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The Complexity of Trie Index Construction

DOUGLAS COMER AND RAVI SETHI

The Pennsylvama State Unuversity, Umiversuty Park, Pennsylvanmia

ABSTRACT  Trie structures are a convenient way of indexing files in which a key consists of a number of
attributes Records correspond to leaves mn the trie Retrieval proceeds by following a path from the root to a
leaf, the choice of edges being determined by attribute values The size of a trie for a file depends on the order
in which attributes are tested It 1s shown that determining minimal size tries 1s an NP-complete problem for
several variants of tries and that, for tries in which leaf chains are deleted, determning the trie for which
average access time 15 minimal 1s also an NP-complete problem These results hold even for files in which
attribute values are chosen from a binary or ternary alphabet
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1. Introduction

Let a record be information of an unspecified nature to be stored and retrieved, and let a
file be a collection of records. Associated with a record is a key that uniquely identifies
the record

For the moment, suppose that a key is an integer ke 72 or 35. Elegant methods are
available for orgamzing such keys so that questions like ““Is this record 1n the file?"" can
be answered efficiently. These methods also permit records to be added to or deleted
from the file dynamically. Bayer and McCreight [2] have a particularly interesting data
structure, called B-trees, for coping with updates. B-trees, or the related 2-3 trees of
Hopcroft reported in Aho et al. [1], permit a record to be retrieved, added, or deleted
from an n-record file in O(log n) time. Knuth [10] is a general reference for indexing with
mteger keys.

Key comparison based methods like B-tree searches have received wide attention in
the hiterature and are relatively well understood. This happy situation does not apply to
the case where a key consists of a number of attributes, as is true when a key is given by a
k-tuple (4, is, ... , {;). B-tree searches and related methods rely on comparing whole keys
m constant time. When a key is given by a k-tuple, comparison of keys is no longer an
elementary operation in standard measures of complexity. A common response 1s
therefore to determine some subset of the attributes on which to index. Schkolnick [12]
considers a probabilistic model for selecting an appropriate subset.

Another approach for handling multiattribute keys 1s to use “trie” based methods
proposed by de la Briandais [5] and Fredkin [7]. Consider the set of strings

back bane bank bare barn
band bang barb bark been

The first letter in each string 1s b. Examination of the second letter splis the set into two
subsets: the strings starting with ba and the string starting with be. The process of
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Fic 1 Full tme for the set of strings {back, band, , been} The darkened path gives the sequence of
decisions for the string “‘barb ”

splitting is well illustrated by the tree in Figure 1. Fredkin [7] used the name trie
(pronounced “try”’) for these tree structures.

In this paper we are interested in the properties of tries that have a bearing on the size
of the trie, or the average access time for a record But first we review some of the 1ssues
involved in implementing tries.

A straightforward implementation of the trie in Figure 1 1s to represent each nonleaf
node u by a 26-element array, or table, with an entry for each letter of the alphabet. The
entry for the letter a at node u points to the table for the appropriate son of u This
tabular implementation allows the test at node u to be made in constant time. The tables,
however, may be quite wasteful in space

In order to save space, de la Brniandais [5] proposed a binary tree representation for
forests quite similar to that given in Knuth [9]. The 1dea is to place all sons of a node u in
a linked Iist Node u points to the first element 1n the list Note that the time spent in
selecting the appropriate son of i 1s no longer constant; at worst, ail sons of u may have
to be examined.

The hnked hist implementation was referred to as a “doubly chained tree” by Sussen-
guth [14], and the term has survived in the literature. Severence [13] and Yao [15] are
concerned about the space-time trade-offs of the two representations and consider
heuristics for a compromise in which the first few levels are represented by tables and the
remaining levels by doubly chained trees.

