
The Complexity of Trie Index Construction

DOUGLAS COMER AND RAVI SETHI

The Pennsylvama State University, University Park, Pennsylvania

ABSTRACT Trle structures are a convenient way of indexing files in which a key consists of a number of
attributes Records correspond to leaves in the trle Retrieval proceeds by following a path from the root to a
leaf, the choice of edges being determined by attribute values The size of a trle for a file depends on the order
in which attributes are tested It is shown that determining minimal size tries IS an NP-complete problem for
several variants of tries and that, for tries m which leaf chains are deleted, determining the trie for which
average access time is minimal is also an NP-complete problem These results hold even for files in which
attribute values are chosen from a binary or ternary alphabet

KE] WORDS AND PHRASES reformation retrieval, trle indexes, trte size, average search t i m e , complexity

CR CATEGORIES 3 74, 4 33, 5 25

1. Introduction

Let a record be i n f o r m a t i o n of a n unspec i f i ed n a t u r e to b e s to red a n d r e t r i eved , and let a
file be a co l lec t ion of r ecords . A s s o c i a t e d wJth a r e c o r d is a key t h a t un ique ly identzfies
the r e c o r d

Fo r the m o m e n t , s uppos e t ha t a key is an i n t ege r h k e 72 or 35. E l e g a n t m e t h o d s a re
ava i l ab le for o rganJzmg such keys so t ha t ques t i ons l ike " I s this r e c o r d m the f i l e?" can
be a n s w e r e d eff ic ient ly . T h e s e m e t h o d s also p e r m i t r eco rds to b e a d d e d to or de l e t ed
f rom the file dynamica l ly . B a y e r and M c C r e i g h t [2] h a v e a par t i cu la r ly i n t e r e s t i ng da t a
s t ruc tu re , cal led B- t r ee s , for cop ing wi th u p d a t e s . B- t r ee s , or the r e l a t ed 2 - 3 t r ees of
H o p c r o f t r e p o r t e d in A h o et al. [1], p e r m i t a r e c o r d to be r e t r i e v e d , a d d e d , or de l e t ed
f r o m an n - r e c o r d file in O(log n) t ime . K n u t h [10] is a gene ra l r e f e r e n c e for i ndex ing wi th
i n t ege r keys.

Key c o m p a r i s o n based m e t h o d s like B- t r ee s ea rches h a v e r ece ived wide a t t e n t i o n in
the h t e r a t u r e and are re la t ive ly well u n d e r s t o o d . Th i s h a p p y s i tua t ion does no t app ly to
the case w h e r e a key consis ts of a n u m b e r of a t t r i bu t e s , as is t r ue w h e n a key is g w e n by a
k - t up l e (11, is, . . . , i~). B - t r e e s ea rches a n d r e l a t ed m e t h o d s rely o n c o m p a r i n g whole keys
m c o n s t a n t t ime. W h e n a key is g iven by a k - t u p l e , c o m p a r i s o n of keys is n o l o n g e r an
e l e m e n t a r y o p e r a t i o n m s t a n d a r d m e a s u r e s of complex i ty . A c o m m o n r e s p o n s e is
t h e r e f o r e to d e t e r m i n e s o m e subse t of the a t t r i b u t e s on which to index . Schko ln ick [12]
cons ide r s a p r o b a b i h s t i c m o d e l for se lec t ing an a p p r o p r i a t e subse t .

A n o t h e r a p p r o a c h for h a n d l i n g m u l t m t t n b u t e keys is to use " t r i e " b a s e d m e t h o d s
p r o p o s e d by de la B r i a n d a , s [5] and F r e d k i n [7]. C o n s i d e r the set of s t r ings

b a c k b a n e b a n k b a r e b a r n
b a n d b a n g b a r b b a r k b e e n

T h e first l e t t e r in each s t r ing is b. E x a m i n a t i o n of the s e c o n d l e t t e r splits the se t in to two
subse ts : t he s t r ings s t a r t ing wi th ba a n d the s t r ing s t a r t ing wi th be . T h e p rocess o f

Copyright © 1977, Association for Computing Machinery, Inc. General permission to republish, but not for
profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is
made to the pubhcatlon, to ItS date of issue, and to the fact that reprinting prlvdeges were granted by
permission of the Association for Computing Machinery.
Authors' present addresses D Comer, Computer Sciences Department, Purdue University, West Lafayette,
IN 47907, R Setht, Bell Laboratories, 600 Mountain Ave , Murray Hill, NJ 07974

Journal of the Association for Computing Machinery, Vol 24, No 3, July 1977, pp 428-440

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322017.322023&domain=pdf&date_stamp=1977-07-01

The Complexity of Trie Index Constructzon 429

o b

C e

k

FIG 1 Full the for the set of strings {back, band, , been} The darkened path gives the sequence of
dectslons for the string "barb "

splitting is well illustrated by the tree in Figure 1. Fredkin [7] used the name trie
(pronounced "try") for these tree structures.

In this paper we are interested in the properties of tries that have a bearing on the size
of the trie, or the average access time for a record But first we review some of the issues
involved m implementing tries.

