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ABSTRACT Trle structures are a convenient way of indexing files in which a key consists of a number of 
attributes Records correspond to leaves in the trle Retrieval proceeds by following a path from the root to a 
leaf, the choice of edges being determined by attribute values The size of a trle for a file depends on the order 
in which attributes are tested It is shown that determining minimal size tries IS an NP-complete problem for 
several variants of tries and that, for tries m which leaf chains are deleted, determining the trie for which 
average access time is minimal is also an NP-complete problem These results hold even for files in which 
attribute values are chosen from a binary or ternary alphabet 
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1. Introduction 

Let  a record be  i n f o r m a t i o n  of  a n  unspec i f i ed  n a t u r e  to  b e  s to red  a n d  r e t r i eved ,  and  let  a 
file be a co l lec t ion  of  r ecords .  A s s o c i a t e d  wJth a r e c o r d  is a key t h a t  un ique ly  identzfies  
the  r e c o r d  

Fo r  the  m o m e n t ,  s uppos e  t ha t  a key is an  i n t ege r  h k e  72 or  35.  E l e g a n t  m e t h o d s  a re  
ava i l ab le  for  o rganJzmg such  keys  so t ha t  ques t i ons  l ike " I s  this  r e c o r d  m the  f i l e?"  can  
be  a n s w e r e d  eff ic ient ly .  T h e s e  m e t h o d s  also p e r m i t  r eco rds  to  b e  a d d e d  to or  de l e t ed  
f rom the  file dynamica l ly .  B a y e r  and  M c C r e i g h t  [2] h a v e  a par t i cu la r ly  i n t e r e s t i ng  da t a  
s t ruc tu re ,  cal led B- t r ee s ,  for  cop ing  wi th  u p d a t e s .  B- t r ee s ,  or  the  r e l a t ed  2 - 3  t r ees  of  
H o p c r o f t  r e p o r t e d  in A h o  et  al.  [1], p e r m i t  a r e c o r d  to be  r e t r i e v e d ,  a d d e d ,  or  de l e t ed  
f r o m  an  n - r e c o r d  file in O( log  n)  t ime .  K n u t h  [10] is a gene ra l  r e f e r e n c e  for  i ndex ing  wi th  
i n t ege r  keys.  

Key c o m p a r i s o n  based  m e t h o d s  like B- t r ee  s ea rches  h a v e  r ece ived  wide  a t t e n t i o n  in 
the  h t e r a t u r e  and  are  re la t ive ly  well  u n d e r s t o o d .  Th i s  h a p p y  s i tua t ion  does  no t  app ly  to 
the  case w h e r e  a key consis ts  of  a n u m b e r  of  a t t r i bu t e s ,  as is t r ue  w h e n  a key is g w e n  by a 
k - t up l e  (11, is, . . . ,  i~). B - t r e e  s ea rches  a n d  r e l a t ed  m e t h o d s  rely o n  c o m p a r i n g  whole  keys  
m c o n s t a n t  t ime.  W h e n  a key  is g iven  by  a k - t u p l e ,  c o m p a r i s o n  of  keys is n o  l o n g e r  an  
e l e m e n t a r y  o p e r a t i o n  m s t a n d a r d  m e a s u r e s  of  complex i ty .  A c o m m o n  r e s p o n s e  is 
t h e r e f o r e  to  d e t e r m i n e  s o m e  subse t  of  the  a t t r i b u t e s  on  which  to index .  Schko ln ick  [12] 
cons ide r s  a p r o b a b i h s t i c  m o d e l  for  se lec t ing  an  a p p r o p r i a t e  subse t .  

A n o t h e r  a p p r o a c h  for  h a n d l i n g  m u l t m t t n b u t e  keys  is to use  " t r i e "  b a s e d  m e t h o d s  
p r o p o s e d  by  de  la B r i a n d a , s  [5] and  F r e d k i n  [7]. C o n s i d e r  the  set  of  s t r ings  

b a c k  b a n e  b a n k  b a r e  b a r n  
b a n d  b a n g  b a r b  b a r k  b e e n  

T h e  first  l e t t e r  in each  s t r ing  is b.  E x a m i n a t i o n  of  the  s e c o n d  l e t t e r  splits the  se t  in to  two 
subse ts :  t he  s t r ings  s t a r t ing  wi th  ba  a n d  the  s t r ing  s t a r t ing  wi th  be .  T h e  p rocess  o f  
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FIG 1 Full the  for the set of strings {back, band,  , been} The darkened path gives the sequence of 
dectslons for the string "barb " 

splitting is well illustrated by the tree in Figure 1. Fredkin [7] used the name trie 
(pronounced "try") for these tree structures. 

In this paper we are interested in the properties of tries that have a bearing on the size 
of the trie, or the average access time for a record But first we review some of the issues 
involved m implementing tries. 

A straightforward implementation of the trie in Figure 1 is to represent each nonleaf 
node u by a 26-element array, or table, wtth an entry for each letter of the alphabet. The 
entry for the letter a at node u points to the table for the appropriate son of u This 
tabular implementation allows the test at node u to be made in constant time. The tables, 
however, may be qmte wasteful in space 

In order to save space, de la Bnandais  [5] proposed a binary tree representation for 
forests qmte similar to that given m Knuth [9]. The idea is to place all sons of a node u in 
a hnked hst Node u points to the first element in the hst Note that the time spent m 
selecting the appropriate son of u is no longer constant; at worst, all sons of u may have 
to be examined. 

