
Multikey Access Methods Based on
Superimposed Coding Techniques

R. SACKS-DAVIS and A. KENT
Royal Melbourne institute of Technology
and
K. RAMAMOHANARAO
University of Melbourne

Both single-level and two-level indexed descriptor schemes for multikey retrieval are presented and
compared. The descriptors are formed using superimposed coding techniques and stored using a bit-
inversion technique. A fast-batch insertion algorithm for which the cost of forming the bit-inverted
file is less than one disk access per record is presented. For large data files, it is shown that the two-
level implementation is generally more efficient for queries with a small number of matching records.
For queries that specify two or more values, there is a potential problem with the two-level
implementation in that costs may accrue when blocks of records match the query but individual
records within these blocks do not. One approach to overcoming this problem is to set bits in the
descriptors based on pairs of indexed terms. This approach is presented and analyzed.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design--access meth-
ods; H.3.2 [Information Storage and Retrieval]: Information Storage--file orgunizarion

General Terms: Design, Performance

Additional Key Words and Phrases: Descriptors, hashing, partial match retrieval, record signatures,
superimposed coding

1. INTRODUCTION

Existing database systems generally fall into two classes. In the first class, the
database systems are designed for formatted records and include relational
database systems, while the second class contains systems designed for the
retrieval of free text. There have been some attempts to design systems to handle
both formatted and unformatted data [2, 9, 15, 19, 221. These systems are
particularly useful in the areas of office automation, computerized libraries, and
image databases.

An essential component of these extended systems is an access method that
can efficiently store and retrieve both formatted and unformatted data. One

Authors’ addresses: R. Sacks-Davis and A. Kent, Department of Computer Science, Royal Melbourne
Institute of Technology, 124 LaTrobe St., Melbourne, Victoria, Australia 3000; K. Ramamohanarao,
Department of Computer Science, University of Melbourne, Parkville, Victoria, Australia 3052.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
@1987ACM0362-5915/87/1200-0655$01.50

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987, Pages 655-696.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F32204.32222&domain=pdf&date_stamp=1987-11-01

656 l FL Sacks-Davis et al.

approach that has been advocated for these applications uses superimposed
coding techniques to form record descriptors for the records in the data file
[23, 241. This method gives good retrieval performance and is efficient of
storage [lo, 211.

As well as forming descriptors for individual records in the file, it is possible
to form descriptors for blocks of records, thus forming a multilevel descriptor
file. For large databases, the multilevel index is more efficient. However, block
descriptors can lead to the occurrence of unsuccessful block matches, which occur
when a block of records contains the terms specified in a query but the individual
records within these blocks do not.

In this paper we propose a two-level implementation of a superimposed coding
scheme. The encoding scheme used to form the descriptors at the block level is
designed to reduce the occurrences of unsuccessful block matches. The benefit of
this method is that query times remain low for both single-term and multiterm
queries and the storage overheads required are small. The method remains
efficient, even for large data files containing hundreds of thousands of records,
each record containing many terms.

This paper is organized as follows. First we present a brief overview of some
of the methods used for text retrieval and describe some of the approaches, based
on superimposed coding, that have been proposed. A description of our method
is then presented in Section 3.

In Section 4 we compare the one-level and two-level implementations of the
descriptor files. In order to compare these indexing schemes, a number of issues
must be considered. These include the size of the file, the file system used on the

, host computer, whether dedicated hardware is available, and the query types that
need to be supported. We describe the differences between the one- and two-
level implementations of superimposed coding in a number of environments and
show that for large data files the two-level implementation is generally more
efficient than the one-level scheme for queries for which the number of matching
records is small (O-200 records). In an interactive environment, such queries are
the most common and must be supported very efficiently.

In Section 5, the encoding scheme, which takes into account the frequencies
of the index terms, is presented and analyzed. We show that with this encoding
scheme, the two-level scheme is efficient for single- and multiterm queries.
Results computed from a theoretical analysis are presented in Section 6, and
experimental results obtained from a library database containing 150,000 records
are given in Section 7.