A straightforward implementation of the trie in Figure 1 is to represent each nonleaf
node u by a 26-element array, or table, wtth an entry for each letter of the alphabet. The
entry for the letter a at node u points to the table for the appropriate son of u This
tabular implementation allows the test at node u to be made in constant time. The tables,
however, may be qmte wasteful in space

In order to save space, de la Bnandais [5] proposed a binary tree representation for
forests qmte similar to that given m Knuth [9]. The idea is to place all sons of a node u in
a hnked hst Node u points to the first element in the hst Note that the time spent m
selecting the appropriate son of u is no longer constant; at worst, all sons of u may have
to be examined.

The linked list implementation was referred to as a "doubly chained tree" by Sussen-
guth [14], and the term has survived m the hterature. Severence [13] and Yao [15] are
concerned about the space-trine trade-offs of the two representations and consider
heuristics for a compromise m which the first few levels are represented by tables and the
remaining levels by doubly chained trees.

The tradeoffs between the doubly chained and tabular implementation are strongly
influenced by the size of the alphabet used in constructing keys. Most of the results in this
paper apply even when the binary alphabet is used With a binary alphabet the doubly
chained tree takes up at least as much space as the tabular implementation and might
even take more time. Recall that, in a doubly chained tree, going down a sequence of
right branches may take twice as long as going down a sequence of left branches

Results in this paper that are concerned with the size of tries apply to both implemen-
tations The results concerned with the average access time of records apply to the
tabular implementation only. At the same time we wish to emphasize that the average
access time results hold even when the binary alphabet is used.

Having reviewed the representation of tries, we turn to the issues addressed in this
paper. The study of tries originated with de la Brlandais [5] and Fredkm [7], who used
alphabetic keys. The order of testing of the letters of a key was understandably left-to-
right, as m Figure 1. When we view a key as a k-tuple m which the attributes are
unrelated, the left-to-right ordering is no longer as natural. In fact de Maine and Rotwitt
[6] note that the order m which attributes are tested may influence the size of the
resultant trle. Consider, for example, the the m Figure 2 constructed from the same

430 D. COMER AND R. SETHI

I °1 °1 °1 °1 °1 °1 ° e

Fi6 2 Full trie for the strings m Figure 1 formed by testing the characters from right to left

strings as m Figure 1, but testing letters from right to left The number of nonleaf nodes
increases from 8 m Figure 1 to 27 in Figure 2. Thus the trie in Figure 2 clearly takes up
more space.

Questton What order of testing attributes leads to the smallest trie9
We show that the above question is difficult to answer in a precise sense: Specifically

we show that that question represents an NP-complete problem. 1
Note from Figure 2 that a key with b as its last letter is either barb or it ~s not in the file

Slmdarly a key with g as its last letter Is either bang or it is not m the file. Thus instead of
testing all the attributes in a key, we can stop testing the moment we have narrowed
down the set of possibilities to one, as in Figure 3(b). One way of viewing the transforma-
tion of Figure 2 to 3(b) Is to note that all chains that lead to leaves have been pruned. The
tries in Figure 3 will be referred to as pruned t r t e s .

Questton, What order of testing attributes leads to the smallest pruned the?
We can also observe that subtrees of a the may contain internal chains as well as chains

leading to leaves. By including in each node extra informatJon telling how many
attributes to "skip" when searching, these internal chains may be eliminated. Tries from
which both internal and leaf chains are removed will be referred to as collapsed tries.

Question. What order of testing attributes leads to the smallest collapsed trie 9
In a pruned trie the sooner a node is distinguished the faster the search proceeds. In

the present example not only does the pruned trie in Figure 3(b) have fewer nonleaf
nodes than the trte in Figure 3(a), it calls for faster average search time.

Questton What order of testing attributes leads to the least average search time in a
pruned trie?

All four of the above problems will be shown to be NP-complete.
In all the above questions we have concerned ourselves with a global ordering of

attribute selection which apphes to all paths from the root to a leaf in the trie. We also
consider tries in which attributes are tested in different orders along different paths from
the root to a leaf. This class of tries will be called order-containing or O-tries since the
order of attribute testing must be contained in the trie ~tself

Question. Which pruned O-trie is the smallest?
The problem of finding a smallest pruned O-trie will be shown to be NP-complete as a

corollary to the proof of pruned trie minimization.
This paper represents a modest beginning in the study of the properties of tries. So far

we have only shown that, in a precise sense, the questions above are difficult to answer,
Eventually the question of updates must also be confronted

1 The unmmated reader would not go too far wrong m wewmg the term NP-complete as jargon for "provably
difficult" problem Aho et al [1] is a reasonable reference for the subject In Section 2 we discuss the process
of showing that a given problem is NP-complete

The Cornplextty of Trte lndex Construction

b

e o

(a)

431

~b n
(b)

FIG 3 (a) and (b) give the pruned tries for the full tries m Ftgures I and 2, respectwely

2. A Model for Retrteval

In this sec t ion we def ine the no t ions of fi le, key, que ry , and t h e W e also ident i fy the
p r o b l e m s a d d r e s s e d m this p a p e r and work o u t a s a m p l e p r o o f of N P - e o m p l e t e n e s s .

A file will be t h o u g h t of as a t w o- d i m ens i ona l t ab le w~th a row for e a c h r e c o r d and a
co lumn for e ach a t t r i bu t e . P r e s u m a b l y each row con ta ins a p o i n t e r to its r eco rd , which
can be o b t a i n e d easily once the row has b e e n ident i f ied . A que ry will e i t h e r be a row in
the tab le or will no t be p r e s e n t in the file.

