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Both single-level and two-level indexed descriptor schemes for multikey retrieval are presented and 
compared. The descriptors are formed using superimposed coding techniques and stored using a bit- 
inversion technique. A fast-batch insertion algorithm for which the cost of forming the bit-inverted 
file is less than one disk access per record is presented. For large data files, it is shown that the two- 
level implementation is generally more efficient for queries with a small number of matching records. 
For queries that specify two or more values, there is a potential problem with the two-level 
implementation in that costs may accrue when blocks of records match the query but individual 
records within these blocks do not. One approach to overcoming this problem is to set bits in the 
descriptors based on pairs of indexed terms. This approach is presented and analyzed. 
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1. INTRODUCTION 

Existing database systems generally fall into two classes. In the first class, the 
database systems are designed for formatted records and include relational 
database systems, while the second class contains systems designed for the 
retrieval of free text. There have been some attempts to design systems to handle 
both formatted and unformatted data [2, 9, 15, 19, 221. These systems are 
particularly useful in the areas of office automation, computerized libraries, and 
image databases. 

An essential component of these extended systems is an access method that 
can efficiently store and retrieve both formatted and unformatted data. One 
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approach that has been advocated for these applications uses superimposed 
coding techniques to form record descriptors for the records in the data file 
[23, 241. This method gives good retrieval performance and is efficient of 
storage [lo, 211. 

As well as forming descriptors for individual records in the file, it is possible 
to form descriptors for blocks of records, thus forming a multilevel descriptor 
file. For large databases, the multilevel index is more efficient. However, block 
descriptors can lead to the occurrence of unsuccessful block matches, which occur 
when a block of records contains the terms specified in a query but the individual 
records within these blocks do not. 

In this paper we propose a two-level implementation of a superimposed coding 
scheme. The encoding scheme used to form the descriptors at the block level is 
designed to reduce the occurrences of unsuccessful block matches. The benefit of 
this method is that query times remain low for both single-term and multiterm 
queries and the storage overheads required are small. The method remains 
efficient, even for large data files containing hundreds of thousands of records, 
each record containing many terms. 

This paper is organized as follows. First we present a brief overview of some 
of the methods used for text retrieval and describe some of the approaches, based 
on superimposed coding, that have been proposed. A description of our method 
is then presented in Section 3. 

In Section 4 we compare the one-level and two-level implementations of the 
descriptor files. In order to compare these indexing schemes, a number of issues 
must be considered. These include the size of the file, the file system used on the 

, host computer, whether dedicated hardware is available, and the query types that 
need to be supported. We describe the differences between the one- and two- 
level implementations of superimposed coding in a number of environments and 
show that for large data files the two-level implementation is generally more 
efficient than the one-level scheme for queries for which the number of matching 
records is small (O-200 records). In an interactive environment, such queries are 
the most common and must be supported very efficiently. 

In Section 5, the encoding scheme, which takes into account the frequencies 
of the index terms, is presented and analyzed. We show that with this encoding 
scheme, the two-level scheme is efficient for single- and multiterm queries. 
Results computed from a theoretical analysis are presented in Section 6, and 
experimental results obtained from a library database containing 150,000 records 
are given in Section 7. 

In Section 8 some practical issues are considered. The encoding technique that 
is proposed requires the identification of those indexed terms that appear in a 
large number of records (common words). We describe practical techniques for 
identifying these common terms. 

In Section 9 a fast batch insertion algorithm is described. The proposed two- 
level scheme uses a storage technique called a bit slice implementation. This 
technique is required for efficient query processing but makes interactive inser- 
tions relatively slow. For applications involving large databases, fast insertion 
capabilities are extremely important and with the method proposed in this paper, 
batch insertion costs of 2 or 3 disk accesses per record can be achieved. 

The conclusions are presented in Section 10. 
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987. 



Multikey Access Methods 657 

2. OVERVIEW 

Faloutsos [lo] has presented a recent review of access methods applicable to both 
formatted and unformatted data. He classifies text retrieval methods into the 
following four classes: 

(1) Full Text Scanning. In this method the full text database is scanned for 
matching records [l, 4,171. No extra storage overheads are incurred, but the 
method is relatively slow for large databases. 

(2) Inversion. This method uses an inverted file index. It has been implemented 
in many commercial text retrieval systems [27, 281. It provides relatively 
efficient query speeds, but can be very expensive of storage. In addition 
insertion times are slow. 

(3) Clustering. In this method, similar documents are grouped together to form 
clusters [26, 27, 301. Clustered documents can be stored physically together, 
facilitating efficient retrieval of related documents. A descriptor is stored for 
each cluster and a search correlates, typically using a vector similarity 
function, these descriptors with the query descriptor to retrieve relevant 
documents. The main disadvantage of these methods is the slow insertion 
times [lo]. 

(4) Signature Files. In this method, a descriptor or signature is associated with 
each record or document [lo], the descriptor being a bit encoding of the 
values used to retrieve the record. When a query is processed, the tile of 
descriptors, rather than the data records, is examined for possible matches. 
A query descriptor is formed using the same encoding technique that is used 
for forming record descriptors. The possible record matches are those records 
whose descriptors contain bits set in each position for which a bit is set in 
the query descriptor. Signature file methods have good retrieval properties 
and require small storage overheads. 

We propose a new signature file method suitable for large data files. We begin 
by briefly reviewing some signature file methods. 

For methods to be applicable to both text retrieval as well as formatted data, 
an effective way to form the descriptors uses superimposed coding techniques 
[lo]. With this method, descriptors are formed for each of the terms used to 
retrieve the record, and the record descriptor is formed in turn by superimposing 
(inclusive ORing) the term descriptors. A term descriptor is a bit vector of b bits 
with exactly k bits set to 1. The superimposing of term descriptors makes the 
method readily amenable to unformatted records, since there are no restric- 
tions (other than for performance considerations) on the number of terms per 
record. 

Various compression techniques have been proposed for representing the record 
descriptors. If b is large and k is small, then the descriptor will be sparse and 
compression techniques can be applied. McIlroy [18] proposed a compression 
technique for which the number of zeros between two successive 1s in the sparse 
vector was recorded. Faloutsos [ 111 proposed another compression technique for 
which the sparse vector is divided into groups of consecutive bits and variable 
length encodings of the bits set in each of these groups are stored. A survey of 
these compression-based representations is presented in [ 111. Although efficient 
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of storage, these techniques make query processing slower and are not considered 
in this paper. 

There have also been different techniques proposed for the storage of record 
descriptors. One approach, which we call a bit-slice representation, improves 
query response time by reducing the number of bits that have to be retrieved 
from the file of record descriptors at query time. This storage technique has been 
used in [20, 24, 321. 

The signature file methods surveyed in [ll] are all one-level schemes in the 
sense that descriptors are formed for single records only. As a consequence, these 
methods become relatively slow for large data files, since all of these descriptors 
have to be examined on query. It is possible to overcome this problem by forming 
descriptors for blocks of records and thereby implement a multilevel indexing 
scheme. A two-level scheme for superimposed coding was proposed in [24], the 
performance of which is analyzed in [25]. The idea of a multilevel indexed 
descriptor method was first proposed in [20]; however, the approach in that paper 
was based on disjoint coding techniques rather than superimposed coding, the 
latter being more efficient for text retrieval applications. 

As well as using a two-level descriptor file to improve query response times, a 
bit slice representation is used for the storage of the block descriptors in the 
method proposed in this paper. A property of this representation is that individual 
bits belonging to particular block descriptors can be stored very far apart on the 
secondary storage device. As a consequence, although query times are reduced 
with this storage technique, insertion costs are no longer cheap. If insertions are 
batched, however, considerable savings can be made. In this paper we describe a 
batch insertion technique for which the cost of forming the block descriptor file 
using the bit slice representation is typically less than one disk access per record. 

In order that the two-level scheme be efficient for all query types, it is important 
that the encoding scheme take into account the frequencies of the index terms. 
This is the approach adopted in this paper. The main purpose of the encoding 
scheme is to reduce the number of occurrences of unsuccessful block matches. 
Although unsuccessful block matches do not occur with one-level implementa- 
tions, improved performance can also be achieved with these one-level schemes 
if the encoding scheme takes into account term frequencies. Encoding schemes 
for the one-level implementations that take into account the nonuniform distri- 
bution of the index terms were proposed in [20] and analyzed in [12]. 

The coding techniques used to form term descriptors can be extended so that 
direct indexing is possible on word parts and pairs of words. This makes the 
superimposed coding methods extremely attractive in a number of different 
applications. Harrison [ 131 proposed using superimposed coding for substring 
testing, and this approach is further explored in [ll]. In this paper we describe 
some experimental results obtained when superimposed coding is used to directly 
index on word phrases. 

In addition to text retrieval, superimposed coding techniques have been applied 
to a number of other application domains. These include message files [6], optical 
disk storage [7], statistical databases [32], filtering methods [3, 181, and Prolog 
databases [8, 221. Superimposed coding techniques are well suited to hardware 
implementation [ 14, 161. 
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In this example, each record describes a book and has up to five terms (s = 5) corresponding to the 
three attributes: author name, publication date, and title keyword. 

i 

a1 = Theroux, P. (author name) 
vz = 1975 (publication date) 

R = u3 = Great (title keyword) 
v4 = Railway (title keyword) 
ug = Bazaar (title keyword) 

There will be three functions HI, Hz, H3 for generating codewords, one for each attribute. Suppose 
that b = 15 and k = 2 and 

Hl(u,) = 00010 00000 10000 
Hz&) = 01001 00000 00000 
Ha(u3) = 00010 00100 00000 
H&I,) = 00000 00010 00001 
Ha(u,) = 00001 00001 00000 

Then I&, the record descriptor for record R, is 

DR = 01011 00111 10001 

Fig. 1. An example of superimposed coding. 