The tradeoffs between the doubly chained and tabular implementation are strongly
influenced by the size of the alphabet used in constructing keys. Most of the results in this
paper apply even when the binary alphabet 1s used With a binary alphabet the doubly
chained tree takes up at least as much space as the tabular implementation and might
even take more time. Recall that, 1n a doubly chained tree, going down a sequence of
right branches may take twice as long as going down a sequence of left branches

Results in this paper that are concerned with the size of tnes apply to both implemen-
tations The results concerned with the average access time of records apply to the
tabular implementation only. At the same time we wish to emphasize that the average
access time results hold even when the binary alphabet 15 used.

Having reviewed the representation of tries, we turn to the issues addressed in this
paper. The study of tries originated with de la Briandais [5] and Fredkimn [7], who used
alphabetic keys. The order of testing of the letters of a key was understandably left-to-
right, as mn Figure 1. When we view a key as a k-tuple mm which the attributes are
unrelated, the left-to-right ordering is no longer as natural. In fact de Maine and Rotwitt
[6] note that the order in which attributes are tested may influence the size of the
resultant trie. Consider, for example, the tre in Figure 2 constructed from the same
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Q

Fic 2 Full trie for the strings 1n Figure 1 formed by testing the characters from nght to left

strings as 1n Figure 1, but testing letters from right to left The number of nonleaf nodes
increases from 8 in Figure 1 to 27 in Figure 2. Thus the trie in Figure 2 clearly takes up
more space.

Question  What order of testing attributes leads to the smailest trie?

We show that the above question is difficult to answer in a precise sense: Specifically
we show that that question represents an NP-complete problem.!

Note from Figure 2 that a key with b as its last letter is either barb or it1s not in the file
Similarly a key with g as its last letter 1s either bang or 1t is not 1n the file. Thus instead of
testing all the attributes in a key, we can stop testing the moment we have narrowed
down the set of possibilities to one, as in Figure 3(b). One way of viewing the transforma-
tion of Figure 2 to 3(b) 1s to note that all chains that lead to leaves have been pruned. The
tries in Figure 3 will be referred to as pruned tries.

Queston. What order of testing attributes leads to the smallest pruned trie?

We can also observe that subtrees of a trie may contamn mnternal chains as well as chains
leading to leaves. By including in each node extra information telling how many
attributes to “‘skip’’ when searching, these internal chains may be eliminated. Tries from
which both mternal and leaf chains are removed will be referred to as collapsed tries.

Question. What order of testing attributes leads to the smallest collapsed trie?

In a pruned trie the sooner a node is distinguished the faster the search proceeds. In
the present example not only does the pruned trie in Figure 3(b) have fewer nonleaf
nodes than the trie in Figure 3(a), it cails for faster average search time.

Question  What order of testing attributes leads to the least average search time in a
pruned trie?

All four of the above problems will be shown to be NP-complete.

In all the above questions we have concerned ourselves with a global ordering of
attribute selection which applies to all paths from the root to a leaf in the trie. We also
consider tries in which attributes are tested in different orders along different paths from
the root to a leaf. This class of tries will be called order-contaming or O-tries since the
order of attribute testing must be contained in the trie 1tself

Question. Which pruned O-trie is the smallest?

The problem of finding a smallest pruned O-trie will be shown to be NP-complete as a
corollary to the proof of pruned trie minimization.

This paper represents a modest beginning in the study of the properties of tries. So far
we have only shown that, in a precise sense, the questions above are difficult to answer.
Eventually the question of updates must also be confronted
! The unmmitiated reader would not go too far wrong in viewing the term NP-complete as jargon for “provably

difficult” problem Aho et al {1]1s a reasonable reference for the subject In Section 2 we discuss the process
of showing that a given problem 1s NP-complete
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(a)

(b)
Fic 3 (a) and (b) give the pruned tries for the full tries in Figures 1 and 2, respectively

2. A Model for Retrieval

In this section we define the notions of file, key, query, and trie We also identify the
problems addressed 1 this paper and work out a sample proof of NP-completeness.

A file will be thought of as a two-dimensional table with a row for each record and a
column for each attribute. Presumably each row contains a pointer to its record, which
can be obtained easily once the row has been identified. A query will either be a row in
the table or will not be present in the file.