In t he e x a m p l e s in Sect ion 1 t he a t t r i bu te s we re lower case le t te r s ; so e a c h a t t r i bu t e
could t ake on 26 poss ible values We are i n t e r e s t e d in resul t s t ha t ho ld e v e n w h e n the
n u m b e r of va lues an a t t r i bu t e m ay take on ~s qu i te smal l , such as 2; so we i n t r o d u c e the
no t ion of a l p h a b e t size for a file. /

Definttion. L e t A 1 , Az, .. , A k be a f inite set of attributes, w h e r e a t t r i b u t e A , takes on
va lues f r o m the f ini te se t V,, 1 <- t <_ k. A file F is a subse t of Vi × Vz × ... × V~, and a
key lS an e l e m e n t of F. T he alphabet stze of F is g w e n by max{[Vll, ... , I Vk[}, w h e r e I VI
r ep re sen t s the n u m b e r of e l e m e n t s in V. Files with a l p h a b e t sizes 2 and 3 will be r e f e r r ed
to as bmary and ternary files, r e spec twely .

A query q]s an e l e m e n t of V1 x V2 × "'" × Vk. []
G r a p h def in i t ions used t h r o u g h o u t this p a p e r a re s t a n d a r d ; the r e a d e r is r e f e r r ed to

A h o et al. [1] T h e next de f imt]on def ines tries of the k ind i l lus t ra ted in F igures 1 and 2.
Definition. A full trte for a file F is a t ree wi th all leaves at d e p t h z k such t ha t the

fol lowing are t rue .

2 The root of a tree is at depth 0 The sons of a node at depth t - 1 are said to be at depth t.

432 D. COMER AND R. SETHI

1. Let A1, A~, ... , Ak be the attributes of F and let rr be a permutation of 1 , 2 , . . , k.
All edges leaving a node at depth t - 1 have distinct labels chosen from V=~,) for all i,
l<_t_<k.

2. The labels encountered on each path from the root to a leaf correspond to an
element of F, and, for each element of F, there is such a path. []

Note that all we need to do to specify a full trie is to specify 7r, which gives the order in
which attributes are tested In addition to full tries, we are interested m tries m which leaf
chains have been pruned, as in Figure 3.

Definition. A node u m a tree is the head of a leaf chain if (a) the father of u has more
than one son, and (b) u and all its descendants have at most one son.

A pruned trie for a file F is formed from a full the T for F by deleting the proper
descendents of all nodes u m T such that u Is the head of a leaf chain. []

The next definition provides terms that will be convenient m the sequel.
Definttton. Let u be the head of a leaf chain in a full trle T. Letp be the path from the

root of T to some leaf such that p passes through u. Then the record denoted by the
labels on p is said to be distmgutshed at u

Since a full or pruned the T distinguishes all records in a file F, we say F is indexed by
T. []

Definttion. The space taken by a trie T (full or pruned) Js the number of nonleaf
nodes m T []

In this paper we are interested in the space and search time requirements of tries.
Specifically, we consider the following problems.

Problem 1 (Least space full the).
Given: File F with alphabet size s and an integer j .
Quesnon: Does there exist a full trie for F with space no more than19 []
Problem 2 (Least space pruned trie)
Given: Fde F with alphabet size s and an in teger j .
Question: Does there exist a pruned trie for F with space no more than 19 []
We are also interested m the average time taken to access a record. We must be careful

in talking about the access time since the time taken to traverse a path depends on the
alphabet size and the underlying data structures As mentioned m Section 1, our access
time results apply to the table implementation and do not apply to the doubly chained
~mplemenlation. Nevertheless, our results are strong in that they hold for any alphabet
size s >- 2.

Definition. Let T be a pruned trie for a file F. Then the access ttme o f a leaf in T Is
given by the depth of the leaf. The access ttme (search time) of T is the sum of the access
times of all leaves. []

Note that we can find the average access time for a leaf in T by dividing the access time
of T by the number of leaves. Since the number of leaves in a the is fixed, the division is
not necessary for our purposes.

Problem 3 (Least access time pruned trie)
Gtven: File F with alphabet size s and an integer 1.
Question: Does there exist a pruned trie for F with access time no more than j? []
Problems 1 and 3 are NP-complete for all alphabet sizess -> 2, and problem 2 is NP-

complete for all alphabet slzess -> 3. The proofs are given in Appendixes A, B, and C.
At this pomt we introduce problem SAT3, which is crucial to demonstrating that

problems 1-3 are NP-complete.
Let n be a positive integer and G,~ = {x~, £1 , xn, £~}. The elements of G~ are called

literals. Informally a literal in G,, can either be true or false. In defining SAX3 we define
clauses c~, like xl or x2 or x3. A clause is true if one of the literals in it is true.

We refer to the pair (x,, 2~) as a vartable. The complement ofx, 1s2, and the complement
of£, lsx,. If a literaly is true, then the complement ofy is false and vice versa. Given a set
of clauses c~, c2, .. , c,~, the clauses are sattsfiable if, under some truth assignment to
literals m Gn, all clauses are true. In the definition of SAT3 a set H will specify exactly

~l'he Complexi ty o f Trte Index Construcuon 433

which hterals m Gn are true. In o rder for the truth assagnment H to satisfy cl Cm, for
each c~, one of the literals in H must also be an ¢j, l .e H A cj ~ ~.