The linked list implementation was referred to as a "doubly chained tree" by Sussen- 
guth [14], and the term has survived m the hterature. Severence [13] and Yao [15] are 
concerned about the space-trine trade-offs of the two representations and consider 
heuristics for a compromise m which the first few levels are represented by tables and the 
remaining levels by doubly chained trees. 

The tradeoffs between the doubly chained and tabular implementation are strongly 
influenced by the size of the alphabet used in constructing keys. Most of the results in this 
paper apply even when the binary alphabet is used With a binary alphabet the doubly 
chained tree takes up at least as much space as the tabular implementation and might 
even take more time. Recall that, in a doubly chained tree, going down a sequence of 
right branches may take twice as long as going down a sequence of left branches 

Results in this paper that are concerned with the size of tries apply to both implemen- 
tations The results concerned with the average access time of records apply to the 
tabular implementation only. At the same time we wish to emphasize that the average 
access time results hold even when the binary alphabet is used. 

Having reviewed the representation of tries, we turn to the issues addressed in this 
paper. The study of tries originated with de la Brlandais [5] and Fredkm [7], who used 
alphabetic keys. The order of testing of the letters of a key was understandably left-to- 
right, as m Figure 1. When we view a key as a k-tuple m which the attributes are 
unrelated, the left-to-right ordering is no longer as natural. In fact de Maine and Rotwitt 
[6] note that the order m which attributes are tested may influence the size of the 
resultant trle. Consider, for example, the the m Figure 2 constructed from the same 
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Fi6 2 Full trie for the strings m Figure 1 formed by testing the characters from right to left 

strings as m Figure 1, but testing letters from right to left The number  of nonleaf nodes 
increases from 8 m Figure 1 to 27 in Figure 2. Thus the trie in Figure 2 clearly takes up 
more space. 

Questton What order of testing attributes leads to the smallest trie9 
We show that the above question is difficult to answer in a precise sense: Specifically 

we show that that question represents an NP-complete problem. 1 
Note from Figure 2 that a key with b as its last letter is either barb or it ~s not in the file 

Slmdarly a key with g as its last letter Is either bang or it is not m the file. Thus instead of 
testing all the attributes in a key, we can stop testing the moment  we have narrowed 
down the set of possibilities to one, as in Figure 3(b). One way of viewing the transforma- 
tion of Figure 2 to 3(b) Is to note that all chains that lead to leaves have been pruned.  The 
tries in Figure 3 will be referred to as pruned t r t e s .  

Questton, What order of testing attributes leads to the smallest pruned the? 
We can also observe that subtrees of a the may contain internal chains as well as chains 

leading to leaves. By including in each node extra informatJon telling how many 
attributes to "skip" when searching, these internal chains may be eliminated. Tries from 
which both internal and leaf chains are removed will be referred to as collapsed tries. 

Question. What order of testing attributes leads to the smallest collapsed trie 9 
In a pruned trie the sooner a node is distinguished the faster the search proceeds. In 

the present example not only does the pruned trie in Figure 3(b) have fewer nonleaf 
nodes than the trte in Figure 3(a), it calls for faster average search time. 

Questton What order of testing attributes leads to the least average search time in a 
pruned trie? 

All four of the above problems will be shown to be NP-complete. 
In all the above questions we have concerned ourselves with a global ordering of 

attribute selection which apphes to all paths from the root to a leaf in the trie. We also 
consider tries in which attributes are tested in different orders along different paths from 
the root to a leaf. This class of tries will be called order-containing or O-tries since the 
order of attribute testing must be contained in the trie ~tself 

Question. Which pruned O-trie is the smallest? 
The problem of finding a smallest pruned O-trie will be shown to be NP-complete as a 

corollary to the proof of pruned trie minimization. 
This paper represents a modest beginning in the study of the properties of tries. So far 

we have only shown that, in a precise sense, the questions above are difficult to answer, 
Eventually the question of updates must also be confronted 

1 The unmmated reader would not go too far wrong m wewmg the term NP-complete as jargon for "provably 
difficult" problem Aho et al [1] is a reasonable reference for the subject In Section 2 we discuss the process 
of showing that a given problem is NP-complete 
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FIG 3 (a) and (b) give the pruned tries for the full tries m Ftgures I and 2, respectwely 

2. A Model for Retrteval 

In  this  sec t ion  we def ine  the  no t ions  of fi le,  key,  que ry ,  and  t h e  W e  also ident i fy  the  
p r o b l e m s  a d d r e s s e d  m this  p a p e r  and  work  o u t  a s a m p l e  p r o o f  of  N P - e o m p l e t e n e s s .  

A file will be  t h o u g h t  of  as a t w o- d i m ens i ona l  t ab le  w~th a row for  e a c h  r e c o r d  and  a 
co lumn  for  e ach  a t t r i bu t e .  P r e s u m a b l y  each  row con ta ins  a p o i n t e r  to  its r eco rd ,  which  
can be  o b t a i n e d  easily once  the  row has  b e e n  ident i f ied .  A que ry  will e i t h e r  be  a row in 
the  tab le  or  will no t  be  p r e s e n t  in the  file. 