3. DESCRIPTION OF THE METHOD 

We begin by describing the one-level scheme. A record descriptor is a bit string 
that is formed from the terms that are used to retrieve the record. A record 
descriptor is constructed as follows. First each term is transformed into a code 
word that is a bit string of length b containing exactly k 1s and b - k OS. Here b 
and k are parameters of the method. Suppose that each record contains s terms. 
Then a record descriptor is formed by superimposing (inclusive ORing) the 
corresponding s code words for record R. An example of this process is given in 
Figure 1. 

A query consists of the specification of Q terms (4 5 a). These 9 values are 
transformed into q code words that are then superimposed to form a query 
descriptor. Observe that if a record satisfies a query, then every bit position that 
is set in the query descriptor must also be set in the record descriptor. Thus to 
answer a query it is necessary to search for record descriptors that match the 
query descriptor in this way. This can be achieved using simple AND and OR 
operations. 

It is possible that a record descriptor matches a query descriptor but the 
corresponding record does not satisfy the query. Such an occurrence is referred 
to as a false match. The probability of a false match can be made arbitrarily small 
by appropriate choice of the parameters b and k. 

As we have described the method so far, it is necessary to retrieve every record 
descriptor in order to answer a query. We now describe the two techniques 
discussed previously for reducing the amount of descriptor file that must be 
retrieved on query. 

The first technique related to how the record descriptors are stored on disk. 
Suppose the data file contains N records. Rather than viewing the descriptor file 
as consisting of N strings of b bits in length, it is possible to store the file as b 
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strings, each of length N. If a query contains w Is, then with the latter represen- 
tation it is possible to check the relevant w bits of every record descriptor without 
fetching any of the other bits. Thus only WN rather than bN bits of the descriptor 
file need be examined on a query. This approach, known as the bit slice represen- 
tation of the descriptor file, can contribute considerable savings, since typically 
w << b. 

Even with the bit slice representation, a large amount of data must be fetched 
from secondary store in order to answer a query. Consider a query for which a 
single term is specified. Then 12 slices, each containing N bits, must be fetched 
from disk. In a shared environment, where the disk is organized as a number of 
equal sized pages or blocks, a large number of disk accesses (seeks) are required 
to retrieve these data. If each page in secondary store has a capacity of P bits, 
then the number of disk access required is at least k . lN/Pl. If N = 500,000 
and P = 8192 (1K bytes), then for k = 4, as many as 248 disk accesses are 
required to determine the matching records. Even with a dedicated disk drive, 
the large amount of data to be processed makes the one-level scheme somewhat 
expensive. 

Another problem with using a one-level scheme together with a bit slice 
representation is that a separate data structure mapping a logical record number 
onto a physical location on disk must be maintained. (This is not a problem if, 
for example, the data records are fixed length and the physical records are stored 
contiguously on disk.) If this data structure is stored on disk, then the cost of 
answering a query increases due to the indirection introduced. 

The second technique for reducing the amount descriptor file that must be 
examined on query is based on using a multilevel descriptor file rather than a 
single-level file. In [24], a two-level scheme is proposed for which a data file of 
N records is viewed as consisting of N, blocks, each containing N, records where 
N = N, - N,. Both block descriptors and record descriptors are stored in this 
scheme. A block descriptor is formed analogously to a record descriptor using all 
the terms of all the records contained in that block. It will, in general, be much 
larger than a record descriptor. Suppose that the block descriptors are character- 
ized by parameters b, and kS and the record descriptors by b, and k,. 

In the approach we propose (see Figure 2), the block descriptor tile is stored 
using the bit slice representation, whereas the record descriptors are stored as 
bit strings. The physical location of a record is stored together with its corre- 
sponding record descriptor. We also assume that the parameters of the two-level 
scheme are such that all of the record descriptors for a particular block, together 
with their associated pointers, can fit entirely within a single page of secondary 
store. 

In order to answer a query using the two-level scheme, two query descriptors 
are formed: a query block descriptor and a query record descriptor. The query 
block descriptor is based on parameters b, and kS and is used to determine which 
blocks satisfy the query. Only the record descriptors from matching blocks are 
then compared to the query record descriptor. 

The cost of answering a query that specifies a single term can be estimated as 
follows. First the query block descriptor is formed by determining which of the 
b, descriptor bits are set by this term. When only one term is specified, then 
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987. 
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Block Descriptor 

File 

Record Descriutor 

b, = 23 

N, = 3 

File 
Data File 

I I I < , 
N, = 4 

Fig. 2. Index structure for the two-level scheme. 

exactly ks bits are set. The corresponding slices of the block descriptor file are 
then fetched from secondary store. This will typically involve ks disk accesses or 
a small multiple thereof, since the length of a slice is now N, rather than N bits 
as in the single-level scheme. It is then possible to determine which blocks satisfy 
the query. For each matching block, we fetch the corresponding record descrip- 
tors. By design, all the record descriptors for a given block fit within a single 
page so that if there are n, matching blocks, this can be achieved with n, further 
disk accesses. It is then possible to determine which records satisfy the query 
and fetch the corresponding data records. Suppose that A records satisfy the 
query and D(A) disk accesses are required to fetch all these records from disk. 
The total number of disk accesses, therefore, required to answer a query for 
which a single term is supplied is k, + n, + D(A). Here we have ignored false 
matches, but typically the number of false matches will be small by design. 

For queries that specify a single term, the two-level scheme overcomes both of 
the problems previously discussed for the one-level implementation. Let us now 
consider queries for which more than one term is specified. In this case w, 2 k, 
bits will be set in the query descriptor and up to ws slices from the block descriptor 
file can be retrieved in order to determine the number of matching blocks. Note, 
however, that only k, slices need be fetched in order that the probability of a 
false match with a block containing none of the query terms be the same as for 
the single-value query case. As a consequence, the number of disk accesses 
required to determine the matching blocks for multiterm queries is typically only 
marginally greater than the constant overhead required for single-term queries. 

For queries that specify two or more terms, an additional cost, not associated 
with the single-level scheme, occurs in the two-level implementation. Consider a 
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query that specifies two terms, al and u2. Because a block descriptor is formed 
from all of the terms of the records belonging to that block, there may exist a 
block that contains a record with term aI and contains another record with term 
a2 but contains no record with both terms al and u2. Such a block will generate 
a block match even though it contains no records that satisfy the query. We refer 
to this occurrence as an unsuccessful block match. The cost of an unsuccessful 
block match is one disk access, since the page of record descriptors for that block 
will be fetched. It is very unlikely that any false record matches will be generated 
as a result of an unsuccessful block match [25]. This is because many more than 
k, bits will be set in the query record descriptor. As the record descriptors are 
stored as bit strings, all the set bits in the query descriptor will be compared to 
the corresponding bits in each record descriptor that is examined. Hence the 
probability of a false record match is much lower than for the single-term case. 

In order to estimate the potential number of unsuccessful block matches, let 
Aj be the number of records containing term oj , j = 1,2, and let A * be the number 
of records containing both al and u2. Define 

Then p(Aj ) is an estimate of the probability that a particular block contains one 
or more records with term oj. This estimate is based on the assumption that 
records with term oj are distributed uniformly over the data blocks. If the terms 
a1 and a2 are independent, then we may estimate the number of unsuccessful 
block matches, U(ai, uz) as 

Uh, a2) = N, - P(A, -A*) . P(A2 - A*) . [l - P(A*)]. 

For Aj << N, we may approximate P(Aj) by 

A.iV A, 
p(Aj) +-&=--$. 

s 

If we consider the case A1 = A2 = A, A* = 0, then with this approximation 

We can therefore determine the number of occurrences, x, of two such terms, 
necessary to result in a single unsuccessful match as 

x = (Ny2. 

If A = ox, then the number of unsuccessful matches can be estimated as w2. 
When n > 2 terms are supplied in a query, we can estimate the number of 

unsuccessful block matches U(ui, u2, . . . , a,) in a similar way to the case n = 2. 
In particular, if A1 = A2 = . . . = A,, = A, and if A* = 0, then 

A” 
U(u,, u2, . . . ) a,) = ~ 

(NJ’-l ’ 

Obviously the numbers of unsuccessful block matches will tend to decrease as 
more terms are supplied in a query. 
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One way to substantially reduce unsuccessful block matches is to set bits in 
the block descriptors by hashing pairs of terms as well as the terms themselves. 
Thus if there exist two terms al and a2 in a record, then it is possible to set bits 
in the appropriate block descriptor based on the pair al . a2 in addition to setting 
bits generated from al and u2. To answer a query specifying both al and u2, these 
extra bits will be set in the query descriptor at the block level, thereby eliminating 
most of the unsuccessful block matches. This approach will be particularly useful 
if the attributes corresponding to both al and u2 have domains that are small 
compared to the number of records in the file or if the attributes have highly 
nonuniform distributions. A method employing this technique is described in 
Section 5 of this paper. The extra overheads generated by setting these extra bits 
are small, since typically only one or two bits need be set for a pair of terms and 
this technique need only be applied to selected terms. 

We conclude this section by remarking that the generation of bits in a 
descriptor using word pairs has other applications. By setting a single bit for 
every pair of adjacent words in a string of text, it is possible to directly support, 
at small cost, the indexing of text phrases as well as single words of text. When 
a phrase is specified in a query, the use of such adjacency bits will practically 
eliminate the retrieval of those documents that contain all the words in the 
phrase, unless these words are in consecutive locations. Another application to 
text retrieval arises when triplets of consecutive letters rather than single words 
are used for indexing [ 121. This approach is useful for supporting queries in 
which substrings of words are specified. Unsuccessful matches can occur if this 
technique is adopted, however, since records that contain all the triplets specified 
in a substring will be retrieved, even when these triplets are in the incorrect 
order. Setting bits based on pairs of consecutive triplets can be used to reduce 
the consequent cost. 