In Section 8 some practical issues are considered. The encoding technique that
is proposed requires the identification of those indexed terms that appear in a
large number of records (common words). We describe practical techniques for
identifying these common terms.

In Section 9 a fast batch insertion algorithm is described. The proposed two-
level scheme uses a storage technique called a bit slice implementation. This
technique is required for efficient query processing but makes interactive inser-
tions relatively slow. For applications involving large databases, fast insertion
capabilities are extremely important and with the method proposed in this paper,
batch insertion costs of 2 or 3 disk accesses per record can be achieved.

The conclusions are presented in Section 10.
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods 657

2. OVERVIEW

Faloutsos [lo] has presented a recent review of access methods applicable to both
formatted and unformatted data. He classifies text retrieval methods into the
following four classes:

(1) Full Text Scanning. In this method the full text database is scanned for
matching records [l, 4,171. No extra storage overheads are incurred, but the
method is relatively slow for large databases.

(2) Inversion. This method uses an inverted file index. It has been implemented
in many commercial text retrieval systems [27, 281. It provides relatively
efficient query speeds, but can be very expensive of storage. In addition
insertion times are slow.

(3) Clustering. In this method, similar documents are grouped together to form
clusters [26, 27, 301. Clustered documents can be stored physically together,
facilitating efficient retrieval of related documents. A descriptor is stored for
each cluster and a search correlates, typically using a vector similarity
function, these descriptors with the query descriptor to retrieve relevant
documents. The main disadvantage of these methods is the slow insertion
times [lo].

(4) Signature Files. In this method, a descriptor or signature is associated with
each record or document [lo], the descriptor being a bit encoding of the
values used to retrieve the record. When a query is processed, the tile of
descriptors, rather than the data records, is examined for possible matches.
A query descriptor is formed using the same encoding technique that is used
for forming record descriptors. The possible record matches are those records
whose descriptors contain bits set in each position for which a bit is set in
the query descriptor. Signature file methods have good retrieval properties
and require small storage overheads.

We propose a new signature file method suitable for large data files. We begin
by briefly reviewing some signature file methods.

For methods to be applicable to both text retrieval as well as formatted data,
an effective way to form the descriptors uses superimposed coding techniques
[lo]. With this method, descriptors are formed for each of the terms used to
retrieve the record, and the record descriptor is formed in turn by superimposing
(inclusive ORing) the term descriptors. A term descriptor is a bit vector of b bits
with exactly k bits set to 1. The superimposing of term descriptors makes the
method readily amenable to unformatted records, since there are no restric-
tions (other than for performance considerations) on the number of terms per
record.

Various compression techniques have been proposed for representing the record
descriptors. If b is large and k is small, then the descriptor will be sparse and
compression techniques can be applied. McIlroy [18] proposed a compression
technique for which the number of zeros between two successive 1s in the sparse
vector was recorded. Faloutsos [111 proposed another compression technique for
which the sparse vector is divided into groups of consecutive bits and variable
length encodings of the bits set in each of these groups are stored. A survey of
these compression-based representations is presented in [111. Although efficient

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

658 l FL Sacks-Davis et al.

of storage, these techniques make query processing slower and are not considered
in this paper.

There have also been different techniques proposed for the storage of record
descriptors. One approach, which we call a bit-slice representation, improves
query response time by reducing the number of bits that have to be retrieved
from the file of record descriptors at query time. This storage technique has been
used in [20, 24, 321.

The signature file methods surveyed in [ll] are all one-level schemes in the
sense that descriptors are formed for single records only. As a consequence, these
methods become relatively slow for large data files, since all of these descriptors
have to be examined on query. It is possible to overcome this problem by forming
descriptors for blocks of records and thereby implement a multilevel indexing
scheme. A two-level scheme for superimposed coding was proposed in [24], the
performance of which is analyzed in [25]. The idea of a multilevel indexed
descriptor method was first proposed in [20]; however, the approach in that paper
was based on disjoint coding techniques rather than superimposed coding, the
latter being more efficient for text retrieval applications.