In  t he  e x a m p l e s  in Sect ion  1 t he  a t t r i bu te s  we re  lower  case  le t te r s ;  so e a c h  a t t r i bu t e  
could  t ake  on  26 poss ible  values  We are  i n t e r e s t e d  in resul t s  t ha t  ho ld  e v e n  w h e n  the  
n u m b e r  of va lues  an  a t t r i bu t e  m ay  take  on  ~s qu i te  smal l ,  such  as 2; so we i n t r o d u c e  the  
no t ion  of  a l p h a b e t  size for  a file. / 

Definttion. L e t A 1 ,  Az,  .. , A k  be  a f inite set  of attributes, w h e r e  a t t r i b u t e A ,  takes  on  
va lues  f r o m  the  f ini te  se t  V,, 1 <- t <_ k. A file F is a subse t  of  Vi × Vz × ... × V~, and  a 
key lS an  e l e m e n t  of  F. T he  alphabet stze of F is g w e n  by max{[ Vll,  ... , I Vk[}, w h e r e  I VI 
r ep re sen t s  the  n u m b e r  of  e l e m e n t s  in V. Files with  a l p h a b e t  sizes 2 and  3 will be  r e f e r r ed  
to as bmary and  ternary files, r e spec twely .  

A query q ]s an  e l e m e n t  of  V1 x V2 × "'" × Vk. []  
G r a p h  def in i t ions  used  t h r o u g h o u t  this  p a p e r  a re  s t a n d a r d ;  the  r e a d e r  is r e f e r r ed  to  

A h o  et al. [1] T h e  next  de f imt ]on  def ines  tries of  the  k ind  i l lus t ra ted  in F igures  1 and  2. 
Definition. A full trte for  a file F is a t ree  wi th  all leaves  at  d e p t h  z k such t ha t  the  

fol lowing are  t rue .  

2 The root of a tree is at depth 0 The sons of a node at depth t - 1 are said to be at depth t. 
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1. Let A1, A~, ... , Ak be the attributes of F and let rr be a permutation of 1 , 2 , . . ,  k. 
All edges leaving a node at depth t - 1 have distinct labels chosen from V=~,) for all i, 
l<_t_<k.  

2. The labels encountered on each path from the root to a leaf correspond to an 
element of F, and, for each element of F, there is such a path. [] 

Note that all we need to do to specify a full trie is to specify 7r, which gives the order in 
which attributes are tested In addition to full tries, we are interested m tries m which leaf 
chains have been pruned, as in Figure 3. 

Definition. A node u m a tree is the head of a leaf chain if (a) the father of u has more 
than one son, and (b) u and all its descendants have at most one son. 

A pruned trie for a file F is formed from a full the T for F by deleting the proper 
descendents of all nodes u m T such that u Is the head of a leaf chain. [] 

The next definition provides terms that will be convenient  m the sequel. 
Definttton. Let u be the head of a leaf chain in a full trle T. Letp be the path from the 

root of T to some leaf such that p passes through u. Then the record denoted by the 
labels on p is said to be distmgutshed at u 

Since a full or pruned the T distinguishes all records in a file F, we say F is indexed by 
T. [] 

Definttion. The space taken by a trie T (full or pruned) Js the number  of nonleaf 
nodes m T [] 

In this paper we are interested in the space and search time requirements of tries. 
Specifically, we consider the following problems. 

Problem 1 (Least space full the).  
Given: File F with alphabet size s and an integer j .  
Quesnon: Does there exist a full trie for F with space no more than19 [] 
Problem 2 (Least space pruned trie) 
Given: Fde F with alphabet size s and an in teger j .  
Question: Does there exist a pruned trie for F with space no more than 19 [] 
We are also interested m the average time taken to access a record. We must be careful 

in talking about the access time since the time taken to traverse a path depends on the 
alphabet size and the underlying data structures As mentioned m Section 1, our access 
time results apply to the table implementation and do not apply to the doubly chained 
~mplemenlation. Nevertheless, our results are strong in that they hold for any alphabet 
size s >- 2. 

Definition. Let T be a pruned trie for a file F. Then the access ttme o f  a leaf in T Is 
given by the depth of the leaf. The access ttme (search time) of T is the sum of the access 
times of all leaves. [] 

Note that we can find the average access time for a leaf in T by dividing the access time 
of T by the number  of leaves. Since the number  of leaves in a the is fixed, the division is 
not necessary for our purposes. 

Problem 3 (Least access time pruned trie) 
Gtven: File F with alphabet size s and an integer 1. 
Question: Does there exist a pruned trie for F with access time no more than j?  [] 
Problems 1 and 3 are NP-complete for all alphabet sizess -> 2, and problem 2 is NP- 

complete for all alphabet slzess -> 3. The proofs are given in Appendixes A, B, and C. 
At this pomt we introduce problem SAT3, which is crucial to demonstrating that 

problems 1-3 are NP-complete. 
Let n be a positive integer and G,~ = {x~, £1 . . . .  , xn, £~}. The elements of G~ are called 

literals. Informally a literal in G,, can either be true or false. In defining SAX3 we define 
clauses c~, like xl or x2 or x3. A clause is true if one of the literals in it is true. 