In the examples in Section 1 the attributes were lower case letters; so each attribute
could take on 26 possible values We are interested 1n results that hold even when the
number of values an attribute may take on s quite small, such as 2; so we introduce the
notion of alphabet size for a file. y

Definition. LetA,, A,, .. ,A, be afinite set of attributes, where attribute A, takes on
values from the finite set V,, 1=1=<k. Afile Fisasubsetof V; X V, X .- X ¥} ,and a
key 15 an element of F. The alphabet size of F is given by max{| V4|, ... , | Vi |}, where | V|
represents the number of elements in V. Files with alphabet sizes 2 and 3 will be referred
to as binary and ternary files, respectively.

A query g 1s an element of V; X V, X - X V. 0O

Graph definitions used throughout this paper are standard; the reader is referred to
Aho et al. {1] The next definition defines tries of the kind illustrated in Figures 1 and 2.

Definition. A full trie for a file F 1s a tree with all leaves at depth? k such that the
following are true.

2 The root of a tree 1s at depth 0 The sons of a node at depth : — 1 are said to be at depth .
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1. LetA,, A,, ... , A, be the attributes of F and let 7 be a permutationof 1,2, . . , k.
All edges leaving a node at depth: — 1 have distinct labels chosen from V_, for all i,
1=1=k.

2. The labels encountered on each path from the root to a leaf correspond to an
element of F, and, for each element of F, there 1s such a path. [

Note that all we need to do to specify a full trie 1s to specify 7, which gives the order in
which attributes are tested In addition to full tries, we are interested in tries in which leaf
chains have been pruned, as in Figure 3.

Definition. A node u n a tree 1s the head of a leaf chain if (a) the father of u has more
than one son, and (b) « and all its descendants have at most one son.

A pruned trie for a file F is formed from a full trie T for F by deleting the proper
descendents of all nodes u 1n T such that u 1s the head of a leaf chain. O

The next definition provides terms that will be convenient 1n the sequel.

Definition. Letu be the head of a leaf chain mn a full trie T. Letp be the path from the
root of T to some leaf such that p passes through u. Then the record denoted by the
labels on p is said to be disunguished at u

Since a full or pruned trie T distinguishes all records in a file F, we say F 1s indexed by
T. O

Definttion. The space taken by a trie T (full or pruned) 1s the number of nonleaf
nodesin7T [

In this paper we are mterested in the space and search time requirements of tries.
Spectficaily, we consider the following problems.

Problem 1 (Least space full irie).

Given: File F with alphabet size s and an integer .

Question: Does there exist a full trie for F with space no more than;? 0O

Problerm 2 (Least space pruned trie)

Given: File F with alphabet size s and an integer .

Question: Does there exist a pruned trie for F with space no more than;? 0O

We are also mterested i the average time taken to access a record. We must be careful
in talking about the access time since the time taken to traverse a path depends on the
alphabet size and the underlying data structures As mentioned 1n Section 1, our access
time results apply to the table implementation and do not apply to the doubly chained
mplementation. Nevertheless, our results are strong in that they hold for any alphabet
sizes = 2.

Definition. Let T be a pruned trie for a file F. Then the access time of a leaf in T 15
given by the depth of the leaf. The access time (search time) of T 1s the sum of the access
times of all leaves. [J

Note that we can find the average access time for a leaf in 7 by dividing the access time
of T by the number of leaves. Since the number of leaves in a trne is fixed, the division s
not necessary for our purposes.

Problem 3 (Least access time pruned trie)

Gwen: File F with alphabet size s and an integerj.

Question: Does there exist a pruned trie for F with access time no more thanj? O

Problems 1 and 3 are NP-complete for all alphabet sizess = 2, and problem 2 1s NP-
complete for all alphabet sizess = 3. The proofs are given in Appendixes A, B, and C.

At this pomnt we mtroduce problem sat3, which is crucial to demonstrating that
problems 1-3 are NP-complete.