4. COMPARISON OF THE ONE-LEVEL AND TWO-LEVEL SCHEME 

We begin by investigating the costs when a single term is supplied in a query. In 
order to estimate the number of false matches, we will use the formula 

as an estimate of the probability that t chosen bits are set in a descriptor that is 
defined by parameters b and k and which is formed from s terms. If the number 
of descriptors that must be examined when answering a query is n and the 
number of bits set in the query descriptor is t, then we can estimate the number 
of false matches as (n - A) . 9 (t; k, b, s), where A is the number of true matches. 
Since A << n, we approximate this estimate by n . q (t; k, b, s) to simplify the 
analysis. 

In the following we present the costs of both the one- and two-level schemes. 
As discussed previously, one of the components in the cost is the time required 
to retrieve a bit slice from secondary store. For the one-level scheme, these slices 
will be N bits in length, where N is the number of records to be indexed. In a 
shared system where files are stored in noncontiguous blocks (pages), several 
seeks will typically be required to retrieve a single slice from secondary memory. 
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In this environment the one-level scheme can become very expensive compared 
to the two-level scheme. On the other hand, in a dedicated environment where 
the descriptor file is stored contiguously on disk and hardware is provided to 
enable the retrieval of a single slice in only one disk access, then the one-level 
scheme becomes more competitive. We will compare the one-level and two-level 
schemes in both of these environments. For definiteness, we will refer to the 
former system environment as being shared and the latter as being dedicated. 

An assumption that we will make is that the data records are of variable length. 
For the one-level scheme, a separate array of pointers to the data records must 
be maintained. For large files this array will often be required to be resident on 
disk. We will, however, also investigate the case when the array is stored in core. 

Finally, we also assume that there is sufficient in core memory available to 
store two bit slices. 

In the comparison, we make use of the following parameters. 

P 

B” 
TS 
Td 

TCl 
TZ 
TO 
TC 
A 
Ci 
Di 

Page size in bits 
Word size = pointer size 
Blocking factor (number of data records per block) 
Average seek time 
Time required to read one bit of data from disk (inverse of data transfer 
rate) 
Time required for an AND operation on a pair of bits 
Time required to detect a zero word/word size 
Time required to locate the position of a 1 within a word 
Average computation time per block to retrieve the matching records 
Number of records that satisfy the query 
Cost of step i for the one-level scheme 
Cost of step i for the two-level scheme 

In the following, we will require an estimate of the expected number of blocks 
containing r randomly chosen tokens, given that m is the number of tokens per 
block and n is the number of blocks. An estimate of the probability that an 
arbitrary block contains one or more of the tokens, e(r, m, n), is given by the 
following formula [33 1: 

The expected number of blocks containing the r tokens is then e(r, m, n) a n. In 
order to reduce the computation time required to evaluate e(r, m, n), a closed, 
noniterative approximation was provided by Whang et al. [31]. The noniterative 
formula is 

e(r, m, n) = 
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when r 5 mn - m and 

e(r, m, n) = 1 

when r > mn - m. This approximation was used throughout this paper. 
It should be pointed out that the calculation of expected block accesses using 

the average number of tokens per block, m, rather than the distribution can lead 
to overestimates of the block accesses required if there is a variable number of 
tokens per block [5]. In the following comparison, the costs at the index levels 
will be estimated accurately, since the descriptors are of fixed length. We will 
also assume that the data records have small variance in length. If this is not 
true, then the estimates for both methods will be affected, since the estimated 
costs of retrieving the actual data from disk will be biased. 

We begin by considering the cost of answering a query using the one-level 
scheme. If we assume that a single term has been supplied in the query, then the 
one-level scheme consists of the following steps. 

Algorithm 1 (one-leuel) 
Step 1. Retrieve and transfer iz bit slices from disk. If the scheme is imple- 

mented using a dedicated disk, then the cost of this step is 

Cl=k.T,+k-N.T,. 

On the other hand, if the secondary memory is shared and a seek is required for 
every page that is retrieved from secondary store, then the cost of step 1 becomes 

. (Ts + P - Td). 

Step 2. AND k bit slices 

Cz = (k - 1) . N . T,. 

Step 3. Find the positions of the set bits in the resultant vector 

c3 = N - T,+n. T,, 

where 

and 

n = true record matches + false record matches = A + F 

F = N . q(k; k, b, s). 

Step 4. Determine the locations of the matching n records. If the array of 
pointers to the data records is stored on disk, then the cost of this step is 

If the array is kept in core, then the cost of step 4 can be ignored. 
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Step 5. Retrieve data 

C, = e a [T, + P . Td + TJ. 

We now present the costs of the two-level scheme. The steps involved are 
described below. 

Algorithm 2 (two-level) 
Step 1. Retrieve and transfer k, bit slices from the block descriptor file stored 

on disk. In a dedicated environment the cost is 

Dl=$. T,+k,. N,. Td, 

while in a shared environment, the cost is 

Dl= k, . 5 
I 1 

. (Ts + 2’ . Td). 

Step 2. AND $ bit slices 

Dz = (ks - 1) . N, . T,. 

Step 3. Find the positions of the set bits in the resultant vector 

D3=N,. T,+n,. TO, 

where 

ns = true block matches + false block matches = e(A, N,, N,) + F, 

and 

Fs = Ns . q(ks; $3 b,, Nrs). 

Step 4. Read record descriptors for matching blocks 

D4 = n, . [Ts + P . Td]. 

Step 5. Determine the matching records by examining the record descriptors 

D5 = n, . [ (kr - 1) . N, e T, + N, - T, + c . TO], 

where 

and 

and 

n, = true record matches + false record matches = A + F, 

F, = N, . n, . q(k,; k,, b,, s). 

For simplicity, we have assumed that the record descriptors are also stored in bit 
slice form in deriving D5. 
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Step 6. Retrieve data 

Ds = e . [Ts + P . Td + T,]. 

In order to compare the two schemes, let us assume initially that a dedicated 
disk drive is available. If we choose k = k, and we also assume that the number 
of matching records is small, so that n, = n << N, then both schemes will require 
the same number of seeks to answer a query for which a single term is specified. 
The difference in costs for the two schemes reduces to the following: 

DIFF = cost of one-level scheme - cost of two-level scheme 

On most computers T, z T,, so the difference becomes 

(N-N,)[T,j+T,]k,-n[k,. N,. T,+T,J. 

Since the first term of the preceding expression dominates the second term for 
typical parameter values, we can conclude that DIFF > 0 under these assump- 
tions. For queries that result in a small number of matching records, the one- 
level scheme is more expensive than the two-level scheme. On the other hand, as 
the number of matching records, A, increases, it will be seen that the one-level 
scheme becomes more competitive. The relationship between the two schemes 
for typical parameter values is explored further below. 

A number of experiments were conducted, comparing the two schemes using 
databases of different sizes. For these tests, the parameters of the two-level 
scheme were chosen using the following criteria. The number of blocks was 
chosen to be an integral multiple of the page size, P, so that the bit slices were 
aligned on page boundaries. The number of records per block was chosen so that 
N, ’ (b, + w ) = P/2’ for some integer i 2 0. It could then be guaranteed that the 
record descriptors for a matching block could be retrieved using a single disk 
access. For each database, b, was chosen so that the expected number of false 
block matches was one. 

The parameters of the one-level scheme were chosen so that k = lz, and the 
storage overhead generated by the one-level scheme was equal to that of the two- 
level scheme. 

As an example, consider the following database of just over one million records, 
each containing 20 terms. The parameters used in the comparisons are listed in 
Figure 3. 

The times in seconds to answer a query for various numbers of matching 
records are presented in Figure 4. It can be observed that if the number of 
matching records, A, is sufficiently large, then the one-level scheme is faster than 
the two-level scheme, but when A is small, the two-level scheme is more efficient. 
The crossover point depends on the system environment. In a shared environ- 
ment, the two-level scheme is faster for queries with up to 2000 matching records. 
In a dedicated environment, the crossover point is approximately 500 records if, 
for the one-level scheme, the array pointers to the data records is stored on disk 
and approximately 90 records if it is stored in core. 
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N = 1,048,576 (number of records) 
s = 20 (number of attributes) 
P = 8192 (page size (1K bytes)) 
B = 8 (average record size 128 bytes) 

!I’. = 35 milliseconds 
Td = 0.2 microseconds (5 megabits/s+ 
T, = 0.2 microseconds 
T, = 0.2 microseconds 
T, = 0.2 microseconds 
T, = 500 microseconds 

Two-Level Scheme 
N, = 40,960 (number of blocks) 
N,=26 (records per block) 

k. = 4 k, = 8 
b. = 28,540 b, = 283 
qk ks, b., s . Nr) = l/N. q&r; k,, b., s) = 1/29N 

One-Level Scheme 
k=4 
b = 1397 
q(k; k, b, s) = 10/N 
Storage = 8.93 bytes per indexed term 

Fig. 3. Example database. 

Total 

query 
time 

(SeconW i 0.0 

1 10 100 1000 10000 

Record matches 

Fig. 4. Query costs for page size = 1024 bytes, s = 20, N = 1,048,576. 
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total 

wry 
time 

(seconds) I 0.0 

1.0 

- - - - - One level, shared 
----------- One level, dedicated 
-------- One level, pointers in memory 
___ Two level, shared 
-- - Two level, dedicated 

0.2 

I I I111111 I I111111 I llllll1 I I111111 I 
1 10 100 1000 10000 

record matches 

Fig. 5. Query costs for page size = 4096 bytes, s = 10, N = 1,048,576. 