We refer to the pair (x,, 2~) as a vartable. The complement ofx, 1s2, and the complement 
of£, lsx,. If a literaly is true, then the complement ofy is false and vice versa. Given a set 
of clauses c~, c2, .. , c,~, the clauses are sattsfiable if, under some truth assignment to 
literals m Gn, all clauses are true. In the definition of SAT3 a set H will specify exactly 
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which hterals  m Gn are true.  In o rder  for the truth assagnment H to satisfy cl . . . .  Cm, for 
each c~, one  of  the literals in H must  also be an ¢j, l .e H A cj ~ ~. 

Problem SAT3 (Satisfiability with three  hterals  per  clause) .  
G i v e n : I  = (n, c l, ... , Cm), where  n and m are posi t ive integers ,  n -< 3m, c s C Gn, and 

Icsl = 3, for./ = 1, 2 . . . . .  m.  
Question: Does  there  ernst a set H = {Yl . . . .  , y,,} such that  y, equa l sx ,  or . / ,  for  I <- l -< 

n,  and H A c~ 4 ~ O for./  = 1, ... , m ?  If there  is such a set for a given I ,  we say I is 
satisfiable [] 

In the above  def in inon we have  used Xl, ~1, .. for hterals .  Since we are deal ing with 
small examples ,  we avoid subscripts and use x,  .f, y ,  )7, ... for iiterals. M o r e o v e r ,  we 
use " + "  to connect  literals in a clause and " . "  to conca tena te  clauses. Thus I = 
(x + )7 + z).  (.f + y + z) is an instance of  SAT3. 

A solution to SAT3 would be an a lgor i thm that takes an instance I of  SAT3 and answers 
true if and only if I is satisfiable. C o o k  [4] showed that SAT3 IS NP-comple t e ,  or  
informally SAT3 IS known to be a hard problem.  

A t  this stage we shall give the r eade r  a feeling for the construct ions used for our  results 
by showing that  the least access t ime p rob lem for pruned  tries IS at least as difficult as 
SAT3. For  simplicity,  we use an a lphabet  size of 9. In Append ix  C the result  wdl be  
improved  so that it holds for binary files also 

The file F(I) in Figure 4 has been  constructed f rom the instance I = (x + )7 + z). 
(.f + y + z) of SAT3. I has n = 3 variables  and m = 2 clauses;  F(I) has 6n + 4m = 26 
records and 2n + m = 8 at tr ibutes.  The  subfiles (J:Q),3 ( j : p ) ,  and (K:P)  depend  only on 
n and m.  The subfile ( K : Q )  is cons t ruc ted  from the clauses cl = (x + )7 + z) and c2 = 
(.~ + y + z ) .  

The first four  records m K, 19-22 ,  are for c l. For  these records ,  a t t r ibutes  X,  ~', and Z 
have each been  set to 8, 8, 9, and 9. Simdarly,  m the next  four  records ,  for  c2 = 
(£ + y + z), a t t r ibutes X,  Y, and Z have each been  set to 8, 8, 9, and 9. 

We now show that F(1) has a pruned  m e  with access t ime 3n(n + 1) + 2m(m + 1) + 
4nm ff and only if I is satisfiable. The  above  expression for the access t ime represents  a 
pruned trie with six leaves at each of the first n depths  and four  leaves at each of  the next  
m ,  as in Figure 5. 

Suppose that  I is satisfiable. In our  example  H = {x, y,  ~} satisfies both  (x + )7 + z) and 
(.~ + y + z). We construct  a trie T for F(1) by first testing on the at t r ibutes  cor responding  
to e lements  of  H, at tr ibutes X,  Y, and 2 in Q.  Then  we test on each at t r ibute  in P. The  
resultant  trie as given in Figure 5. The  reader  is urged to examine  the p runed  trie in 
Figure 5 closely, paying a t tent ion  to the fact that the four  records for each clause are 
separa ted  into two groups by the a t t r ibutes  cor responding  to e lements  in H .  

Now suppose that I is not  satisfiable. We claim that at least n + 1 at t r ibutes  must  be 
chosen f rom the set Q.  The  reasoning is as follows In o rde r  to distinguish the first 6n 
records,  at least one  at t r ibute  must be chosen for each pa~r of  comp lemen ta ry  hterals  If 
exactly n at t r ibutes  are chosen,  let H '  be the set of  hterals  cor responding  to these 
at tr ibutes.  

Since 1 is not  satisfiable,  for some clause c,  H '  N c = Q.  But  then the three  co lumns  in 
Q in which the four  records for c have 8, 8, 9, and 9 are not  tested So the four  records  
for c are toge ther  in a block Test ing the at t r ibute  for c m the set P cannot  distinguish 
these records We must there fore  test on at least one  more  at t r ibute  f rom Q.  