Letn be a positive integer and G,, = {x,, X;, ... , X,, X,}. The elements of G, are called
literals. Informally a literal in G, can either be true or false. In defining sa13 we define
clauses ¢,, like x; or x, or x;. A clause is true if one of the literals in it is true.

We refer to the pair (x,, ¥;) as a variable. The complement of x, 1s X, and the complement
of X, 1sx,. If a literal y 1s true, then the complement of y 1s false and vice versa. Given a set
of clauses ¢y, ¢», .. , ¢, the clauses are satisfiable if, under some truth assignment to
literals in G, all clauses are true. In the definition of sat3 a set H will specify exactly
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which literals 1n G,, are true. In order for the truth assignment H to satisfy ¢y, ... ¢, for
each ¢,, one of the literals in H must also be inc,,1.e H Ne¢, # .

Problem sat13 (Satisfiability with three literals per clause).

Given:I = {n,cy, ... , c,), where n and m are positive integers, n = 3m, ¢, C Gy, and
le,) =3, fory=1,2,..,m.

Question: Does there exist aset H = {y,, ... , y,} such thaty, equalsx, or ¥, for1 =: =
n,and HN¢, # Jfory =1, .., m? If there is such a set for a given I, we say I 1s
satisfiable O

In the above definition we have used x,, x,, .. for hiterals. Since we are dealing with
small examples, we avoid subscripts and use x, x, y, y, ... for literals. Moreover, we
use “+” to connect literals in a clause and “-” to concatenate clauses. Thus I =
x +y + z)-(f +y + z) is an instance of saT13.

A solution to saT3 would be an algorithm that takes an instance I of sAT3 and answers
true if and only if 7 1s satisfiable. Cook [4] showed that saT3 1s NP-complete, or
informally saT3 1s known to be a hard problem.

At this stage we shall give the reader a feeling for the constructions used for our results
by showing that the least access time problem for pruned tries 1s at least as difficult as
sat3. For simplicity, we use an alphabet size of 9. In Appendix C the result will be
improved so that 1t holds for binary files also

The file F(I) in Figure 4 has been constructed from the mstance I = (x + y + z)-
(x +y + z) of sa13.1 has n = 3 vaniables and m = 2 clauses; F(I) has 6n + 4m = 26
records and 2n + m = 8 attributes. The subfiles (J:Q),® (J:P), and (K:P) depend only on
n and m. The subfile (K:Q) is constructed from the clauses¢, = (x + y + z) and ¢, =
x+y+2).

The first four records in K, 19-22, are for c,. For these records, attributes X, ¥, and Z
have each been set to 8, 8, 9, and 9. Simularly, 1n the next four records, for ¢, =
(X + y + z), attributes X, Y, and Z have each been set to 8, 8, 9, and 9.

We now show that F(I) has a pruned trie with access time 3n(n + 1) + 2m(m + 1) +
4nm if and only if I is satisfiable. The above expression for the access time represents a
pruned trie with six leaves at each of the first » depths and four leaves at each of the next
m, as n Figure 5.

Suppose that / is satisfiable. In our example H = {x, y, z} satisfies both (x + y + z) and
(* +y + z). We construct a trie T for F(I) by first testing on the attributes corresponding
to elements of H, attributes X, Y, and Z in Q. Then we test on each attribute in P. The
resultant trie 1s given in Figure 5. The reader is urged to examine the pruned trie in
Figure 5 closely, paying attention to the fact that the four records for each clause are
separated into two groups by the attributes corresponding to elements in H.

Now suppose that [ 1s not satisfiable. We claim that at least n + 1 attributes must be
chosen from the set Q. The reasoning is as follows In order to distinguish the first 6n
records, at least one attribute must be chosen for each pair of complementary hiterals If
exactly n attributes are chosen, let H' be the set of literals corresponding to these
attributes.

Since / is not satisfiable, for some clause ¢, H’' N ¢ = . But then the three columns in
Q in which the four records for ¢ have 8, 8, 9, and 9 are not tested So the four records
for ¢ are together 1n a block Testing the attribute for ¢ in the set P cannot distinguish
these records We must therefore test on at least one more attribute from Q.

