selected from an alphabet of
symbols V. Let ? consist of the processes Py, Py, ..., P,, where the P, operate as
follows. For any x, P.x = the null string = 0. For n finite, P,(x) is the string that results
by deleting the first n elements of x. If n 1s greater than or equal to the number of
elements in the string x, then P,(x) = 0.

This system has no point evaluations that are transcendental. Suppose that ¢(P) =
P(x). Suppose further that P,(x) = 0; then it follows only that k is greater than or equal to
the number of symbols in the string x. However, if V* is enlarged to contain infinite
strings of symbols and if « 1s any infinite string, then ¢(P) = P(«a) 1s transcendental. This
1s true because ¢(P) = 0 means that P(«) is the null string. But P,, P,, . . . can delete only
a finite number of symbols. Therefore ¢(P) = 0 implies P = P, = 0.

8. Transcendentals Generated by Functional Norms

One of the basic properties of a norm in a normed space X with elements x 1s that || x || =
0 imphes x = 0. This leads us immediately to many examples of transcendental function-
als.

Consider for example the normed linear space 2 consisting of all continuous functions
of a real variable x(¢) defined on a fixed interval D : a <1 < b. Define |jx ||> = f|x(t)i2ds.
Then ¢(x) = f5|x(¢)|2dt is transcendental over . There is no point evaluation over P
which coincides with ¢. However, ¢ may be approximated by point functionals in many
ways. For example let ¢,, t,, . . . be any sequence of points which is equidistributed m
[a, b] (see e.g. Davis and Rabinowitz [9, p. 298]). Then

lx) = f "0y = lim (1/N) 3 |x@)f, forallx € 9.

The set of points {t,} must be everywhere dense 1n {a, b]; so the point functionals ¢,(x) =
x(ty), k = 1,2, ..., form a complete set over ?. But there is more than this. Suppose
that , > 0 and lim,,, n, = 0. Then (1/N) 2%, |x@)]®? < v, N = 1,2, ..., imples
that {3 | x(¢}{%dt = 0 and hence x(f) = 0. These inequalities can be written as 3§, | x(t;)}?
<myN,N =1, 2,.... Hence, if constants ¢, are taken so small that

N
Sa<mN, N=1,2,...
k=1

(for example 0 < ¢, = 1/Jk), then ¢,(x) = x(¢,) provides an 1llustration of a sequence of
functionals that are €,-complete.

9. Transcendentals and Computation

Let us return to the question of the verification of a theorem by means of a single
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numerical evaluation. In the Pappus theorem (and similar theorems) the polynomuals in
question have rational coefficients; we therefore know it is possible to prove the theorem
by the following strategy: Verify the theorem in the case of a configuration with
transcendental (algebraically independent) coordinates; this will then imply the truth of
the theorem for all configurations

Brushing under the rug the difficult theoretical question of which explicit sets of
numbers are algebraically independent,® we observe next that even when we are pro-
vided with such a set, we must then compute with them. Such numbers are infinite
nonrecurring decimals, and we must compute with them to infinite precision. This is
manifestly impossible on real-world computing machines with finite word lengths, finite
memories, and finite running times. The best one can do is to plug in finite decimal
approximations. Thus, if one employed the number ¢, one might insert e, = 2.71, e, =
2.718, ..., etc. The theorem must check out for each of these msertions. Hence, if the
ultimate goal is to verify that P = 0 where P is a polynomal in its arguments, then we
have overkill here because, as seen, this decision can already be reached with only a
finite number of point evaluations. If P 1s not a polynomial but is analytic n its
arguments, then it makes sense, but there 1s no particular virtue in dealing with a
transcendental configuration.

10. Transcendentals and Random Numbers

In various parts of Monte Carlo theory, for example 1n the theory of numerical integra-
tion by means of sampling (see e.g. Davis and Rabinowitz [9, p. 298]), there is a gray
region of useful confusion between random numbers, pseudorandom numbers, algebrai-
cally independent numbers, equidistributed numbers, and finite decimal approximations
to all of these.