Problem SAT3 (Satisfiability with three hterals per clause) .
G i v e n : I = (n, c l, ... , Cm), where n and m are posi t ive integers , n -< 3m, c s C Gn, and

Icsl = 3, for./ = 1, 2 m.
Question: Does there ernst a set H = {Yl , y,,} such that y, equa l sx , or . / , for I <- l -<

n, and H A c~ 4 ~ O for./ = 1, ... , m ? If there is such a set for a given I , we say I is
satisfiable []

In the above def in inon we have used Xl, ~1, .. for hterals . Since we are deal ing with
small examples , we avoid subscripts and use x, .f, y ,)7, ... for iiterals. M o r e o v e r , we
use " + " to connect literals in a clause and " . " to conca tena te clauses. Thus I =
(x +)7 + z). (.f + y + z) is an instance of SAT3.

A solution to SAT3 would be an a lgor i thm that takes an instance I of SAT3 and answers
true if and only if I is satisfiable. C o o k [4] showed that SAT3 IS NP-comple t e , or
informally SAT3 IS known to be a hard problem.

A t this stage we shall give the r eade r a feeling for the construct ions used for our results
by showing that the least access t ime p rob lem for pruned tries IS at least as difficult as
SAT3. For simplicity, we use an a lphabet size of 9. In Append ix C the result wdl be
improved so that it holds for binary files also

The file F(I) in Figure 4 has been constructed f rom the instance I = (x +)7 + z).
(.f + y + z) of SAT3. I has n = 3 variables and m = 2 clauses; F(I) has 6n + 4m = 26
records and 2n + m = 8 at tr ibutes. The subfiles (J:Q),3 (j : p) , and (K:P) depend only on
n and m. The subfile (K : Q) is cons t ruc ted from the clauses cl = (x +)7 + z) and c2 =
(.~ + y + z) .

The first four records m K, 19-22 , are for c l. For these records , a t t r ibutes X, ~', and Z
have each been set to 8, 8, 9, and 9. Simdarly, m the next four records , for c2 =
(£ + y + z), a t t r ibutes X, Y, and Z have each been set to 8, 8, 9, and 9.

We now show that F(1) has a pruned m e with access t ime 3n(n + 1) + 2m(m + 1) +
4nm ff and only if I is satisfiable. The above expression for the access t ime represents a
pruned trie with six leaves at each of the first n depths and four leaves at each of the next
m , as in Figure 5.

Suppose that I is satisfiable. In our example H = {x, y, ~} satisfies both (x +)7 + z) and
(.~ + y + z). We construct a trie T for F(1) by first testing on the at t r ibutes cor responding
to e lements of H, at tr ibutes X, Y, and 2 in Q. Then we test on each at t r ibute in P. The
resultant trie as given in Figure 5. The reader is urged to examine the p runed trie in
Figure 5 closely, paying a t tent ion to the fact that the four records for each clause are
separa ted into two groups by the a t t r ibutes cor responding to e lements in H .

Now suppose that I is not satisfiable. We claim that at least n + 1 at t r ibutes must be
chosen f rom the set Q. The reasoning is as follows In o rde r to distinguish the first 6n
records, at least one at t r ibute must be chosen for each pa~r of comp lemen ta ry hterals If
exactly n at t r ibutes are chosen, let H ' be the set of hterals cor responding to these
at tr ibutes.

Since 1 is not satisfiable, for some clause c, H ' N c = Q. But then the three co lumns in
Q in which the four records for c have 8, 8, 9, and 9 are not tested So the four records
for c are toge ther in a block Test ing the at t r ibute for c m the set P cannot distinguish
these records We must there fore test on at least one more at t r ibute f rom Q.

It follows f rom the above discussion that any pruned the T for F(1) has depth at least
n + m + 1. F rom the const ruct ion of F(1), at most 6i records can have been dist inguished
by d e p t h i , t -< t -< n ; at most 6n + 4t by d e p t h n + t, 1 -< t ~ m . Since there is at least
one record at d e p t h n + m + 1, t he T must have access t ime at least 3n(n + 1) +
2m(m + 1) + 4nm + 1.

There fo re , F(I) has a pruned t h e with access t ime 3n(n + 1) + 2m(m + 1) + 4nm if and
only ff I is satasfiable We can now state the fol lowing theo rem.

3 (j.Q) refers to the part of the tables dehneated by the records m J and the atmbutes m Q

434

1
2
3
4
5
6
7
8

d 9
10
t l
t 2

t 3
t 4
t 5
f6
17
t8
19
2O
2t
22

K
25
24
25
26

FIG 4 (Least access time pruned the

D COMER AND R. SETHI

/
x ~
2 2
3 3
4 4
5 5
6 6
7 7

18
8 !;

'i
x

Q P
. .~\ I \

Y ¥ Z Z C t C 2

2 2
3 ~

4 4
5 5
6 6
7 7

2 2
3 3
4 4
5 5
6 6
7 7

8 8 8
8 8 9
9 9 8
9 9 9

s 8 le

8 8 ' i 9 9
9 9

y T z 7

The f i leF(1) ,wherel = (x + ~ + z) (2 + y + z) The attribute
corresponding to a gwen hteralx is denoted by the relevant upper-case letter X All unspeclhed entries are 1

2 9 ! y

Z

I ~ Ci

FIG 5 Pruned the for the file F(I) m Figure 4 Attributes are tested in order X, Y, 2, C~, and C2

THEOREM 1. The least access time pruned trie problem for files with alphabet size at
least 9 ~s NP-complete.