As well as using a two-level descriptor file to improve query response times, a
bit slice representation is used for the storage of the block descriptors in the
method proposed in this paper. A property of this representation is that individual
bits belonging to particular block descriptors can be stored very far apart on the
secondary storage device. As a consequence, although query times are reduced
with this storage technique, insertion costs are no longer cheap. If insertions are
batched, however, considerable savings can be made. In this paper we describe a
batch insertion technique for which the cost of forming the block descriptor file
using the bit slice representation is typically less than one disk access per record.

In order that the two-level scheme be efficient for all query types, it is important
that the encoding scheme take into account the frequencies of the index terms.
This is the approach adopted in this paper. The main purpose of the encoding
scheme is to reduce the number of occurrences of unsuccessful block matches.
Although unsuccessful block matches do not occur with one-level implementa-
tions, improved performance can also be achieved with these one-level schemes
if the encoding scheme takes into account term frequencies. Encoding schemes
for the one-level implementations that take into account the nonuniform distri-
bution of the index terms were proposed in [20] and analyzed in [12].

The coding techniques used to form term descriptors can be extended so that
direct indexing is possible on word parts and pairs of words. This makes the
superimposed coding methods extremely attractive in a number of different
applications. Harrison [131 proposed using superimposed coding for substring
testing, and this approach is further explored in [ll]. In this paper we describe
some experimental results obtained when superimposed coding is used to directly
index on word phrases.

In addition to text retrieval, superimposed coding techniques have been applied
to a number of other application domains. These include message files [6], optical
disk storage [7], statistical databases [32], filtering methods [3, 181, and Prolog
databases [8, 221. Superimposed coding techniques are well suited to hardware
implementation [14, 161.
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods 659

In this example, each record describes a book and has up to five terms (s = 5) corresponding to the
three attributes: author name, publication date, and title keyword.

i

a1 = Theroux, P. (author name)
vz = 1975 (publication date)

R = u3 = Great (title keyword)
v4 = Railway (title keyword)
ug = Bazaar (title keyword)

There will be three functions HI, Hz, H3 for generating codewords, one for each attribute. Suppose
that b = 15 and k = 2 and

Hl(u,) = 00010 00000 10000
Hz&) = 01001 00000 00000
Ha(u3) = 00010 00100 00000
H&I,) = 00000 00010 00001
Ha(u,) = 00001 00001 00000

Then I&, the record descriptor for record R, is

DR = 01011 00111 10001

Fig. 1. An example of superimposed coding.

3. DESCRIPTION OF THE METHOD

We begin by describing the one-level scheme. A record descriptor is a bit string
that is formed from the terms that are used to retrieve the record. A record
descriptor is constructed as follows. First each term is transformed into a code
word that is a bit string of length b containing exactly k 1s and b - k OS. Here b
and k are parameters of the method. Suppose that each record contains s terms.
Then a record descriptor is formed by superimposing (inclusive ORing) the
corresponding s code words for record R. An example of this process is given in
Figure 1.

A query consists of the specification of Q terms (4 5 a). These 9 values are
transformed into q code words that are then superimposed to form a query
descriptor. Observe that if a record satisfies a query, then every bit position that
is set in the query descriptor must also be set in the record descriptor. Thus to
answer a query it is necessary to search for record descriptors that match the
query descriptor in this way. This can be achieved using simple AND and OR
operations.

It is possible that a record descriptor matches a query descriptor but the
corresponding record does not satisfy the query. Such an occurrence is referred
to as a false match. The probability of a false match can be made arbitrarily small
by appropriate choice of the parameters b and k.