It follows from the above discussion that any pruned trie T for F(I) has depth at least
n +m + 1. From the construction of F(I), at most 6i records can have been distinguished
by depthi, : = =n;atmost 6n + 4 by depthn + 1, 1 =: =< m. Since there is at least
one record at depth n + m + 1, trie T must have access tume at least 3n(n + 1) +
2m(m + 1) + 4nm + 1.

Therefore, F(I) has a pruned trie with access time 3n(n + 1) + 2m(m + 1) + 4nm if and
only if [ is satisfiable We can now state the following theorem.

3 (J.Q) refers to the part of the tables delineated by the records in J and the attributes 1n Q
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Fic 4 (Least access time pruned trie ) The file F(I), where I = (x + y + z) (f + y + z) The attribute
corresponding to a given hiteral x 1s denoted by the relevant upper-case letter X All unspecified entries are 1

Fic 5 Pruned tne for the file F() m Figure 4 Attributes are tested in order X, Y, Z, C,, and C,

THEOREM 1. The least access time pruned trie problem for files with alphabet size at
least 9 1s NP-complete.

Proor In the discussion before the statement of the theorem we estabhished that the
problem on hand was at least as difficult as sa13. The remaining details of the proof are
technicalities and are left to the initiated reader. O

Since all the results in this paper are proved in very much the same manner as the
above theorem, we have relegated them to the Appendixes.

3. Conclusions

In this paper we have considered two kinds of tries: (a) tries in which each attribute 1s
tested, and (b) tries in which testing of attributes stops when a record has been
distinguished. We have demonstrated that determining tries that are mmimal in terms of
storage space 1s NP-complete for all alphabet sizes s, s = 2 for full tries, and s = 3 for
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pruned tries, collapsed tries, and pruned O-tries With a tabular implementation for
tries, determining a minimal average access time trie 1s an NP-complete problem for all
alphabet sizes s = 2.

We do wish to point out that the files used to prove the NP-completeness results in this
paper are atypical. In the reductions the number of attributes k 1s about the same as the
number of records r In practice we expect k to be much smaller than r In studying
heuristics 1t 1s therefore desirable to derive performance bounds with both » and k as
parameters.

Tries are a natural structure to consider while implementing a retrieval system. The
results in this paper suggest that many related trie construction problems are “hard” in a
computational sense. We have concentrated on the nitial construction of a trie for a file
and have not considered addition or deletion of records; further work on trie-based
structures that can easily cope with updates 1s warranted.

Appendix A. Full Tries

Recall that the space taken by a full trie is given by the number of nonleaf nodes in the
trie. If T 1s a full trie for a k-attribute file with » records, then all leaves of T will be at
depth k. The space taken by T 1s given by 255} b,, where b, is the number of nodes at
depth:, 0 =: < k. Note that the b, leaves at depth k are not counted in the space.

Since T is a tree, b, = b,_,, the rate at which the b, sequence grows determines the
space taken by T. We defined, = b, ~ b,_;, 1 =1 < k,andd, = b, = 1. Each 1tem in the
d, sequence represents the number of new nodes which appear at depth ¢; the sequence
dy, dy, ... , d, will be called a profile of the trie.*

Let us now relate sa13 to the problem of least space full tries. The file F(I) constructed
from an instance of SAT3, / = (x + y + 2)-(x + y + z),1s given n Figure 6. F(J) has 2n +
3m attributes and 3n + 7m + 1 records

Before proceeding with the proof of NP-completeness, we examine a useful property
of F(I).

LemMa 1. Let T be a least space full trie for F(I). Then the profile for T has no 0
elements.

Proor. Suppose the profile for T does have 0 elements. We show that T cannot be a
least space full trie for F(I)

Note from Figure 6 that because of the records in group K, selecting an attribute from
set Q will cause at least one new node to appear. Thus a 0 element 1n the profile must
result from the choice of an attribute, say A, in N Each attribute in N has 1 entries for
exactly two records. Let the two records for which A has 1 entries be y, and vy,.