PRooF In the dtscussion before the statement of the theorem we estabhshed that the
problem on hand was at least as difficult as SAT3. The remaining details of the proof are
technicahties and are left to the initiated reader. []

Since all the results in this paper are proved in very much the same manner as the
above theorem, we have relegated them to the Appendixes.

3. Conclusions

In this paper we have considered two kinds of tries: (a) tries in which each attribute is
tested, and (b) tries in which testing of attributes stops when a record has been
distinguished. We have demonstrated that determining tries that are minimal in terms of
storage space is NP-complete for all alphabet sizes s, s -> 2 for full tries, and s -> 3 for

The Complexity o f Trie Index Construction 435

pruned tries, col lapsed tries, and pruned O-tr ies With a tabular imp lemen ta t ion for
tries, de te rmin ing a minimal average access t ime t h e is an NP-comple te p rob lem for all
a lphabet sizes s -> 2.

We do wish to point out that the files used to prove the NP-comple teness results in thas
paper are atypical. In the reduct ions the n u m b e r of at t r ibutes k is about the same as the
n u m b e r of records r In pract ice we expect k to be much smaller than r In studying
heuristics ~t is there fore desirable to der ive pe r fo rmance bounds with bo th r and k as
parameters .

Tries are a natural s t ructure to consider while implement ing a re t r ieval system. T h e
results in this paper suggest that many re la ted the construct ion p rob lems are " h a r d " in a
computa t iona l sense. We have concen t ra ted on the initial const ruct ion of a trie for a file
and have not considered addi t ion or delet ion of records; fur ther work on t r ie-based
structures that can easily cope with updates ~s warranted .

Appendix A. Full Tries

Recal l that the space taken by a full trie is given by the number of non lea f nodes in the
trie. If T is a full trie for a k-a t t r ibute file with r records, then all leaves of T will be at
depth k. The space taken by T as given by ~ 0 ~ b,, where b, is the n u m b e r of nodes at
depth L, 0 _< t ~_ k. Note that the bk leaves at depth k are not coun ted in the space.

Since T is a t ree , b, ~- b,_~, the rate at which the b, sequence grows de te rmines the
space taken by T. We def ine d, = b, - b,-1, 1 -< t -< k, and do = b0 = 1. Each i tem in the
d, sequence represents the n u m b e r of new nodes which appear at depth t ; the sequence
do, dl , ... , dk wdl be called a profile of the trie. 4

Let us now relate SAT3 to the p rob lem of least space full tries. The file F(I) const ruc ted
f rom an instance of SAT3, I = (x + .~ + z)- (.f + y + z), as given m Figure 6. F(I) has 2n +
3m at t r ibutes and 3n + 7m + 1 records

Before proceeding with the p roof of NP-comple teness , we examine a useful p roper ty
of F(I).

LEMMA 1. Let T be a least space full trie for F(I). Then the profile for T has no 0
elements.

PRoov. Suppose the profi le for T does have 0 e lements . We show that T cannot be a
least space full tr ie for F(I)

Note f rom Figure 6 that because of the records in group K, select ing an a t t r ibute f rom
set Q will cause at least one new node to appear . Thus a 0 e l emen t m the profi le must
result f rom the choice of an a t t r ibute , say A , in N Each at t r ibute m N has 1 entr ies for
exactly two records. Let the two records for which A has 1 entr ies be Yl and Y2.

Since selecting at t r ibute A causes no new nodes to appear , one of the fol lowing two
cases must occur: E i ther (1) yl and Y2 are m a block consisting of y l and y2, or (2) both y~
and T2 have been dist inguished and are m single record blocks.

Case 1. If 3'1 and 3'2 are toge ther in a block, let B be the a t t r ibute wath 1 entr ies for 3'~
and 3'2 chosen before A . Since B has 1 entr ies for o ther records, it will not only separa te
out 3'~ and 3'2 but will also cause at least two new nodes to appear No te that a smal ler t he
can be fo rmed by in terchanging the o rde r in which B and A are chosen. The in te rchange
will result in the profi le hawng two consecut ive l ' s ra ther than 2, 0 Thus the new trie
takes less space, contradic t ing the mmimah ty of T.

Case 2. 3'~ and 3'2 have bo th been dist inguished. Let /i, be the a t t r ibute in N
cor responding to the c o m p l e m e n t of the l i teral to which A corresponds . Wi thou t loss of
general i ty, let A have a 1 entry for 3'~.

Cons ider the at t r ibutes that must be selected for y2 (the record for which ,4 has a 0
entry) to be dist inguished. As ide from A , all o ther a t t r ibutes with a 1 ent ry for 3'z are m
the set Q. Since all a t t r ibutes m Q have 1 entr ies for records in K, at least two of them

4 The connechon between the profile and size of a trle is considered m more detad m Comer and Sethl [3],
where more detaded proofs of the NP-completeness results are gwen

436 D. COMER AND R. SETH1

must be selected in order to distingmsh Y2, But then, as in case 1, the second such choice
adds at least two new nodes. Interchanging the second of these two attributes with A
results in a trie taking less space. This is a contradiction.

The lemma must therefore hold. []
The next lemma will aid us in proving a lower bound on the space taken by any trie for

F(1).
LEMMA 2 Let A be an attribute from the set N such that A has 1 entries for records yl

and y2 Then there extsts a least space full trw for F(I) in which A is selected before any
other attribute with 1 entrws for yl and y2.