As we have described the method so far, it is necessary to retrieve every record
descriptor in order to answer a query. We now describe the two techniques
discussed previously for reducing the amount of descriptor file that must be
retrieved on query.

The first technique related to how the record descriptors are stored on disk.
Suppose the data file contains N records. Rather than viewing the descriptor file
as consisting of N strings of b bits in length, it is possible to store the file as b

ACM Transactions en Database Systems, Vol. 12, No. 4, December 1987.

660 l FL Sacks-Davis et al.

strings, each of length N. If a query contains w Is, then with the latter represen-
tation it is possible to check the relevant w bits of every record descriptor without
fetching any of the other bits. Thus only WN rather than bN bits of the descriptor
file need be examined on a query. This approach, known as the bit slice represen-
tation of the descriptor file, can contribute considerable savings, since typically
w << b.

Even with the bit slice representation, a large amount of data must be fetched
from secondary store in order to answer a query. Consider a query for which a
single term is specified. Then 12 slices, each containing N bits, must be fetched
from disk. In a shared environment, where the disk is organized as a number of
equal sized pages or blocks, a large number of disk accesses (seeks) are required
to retrieve these data. If each page in secondary store has a capacity of P bits,
then the number of disk access required is at least k . lN/Pl. If N = 500,000
and P = 8192 (1K bytes), then for k = 4, as many as 248 disk accesses are
required to determine the matching records. Even with a dedicated disk drive,
the large amount of data to be processed makes the one-level scheme somewhat
expensive.

Another problem with using a one-level scheme together with a bit slice
representation is that a separate data structure mapping a logical record number
onto a physical location on disk must be maintained. (This is not a problem if,
for example, the data records are fixed length and the physical records are stored
contiguously on disk.) If this data structure is stored on disk, then the cost of
answering a query increases due to the indirection introduced.

The second technique for reducing the amount descriptor file that must be
examined on query is based on using a multilevel descriptor file rather than a
single-level file. In [24], a two-level scheme is proposed for which a data file of
N records is viewed as consisting of N, blocks, each containing N, records where
N = N, - N,. Both block descriptors and record descriptors are stored in this
scheme. A block descriptor is formed analogously to a record descriptor using all
the terms of all the records contained in that block. It will, in general, be much
larger than a record descriptor. Suppose that the block descriptors are character-
ized by parameters b, and kS and the record descriptors by b, and k,.

In the approach we propose (see Figure 2), the block descriptor tile is stored
using the bit slice representation, whereas the record descriptors are stored as
bit strings. The physical location of a record is stored together with its corre-
sponding record descriptor. We also assume that the parameters of the two-level
scheme are such that all of the record descriptors for a particular block, together
with their associated pointers, can fit entirely within a single page of secondary
store.

In order to answer a query using the two-level scheme, two query descriptors
are formed: a query block descriptor and a query record descriptor. The query
block descriptor is based on parameters b, and kS and is used to determine which
blocks satisfy the query. Only the record descriptors from matching blocks are
then compared to the query record descriptor.

The cost of answering a query that specifies a single term can be estimated as
follows. First the query block descriptor is formed by determining which of the
b, descriptor bits are set by this term. When only one term is specified, then
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods 661

Block Descriptor

File

Record Descriutor

b, = 23

N, = 3

File
Data File

I I I < ,
N, = 4

Fig. 2. Index structure for the two-level scheme.

exactly ks bits are set. The corresponding slices of the block descriptor file are
then fetched from secondary store. This will typically involve ks disk accesses or
a small multiple thereof, since the length of a slice is now N, rather than N bits
as in the single-level scheme. It is then possible to determine which blocks satisfy
the query. For each matching block, we fetch the corresponding record descrip-
tors. By design, all the record descriptors for a given block fit within a single
page so that if there are n, matching blocks, this can be achieved with n, further
disk accesses. It is then possible to determine which records satisfy the query
and fetch the corresponding data records. Suppose that A records satisfy the
query and D(A) disk accesses are required to fetch all these records from disk.
The total number of disk accesses, therefore, required to answer a query for
which a single term is supplied is k, + n, + D(A). Here we have ignored false
matches, but typically the number of false matches will be small by design.