In the present context let us agree to replace a transcendental (algebraically indepen-
dent) configuration by a random configuration, interpreting the latter uncritically as a
finite but jumbled mess of digits. Our strategy then becomes: Verify the theorem in the
case of jumbled coordinates; this will imply (with high probability) the truth of the
theorem in general. The more verifications, the higher the probability.

Example. To get a feeling for how this works, return to the Pappus theorem. We shall
verify by computer the truth of Pappus for the configuration (x,, y,) = (13, 240), (x3, x)
= (2> 53)9 (x59 )’5) = (377 648)9 (xZ’ }’z) = (51, lzm)! (x4’ }’4) = (7> 190)5 (x69 yﬁ) = (237 558)
The first three points hie on the line y = 17x -+ 19, while the last three lie ony = 23x +
29.

The program was laid out as in Section 2. The computer was asked to output DET
(DET = 0 means venfication) as well as the expansion of DET = D; — D, + D, in terms
of the minors of the first row of DET. The output for the above configuration read

D, = —497 152 518 511 616
-D, =396 537 652 008 960

D, = 100 614 866 502 656
DET =0

These are exact 15-figure integers. Note the substantial build-up of the lengths of the
integers starting from numbers of around 2-3 figures. An nsertion of, say, 10-digit
integers at the (x,, y,) stage would compel us to go to multiple precision programming.
Note also the “random” jumble of digits in D,, D,, D,, leading all but the most
hardbitten skeptic to believe that the remarkable 1dentity D, — D, + D, = 0 s due to a
general tendency and not to pure coincidence. (See Supplementary Note 5.)

We may speak of this as a principle of scientific induction: If something is true for a
random configuration of circumstances it is generally true.

Example. Consider, for example, the so-called “Theorem of Napoleon,” often

8 The reader wmterested 1 pursuing this question should consult Baker [1] and Zudlovsky [14]
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ascribed to Napoleon Bonaparte (who was a good student of mathematics as a boy). Let
equilateral triangles be erected on the sides of any triangle (see Figure 6). Then the
centers of the equilateral triangles form a triangle which is also equilateral. One might
very well imagine the young Napoleon fooling around with paper, pencil, ruler, and
compass, and starting from a random inner triangle, discovering experimentally that ¢,,
Cs, 3 15 equilateral. This discovery would then suffice to assure the truth of the general
theorem, with high probability. (See Supplementary Note 6.)

11. The Transcendental as Pure Symbol

We began this paper by inquiring whether symbolic algebra could be replaced by
arithmetic computation. We decided that this was indeed possible. In order to push the
point to extremes, we went on to conclude that if computation with transcendentals is
allowed, then only one verification is needed. Thus infinite precision arithmetic with
transcendentals 15 equivalent to finite precision arithmetic with pure symbols.

Example. Consider the algebraic number field consisting of numbers of the forma +
b2, where a and b are rational numbers. Infinite precision arithmetic can be carried out
in this field by making the identificationa + b\/2 <>(a, b). Then(a,b) + (¢c,d) = (a + ¢,
b+ d),(a,b) X (c,d) = (ac + 2bd, ad + bc) would be the appropriate rules for + and X.
Thus 2 1s functioning as the pure symbol (0, 1). Within this arrangement, there is no
possibility of making the identification (0, 1) — 1.414.. ..

The parallelism between transcendentals and pure symbols is reflected, for example,
in the portion of algebra dealing with field extensions. Witness this theorem:

TueoreM. If a is transcendental over a field F, the subfield generated by F and a is
isomorphic to the field F(x) of all rational forms in an indeterminate x with coefficients in
x. The isomorphism may be chosen so that o <» x and ¢ <> ¢ for each c in F.