PROOF. From Lemma 1 we can assume that any least space trm T for F(I) has no 0
elements m its profile. Moreover, from the proof of Lemma 1 it follows that there may
be at most one attribute B with 1 entries for y, and yz selected before A. Construct a trie
T' from T by interchanging the order in which B and A are selected. We claim that T'
takes no more space than T.

Let L be the set of seven records from K corresponding to the clause represented by B.
From Figure 6 there are two attributes B2 and B3 that also have 1 entries for some
elements of L. The point to note is that B2 and B3 may be selected between B andA m T
Since B, B2, and B3 are symmetric m their effect on records m L, delaying the selection
of B cannot increase the number of nonleaf nodes caused by elements of L.

Since bo thA and B have 1 entries for Yl and yz, interchanging the order of A and B
does not increase the number of nonleaf nodes. The lemma therefore holds. []

Let us now turn to the relation between 1 and F(1). In Figure 6 H = {x, y, £} satisfies 1.
Selecting attributes X, Y, Z, C1~, C2z, X, Y, Z, Ci~, C2~, C~3, and C23 forms a the for F(I).
The first three choices correspond to elements of H; the'next two correspond to a literal
from each clause that is m H. The remaining attributes from N are selected next,
followed by the attributes from Q (which are selected in pairs). Th~s sequence of
selections is used below to show that the problem is NP-complete.

THEOREM 2. The least space full trte problem for binary files ts NP-complete.
PROOF. We reduce SAT3 to the problem on hand. Let 1 be an instance of SAT3.

Construct the file F(1) as shown in Figure 6. Let S denote the space taken by a trm
formed as m the example above. We show that F(I) has a trm taking space S ff and only if
I is satisfiable.

I f / i s satisfiable, then a trm of size S exists So suppose there is a trie T for F(I) taking
space S From Lemma 1, the profile of T has no 0 elements. From Lemma 2 we can
assume that an attribute A in N ~s chosen before any attribute with 1 entrms for the 1
entries of A is chosen from Q. Thus the first choice for each pair of attributes m N will
lead to one new node and the second to two new nodes. From Figure 6, each triple of
attributes in Q will lead to at least one, two, or four new nodes Thus the best possible
trie for F(I) has space S. Since there are n + m selections that lead to one new node, n of
these pick one of each pair of attributes m N. Let H C G, correspond to these attributes
in N. The fact that there are at least m more selectmns with one new node verifies that H
satisfies 1.

Thus F(I) has a the taking space S if and only ff ! is satisfiable. []

Appendix B. Pruned Tries, Collapsed Tries, and Pruned O-Trws

In this Appendix we show that the problem of finding a minimum size pruned trie is NP-
complete.

Tr~EOREM 3. The following problems are NP-complete for all alphabet stzes s, s -> 3:
(a) pruned trie space minimization, (b) collapsed trw space mmtmtzation, and (c) pruned
trte space mimmization for O-trtes.

PROOF. The same construction suffices for all three problems. We gwe the proof for
the pruned trle space minimization problem. From the construction m Figure 7, there is
an ordering of attributes which yields a trie of 2n + m nodes when the formula is

The Complexity o f Trie Index Constructton 4 3 7

/

I
2
3

4

.. 9
/

tO

16

17

23

24

N Q

X X Y Y Z Z "IC"I "I zC'zC15CzlCzzC-~

t I 4 1
1 0 1 0
O t 0 1

t 1 1 I
I 0 0 1
0 t 1 0 i

t l 1 1 1
1 0 1 1
0'1 0 0

1 1 0
1 0 1
t 0 0
0 1 1
o 1 0
o 0 t

1 1 1
1 1 0
t 0 1

0 0
0 1 1
0 1 0
0 0 1

x ~- z TT y z

FXG 6 (Least space full the) The file F(1) for l = (x + ~ + z) (.f + y + z) All enmes for record 24 are 0
Choosing attributes from set N which correspond to hterals which satisfy I wdl enable m selecuons from set Q
which add only one new node each and a minimum size the will result

sa t is f iable . W e show t h a t if a t r ie of 2n + m n o d e s exists , t h e f o r m u l a s m u s t b e
sa t is f iable .

In o r d e r for us to d i s t ingu i sh records m L, T mus t have d e p t h 2n + m a n d mus t
t h e r e f o r e have at mos t o n e n o n l e a f n o d e at each d e p t h C o n s i d e r a t i o n of the r eco rds in L
shows tha t they mus t be d i s t ingu i shed in o r d e r Since exact ly one of U, a n d U,, 1 -< z -< n ,
in N mus t be chosen first , let H be the set of h te ra l s c o r r e s p o n d i n g to the a t t r i b u t e s
chosen m N. Since each r e c o r d m K is d l s t m g m s h e d in T, ~t mus t b e t rue t ha t H sat isf ies
I . []