It follows f rom the above  discussion that any pruned  the  T for F(1) has depth  at least  
n + m + 1. F rom the const ruct ion of F(1), at most  6i records can have been  dist inguished 
by d e p t h i ,  t -< t -< n ;  at most  6n + 4t by d e p t h n  + t, 1 -< t ~ m .  Since there  is at least 
one record at d e p t h n  + m + 1, t he  T must have access t ime at least 3n(n + 1) + 
2m(m + 1) + 4nm + 1. 

There fo re ,  F(I) has a pruned t h e  with access t ime 3n(n + 1) + 2m(m + 1) + 4nm if and 
only ff I is satasfiable We can now state the fol lowing theo rem.  

3 (j.Q) refers to the part of the tables dehneated by the records m J and the atmbutes m Q 
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The f i leF(1) ,wherel  = (x + ~  + z) (2 + y  + z) The attribute 
corresponding to a gwen hteralx is denoted by the relevant upper-case letter X All unspeclhed entries are 1 

2 9 ! y 

Z 

I ~ Ci 

FIG 5 Pruned the for the file F(I) m Figure 4 Attributes are tested in order X, Y, 2, C~, and C2 

THEOREM 1. The least access time pruned trie problem for files with alphabet size at 
least 9 ~s NP-complete. 

PRooF In the dtscussion before the statement of the theorem we estabhshed that the 
problem on hand was at least as difficult as SAT3. The remaining details of the proof are 
technicahties and are left to the initiated reader. [] 

Since all the results in this paper are proved in very much the same manner  as the 
above theorem, we have relegated them to the Appendixes. 

3. Conclusions 

In this paper we have considered two kinds of tries: (a) tries in which each attribute is 
tested, and (b) tries in which testing of attributes stops when a record has been 
distinguished. We have demonstrated that determining tries that are minimal in terms of 
storage space is NP-complete for all alphabet sizes s, s -> 2 for full tries, and s -> 3 for 
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pruned  tries,  col lapsed tries,  and pruned  O-tr ies  With a tabular  imp lemen ta t ion  for  
tries,  de te rmin ing  a minimal  average  access t ime t h e  is an NP-comple te  p rob lem for all 
a lphabet  sizes s -> 2. 

We do wish to point  out  that the files used to prove  the NP-comple teness  results in thas 
paper  are atypical.  In the reduct ions  the n u m b e r  of  at t r ibutes k is about  the same as the 
n u m b e r  of  records r In pract ice we expect  k to be much smaller  than r In studying 
heuristics ~t is there fore  desirable to der ive  pe r fo rmance  bounds  with bo th  r and k as 
parameters .  

Tries  are a natural  s t ructure to consider  while implement ing  a re t r ieval  system. T h e  
results in this paper  suggest that  many re la ted the  construct ion p rob lems  are  " h a r d "  in a 
computa t iona l  sense. We have concen t ra ted  on the initial const ruct ion of  a trie for a file 
and have not considered addi t ion or  delet ion of  records;  fur ther  work on t r ie-based 
structures that can easily cope with updates  ~s warranted .  

Appendix A.  Full Tries 

Recal l  that  the space taken by a full trie is given by the number  of  non lea f  nodes  in the 
trie. If T is a full trie for a k-a t t r ibute  file with r records,  then all leaves  of  T will be  at 
depth  k. The  space taken by T as given by ~ 0  ~ b,, where  b, is the  n u m b e r  of  nodes  at 
depth  L, 0 _< t ~_ k.  Note  that  the bk leaves at depth  k are not  coun ted  in the space.  

Since T is a t ree ,  b, ~- b,_~, the rate at which the b, sequence  grows de te rmines  the 
space taken by T. We def ine  d, = b, - b,-1, 1 -< t -< k,  and do = b0 = 1. Each i tem in the 
d, sequence  represents  the n u m b e r  of  new nodes  which appear  at depth  t ; the sequence  
do, dl ,  ... , dk wdl be called a profile of the trie. 4 

Let  us now relate SAT3 to the p rob lem of least space full tries. The  file F(I) const ruc ted  
f rom an instance of SAT3, I = (x + .~ + z)- (.f + y + z), as given m Figure  6. F(I) has 2n + 
3m at t r ibutes  and 3n + 7m + 1 records  

Before  proceeding  with the p roof  of  NP-comple teness ,  we examine  a useful p roper ty  
of  F(I). 

LEMMA 1. Let T be a least space full trie for F(I). Then the profile for T has no 0 
elements. 

PRoov. Suppose  the profi le for T does have 0 e lements .  We  show that  T cannot  be  a 
least space full tr ie for F(I) 

Note  f rom Figure 6 that  because  of  the records  in group K, select ing an a t t r ibute  f rom 
set Q will cause at least one  new node  to appear .  Thus a 0 e l emen t  m the profi le  must 
result  f rom the choice of  an a t t r ibute ,  say A ,  in N Each at t r ibute  m N has 1 entr ies  for 
exactly two records.  Let  the two records  for which A has 1 entr ies  be Yl and Y2. 

Since selecting at t r ibute  A causes no new nodes  to appear ,  one  of  the fol lowing two 
cases must occur:  E i ther  (1) yl and Y2 are m a block consisting of y l  and y2, or  (2) both  y~ 
and T2 have been  dist inguished and are m single record  blocks.  