If we decided to work with transcendentals to “infinite precision” by the device of
mtroducing a pure symbol, then if we make computations with 7 or e (3.14159. .. or
2.718...), keeping the former as pure symbols, we are precisely back n the original
position of operating with formal algebra. Thus this policy brings us full circle back to
where we started. The practical policy of working with approximations leads us, on the
other hand, to heurstics, probabilities, and analogies between transcendental numbers
and “random” numbers.

cl
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12. Enormous Integers as Symbols, Programs, and Transcendentals

Let us consider first some specific integers whose size is ridiculously large. As the
numbers which appear in physics or cosmology appear to lie well within the range 10+5%,
we shall seek integers far above this limit of physical significance. There is A = 2% — ]
=~ 1033 which at one time held the record as the largest known prime. The Gddel
numbers which play such an important role in the theory of provability are a rich source
of integers that are beyond the limit of physical significance. There is Skewes number
S = 10'"" which once played a role in the theory of prime number distribution.

If one wants to generate large numbers rapidly, a fine device to employ is the iterative
scheme stressed by Hugo Steinhaus and Leo Moser. Letfi(a) = a®. Forn = 1,2, ..., let
faril@) = fro 2.0 fala), where the symbol on the right designates a functional composi-
tions. The integer M = f,(2) is known as the mega and M* = f,,(2) is known as the moser.
The mind boggles at the size of the mega (the reader would do well to try to compute
S3(2)) and, as for the moser, it is out of sight.

Now there appears to be a vital difference between integers such as 7, 211, or even A
(which has only 1331 digits) and tegers such as S, M, M*, etc., in that one can
physically perform arithmetic at the primitive level with the former, but one cannot
perform it with the latter. Thus one can find 7 X 211 or 17 X A and express the result as
a decimal integer. However, if one asks for 211 + M or 53 X (S + M + M¥), then this is
not possible physically.? We must leave it at the symbolic level. Of course, we may
replace 53 X (§ + M + M*) by (53 X §) + (53 X M) + (53 X M*), but then we are
manipulating §, M, M* as mere symbols. We cannot verify this identity or even M + M*
= M* + M, though we might assert their truth on the grounds of general properties
shared by all integers. Let us say that integers of the former type are integers in esse; they
can be written down. The integers of the latter type are integers in posse; they cannot be
written down. One cannot draw a dividing line between the two types; perhaps the
notion of fuzzy sets might be useful here. An integer in posse such as S or M or M* is
really a program, and it 1s a program that can be stated in a small number of lines 1n some
computer language .’

Suppose now, returning to the numerical verification of the Pappus theorem, that one
were to specify six points on two lines whose coordinates are all integers in posse. Then
we could not verify the critical equation DET = 0 by direct computation at the primitive
level. What one would do is to observe that inasmuch as DET as a function of 1ts atomic
symbols is identically 0, then DET must also be zero when integers in posse are
substituted into it.

Thus we arrive at the vague idea that certain statements about integers in posse can be
true if and only if the statements are identically true. As we have seen, this is the
characteristic behavior of the transcendental.

Some of this vagueness may be dispelled by constructing a mathematical model. Let
O+, ., Z, P) be a structure built up in the following way. Let Z designate a fixed subset
of the set of all positive, negative, and zero integers. The elements of Z will represent the
mntegers in esse. Let 2 be a set of symbols (finite or infinite in number) which are to play
the role of programs or integers in posse. The following rules are observed:

1MHoez o0&

Q) Ifne€eZand PE Pthenn + Pand P+ n € 2.

@) Ifne Zandn# 0and P € P, thennP € P,

) PP then0-P=P-0=0.

(5) If P, and P, € P, then P, + P, and P,P, € P.

4 Even the most hardbitten Platonist among mathematicians must at some pomnt deal with the limitations
imposed by the physical world For example, mathematical proofs and lectures are all required to be of finite
length, and by finite one means m practice something that can be expressed by, say, ten volumes of symbols.
One wonders what status therefore could be given a proof containing a mega of symbols

5 To generate f,(2) in APL requires no more than 8 statements. One works by writing a program which calls

itself. Of course, if one tried to run the program for fy(2), it would never cutput mn the hfetime of the
programmer.
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Note that the behavior of this system imitates the behavior of the transfinite cardinal
No, Insofar as n + Ry = Ry, Ry + 1 = Ry, Ry + Ry = 8y, Ko Rp = Ne.