As the page size increases, and the database gets smaller, the values of A at 
the crossover points tend to decrease. In Figure 5, the page size is increased to 
4K bytes, and s is reduced to 10. The values at the crossover points described 
above are 600, 250, and 40, respectively. For a page size of 1K bytes, a database 
of 131,072 records, and .s = 10, the values are 300, 120, and 8, respectively. 

If we consider now queries for which more than one term is supplied, then for 
the two-level scheme there is an additional cost involved due to unsuccessful 
block matches. This additional cost is not present in the one-level scheme. In 
order to estimate the effect of unsuccessful block matches on query performance, 
we computed for each value of A for which the two-level scheme outperformed 
the one-level scheme, the number of unsuccessful block matches, u(A), that 
could be tolerated by the two-level scheme before becoming more expensive than 
the one-level implementation. 

u(A) = 
cost of one-level scheme - cost of two-level scheme 

cost of an unsuccessful block match ’ 

The cost of an unsuccessful block match is the time required to retrieve and 
examine a block of matching record descriptors. This cost is T, + P . Td + 
q . (k, - 1) . N, . T, + N, - T,. Here we have assumed that no false record 
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N = 1,048,576; s = 20; P = 8192 

Two-level One-level One-level One-level 
A shared shared dedicated dedicated/in-core 

1280 0.075 0.084 0.070 0.039 

5280 0.072 0.061 0.058 0.037 

10,240 0.070 0.051 0.050 0.036 

N = 1,048,576; s = 10; P = 32,768 

Two-level One-level One-level One-level 
A shared shared dedicated dedicated/in-core 

1280 0.083 0.070 0.067 0.043 

5120 0.079 0.047 0.046 0.038 

10,240 0.075 0.041 0.041 0.036 

N = 131,072; s = lo; P = 8192 

Two-level One-level One-level One-level 
A shared shared dedicated dedicated/in-core 

1280 0.070 0.051 0.050 0.036 

5120 0.060 0.037 0.036 0.032 
10,240 0.050 0.030 0.030 0.028 

Fig. 6. Cost, per record, of answering a query in seconds for large A. 

matches will occur as a result of an unsuccessful block match. In the next section 
we provide an encoding scheme for which the number of unsuccessful matches is 
almost always between 0 and 1 per matching record. Thus for queries that supply 
more than one value, the two-level scheme will almost certainly be less expensive 
than the one-level scheme if u(A) L A. The point at which u(A) = A represents 
a crossover value for multiterm queries in the sense that as the number of 
matching records increases above this value, we can no longer guarantee that the 
two-level scheme is more efficient. 

For the database described in Figure 3, if we consider a shared environment, 
the crossover point for multiterm queries is approximately 500 matching records 
compared to the value of 2000 records for single-value queries. We can conclude 
that for a particular multiterm query, the crossover point will be some value 
between 500 and 2000 records. Using the same argument for multiterm queries 
in the dedicated environment, the crossover point is some value between 50 and 
500, and if in addition the array of pointers to the data records is kept in core 
for the one-level scheme, the crossover value is between 20 and 90. 

In Figure 6, the costs per matching record of answering a single-term query 
are given for various configurations when the number of matching records, A, is 
large. If we discuss these costs in terms of disk accesses, then for the two-level 
scheme, the cost per matching record is typically 2 disk accesses. It decreases 
slowly with increasing A. If we take unsuccessful block matches into account, 
then for queries that supply a number of terms, the cost can be as high as 3 disk 
access. For the one-level scheme, the cost decreases from 2 disk access to 1 disk 
access as A increases. If the array of pointers is not stored in core, then it makes 
little difference whether the environment is shared or dedicated. If, however, the 
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pointer array is kept in core, then the cost remains close to 1 disk access for all 
values of A. 

In an interactive environment the performance of a method for queries for 
which the number of matching records is small is very important. In an infor- 
mation retrieval system, an interactive user would typically only be interested in 
viewing a small number of records in response to a query. If a query is given for 
which the number of matching records is large, the user is typically required to 
supply more search terms to narrow the query response. The results of the tests 
show that in a system where the files are stored in noncontiguous blocks, the 
two-level scheme is clearly superior for this type of application. Even in a 
dedicated environment where the descriptor files are stored contiguously on disk 
and for which single seeks are sufficient to retrieve very large volumes of data, 
the two-level scheme is faster for typical queries for files that are sufficiently 
large. If, however, sufficient main memory is available to store the array of 
pointers to the data records in core, then the one-level scheme becomes more 
competitive, for smaller files in particular. In order to determine when the array 
can be kept in core, a number of factors must be considered. For example, the 
main memory requirements will be substantial; a file of one million records will 
require about two megabytes of memory, unless some time tradeoffs are made. 
Also, in a multiuser system, it will be required that separate users share the same 
memory, and this is operating system dependent. 

5. AN ENCODING SCHEME TO REDUCE UNSUCCESSFUL BLOCK 
MATCHES 

In order to model the behavior of the two-level scheme when more than one term 
is supplied in a query, it is necessary to investigate the effect of unsuccessful 
block matches on query performance. The aim is to produce an encoding scheme 
for which the number of unsuccessful block matches is small. In this section we 
describe a simple scheme for reducing unsuccessful block matches and then 
propose a more robust scheme. A list of the parameters used in this section is 
given in Figure 7. 

Unsuccessful block matches are present due to the occurrence of particular 
data terms in large numbers of records. In the following we assume that the 
number of terms (tokens) stored in the database is NV = N . s, while the number 
of distinct values is No. If we order the distinct values Ui, i = 1, 2, . . . , No by the 
frequency of their occurrence, then u1 is the most commonly occurring data value, 
followed by u2, and so on. We will assume that the probability of occurrence, 
pi, of the ith value within the data file follows the well-known Zipfian 
distribution [34]: 

(Zipf’s law) for parameters (Y and /3. 
Because the highest ranked values will appear in a large number of blocks, we 

will modify the coding scheme so that these values will be treated differently 
from the less frequently occurring data values. A data value will be referred to as 
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N 

x 
NI 
b. 
b, 
k. 
k, 
1, 
C 
Cl, c2, 

r” 

P 
PD 

PC 

Vi 

Pi 

ff* B 

SD 

z, 

ND 

rcdi 
blki 
recij 
b1ki.j 
trUei, j 
tOtdi,j 

ubmi,j 

number of records in database; 
average number of terms per record, 
number of blocks; 
number of records per block; 
length of a block descriptor; 
length of a record descriptor; 
bits set by a term in a block descriptor; 
bits set by a term in a record descriptor; 
number of bits set by pairs of common words, 
number of common words; 

Ca three classifications of common words; 
cutoff for the number of block matches for combination bits; 
maximum value of unsuccessful block matches per true block match within region covered 

by common words, 
average density of the block descriptor file (bits 1 through b.); 
probability of a bit being set by a regular word in the block descriptor file (bits 1 

through b,); 
probability of a bit being set by a pair of common words in the block descriptor file 

(bits 1 through b.); 

value i, where i is the rank of the term; 
probability of occurrence of vi; 
parameters of Zipf ‘s distribution; 
average number of distinct terms per record, 
average number of common terms per record; 
total number of terms in a database (N . s); 
number of distinct terms in a database; 
probability of vi appearing in a record; 
probability of vi appearing in a block; 
probability of a record containing vi and vi; 
probability of a block containing a record with terms oi and vi; 
number of blocks containing records with vi and vi; 
number of blocks containing both vi and oj; 
number of unsuccessful block matches resulting from a query containing vi and vj. 

Fig. 7. Parameters for the two-level scheme. 

a common word if its rank is between 1 and C, where C is a parameter of the 
coding scheme. Values with rank C + 1 to ND will be referred to as regular words. 

Regular words are treated exactly as described in the previous section. For 
each regular word appearing in a record, a code-word, characterized by parameters 
b, and ks, is formed and superimposed on to the appropriate block descriptor. 
Common words are treated differently. In [23], Roberts suggested that rather 
than setting ks bits in a block descriptor for a commonly occurring value, it is 
better to set a smaller number of bits. In the coding scheme we propose, a single 
bit only will be set for a common word. Moreover, this bit will be set in a disjoint 
field that is allocated to each block descriptor for common words. For each 
common word, one additional slice is allocated to the block descriptor file, so 
that a block descriptor contains b, + C bits rather than b, bits. A bit set in the 
ith position of slice b, + j will indicate that there is a record in the ith block 
containing Uj , the j th ranked common word. 

In order to eliminate unsuccessful block matches, bits will also be set in the 
block descriptor file using pairs of common words. We will refer to those bits set 
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in the block descriptor file by pairs of words as combination bits. Suppose a record 
contains m common words. Then there are ($) pairs of common words. For each 
pair, a code word of length b, with exactly 1, bits set will be formed and 
superimposed onto the first b, bits of the appropriate block descriptor. Thus bit 
positions 1 to b, are reserved for regular words and pairs of common words. Note 
that with this method, a record containing m common words will set at most 
b - m) + k, + m + 1, . (2”) bits in a block descriptor. 

At the record descriptor level, no distinction between common and regular 
words is made. The scheme used is unchanged from the previous section. 

The encoding method assumes that all terms are indexed. Of course, it is 
possible to treat the very common words as noise words and set no bits for these 
words in the descriptor files. The problem with this approach is that although it 
is not likely that common words will be specified in single-term queries, a number 
of common words may be specified together in a query that results in a small 
number of matching records. Ignoring common words entirely means that the 
latter queries cannot be answered efficiently. 

First we show how to estimate the bit density of the block descriptor file when 
this encoding scheme is used. This estimate is required to predict the performance 
of the method. Given that the probability of occurrence of the ith value, Ui, is pi, 
we can estimate the probability that Ui appears in a record as rcdi where 

rcdi=e(pi*N*~,s,N). 