For queries that specify a single term, the two-level scheme overcomes both of
the problems previously discussed for the one-level implementation. Let us now
consider queries for which more than one term is specified. In this case w, 2 k,
bits will be set in the query descriptor and up to ws slices from the block descriptor
file can be retrieved in order to determine the number of matching blocks. Note,
however, that only k, slices need be fetched in order that the probability of a
false match with a block containing none of the query terms be the same as for
the single-value query case. As a consequence, the number of disk accesses
required to determine the matching blocks for multiterm queries is typically only
marginally greater than the constant overhead required for single-term queries.

For queries that specify two or more terms, an additional cost, not associated
with the single-level scheme, occurs in the two-level implementation. Consider a

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

662 l R. Sacks-Davis et al.

query that specifies two terms, al and u2. Because a block descriptor is formed
from all of the terms of the records belonging to that block, there may exist a
block that contains a record with term aI and contains another record with term
a2 but contains no record with both terms al and u2. Such a block will generate
a block match even though it contains no records that satisfy the query. We refer
to this occurrence as an unsuccessful block match. The cost of an unsuccessful
block match is one disk access, since the page of record descriptors for that block
will be fetched. It is very unlikely that any false record matches will be generated
as a result of an unsuccessful block match [25]. This is because many more than
k, bits will be set in the query record descriptor. As the record descriptors are
stored as bit strings, all the set bits in the query descriptor will be compared to
the corresponding bits in each record descriptor that is examined. Hence the
probability of a false record match is much lower than for the single-term case.

In order to estimate the potential number of unsuccessful block matches, let
Aj be the number of records containing term oj , j = 1,2, and let A * be the number
of records containing both al and u2. Define

Then p(Aj) is an estimate of the probability that a particular block contains one
or more records with term oj. This estimate is based on the assumption that
records with term oj are distributed uniformly over the data blocks. If the terms
a1 and a2 are independent, then we may estimate the number of unsuccessful
block matches, U(ai, uz) as

Uh, a2) = N, - P(A, -A*) . P(A2 - A*) . [l - P(A*)].

For Aj << N, we may approximate P(Aj) by

A.iV A,
p(Aj) +-&=--$.

s

If we consider the case A1 = A2 = A, A* = 0, then with this approximation

We can therefore determine the number of occurrences, x, of two such terms,
necessary to result in a single unsuccessful match as

x = (Ny2.

If A = ox, then the number of unsuccessful matches can be estimated as w2.
When n > 2 terms are supplied in a query, we can estimate the number of

unsuccessful block matches U(ui, u2, . . . , a,) in a similar way to the case n = 2.
In particular, if A1 = A2 = . . . = A,, = A, and if A* = 0, then

A”
U(u,, u2, . . .) a,) = ~

(NJ’-l ’

Obviously the numbers of unsuccessful block matches will tend to decrease as
more terms are supplied in a query.
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods l 663

One way to substantially reduce unsuccessful block matches is to set bits in
the block descriptors by hashing pairs of terms as well as the terms themselves.
Thus if there exist two terms al and a2 in a record, then it is possible to set bits
in the appropriate block descriptor based on the pair al . a2 in addition to setting
bits generated from al and u2. To answer a query specifying both al and u2, these
extra bits will be set in the query descriptor at the block level, thereby eliminating
most of the unsuccessful block matches. This approach will be particularly useful
if the attributes corresponding to both al and u2 have domains that are small
compared to the number of records in the file or if the attributes have highly
nonuniform distributions. A method employing this technique is described in
Section 5 of this paper. The extra overheads generated by setting these extra bits
are small, since typically only one or two bits need be set for a pair of terms and
this technique need only be applied to selected terms.