Case 1. If 3'1 and 3'2 are toge ther  in a block,  let B be the a t t r ibute  wath 1 entr ies  for  3'~ 
and 3'2 chosen before  A .  Since B has 1 entr ies  for o ther  records,  it will not  only separa te  
out  3'~ and 3'2 but will also cause at least two new nodes to appear  No te  that a smal ler  t he  
can be fo rmed  by in terchanging the o rde r  in which B and A are chosen.  The  in te rchange  
will result  in the profi le hawng two consecut ive  l ' s  ra ther  than 2, 0 Thus the new trie 
takes less space,  contradic t ing the mmimah ty  of  T. 

Case 2. 3'~ and 3'2 have bo th  been  dist inguished.  Let  /i, be  the a t t r ibute  in N 
cor responding  to the c o m p l e m e n t  of  the l i teral  to which A corresponds .  Wi thou t  loss of  
general i ty,  let A have a 1 entry for 3'~. 

Cons ider  the at t r ibutes that must be selected for y2 (the record  for which ,4 has a 0 
entry) to be dist inguished.  As ide  from A ,  all o ther  a t t r ibutes  with a 1 ent ry  for 3'z are m 
the set Q.  Since all a t t r ibutes  m Q have 1 entr ies  for records in K, at least two of  them 

4 The connechon between the profile and size of a trle is considered m more detad m Comer and Sethl [3], 
where more detaded proofs of the NP-completeness results are gwen 
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must be selected in order to distingmsh Y2, But then, as in case 1, the second such choice 
adds at least two new nodes. Interchanging the second of these two attributes with A 
results in a trie taking less space. This is a contradiction. 

The lemma must therefore hold. [] 
The next lemma will aid us in proving a lower bound on the space taken by any trie for 

F(1). 
LEMMA 2 Let A be an attribute from the set N such that A has 1 entries for records yl 

and y2 Then there extsts a least space full trw for F(I) in which A is selected before any 
other attribute with 1 entrws for yl and y2. 

PROOF. From Lemma 1 we can assume that any least space trm T for F(I) has no 0 
elements m its profile. Moreover, from the proof of Lemma 1 it follows that there may 
be at most one attribute B with 1 entries for y, and yz selected before A.  Construct a trie 
T' from T by interchanging the order in which B and A are selected. We claim that T' 
takes no more space than T. 

Let L be the set of seven records from K corresponding to the clause represented by B. 
From Figure 6 there are two attributes B2 and B3 that also have 1 entries for some 
elements of L. The point to note is that B2 and B3 may be selected between B andA m T 
Since B, B2, and B3 are symmetric m their effect on records m L, delaying the selection 
of B cannot increase the number  of nonleaf nodes caused by elements of L. 

Since bo thA and B have 1 entries for Yl and yz, interchanging the order of A and B 
does not increase the number  of nonleaf nodes. The lemma therefore holds. [] 

Let us now turn to the relation between 1 and F(1). In Figure 6 H = {x, y, £} satisfies 1. 
Selecting attributes X, Y, Z, C1~, C2z, X,  Y, Z, Ci~, C2~, C~3, and C23 forms a the for F(I). 
The first three choices correspond to elements of H; the'next two correspond to a literal 
from each clause that is m H. The remaining attributes from N are selected next, 
followed by the attributes from Q (which are selected in pairs). Th~s sequence of 
selections is used below to show that the problem is NP-complete. 

THEOREM 2. The least space full trte problem for binary files ts NP-complete. 
PROOF. We reduce SAT3 to the problem on hand. Let 1 be an instance of SAT3. 

Construct the file F(1) as shown in Figure 6. Let S denote the space taken by a trm 
formed as m the example above. We show that F(I) has a trm taking space S ff and only if 
I is satisfiable. 

I f / i s  satisfiable, then a trm of size S exists So suppose there is a trie T for F(I) taking 
space S From Lemma 1, the profile of T has no 0 elements. From Lemma 2 we can 
assume that an attribute A in N ~s chosen before any attribute with 1 entrms for the 1 
entries of A is chosen from Q. Thus the first choice for each pair of attributes m N will 
lead to one new node and the second to two new nodes. From Figure 6, each triple of 
attributes in Q will lead to at least one, two, or four new nodes Thus the best possible 
trie for F(I) has space S. Since there are n + m selections that lead to one new node, n of 
these pick one of each pair of attributes m N. Let H C G, correspond to these attributes 
in N. The fact that there are at least m more selectmns with one new node verifies that H 
satisfies 1. 

Thus F(I) has a the taking space S if and only ff ! is satisfiable. [] 

Appendix B. Pruned Tries, Collapsed Tries, and Pruned O-Trws 

In this Appendix we show that the problem of finding a minimum size pruned trie is NP- 
complete. 

Tr~EOREM 3. The following problems are NP-complete for all alphabet stzes s, s -> 3: 
(a) pruned trie space minimization, (b) collapsed trw space mmtmtzation, and (c) pruned 
trte space mimmization for O-trtes. 