The number of distinct values per record, SD, is then 
ND 

SD= 1 rcdiss. 
i=l 

Similarly, the average number of common words per record, sc, can be 
estimated as 

c 
SC= C rcdi. 

i=l 

We can estimate the probability of Ui appearing in a block as blki, where 

blki=c(N. rcdi,N,,N,). 

We need to determine the probability that a bit in position 1 to b, of a block 
descriptor is set. The probability that it is set by a regular word, PLg, can be 
estimated as 

We now consider pairs of common words. Let rcdi,j be the probability that both 
the ith and jth ranked values appear together in a record. The probability, PC, 
that an arbitrary bit is set by a pair of common words is 
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where 

blki,j= e(N . rcdi,j 9 IV,, Ns)a 

If we assume that the data values are independent, then we can estimate 
rcdi,j by rcdi * rcdj. 

The average density of the block descriptor file (here we are only concerned 
with bits 1 through b,) is then P where 

P = 1 - (1 - Pn)(l -PC)* 

The expected number of false block matches when a single regular word is 
supplied in a query is pks . N,. If a single common word is supplied, then no false 
block matches occur with the coding scheme used. In order to evaluate the 
performance of the method when two values are supplied, we have to consider 
the number of unsuccessful block matches that can occur. The effect of the 
coding scheme for queries for which two common words are specified, is that the 
number of unsuccessful block matches will reduce by a factor of ~4 compared to 
the previous scheme. This is because when answering such a query, the bit slices 
corresponding to that pair of common words are retrieved. For queries that 
contain a pair of attribute values that includes at least one regular word, the 
number of unsuccessful block matches is not so reduced. 

Suppose the rank of the two values supplied are i and j, respectively, with 
i < j. The number of blocks containing records with both values is truei,j, 
where 

truei,j = blki,j . N, = e (N * rcdi . rcdj , N,, NS) * N,. 

The number of blocks containing both values Ui and Vj is tota1i.j , where 

total,i = NS * blki . blkj . 

The number of unsuccessful block matches resulting from a query which specifies 
two values is then 

ubmi,j = 
-i 

/L”(tOt&j- tFUC?i,j), if i,jSC 
tOt&,j - tIIlei,j, otherwise. 

The number of unsuccessful block matches relative to the number of true matches 
is ubm&ruei,;. This value determines the additional cost in disk accesses per 
matching record of answering a query that is attributable to unsuccessful block 
matches. 

If we make the first-order approximation blki = N,. . rcdi, then 

tot&j z N, * NF * rcdi . rcdj , 

truei,j = N, * N, * rcdi * rcdj, 

totali,j - true,j = N, * N, * (N, - 1) * rcdi * rcdj, 

and 

ubm. r,lz 
1 

P’W, - l), if i,jSC 
truei,j Nr - 1, otherwise. 
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This suggests the following design rule for computing the block descriptor 
parameters. In order that the number of unsuccessful block matches per matching 
record be limited to one, say, C should be chosen sufficiently large and ~1 chosen 
so that 

p[” * (Nr- 1) = 1. 

Also, in order that the number of false block matches per query that occur when 
a single attribute-value is supplied is limited to say, one, we have a second 
constraint on p, namely 

Combining these two criteria, we have 

.=min[(+-y, (&y]. 

As an example, consider a database for which N = 150,000 and s = 10. The 
number of blocks, N, = 15,000 and the number of records per block N, = 10. 
Suppose the data are Zipf distributed, with (Y = 0.08137 and /? = 1.0. (With these 
values, the frequency of the data value of lowest rank, uND, will be 1, and the 
value of /3 is typical of the values that are observed in much naturally occurring 
data [34].) In Figure 8, the values of ubmi,j/truei,j are plotted for various values 
of i and j. It can be observed that as i and j increase, the ratio approaches N,.-i 
as predicted. These values were computed assuming the number of common 
words C = 0. 

We have not discussed how many common words are typically required to 
make effective use of the preceding encoding scheme. In order to determine how 
many common words are necessary, a number of factors should be considered. 
Although the ratio ubmi,j/truei,j grows with increasing i and j, the number of 
block matches decreases. We would like to be able to set combination bits for 
those queries for which the number of block matches exceeds some cutoff value, 
say A. Let us consider a query that specifies two values Ui and Uj as a point (i, j) 
in two-dimensional space, and draw a curve connecting those values of i and j 
for which the total block matches, totali,j, equals a given value, A. A series of 
such curves are presented for the example database in Figure 9. If we consider 
all possible queries that supply two values, then for the given cutoff value, A, the 
area that we would like to cover lies between the corresponding curve and the 
axes, since this area contains the points (i, j ) corresponding to queries for which 
the total block matches exceed A. The area to the right of the curve contains the 
pairs (i, j ) corresponding to inexpensive queries. 

The scheme we have just described, which is based on a set of C common 
words, covers queries for which the ranks of the two values are less than or equal 
to C (the square shaped area of Figure 10). In order to cover all points for which 
tota1i.j 5 A, a very large number of common words will be required, even for quite 
high values of A. The scheme becomes impractical to implement, since all of 
these common words must be stored in memory and the overheads become 
too large. 
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ubn-dtrue 

8.0 

6.0 

jrank 

Fig. 8. ubm&ueij vs. j for i = 1, 4, 64, 256. 

To better approximate the desired area to be covered, we now consider a coding 
scheme based on three parameters Ci, i = 1, 2, 3, where 1 I C1 I Cz 5 C3 s No. 
This scheme identifies three sets of common words, and we will refer to a word 
whose rank lies between 1 and Ci as a Ci-Common word, i = 1, 2, 3. Words with 
rank greater than C3 will be referred to as regular words. With these parameters, 
combination bits will be set for values (i, j ) within the shaded area of Figure 11. 
It will be seen that unlike the previous scheme, the new scheme is easy to 
implement. Only GCommon words will need to be stored explicitly. The C,- 
Common words that have rank greater than Cp can be determined using an 
inexpensive filtering technique and need not be stored explicitly. This is impor- 
tant, since in practice C, will be relatively small and Ca will be very much greater 
than Cz. 

When inserting a record into the database, the strategy for setting combination 
bits is as follows. For every pair of CP-Common words appearing in a record, 
1, combination bits will be set. (C, can be thought of as corresponding to C in 
the previous scheme.) In the new scheme, however, combination bits will also be 
set for pairs made from Ci-Common words and words with rank C, + 1 to Ca. 
A block descriptor will be of width b, f Cz. For every Cz-Common word, an 
additional slice is allocated as in the previous scheme. Note that additional slices 
are not used for words with rank Cz + 1 to CS. 
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Fig. 9. Curves for which totalij = A, A = 10, 40, 80,320. 

The new scheme can be analyzed in the same way as the previous scheme. 
With the new scheme, 12, bits are set in a block descriptor for each word with 
rank greater than Cz that appears in that block. The probability that a bit is set 
by one of these words, ,.LD, is then 

The probability that a bit is set by a pair of words, pc, is now 

/.Lc=l- 
( 

1 -kblk,j) * ifIl j=$+l (1 -kblk,j). 

The number of unsuccessful block matches resulting from a query that specifies 
the values Ui and vj , i < j, is now given by 

I- 
/.LLa(tOt&j - trUei,j), if i, j I Cz 

ubmi,j = . p’s(totali,j - truei,j), if i 5 C1 and CZ + 1 5 j I C, 
tot&j - tlIlei,j, otherwise. 
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Fig. 10. Covered area when a single set 
of common words is used. 

Cl 

i 
Cl c2 c3 

Fig. 11. Covered area when three sets of 
common words are used. 

We now describe a method for choosing the parameters of the block descriptor 
file given data with a known distribution and a cutoff value, A. We will assume 
that the data can be parameterized by values (Y and /3 as in the previous section, 
and it is required to choose values for b,, C1, C,, and C,. 

Step 1. Determine Cs. Compute the largest j such that total,,j L A. 
Step 2. Determine Cz. There are two considerations we take into account when 

determining C,. First, C, has to satisfy the requirement that totalc,,c, 5 A, so we 
begin by computing the largest j such that totalj,j I A. Next we consider whether 
it is possible to increase C, further, thereby covering a greater area, without 
incurring additional costs. 

Consider the effect of the choice of C, on the density of the block descriptors. 
As we increase the number of C2-Common words, fewer bits are set in the block 
descriptors by single values, since a &-Common word sets only a single bit in a 
block descriptor, whereas other words set 12, bits. On the other hand, as Cz 
increases, more combination bits are set. We therefore attempt to estimate the 
largest value of C, such that the savings from single values are less than the costs 
due to combinational bits. 
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987. 



Multikey Access Methods 679 

Fig. 12. Covered area when C, = Cp. 

For a given Cp, the savings due to single values can be estimated as 
12, . Cz, blki - Cz. The number of combination bits set per block descriptor by 
pairs of C&-Common words is approximately 1, Cz;’ CT&+, blki,j. We therefore 
compute the maximum C2 such that 

k, * 2 blki < Zs ‘2’ 3 blki,j + C’z 
i=l i=l j=i+l 

and 

totalc,,c, I A. 

Step 3. Determine C1. In order to cover all pairs (i, j ) for which the total block 
matches exceeds A, we require that 

tota& 5 A. 

If totalc,,c, = A, then C, = Cp (Figure 12). Otherwise, totalcz,c, < A, and we fine 
the greatest j < C, such that totalj,c, > A (Figure 11). 

Step 4. Determine b,. With 1, combination bits set for pairs of common words, 
P should be chosen according to the following formula: 

p = min[($y, (&y-J. 

We propose a slight modification, however, since if 1, = 1 and N,. is large, this 
can impose an unnecessarily severe restriction on CL. The reason for the second 
constraint on p is that, in the absence of combination bits, the number of 
unsuccessful block matches relative to the number of true matches approaches 
N, - 1 for large i, j. We are really interested in only those values of ubmi,j/truei,j 
for points (i, j ) within the covered region. It is possible to determine the maximum 
value, f, of ubmi,j/truei,j within this region by evaluating this function at the 
extreme points (C,, C,) and (C,, Cz): 

f=max ubmc,,c, ubmc,,c, 
truec,,c, ’ 1 truec,,c, * 
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Then 

p = min[($y, (jy]. 