Appendix C. Access Ttme for Pruned Zrtes ~

In Sec t ion 2 we s h o w e d tha t the leas t access t ime p r o b l e m for p r u n e d tr ies is NP-
c o m p l e t e for a l p h a b e t size 9 H e r e we t igh ten the resu l t to ho ld for all a l p h a b e t sizes s,
s -> 2. T h e basic idea is to cons t ruc t a file for which the leas t access t ime p r u n e d t h e T is
hke a full b ina ry t r ee for the first h + 1 dep t h s , w h e r e h = 4 + 2 log(n + m) . A t d e p t h h
we have 3n + m n o n l e a f n o d e s c o r r e s p o n d i n g to g roups of r eco rds J l l , .. , K,, , w h e r e the
J and K g roups are as m F igure 8. T h e r e are also 2 h - (3n + m) l eaves at th is d e p t h . (T h e
in tege r h has b e e n c h o s e n large e n o u g h tha t if the r ecords r e p r e s e n t e d by these leaves a re
no t d l s t m g m s h e d by d e p t h h + 1, t hen the tr ie tn ques t ion has an access t ime t ha t Is t o o

large) If the first h d e p t h s a re as m e n t i o n e d a b o v e , t hen we can s imula te the r e d u c t i o n

for a l p h a b e t size 9 by us ing a b ina ry a l p h a b e t .
T h e r e l a t t on b e t w e e n an ins t ance I of SAT3 and a file F(I) is g tven in F igure 8 W e now

show tha t a t t r i bu t e s in N mus t be t es ted b e f o r e a t t r i bu te s m Q or P or else the access t ime
will be too large

5 In a recent paper Hyafil and Rlvest [8J show that the problems of leaf access time for collapsed and pruned O-
tries is NP-complete for all alphabet sizes s, s > 2

438

[
D COMER AND R

N Q P

f _ \ / \ / \
Ul '~1 u2 u2 u3 u3 CII cI2e13e21c22c23c31c32c33 wI w2 w 5

I 4] t t
1 t I t

1 1 1 t
1 t 1

t I 1 1
1 I 1

2 2 2 2 2 2
2 2 2 2

2 2

1 1 t

2 2 2
2 2 2
2 2 2
2 2 2

1 ~ 1

2 2 2 2 2 2 1 2 2 2
2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2
2 2 2

2 2
2

SETHI

X '~ y y" Z 'Z" x y Z '~ y 'Z x ~ "Z"

FIG 7 Sample construction for least space pruned tries F(I) ts shown for 1 = (x + y + z) (.f + y + ~).
(x + f + z:) Lower-case letters gwe the hteral corresponding to an atmbute The ordering Ui, U2, U3, Cu, C23,
C33, W1, W2, W3 leads to a pruned the with 2n + m nonleaf nodes, with n = 3, m = 3 Note that U1, b2, 03
corresponds to H = {x, ~, i}

LEMMA 3. Let F(I) have a pruned trie wtth access t ime no more than h(2 h - 3n - m)
+ h(6n + 4m) + 3n(n + 1) + 2m(m + 1) + 4nm. Let n + m ~- 16. Then the first h
attrtbutes tested tn T are elements o f N.

PROOF. If the l e m m a is fa lse , t hen an e l e m e n t , say A , of N is no t o n e of the first h
a t t r i bu t e s t e s t ed . C o n s i d e r a r e c o r d / 3 in L wi th a 1 en t ry for A . T h e r e m u s t be a n o t h e r
r e c o r d / 3 ' such t h a t / 3 a n d / 3 ' ag ree in all b i t p o s m o n s excep t l, i -~ 1 ~ h . I f f l ' is a lso in
L, t h e n / 3 a n d / 3 ' c a n n o t b e d i s t m g m s h e d by the a t t r i b u t e s in N t h a t h a v e b e e n se lec ted .

S ince 3n + m h - b i t m t e g e r s a re ass igned to r ecords m J U K, at leas t 2 j' - 6 n - 2m
records are d i s t ingu i shed no ea r l i e r t h a n d e p t h h + 1. T h e access t ime for T is t h e r e f o r e
at l e a s t A = (h + 1)(2 j~ - 6n - Z,n). W e show t h a t A > h (2 t~ - 3n - m) + h(6n + 4m) +
3n(n + 1) + 2m(m + 1) + 4ran. C a n c e l i n g t e rms and s impl i fy ing, we get

2 t~ > h(9n + 5m) + 3n(n + 1) + 2m(m + 1)4ran + 6n + 2m = o-. (1)

W e p r o v e (1) by d e t e r m i n i n g an u p p e r b o u n d o n cr a n d showing t ha t 2 h is g r e a t e r t h a n
tthe u p p e r b o u n d . Fo r n >- 3 and m ~ 1 we can der ive o- < (n + m) (9h + 6n + On) . S ince
h = 4 + [2 1 o g (n + m)] f o r n + m - > 1 6 , h < n + m . T h u s f o r n + m - > 16, 9 h + 6 n + O n
< 15(n + m) . W e can t h e r e f o r e s ta te tha t tr < 15(n + m) z s ince we a re g i v e n n + m -> 16.

In o r d e r to p r o v e (1) we show tha t 2 h > 15 (n + m) 2. S m c e h = 4 + [2 log(n + re) l , h ->
4 + 2 log(n + m) and

2 h -- 24(n + m) 2 = 16(n + m) 2 > 15(n + m) > or.

T h e l e m m a mus t t h e r e f o r e be t rue . []
THEOREM 4. The least access ttme pruned trte prob lem for bmarv files is NP-

complete
PROOf. G i v e n an in s t ance I of SAT3, c o n s t r u c t F(l) as m F igu re 8. W e cla im F(I) has a

p r u n e d t r ie wi th access t ime no m o r e t h a n

h (2 h - 3n - m) + h(6n + 4m) + 3n(n + 1) + 2m(m + 1) + 4nm

if and only if I is sa t i s f iab le .