Since selecting attribute A causes no new nodes to appear, one of the following two
cases must occur: Either (1) y, and v, are 1n a block consisting of y; and vy, or (2) both y,
and y, have been distinguished and are 1n single record blocks.

Case 1. If+y, and vy, are together in a block, let B be the attribute with 1 entries for vy,
and vy, chosen before A. Since B has 1 entries for other records, 1t will not only separate
out y, and vy, but will also cause at least two new nodes to appear Note that a smaller trie
can be formed by 1nterchanging the order in which B and A are chosen. The interchange
will result in the profile having two consecutive 1’s rather than 2, 0 Thus the new trie
takes less space, contradicting the minimality of 7.

Case 2. 7y, and vy, have both been distnguished. Let A be the attribute in N
corresponding to the complement of the literal to which A corresponds. Without loss of
generality, let A have a 1 entry for y,.

Consider the attributes that must be selected for y, (the record for which A has a 0
entry) to be distinguished. Aside from A, all other attributes with a 1 entry for y, are
the set Q. Since all attributes 1n Q have 1 entries for records 1n K, at least two of them

¢ The connecton between the profile and size of a trie 1s considered m more detail in Comer and Seth [3],
where more detailed proofs of the NP-completeness results are given
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must be selected in order to distingwish y.. But then, as in case 1, the second such choice
adds at least two new nodes. Interchanging the second of these two attributes with A
results in a trie taking less space. This is a contradiction.

The lemma must therefore hold. O

The next lemma will aid us in proving a lower bound on the space taken by any trie for
£).

LemMa 2 Let A be an attribute from the set N such that A has 1 entries for records vy,
and vy, Then there exists a least space full trie for F(I) in which A is selected before any
other attribute with 1 entries for vy, and vy,.

Proor. From Lemma 1 we can assume that any least space trie T for F(I) has no 0
elements 1n 1ts profile. Moreover, from the proof of Lemma 1 it follows that there may
be at most one attribute B with 1 entries for y, and v, selected before A. Construct a trie
T’ from T by interchanging the order in which B and A are selected. We claim that 7’
takes no more space than 7.

Let L be the set of seven records from K corresponding to the clause represented by B.
From Figure 6 there are two attributes B, and B; that also have 1 entries for some
elements of L. The point to note 1s that B, and B; may be selected between Band A in T
Since B, Bz, and B; are symmetric 1n their effect on records 1in L, delaying the selection
of B cannot increase the number of nonleaf nodes caused by elements of L.

Since both A and B have 1 entries for y, and vy,, interchanging the order of A and B
does not increase the number of nonleaf nodes. The lemma therefore holds. O

Let us now turn to the relation between J and F(I). In Figure 6 H = {x, y, z} satisfies ].
Selecting attributes X, Y, Z, C;, Cos, X, Y, Z, Cy2, Coy, C13, and C,, forms a trie for F(I).
The first three choices correspond to elements of H; the'next two correspond to a literal
from each clause that 15 in H. The remaining attributes from N are selected next,
followed by the attributes from Q (which are selected in pairs). This sequence of
selections is used below to show that the problem 1s NP-complete.

THEOREM 2. The least space full trie problem for binary files 1s NP-complete.

Proor. We reduce sa13 to the problem on hand. Let / be an instance of sat3.
Construct the file F(I) as shown in Figure 6. Let S denote the space taken by a trie
formed as 1n the example above. We show that F(J) has a trie taking space S if and only if
I is satisfiable.

If ] is satisfiable, then a trie of size S exists So suppose there is a trie T for F(I) taking
space S From Lemma 1, the profile of T has no 0 elements. From Lemma 2 we can
assume that an attribute A in N 1s chosen before any attribute with 1 entries for the 1
entries of A s chosen from Q. Thus the first choice for each pair of attributes m N will
lead to one new node and the second to two new nodes. From Figure 6, each triple of
attributes in Q will lead to at least one, two, or four new nodes Thus the best possible
trie for F(I) has space S. Since there are n + m selections that lead to one new node, n of
these pick one of each pair of attributes in N. Let H C G, correspond to these attributes
m N. The fact that there are at least m more selections with one new node verifies that i
satisfies /.