The approach used to estimate what the value that b, should be in order that the 
density of the block descriptors be p is based on first estimating the average 
number of bits, #bits, that will be set in a block descriptor: 

#bits = (i=$+l blki) . ks + (T$ j=$l blki,j + $, j=z+l blki,j) * 13. 

The first term represents the contribution of single words (words with rank 
greater than C,) and the last two terms represent an estimate of the number of 
combinational bits. These sums can be computed using numerical quadrature 
techniques in order to reduce the computation time. In practice, the estimate of 
#bits would be obtained using sampling techniques, since most of the probabilities 
used in the preceding formula would not be known. Note that the preceding 
formula provides an overestimate of the number of bits set in a block descriptor. 
Based on these values of p and #bits, we can then compute b, from the formula 

6. COMPUTED RESULTS 

In this section we present computed results using the model presented in the 
previous section. These computed results allow us to examine the effects of 
various parameters on system performance. Given a database of N records, each 
containing s terms to be indexed, we are interested in using the computed results 
to study the effects of varying N,, the number of blocks, N,, the number of 
records per block, the number of common words, the parameters of the block 
descriptors, b,, lz,, ls, and the parameters of the record descriptors, b, and k,. For 
given values of these parameters we want to know the expected query cost and 
the storage overhead generated. 

We begin by considering various choices for the parameters previously given 
for a database that contains 1.5 million terms to be indexed, that is, s . N = 
s . N, . N, = 1.5 million. We assume that the data are skew distributed as in 
Section 5, and that pi = alis with (Y = 0.08138 and p = 1. With these choices of 
LY and p, the number of distinct terms in the database is 122,066. In these tests, 
the parameters are chosen so that the expected number of false block matches 
per query is one, and the number of unsuccessful block matches per matching 
record, for queries which specify two or more common words, is limited to 
approximately one. In this case, p is chosen according to the formula: 

The numbers of Ci-Common words, i = 1, 2, 3 are calculated using the algorithm 
given in Section 5. 
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In presenting these results, we provide the value of bp + C,, the width of a 
block descriptor, as well as a normalized measure of the overhead generated by 
the block descriptor file. The normalized measure given is the size of the block 
descriptor file divided by s . N. This represents the overhead per indexed term. 

The overhead generated by the block descriptor file represents typically 70-90 
percent of the total overhead generated by the two-level scheme. If the record 
descriptors are designed so that they have approximately half their bits set (this 
is the most storage-efficient choice [29]), then b, and k, are related by the formula 

b =Izr” 
r log, 2 * 

If these parameters are chosen so that the probability of a false record match is 
approximately 1/8N,, in order that there be only one false record match for every 
8 block matches, then k, = 3 + log2 N,. A pointer is required for each record in 
the data file, so the total overhead generated by the record descriptor file per 
indexed term is 4.8 + 1.6 log2 N, + ptr/s, where ptr is the pointer size. Here we 
have used the fact that l/log, 2 = 1.6. 

With these design decisions, the number of false record matches will be small 
and the performance of the two-level scheme will closely follow that predicted 
for Algorithm 2 of Section 4 of this paper. Assuming N, I P, the cost of answering 
a query can be estimated as hs + n, + n, + 1 disk accesses, where n, is the total 
block matches (true block matches and unsuccessful block matches) and n, is the 
total record matches (true record matches and false record matches). For single- 
term queries there will be no unsuccessful matches, while for multiterm queries, 
the number of unsuccessful block matches will be multiple, E, of the true block 
matches, 0 5 t 5 1. With the chosen parameters the number of false record 
matches will be approximately n,/8, so n, = 9 . n,/8. Since the performance of 
the method on query can be predicted, we will provide the storage overheads 
required in order to achieve these query times in the following tables. 

In Figure 13, the effect that the parameters N,, N,, and 1, have on the storage 
overhead can be observed. When 1, = 1, and N, > 10, the block descriptor density, 
~1, is severely constrained by the requirement that the number of unsuccessful 
block matches for queries that specify two or more common words be limited to 
one per matching record. The storage overhead is consequently very high. This 
restriction on p virtually disappears when l2 = 2. In this case, 

and the limiting restriction on p comes from the restriction on the number of 
false matches allowed. For each of the configurations, the number of &-Common 
words is small enough so that each &.-Common word can be accommodated 
within main memory. The value for A in these tests was 50. In order to study the 
effect of the choice of A on system performance, a number of tests were run for 
which the only parameter to vary was A. The results of these tests appear in 
Figure 14. As A reduces in size, more queries are covered and the number 
of common words as well as the storage overhead rises. For the given data 
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N. = 15,000 
N,= 10 

N. = 7500 
N, = 20 

N, = 3000 
N,=50 

18 (iy (Fy p Cl CZ C, b, + C, Overhead 

1 0.090 0.115 0.090 136 136 2436 4232 42.32 

1 0.107 0.055 0.055 191 191 2433 13,541 67.70 

1 0.135 0.022 0.022 294 294 2421 81,493 162.99 

N. = 15,000 2 0.090 0.339 0.090 136 136 2436 6001 60.01 
N,= 10 

N. = 7500 2 0.107 0.235 0.107 191 191 2433 9825 49.13 
N,= 20 

N. = 3000 2 0.135 0.148 0.135 294 294 2421 18,538 37.08 
N, = 50 

Fig. 13. Results for s = 10, k, = 4, A = 50. 

1. A (iy ($)‘” p C, C, C3 b, + C, Overhead 

N, = 15,000 
N,= 10 
s = 10 
k. = 4 

N, = 7500 
N, = 20 
s = 10 
k. = 4 

N, = 3000 
N, = 50 
s = 10 
ka = 4 

1 m 
1 100 
1 50 
1 10 

2 m 
2 100 
2 50 
2 10 

2 Q, 
2 100 
2 50 
2 10 

0.090 
0.090 
0.090 
0.090 

0.107 
0.107 
0.107 
0.107 

0.135 
0.135 
0.135 
0.135 

- 
0.115 
0.115 
0.113 

- 

0.237 
0.235 
0.232 

- 
0.151 
0.148 
0.145 

0.090 
0.090 
0.090 
0.090 

0.107 
0.107 
0.107 
0.107 

0.135 
0.135 
0.135 
0.135 

1 1 1 3432 34.32 
95 95 1216 4010 40.10 

136 136 2436 4232 42.32 
311 311 12,200 4925 49.25 

1 1 1 5337 26.68 
132 132 1212 8930 44.65 
191 191 2433 9825 49.13 
437 437 12,198 12,327 61.63 

1 1 1 9441 18.88 
201 201 1200 16,725 33.45 
294 294 2421 18,538 37.08 
684 684 12,187 23,528 47.06 

Fig. 14. Effect of A on various databases. 

distribution, the number of C&Common words was less than 10 percent of the 
number of unique terms even for A = 10. 

In order to reduce the storage overhead generated by the block descriptor file, 
various alternatives exist. The restrictions on p can be relaxed by allowing more 
false matches or more unsuccessful block matches. Another possibility is to 
increase k, and lS, and thereby increase the query cost by only a constant number 
of disk accesses. For the various combinations of N, and N,. given in Figure 14, 
the storage overheads generated using values of ks ranging from 4 to 12 are 
presented in Figure 15. For each value of /zS the value of 1, within the range of 1 
to 4 that results in the smallest overhead was computed. In these tests A was 
fixed at 50. It can be observed that for these databases of 1.5 million tokens, 
storage overheads of between 20 and 25 bits per indexed term are feasible. 
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k. 1. 

4 1 
6 2 
8 3 

10 3 
12 3 

N. = 15,000 N, = 10 

P b, + C, Overhead 

0.090 4232 42.32 
0.201 3096 30.96 
0.301 2174 21.74 
0.383 2323 23.23 
0.449 2090 20.90 

N. = 7500 N, = 20 

k, Ir h + G Overhead 

4 2 0.107 9825 49.13 
6 3 0.226 6603 33.02 
8 3 0.328 4853 24.27 

10 3 0.381 4494 22.47 
12 4 0.476 4234 21.17 

N. = 3000 N, = 50 

k. 1. P b, + G Overhead 

4 2 0.135 18,538 37.08 
6 3 0.263 13,293 26.59 
8 4 0.368 11,853 23.71 

10 4 0.385 12,176 24.35 
12 4 0.385 13,173 26.35 

Fig. 15. Effect of ks and 1, on storage overhead. 

N, = 15,000 N, = 10 

s tokens(s . N) a 1, C, Cz G P h + C, Overhead 

2 300,000 0.092 3 23 42 474 0.303 359 17.95 
5 750,000 0.085 2 68 76 1271 0.301 953 19.06 

10 1,500,000 0.081 2 136 136 2436 0.301 2306 23.06 
20 3,000,000 0.077 2 260 260 4632 0.301 6224 31.12 
50 7,500,000 0.072 2 610 610 10,864 0.301 26,895 53.79 

Fig. 16. Effect of increasing s while N, and N, remain fixed. 