The Complexity of Trte lndex Constructton 4 3 9

J

JII I

d12 I

JI3 I

J

J33 I

N Q P
/ \ / -- x/ ' "~
t z 3 4 ~ 6 7 8 9 u 1~lu2~z u~u 3c I c z

1
1

1
t

0 t
0 1

O t
o~1

O l t
0 1 t
t 1 4
1 1 t

o o o t
o o o t

t o o i
' 1 o o ' 1
4 o o 1
t 0 0 1

0 t 0 1
0 t 0 1
0 1 0 1
o 1 0 1

, t 1 0 t

~00 t 1

1 11
0 o i
1 1 i
o ol

1 1 '
0 O'

1 1
0 0

1 t
0 0

1 t
0 0

1 1
0 0
1 1
0 o

° o

! t 11 4
1 i O.

1

t I i ° o O!
I i t

~ I o
0 0 0 1
0 O[0 o

1 1 1 1 1 1 1 1 1

x ~" y 7 z 7

Fm 8 (Least access ttme pruned the) Submatnx (J U K 'Q U P) is very slmdar to Figure 4. The values
assigned to set N are all posstble h-bit binary numbers as shown The selectmn of all attributes [rom N produces
a dwlston of the records m (J U K Q U P) such that the proof of Theorem 1 applies

o ° eBQ

Jl1 dnt dn2 On3 K1 Krn \ /
2 h -3n-m

FIG 9 Ftrst h depths for a pruned the for the fde m Figure 8 Note the large number of leaves, 2/' - 3n - m,
at depth h

S u p p o s e I is s a t i s f i ab le T h e n c o n s t r u c t T by f i rs t t e s t i ng o n all t h e a t t r i b u t e s in g r o u p

N . T will t h e n h a v e 2 ~' - 3n - m l eaves at d e p t h h a c c o u n t i n g f o r t h e h (2 h - 3n - m) t e r m
in t he acces s t i m e . T h e r e m a i n i n g s e l e c t i o n s p r o c e e d as m F i g u r e 4 e x c e p t t ha t t h e 6n +
4m r e c o r d s in J i.J K m F i g u r e 8 will be d i s t m g m s h e d h d e p t h s l a t e r t h a n fo r t h e fi le in
F igu r e 4 T h u s t h e acces s t i m e is h (6n + 4m) + 3n(n + 1) + 2 m (m + 1) + 4rim.

S u p p o s e fo r t h e s e c o n d ha l f t h a t F(I) d o e s h a v e a t r le w i th acces s t i m e n o m o r e t h a n
the b o u n d T h e n , f r o m L e m m a 3, t he f i rs t h a t t r i b u t e s t e s t e d a r e e l e m e n t s o f N . T h e t r i e

4 4 0 D, COMER AND R. SETHI

must look like Figure 9 at depth h. The rest of the proof is similar to the proof of
Theorem 1. []

REFERENCES

(Note Reference [11] is not cited m the text)

1 AHO, A V,, Horcgo~, J E , AND ULLMAN, J D The Design and Analysis of Computer Algorithms
Addison-Wesley, Reading, Mass , 1974

2 BAYER, R , AND MCCREIGHT, E Orgamzatlon and maintenance of large ordered radices Acta Informa-
ttca 1 (1972), 173-189

3 COMER, D E , AND SETH1, R Complexity of trle index construction Extended abstract, Proc 17th
Annual Syrup on Foundations of Comptr Scl , Oct 1976, pp 197-207

4 COOK. S A The complexity of theorem-proving procedures Proc Third Annual ACM Syrup on Theory
of Computing, May 1971, pp 151-158

5 DE LA BRIANDA1S, R File searching using variable length keys Proc Western Joint Comptr Conf , IRE,
New York, 1959, pp 295-298

6 DE MAINE, P A D , AND ROTWlTT, T JR Storage optimization of tree structured files representing
descriptor sets Proc ACM SIGFIDET Workshop on Data Description, Access and Control, Nov 1971,
pp 207-217

7 FREDKIN, E Trle memory Comm ACM 3, 9 (Sept 1960), 490-499
8 HYAFIL, L., AND RIVEST, R Constructing optimal binary decision trees is NP-complete Information

Processmg Letters 5, 1 (May 1976), 15-17
9 KNUTFI, D E The Art of Computer Programming, Vol 1 Fundamental Algorithms Addison-Wesley,

Reading, Mass , 1968
10 KNUTH, D E The Art of Computer Programming, Vol 3: Sorting and Searching Addison-Wesley,

Reading, Mass , 1973
11 NtEVERGELT, J Binary search trees and file organization Computing Surveys 6, 3 (Sept 1974), 195-207
12 SCUKOLNICg, M Secondary index optimization ACM-SIGMOD lnt Conf on Management of Data,

San Jose, Cahf , May 1975, pp. 186-192
13 SEVERANCE, D G Identifier search mechanisms: A survey and generalized model Computing Surveys 6,

3 (Sept 1974), 175-194
14 SUSSENGUTH, E H JR Use of tree structures for processing fdes Comm ACM 6, 5 (May 1963), 272-

279
15 YAO, S B Tree structures construction using key densities ACM Annual Conf , Mmneapohs, Mlnn ,

1975, pp 337-340

RECEIVED MAY 1976, REVISED DECEMBER 1976

Journal of the Association for Computing Machinery, Vol 24, No 3, July 1977