PROOF. The same construction suffices for all three problems. We gwe the proof for 
the pruned trle space minimization problem. From the construction m Figure 7, there is 
an ordering of attributes which yields a trie of 2n + m nodes when the formula is 
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FXG 6 (Least space full the ) The file F(1) for l = (x + ~ + z) (.f + y + z) All enmes for record 24 are 0 
Choosing attributes from set N which correspond to hterals which satisfy I wdl enable m selecuons from set Q 
which add only one new node each and a minimum size the will result 

sa t is f iable .  W e  show t h a t  if a t r ie  of 2n + m n o d e s  exists ,  t h e  f o r m u l a s  m u s t  b e  
sa t is f iable .  

In o r d e r  for  us to d i s t ingu i sh  records  m L,  T mus t  have  d e p t h  2n + m a n d  mus t  
t h e r e f o r e  have  at  mos t  o n e  n o n l e a f  n o d e  at each  d e p t h  C o n s i d e r a t i o n  of  the  r eco rds  in L 
shows tha t  they  mus t  be  d i s t ingu i shed  in o r d e r  Since exact ly  one  of  U, a n d  U,, 1 -< z -< n ,  
in N mus t  be  chosen  first ,  let  H be  the  set of  h te ra l s  c o r r e s p o n d i n g  to the  a t t r i b u t e s  
chosen  m N. Since each  r e c o r d  m K is d l s t m g m s h e d  in T, ~t mus t  b e  t rue  t ha t  H sat isf ies 
I .  [] 

Appendix C. Access Ttme for Pruned Zrtes ~ 

In Sec t ion  2 we s h o w e d  tha t  the  leas t  access t ime  p r o b l e m  for  p r u n e d  tr ies  is NP-  
c o m p l e t e  for  a l p h a b e t  size 9 H e r e  we t igh ten  the  resu l t  to ho ld  for  all a l p h a b e t  sizes s,  
s -> 2. T h e  basic  idea  is to  cons t ruc t  a file for  which  the  leas t  access t ime  p r u n e d  t h e  T is 
hke  a full b ina ry  t r ee  for  the  first  h + 1 dep t h s ,  w h e r e  h = 4 + 2 log(n + m) .  A t  d e p t h  h 
we have  3n + m n o n l e a f  n o d e s  c o r r e s p o n d i n g  to  g roups  of r eco rds  J l l ,  .. , K,, ,  w h e r e  the  
J and  K g roups  are  as m F igure  8. T h e r e  are  also 2 h - (3n + m)  l eaves  at  th is  d e p t h .  ( T h e  
in tege r  h has  b e e n  c h o s e n  large e n o u g h  tha t  if the  r ecords  r e p r e s e n t e d  by these  leaves  a re  
no t  d l s t m g m s h e d  by d e p t h  h + 1, t hen  the  tr ie  tn ques t ion  has  an  access  t ime  t ha t  Is t o o  

large ) If  the  first h d e p t h s  a re  as m e n t i o n e d  a b o v e ,  t hen  we can s imula te  the  r e d u c t i o n  

for  a l p h a b e t  size 9 by us ing a b ina ry  a l p h a b e t .  
T h e  r e l a t t on  b e t w e e n  an  ins t ance  I of  SAT3 and  a file F(I) is g tven  in F igure  8 W e  now 

show tha t  a t t r i bu t e s  in N mus t  be t es ted  b e f o r e  a t t r i bu te s  m Q or  P or  else the  access  t ime  
will be  too  large 

5 In a recent paper Hyafil and Rlvest [8J show that the problems of leaf access time for collapsed and pruned O- 
tries is NP-complete for all alphabet sizes s, s > 2 



438  

[ 
D COMER AND R 

N Q P 

f _ \ /  \ /  \ 
Ul '~1 u2 u2 u3 u3 CII cI2e13e21c22c23c31c32c33 wI w2 w 5  

I 4 ] t  t 
1 t I t 

1 1 1 t 
1 t 1 

t I 1 1 
1 I 1 

2 2 2 2 2 2  
2 2 2 2  

2 2  

1 1 t 

2 2 2 
2 2 2 
2 2 2 
2 2 2 

1 ~ 1  

2 2 2 2 2 2 1 2 2 2  
2 2 2 2 2 2 2 2 2  
2 2 2 2 2 2 2 2 2  
2 2 2 2 2 2 2 2 2  
2 2 2 2 2 2 2 2 2  

2 2 2 2 2 2  
2 2 2  

2 2  
2 

SETHI 

X '~ y y" Z 'Z" x y Z '~ y 'Z x ~ "Z" 

FIG 7 Sample construction for least space pruned tries F(I) ts shown for 1 = (x + y + z) (.f + y + ~). 
(x + f + z:) Lower-case letters gwe the hteral corresponding to an atmbute The ordering Ui, U2, U3, Cu, C23, 
C33, W1, W2, W3 leads to a pruned the with 2n + m nonleaf nodes, with n = 3, m = 3 Note that U1, b2, 03 
corresponds to H = {x, ~, i} 

LEMMA 3. Let  F(I) have a pruned trie wtth access t ime no  more  than h(2 h - 3n - m)  
+ h(6n + 4m) + 3n(n + 1) + 2m(m + 1) + 4nm.  Let  n + m ~- 16. Then the first h 
attrtbutes tested tn T are elements o f  N.  