In order to study the effect of s, Figure 16 presents results for which the 
number of records, N, is fixed at 150,000, with N, = 15,000 and N, = 10, while s 
is increased from 2 to 50. As s increases, so does the number of indexed terms, 
s - N. For each database, the value of /3 is fixed at 1, while CY is chosen so that 
the token of lowest rank appears once in the database (s . N . pND = 1). The 
value of $ is fixed at 8 and A = 50. For small values of s the overhead generated 
is very small. For s > 5, p is fixed at 0.301 and is constrained by the requirement 
that the number of false matches be limited to one. The storage overhead 
increases with s and the only way to reduce storage costs substantially is to relax 
this restriction. Note that although the number of indexed terms increases only 
linearly with s, the number of combinational bits will grow faster than linearly. 
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N, = 40,320 N, = 26 s = 20 

k, 1, cc bs + C, Overhead 

4 2 0.071 69,744 134.12 
6 2 0.171 30,583 58.81 
8 3 0.266 27,024 52.08 

10 3 0.344 21,302 40.97 
12 4 0.413 21,777 41.88 
14 4 0.449 20.423 39.27 

Fig. 17. Database of 1,048,576 records, each contain- 
ing 20 terms. 

N. = 15,000 N, = 10 s = 10 

a B ND Cl c* cs 1. P b, + C, Overhead 

0.017 0.8 322,676 66 66 1889 2 0.301 2190 21.90 
0.081 1.0 122,066 136 36 2436 2 0.301 2306 23.06 
0.201 1.2 36,786 127 127 1410 2 0.301 1866 18.66 

N, = 40,000 N, = 25 s = 20 

(Y B ND Cl c* c3 18 P h + G Overhead 

0.010 0.8 4,175,795 302 302 13,070 3 0.266 14,195 28.39 
0.068 1.0 1,360,548 663 663 13,588 3 0.266 23,378 46.76 
0.193 1.2 307,664 534 534 6621 2 0.207 18,698 37.40 

Fig. 18. Effect of vary the skew of the data, (3. 

Results for a large database are presented in Figure 17. This database contains 
over one million records, each containing 20 attribute values. The parameters N, 
and N, have the same values as were used in the database described in Section 
4. For each value of ks, 1, is chosen from the range 1 to 4 such that storage costs 
are minimized, and A is fixed at 50. For this database of approximately 20 million 
tokens, storage overheads of around 40 bits per indexed term are feasible. 

In the results presented so far, it has been assumed that the data are Zipf 
distributed with a skew of 1.0. The effect of varying the skew parameter, /3, is 
presented in Figure 18. In these tables, results are presented for a database of 
150,000 records as well as for a database of l,OOO,OOO records. The parameter 0 
varies from 0.8 to 1.2. As in the previous table, A is fixed at 50 and k, is fixed at 
8. As /? decreases, the data become more uniformly distributed and for realistic 
values of 0, good results are possible. As p increases, the number of common 
words required decreases, and for the databases in Figure 18, the number of 
combination bits required decreases. 

7. EXPERIMENTAL RESULTS 

An experiment was conducted using a library database of 150,000 records, each 
containing approximately 20 terms to be indexed (s - N = 3 million). Each record 
contains information about books in an institute library. The terms include 
author names, subject and title keywords and phrases, publication dates, and 
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accession numbers (unique identifiers). These records were stored in a database 
using the two-level scheme with N, = 16,384 and N, = 11. 

In designing this database, we chose C1 = CZ = 300 and C, = 2000. The most 
common term u1 (title keyword = editor) appeared in approximately 7000 blocks, 
ulo (publication date = 1970) appeared in 4220 blocks, u300 (title keyword = 
model) appeared in 903 blocks, and u 2ooo appeared in 58 blocks. With the above 
choices for Ci to C3, combination bits would be set for multiterm queries involving 
more than 50 block matches (i.e., A z 50), since 

= max(7000 . 58/16,384, 903 . 903/16,384) 
= max(24.8, 49.8) = 50. 

The characteristics of the records were as follows. The average number of 
terms per record was 19.97, while the average number of distinct terms per record 
was 13.29. This included 3.94 C-Common words, 6.67 C3-Common words, and 
6.62 regular words. 

At the block level, the average number of records per block was 9.04. The 
average number of distinct terms per block was 112.59. This included 33.39 
C,-Common words, 56.48 C3-Common words, and 56.10 regular words. 

The database parameters were as follows: 

b, = 10,700, ks = 4, and 1, = 1. 
b, = 320 and k, = 8. 

This represents a storage overhead of 7.4 bytes per indexed term due to the block 
descriptor file and 2.2 bytes per indexed term due to the record descriptor file. 
With these parameters the average density of the block descriptor file p was 0.06. 
The average number of bits set in positions 1 through b, of a block descriptor by 
individual terms was 317. The average number of combination bits per block 
descriptor was 267. In addition, an adjacency bit was set for each pair of adjacent 
terms in a subject or title phrase. The average number of adjacency bits per block 
descriptor was 73. Note that b, was chosen to be large (the expected number of 
false block matches for single term queries was 0.22) in order to study the effect 
of unsuccessful block matches. As a consequence, we have assumed that any 
failed block matches are due to unsuccessful block matches. 

For comparison, a second database was created with the same descriptor sizes 
(storage overheads) but with no common words (Ci = Cz = C3 = 0). 

In order to conduct the experiment 1000 “random” queries using terms con- 
tained in the database were generated. Each query contained two terms. The 
queries were executed and various parameters were recorded. For 375 of these 
queries, combination bits were generated using the database with 2000 common 
words. For each of these queries the number of unsuccessful block matches was 
recorded and compared to the number of unsuccessful block matches that 
occurred using the database with no common words. The results appear in 
Figures 19 and 20. In Figure 19 the average number of unsuccessful block matches 
per record match is plotted against the number of matching records for each of 
the 375 queries. In Figure 20 the absolute numbers of unsuccessful matches is 
plotted against the number of matching records for each of the two methods. It 
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10.0 

Unsuccessful 
Block 

Matches8.0 
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Record 
Match 6.0 

4.0 

2.0 

0.0 

- 0 Common Words 
----------- 2000 Common Words 

10 20 40 

Number of Record Matches 

Fig. 19. Average unsuccessful block matches per record match, b, = 10,700, k, = 41, = 1. 

can be seen that the use of a single combination bit has the desired effect of 
eliminating most of the unsuccessful block matches. For the database without 
common words we would expect that the number of unsuccessful block matches 
per true record match would be approximately 10 (i.e., N, - 1) when the number 
of record matches was small and we would expect this to reduce to less than one 
for the database with 2000 common terms. These trends were reflected in the 
experimental results. 

A second experiment was conducted in order to test the effect of setting 
adjacency bits when forming the block descriptors. The subject and title descrip- 
tors contained in the records consisted of word phrases as well as single words. 
For each pair of adjacent words contained in a phrase, a single adjacency bit was 
set in the appropriate block descriptor. The cost of setting these bits is small. 
These bits contributed less than 12 percent to the density of the block descriptor 
file. Again, 1000 queries were constructed. Each query contained a phrase 
consisting of two words. These queries were executed using two methods. In the 
first method, the adjacency bit was used to reduce the number of failed block 
matches. In this case, a failed match can occur even when a record contains the 
two terms, if they are not in adjacent locations. In the second method, the 
adjacency bit was not set in the query descriptor. The results are presented in 
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Fig. 20. Unsuccessful block matches vs. record matches, b, = 10,700, k8 = 4,1, = 1. 

Figure 21. The results are impressive and indicate that direct indexing on word 
phrases at low cost is possible using descriptor-based methods. 

In order to study the effect of the algorithm using parameters for which the 
storage overheads are low, the experiments were repeated using the parameters 
b, = 6000, ks = 6, and 1, = 2. With these parameters, the storage overhead due to 
the block descriptor file is reduced from 7.4 to 4.1 bytes per term. The configu- 
ration at the record descriptor level remains unchanged. In Figure 22 the results 
for the two sets of block descriptor parameters are presented. The results obtained 
using the smaller block descriptor file are very similar to those obtained previously 
and show that the effect of reducing b, can be compensated by increasing k, and 
1, appropriately. 

8. IMPLEMENTATION ISSUES 

In order to implement the scheme proposed in Section 5, it is necessary to identify 
the common terms appearing in the data file. Sampling techniques must be used 
to determine these common words together with their frequencies. The results 
computed from the theoretical model show that although the number of Cz- 
Common words will typically be of the order of several hundred, the number of 

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987. 



666 l R. Sacks-Davis et al. 

1.4 

Number 
of 1.2 

Unsuccesful 
Block 1.0 

Matches 
x lO”3 

0.8 

1.8 - 

____ Without Adjacency Bit 

1.6 - 
----------- With Adjacency Bit 

0.6 

0.4 

0.2 - 

,,O\\ 
0.0 --y-y-y, 

*’ ________-__-.___.._..--.-~~~~----~~ _L____--_.e- .______ I. I *< ,,=, \ _--- , , , , I I I IllIll r 
2 4 10 20 40 100 200 

Number of Record Matches 

Fig. 21. Effect of adjacency bits on unsuccessful block matches. 

C&Common words may be several thousand. During execution of the two-level 
method, it may not be feasible to store each &-Common word within main 
memory. The approach we have taken is to store each &-Common word explicitly 
and to use a filter to identify the &-Common words. We briefly outline a method 
that we have found useful for representing the C&Common words with the use 
of a filter. The filter is just a bit vector that is formed using hash-coding 
techniques similar to those used to form record descriptors. 

Before the filter can be formed it is necessary to determine the common terms 
and their frequencies. To reduce the number of terms that have to be stored in 
memory during the sampling process, the following technique can be used. 
A descriptor of length b with k bits set is formed for each term in the database. 
An array of b integers is used to keep a cumulative count of the number of times 
that each bit position is set by one of these terms. 

During a second pass of the data file, a table of terms and their frequencies is 
formed. For each term the minimum of the counts for each of the k bits set by 
the term is also stored. The minimum count provides a rough indication of the 
rank of the term. The way terms are added to the table is as follows. For each 
term examined, the table is searched and if the term already exists in the table, 
its frequency is incremented. Otherwise, we attempt to add the term to the table. 
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Fig. 22. Comparing databases with 2000 common words and different block descriptor parameters. 