Thus F(I) has a trie taking space S if and only if 7 is satisfiable. O

Appendix B. Pruned Tries, Collapsed Tries, and Pruned O-Tries

In this Appendix we show that the problem of finding a minimum size pruned trie is NP-
complete.

THEOREM 3. The following problems are NP-complete for all alphabet sizes s, s = 3:
(a) pruned trie space minimization, (b) collapsed trie space muninuzation, and (c) pruned
trie space mimimization for O-tries.

Proor. The same construction suffices for all three problems. We give the proof for
the pruned trie space mmimization problem. From the construction in Figure 7, there is
an ordering of attributes which yields a trie of 2n + m nodes when the formula 1s
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Fic 6 (Least space full trie ) The file F(J) for/ = (x + y + z) (£ +y + z) All entries for record 24 are 0
Choostng attributes from set N which correspond to Iiterals which satisfy 7 will enable m selections from set Q
which add only one new node each and a minimum size trie will result

satisfiable. We show that if a trie of 22 + m nodes exists, the formulas must be
satisfiable.

In order for us to distinguish records in L, T must have depth 2z + m and must
therefore have at most one nonleaf node at each depth Consideration of the records in L
shows that they must be distinguished in order Since exactly one of U,and U,, 1 <1 =<n,
in N must be chosen first, let H be the set of literals corresponding to the attributes

chosen 1n N. Since each record 1n K is distinguished in 7', 1t must be true that H satisfies
1. O

Appendix C. Access Tume for Pruned Tries®

In Section 2 we showed that the least access fime problem for pruned tries is NP-
complete for alphabet size 9 Here we tighten the result to hold for all alphabet sizes s,
s = 2. The basic 1dea 1s to construct a file for which the least access time pruned trie T 1s
hke a full binary tree for the first # + 1 depths, where 4 = 4 + 2 log(n + m). Atdepthh
we have 3n + m nonleaf nodes corresponding to groups of records J;;, .. , K,,, where the
Jand K groups are as in Figure 8. There are also 2" — (3n + m) leaves at this depth. (The
integer i has been chosen large enough that if the records represented by these leaves are
not distinguished by depth & + 1, then the trie 1n question has an access time that 1s too
large ) If the first 2 depths are as mentioned above, then we can simulate the reduction
for alphabet size 9 by using a binary alphabet.

The relation between an instance [ of saT13 and a file F(/) 1s given in Figure 8 We now

show that attributes in N must be tested before attributes 1n Q or P or else the access time
will be too large

5 In a recent paper Hyafil and Rivest [8] show that the problems of leaf access time for collapsed and pruned O-
tries 1s NP-complete for all alphabet sizess, s > 2
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N o P
VA~ — A/ \
U, Uy U, Ty Ug U3° C12%3 $21C2202303Ca32033 W) Wo W3
BK r 1 1
1 1 1
1 1 1 3
J 1 1 1
1 1 1 1
1 1 1
~
> 111
K 114 4
N 141
(2 2 22 22l2 2222222 2|2 2 2
22 22|22 22222¢2¢2|22z2
2 2{z2 2222222 2|2 22
222222¢2%22|222
L 2 22 2 2 2|2 22
2 2 2]2 2 2
2 2 2
2 2
. 2

Xy z Xy T x ¥

Ny
Nl

X X y y z
Fic 7 Sample construction for least space pruned tries F(I) 1s shown for/ = (x + y + 2) ()E +y+ )
(x + y + 7) Lower-case letters give the literal corresponding to an attribute The ordering U,, U, U, Gy, C23,

Cys, Wy, W,, W, leads to a pruned trie with 2n + m nonleaf nodes, withn = 3, m = 3 Note that U,, T,, U,
corresponds to H = {x, y, 7}

LemMa 3. Let F(I) have a pruned trie with access time no more than h(2" —~ 3n ~ m)
+ h(6n + 4m) + 3n(n + 1) + 2m(m + 1) + 4nm. Let n + m = 16. Then the first h
attributes tested in T are elements of N.