We next consider polynomials 7(x) = aox® + ax® ' + --+ + a,, where g, andx € Q. If
now the coefficients are restricted to lie in Z, then any P € P is a transcendental over this
set of polynomials. For suppose 7(P) = agP* + a,P*' + -+ + a,_P + a, = 0. Suppose
that for some k # n, a; # 0. Then a, P** € P, Then, by the above rules, w(P) € # and
hence cannot be 0. Therefore a, = a; = ... = a,-; = 0. Hence also a, = 0. Thus 7w (P) =
0 implies 7 = 0. (See Supplementary Note 7.)

Supplementary Notes

1 The distinction, if any, between numbers and symbols (variables) may well be disputed. Certaily 1n the
usual languages this distinction 1s preserved at the compile level by the use of attributes by which the identifier
1s declared to be a number (in one of a variety of forms), a string, a label, a vaniable, a logical constant, etc

2. For a discussion of polynomial evaluation via the division algorithm and its relation to the fast Fourier
transform, see Fiduccia [10]

3 The identity n 16 variables 1s ascribed vaniously to Cayley and to Brioschi It reads as follows

7 7 7
2X12 V=273,

=0 =0 i=0

where

7
Z,= 2 XY,
i=o
Z, = XY, = YoX, + X ¥ies — XipsYors + XiaViug = XiaVais + Xy Vise — XigoVarae

The mdices are reduced mod 7 An interpretation for this 1dentity can be found within the theory of Cayley
algebras or within the theory of spinors (see, e g Cartan {2, p. 121]). One of the principal theorems 1 this area
1s that no further 1dentities of this type are possible

4 There are other ways of arranging for a reduction to “one” numerical verification The one presented
here fits mn best as an analogue of sampling

The point here 1s not to find comphcated proofs of simple theorems, but 1o focus attention on the properties
and implications of a certamn kind of methodology.

5 One can argue that the presence of an unusual numerical circumstance is indicative of an underlying
theory which explamns it Consider for example the amusing instance presented in Martin Gardner’s column m
the April 1975 1ssue of Scientific American.

The number of G = e™V!% j5 conjectured to be an integer Now, a multiple precision computation shows that
G consists of 18 digits to the left of the decimal pomnt, followed by 12 9s to the right of the decimal point, The
13th digit to the right of the decimal pomt 1s 2, spoiling the conjecture

An explanation of the coincidence of 12 9s can be given within the theory of class number of quadratic
number fields and expansions in terms of the Klein absolute modular invariant Historically this theory dates
from the late 1890s and preceded any high accuracy computation of G. The number G is known to be
transcendental as a result of the Gelfand-Schneider theorem (early 1930s).

Returning to the example of the text, one may very well ask. What really does this computation prove? Does
1t prove (a) the truth of Pappus’s theorem (already known since 350 A D ) or only (b) that the hardware/
software combination is doing what it 1s supposed to be doing (presumably the manufacturer has checked this
out) and (c) that the Pappus program I wrote 1s correct (it can’t really be proved correct; only that it 1s not
demonstrated to be mcorrect)?

According to the view which stresses an experimental or experiential criterion of mathematical truth (see
Davis [5, 6]), 1t does all of these things simultaneously.

Diagnostic programming 1s frequently carried out by the insertion of randomized wnputs

6 Here 1s a further example of “sampling” on a “transcendental” element, a way of predicting the
presidental election: There 1s a certamn congressional district 1n the country which has gone with the winner for
about a century Merely sample this district On election might, reporters always report on this district. Of
course, we might even go further and look for a “‘transcendental” household and accept its verdict. This type of
samphing has been called “purposive” selection and 1s not generally recommended

7 The fimteness of enormous integers such as S, M, M*, etc., has been questioned by numerous authors.
The hst includes Borel, Fréchet, Mannoury, Rieger, and van Dantzig (see Kino, Myhill, and Vesley [12, p. 4]).
Yessenin-Volpin [12] uses the expression “feasible” number to express a meaning that comes close to our
numbers “in esse
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