PROOF. If  the  l e m m a  is fa lse ,  t hen  an  e l e m e n t ,  say A ,  of  N is no t  o n e  of  the  first h 
a t t r i bu t e s  t e s t ed .  C o n s i d e r  a r e c o r d / 3  in L wi th  a 1 en t ry  for  A .  T h e r e  m u s t  be  a n o t h e r  
r e c o r d / 3 '  such t h a t / 3  a n d / 3 '  ag ree  in all b i t  p o s m o n s  excep t  l,  i -~ 1 ~ h .  I f  f l '  is a lso  in 
L,  t h e n / 3  a n d / 3 '  c a n n o t  b e  d i s t m g m s h e d  by  the  a t t r i b u t e s  in N t h a t  h a v e  b e e n  se lec ted .  

S ince  3n + m h - b i t  m t e g e r s  a re  ass igned  to r ecords  m J U K,  at  leas t  2 j' - 6 n  - 2m 
records  are  d i s t ingu i shed  no  ea r l i e r  t h a n  d e p t h  h + 1. T h e  access  t ime  for  T is t h e r e f o r e  
at  l e a s t A  = (h + 1)(2 j~ - 6n - Z,n). W e  show t h a t A  > h (2  t~ - 3n - m)  + h(6n  + 4m) + 
3n(n + 1) + 2m(m + 1) + 4ran.  C a n c e l i n g  t e rms  and  s impl i fy ing,  we get  

2 t~ > h(9n + 5m) + 3n(n + 1) + 2m(m + 1)4ran + 6n + 2m = o-. (1) 

W e  p r o v e  (1)  by  d e t e r m i n i n g  an u p p e r  b o u n d  o n  cr a n d  showing  t ha t  2 h is g r e a t e r  t h a n  
tthe u p p e r  b o u n d .  Fo r  n >- 3 and  m ~ 1 we can  der ive  o- < (n + m) (9h  + 6n + On) .  S ince  
h = 4 + [ 2 1 o g ( n + m ) ] f o r n + m - > 1 6 ,  h < n  + m .  T h u s f o r n + m - >  16, 9 h + 6 n + O n  
< 15(n + m) .  W e  can t h e r e f o r e  s ta te  tha t  tr < 15(n + m )  z s ince  we a re  g i v e n n  + m -> 16. 

In  o r d e r  to  p r o v e  (1)  we show tha t  2 h > 15 (n + m)  2. S m c e h  = 4 + [2 log(n + re) l ,  h -> 
4 + 2 log(n + m)  and  

2 h -- 24(n + m)  2 = 16(n + m)  2 > 15(n + m)  > or. 

T h e  l e m m a  mus t  t h e r e f o r e  be  t rue .  [ ]  
THEOREM 4. The least access ttme pruned trte prob lem for  bmarv  files is NP-  

complete 
PROOf. G i v e n  an  in s t ance  I of  SAT3, c o n s t r u c t  F(l)  as m F igu re  8. W e  cla im F(I) has  a 

p r u n e d  t r ie  wi th  access t ime  no  m o r e  t h a n  

h (2  h - 3n - m)  + h(6n + 4m) + 3n(n + 1) + 2m(m + 1) + 4nm 

if and  only if I is sa t i s f iab le .  
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Fm 8 (Least access ttme pruned the ) Submatnx (J U K 'Q U P) is very slmdar to Figure 4. The values 
assigned to set N are all posstble h-bit binary numbers as shown The selectmn of all attributes [rom N produces 
a dwlston of the records m (J U K Q U P) such that the proof of Theorem 1 applies 

o ° eBQ 

Jl1 dnt dn2 On3 K1 Krn \ / 
2 h -3n-m 

FIG 9 Ftrst h depths for a pruned the for the fde m Figure 8 Note the large number of leaves, 2/' - 3n - m, 
at depth h 

S u p p o s e  I is s a t i s f i ab le  T h e n  c o n s t r u c t  T by  f i rs t  t e s t i ng  o n  all t h e  a t t r i b u t e s  in g r o u p  

N .  T will t h e n  h a v e  2 ~' - 3n - m l eaves  at  d e p t h h  a c c o u n t i n g  f o r  t h e h ( 2  h - 3n - m )  t e r m  
in t he  acces s  t i m e .  T h e  r e m a i n i n g  s e l e c t i o n s  p r o c e e d  as m F i g u r e  4 e x c e p t  t ha t  t h e  6n + 
4m r e c o r d s  in J i.J K m F i g u r e  8 will be  d i s t m g m s h e d  h d e p t h s  l a t e r  t h a n  fo r  t h e  fi le in 
F igu r e  4 T h u s  t h e  acces s  t i m e  is h (6n  + 4m) + 3n(n + 1) + 2 m ( m  + 1) + 4rim. 

S u p p o s e  fo r  t h e  s e c o n d  ha l f  t h a t  F(I) d o e s  h a v e  a t r le  w i th  acces s  t i m e  n o  m o r e  t h a n  
the  b o u n d  T h e n ,  f r o m  L e m m a  3, t he  f i rs t  h a t t r i b u t e s  t e s t e d  a r e  e l e m e n t s  o f  N .  T h e  t r i e  
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must look like Figure 9 at depth h. The rest of the proof is similar to the proof of 
Theorem 1. [] 
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