Proor. If the lemma is false, then an element, say A, of N is not one of the first i
attributes tested. Consider a record B in L with a 1 entry for A. There must be another
record B’ such that 8 and B’ agree in all bit positions except:, 1 <1 =< h. If 8 is also in
L, then 8 and B’ cannot be distinguished by the attributes in N that have been selected.

Since 3n + m h-bit integers are assigned to records n J U K, at least 2* — 6n ~ 2m
records are distingwished no earlier than depth # + 1. The access time for T 1s therefore
atleastA = (h + 1)(2" — 6n — 2m). We show that A > h(2" — 3n — m) + h(6n + 4m) +
3n(n + 1) + 2m(m + 1) + 4mn. Canceling terms and simplifying, we get

2> hOn +5m) +3nn+ 1) + 2mim + 1)dmn + 6n + 2m = . (1)

We prove (1) by determining an upper bound on o and showing that 2" 1s greater than
the upper bound. Forn = 3 andm = 1 we can derive ¢ < (n + m)(9h + 6n + 6m). Since
h=4+[2logln +m)lforn +m =16, h <n +m. Thusforn + m = 16, 9% + 6n + 6m
< 15(n + m). We can therefore state that o < 15(n + m)? since we are givenn + m = 16.

In order to prove (1) we show that 2! > 15(n +m)?. Sinceh = 4 + [2log(n + m)], h =
4 + 2 log(n + m) and

20z 2'(n + m): = 16(n + m)2 > 15(n + m) > 0.

The lemma must therefore be true. O

THeorReM 4. The least access time pruned trie problem for binary files is NP-
complete

Prook. Given an mstance / of sat3, construct F(I) as in Figure 8. We claim F(I) has a
pruned trie with access time no more than

h(2" —3n —m) + h(6n + 4m) + 3n(n + 1) + 2m(m + 1) + dnm

if and only if I is satisfiable.
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N Q P
-\ \
P 123456789U1U U2U2U3U3C1C2
0 11
Jll[o 0o
1 11
J|2 4 Q0
) 01 11
13 {101 00
14 11
11 00
) 001 11
001 0 0
104 1 4
104 s}
011 11
011 00
1144 11
111 00
) 0001 11
| “33{ (0001 00
" 1004 1 ARNE
K 1004 1 114 o
1 1001 0 olo 1
K 1001 . ) olo o}
0101 4] 1 A
K 0101 411 4 o
2 o101 ofo 0 1
0101 ofo 0 0
r 1404
0011
L ~3nm .
L}_ 111111411

x X yy z 1z
Fic 8 (Least access time pruned trie ) Submatrix (J U K'Q U P) 1s very sinular to Figure 4. The values

assigned to set N are all possible A-bit binary numbers as shown The selection of all attributes from N produces
a diviston of the records m (J U K Q U P) such that the proof of Theorem 1 applies

|
lm AKAAA

It Y2 dnz Ky Km ﬁ————-—/
2" -3n-m
Fic 9 Furst h depths for a pruned trie for the file 1n Figure 8 Note the large number of leaves, 2/ — 3n —m,
at depth h

Suppose / is satisfiable Then construct T by first testing on all the attributes in group
N. T will then have 2" — 3n — m leaves at depthh accounting for the h(2" — 3n — m) term
in the access time. The remaining selections proceed as 1n Figure 4 except that the én -+
4m records in J U K 1n Figure 8 will be distinguished # depths later than for the file in
Figure 4 Thus the access time 18 h(6n + 4m) + 3n(n + 1) + 2m(m + 1) + 4nm.

Suppose for the second half that F{J) does have a trie with access time no more than
the bound Then, from Lemma 3, the furst 4 attributes tested are elements of N. The trie
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must look like Figure 9 at depth %. The rest of the proof is similar to the proof of
Theorem 1. O
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