If the table is full, the count for the new term is compared with the lowest count 
in the table. If the new term count is greater, then the new term replaces the 
term associated with the lowest count. The table size should be chosen sufficiently 
large to include all C, terms, the number of which is not generally known at the 
beginning of the pass. Even when C, is known, the table size should be larger 
than C3, as the sampling method may cause some less frequent terms to be 
accepted as more frequent terms. A table size of 5000 should be adequate for 
most applications. 

From the frequencies of the terms in the table, we can determine C1, C,, and 
C, using the steps described in Section 5. 

Once the C&Common terms are known, a filter can be constructed by simply 
superimposing all of the term descriptors for the common terms. This type of 
filter is known as a Bloom filter [3]. In order to determine whether an arbitrary 
term appearing in a record is a common term, its descriptor is formed. If every 
bit set in the descriptor is also set in the filter, the term is deemed to have passed 
through the filter and is designated a common term. 

This filtering technique has been used on the library database described in the 
previous section. Filters were formed using parameters b = 10,700 and 12 = 4. In 
order to test the effectiveness of the filter, a large number of terms were randomly 
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Fig. 23. Ratio of terms passing through the filter, b = 10,700, k = 4. 

selected, and for each term, the number of matching blocks was computed. It 
was then determined whether the term had passed through the filter. Results 
obtained using a filter formed from terms that appeared in 400 or more blocks 
appear in Figure 23 (refer to the solid line). In addition to the terms that appeared 
in more than 400 blocks, a large number of less frequently occurring terms passed 
through the filter. For example, approximately 20 percent of the terms that 
occurred in 160 blocks passed through the filter. If a single such filter was used 
to identify C3-Common words, then the C&-Common words would include some 
infrequently occurring terms. This would result in some unnecessary combination 
bits being set, but would not detract very much from the efficiency of the scheme. 

In order to reduce the number of infrequently occurring terms that are 
designated as C&Common words, several strategies are possible. One approach 
is to use more than one filter. A word is then designated a &-Common word only 
if it passes through all the filters. Figure 23 presents the results when two filters 
are used and when four filters are used. The extra filters were constructed using 
the same values for b and k. When four filters were used, virtually no word that 
appeared in less than 200 blocks passed through all of the filters. 

An alternative to this technique for building a filter was used by McIlroy [X3]. 
After the Ca-Common words have been determined a filter constructed with very 
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large b is constructed and the resulting bit string is compressed. This method 
saves space [ll] but is slower on query. 

The following method can be used to determine the database parameters when 
setting up a database. 

(1) Sample the data to form the array of b integers that will be used for identifying 
the &-Common words. At the same time compute the number of unique 
terms per record, s. 

(2) Determine N, and N,. The parameters at the record descriptor level are 
determined by the following three equations. 

b, = k, . --!- 
log, 2 ’ 

P = N, . (b, + ptr). 

The first equation results from the requirement that the density of the record 
descriptor be l/2 The second equation gives the probability of a false record 
match in terms of kr; a typical design would set the value of F, to something 
like 1/(4N,). The third equation results from the requirement that all of the 
record descriptors fit on a single page of size P. The user supplies the values 
of F,; s and P are known and the above system of three implicit equations is 
solved for k,, b,, and N,. The value of N, can then be determined using 
N= N, - N,. 

(3) The data are resampled and the array of b integers from step 1 is used to 
determine the common words as previously described. At the same time the 
frequencies of these common words at both the record and block level are 
computed. In addition, the number of unique terms per block, sB can be 
computed. 

(4) C1, Cp, and CB are computed using the methods outlined in steps 1 to 3 of the 
algorithm given in Section 5. 

(5) This is a modified version of step 4 of the algorithm used in Section 5. The 
required bit density, p, of the block descriptor file can be computed using the 
formula 

p = min[($--, (&r]. 

The choices of k, and 1, will affect the query times, storage overheads as well 
as the interactive insertion costs so they are application dependent. A number 
of different values for these parameters should be considered and the various 
tradeoffs analyzed. The number of (nonunique) bits, #bits, that will be set in 
a block descriptor formula can be estimated using the formula 

C,-1 c,-1 c, 

#bits = SB - C blki C 2 blki,j + 3 ? blki,j . 1,. 
i=l i=l j=i+l i=l j=C!,+l 
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Here, the probabilities, blki, i = 1, . . . , CS are those computed from step 3. 
Alternatively, the data can be sampled a third time to obtain an estimate of 
#bits. The block descriptor parameter, b,, can then be computed using 

9. A FAST INSERTION ALGORITHM 

By far the major cost when inserting a record comes from updating the corre- 
sponding block descriptor, since the block descriptor file is stored in bit slice 
form. For each of the terms specified in a record, k, bits of the block descriptor 
will need to be set and these bits will typically reside on separate pages of physical 
store. Thus for each term, lz, reads and possibly Fz, writes must be performed. If 
there are s terms in the record, then up to 2 . s . $ disk accesses will need to be 
performed. Actually a slightly smaller number than this is generally required. If 
a particular bit position has already been set by another term, then the write can 
be avoided and one disk access saved. Ignoring this factor, the number of disk 
accesses required to form the block descriptor file when N records are inserted 
into the database is 2 . N . s . ks. 

The other insertion costs, namely writing the record descriptor and the data 
to disk, involve only two read/write pairs per record. In the following, when we 
refer to the insertion costs, we are referring to the costs involved in forming the 
block descriptor file. 

For interactive insertions, the costs cannot be substantially reduced. If, how- 
ever, the database is initially loaded using a batch insertion facility, considerable 
savings can be effected. Because the block descriptor file is a two-dimensional 
bit matrix, one strategy is to form parts of this matrix in a buffer in memory and 
then write these formed submatrices on to disk in such a way that no parts of 
these submatrices need be overwritten at a later time. 

It is assumed that a buffer is available in memory; the size of the buffer required 
can be as small as 1OOK bytes (depending on the database parameters), but larger 
buffer sizes will result in more efficient insertion. Let us assume that the buffer 
size is B (bits) and let M = LB/b,l. In this case, the buffer can hold M block 
descriptors. Records are then processed in groups of M . N,, and these 
records are allocated to the next available M blocks. The block descriptors 
for these records are formed in memory and after all the records from this 
group have been processed, the b, partial bit slices of size M are written to disk 
(see Figure 24). This requires b, read/write pairs each time the buffer is 
written to disk (although only writes are required on the first pass). The 
total number of disk accesses to load N records using this method is therefore 
(1 + 2 . (INS/Ml - 1)) . b,. 

Consider the following database of approximately one million records, each 
containing 20 values: 

N = 1,048,576 Number of records, 
s = 20 Values per record, 
P = 8192 Page size, 1K bytes, 
N, = 40,960 Number of blocks 
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bs ! 
Fig. 24. In the one-pass algorithm, b. partial 
slices of length Mare written to disk. 

Fig. 25. Temporary file created during two- 
pass algorithm. 

N, = 26 Records per block 
b, = 20,185 Block descriptor width 
k, = 4 Bits set per indexed value 
B = 2,097,152 Buffer size, 256K bytes 

The cost of inserting a record using the interactive method is approximately 
2 - s . ks = 160 disk accesses, while the cost per record using the batch insertion 
scheme is only 15.30 disk accesses, a saving of over tenfold. 

Further improvements to the batch insertion scheme can be made if two block 
descriptor files can be temporarily accommodated on disk. With this method, the 
descriptors formed in memory are written contiguously onto the first file in bit 
slices of length M (see Figure 25). After all the block descriptors have been 
formed in the first file, they are rearranged onto the second file. Suppose that m 
bit slices of length N, can be stored in the buffer, that is, m = LB/N,j, then the 
rearrangement proceeds as follows. The appropriate bit slices from the first file 
are collected and reorganized to form m complete slices (see Figure 26). The m 
complete slices are then written to disk and the process is repeated until the 
reorganization is complete. Each step requires that fN,/Ml sets of m . M 
consecutive bits be read from the first file in order to form m complete slices in 
memory. These slices are written to the second file, requiring f(m . N,)/Pl writes 
(and perhaps a small number of reads). The number of disk accesses required to 
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Fig. 26. Construction of the block descrip- 
tor file from the temporary file. 

I m 

read m . M consecutive bits is f (m, M, P), where f (m, M, P) = k + 1 if m . M 
= (k + l/2’) . P for some integers j, k z 0 and f (m, M, P) = 1 + m . M/P 
otherwise. The formula for f (m, M, P) recognizes that the m . M consecutive 
bits to be read may cross a page boundary. The number of steps required in the 
reorganization process is r bJm1. The cost to initially form the first file is 
r(b, . M)/Pl . fN,IMl. The total cost is therefore 

Using the facts that m . N, =: M . b, =: B and N,/M =: b,/m, we can express the 
total cost as 

For the example database described earlier in this section, we have M = 103, 
m = 51, fN,/Ml = 398, f (m, M, P) = 1.64, and the insertion cost per record is 
only 0.44 disk accesses. This is approximately 400 times cheaper than the 
interactive method and 40 times cheaper than the previous batch insertion 
method. 

10. CONCLUSIONS 

For large data files, the one-level implementations of descriptor file methods 
become relatively inefficient because of the large amount of descriptor file that 
has to be examined at query time. A two-level scheme overcomes this problem, 
but introduces a new cost due to unsuccessful block matches. One way to reduce 
the cost of these unsuccessful block matches is to set combinational bits in the 
block descriptors. This approach can be extended so that direct indexing of word 
phrases is supported. Both theoretical and experimental results indicate that the 
use of combinational bits significantly reduces query costs, and the storage 
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overheads incurred are relatively small. It is also possible to achieve very low 
insertion costs with the two-level method if insertions are batched. 
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