We conclude this section by remarking that the generation of bits in a
descriptor using word pairs has other applications. By setting a single bit for
every pair of adjacent words in a string of text, it is possible to directly support,
at small cost, the indexing of text phrases as well as single words of text. When
a phrase is specified in a query, the use of such adjacency bits will practically
eliminate the retrieval of those documents that contain all the words in the
phrase, unless these words are in consecutive locations. Another application to
text retrieval arises when triplets of consecutive letters rather than single words
are used for indexing [121. This approach is useful for supporting queries in
which substrings of words are specified. Unsuccessful matches can occur if this
technique is adopted, however, since records that contain all the triplets specified
in a substring will be retrieved, even when these triplets are in the incorrect
order. Setting bits based on pairs of consecutive triplets can be used to reduce
the consequent cost.

4. COMPARISON OF THE ONE-LEVEL AND TWO-LEVEL SCHEME

We begin by investigating the costs when a single term is supplied in a query. In
order to estimate the number of false matches, we will use the formula

as an estimate of the probability that t chosen bits are set in a descriptor that is
defined by parameters b and k and which is formed from s terms. If the number
of descriptors that must be examined when answering a query is n and the
number of bits set in the query descriptor is t, then we can estimate the number
of false matches as (n - A) . 9 (t; k, b, s), where A is the number of true matches.
Since A << n, we approximate this estimate by n . q (t; k, b, s) to simplify the
analysis.

In the following we present the costs of both the one- and two-level schemes.
As discussed previously, one of the components in the cost is the time required
to retrieve a bit slice from secondary store. For the one-level scheme, these slices
will be N bits in length, where N is the number of records to be indexed. In a
shared system where files are stored in noncontiguous blocks (pages), several
seeks will typically be required to retrieve a single slice from secondary memory.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

664 l R. Sacks-Davis et al.

In this environment the one-level scheme can become very expensive compared
to the two-level scheme. On the other hand, in a dedicated environment where
the descriptor file is stored contiguously on disk and hardware is provided to
enable the retrieval of a single slice in only one disk access, then the one-level
scheme becomes more competitive. We will compare the one-level and two-level
schemes in both of these environments. For definiteness, we will refer to the
former system environment as being shared and the latter as being dedicated.

An assumption that we will make is that the data records are of variable length.
For the one-level scheme, a separate array of pointers to the data records must
be maintained. For large files this array will often be required to be resident on
disk. We will, however, also investigate the case when the array is stored in core.

Finally, we also assume that there is sufficient in core memory available to
store two bit slices.

In the comparison, we make use of the following parameters.

P

B”
TS
Td

TCl
TZ
TO
TC
A
Ci
Di

Page size in bits
Word size = pointer size
Blocking factor (number of data records per block)
Average seek time
Time required to read one bit of data from disk (inverse of data transfer
rate)
Time required for an AND operation on a pair of bits
Time required to detect a zero word/word size
Time required to locate the position of a 1 within a word
Average computation time per block to retrieve the matching records
Number of records that satisfy the query
Cost of step i for the one-level scheme
Cost of step i for the two-level scheme

In the following, we will require an estimate of the expected number of blocks
containing r randomly chosen tokens, given that m is the number of tokens per
block and n is the number of blocks. An estimate of the probability that an
arbitrary block contains one or more of the tokens, e(r, m, n), is given by the
following formula [33 1:

The expected number of blocks containing the r tokens is then e(r, m, n) a n. In
order to reduce the computation time required to evaluate e(r, m, n), a closed,
noniterative approximation was provided by Whang et al. [31]. The noniterative
formula is

e(r, m, n) =

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods 665

when r 5 mn - m and

e(r, m, n) = 1

when r > mn - m. This approximation was used throughout this paper.
It should be pointed out that the calculation of expected block accesses using

the average number of tokens per block, m, rather than the distribution can lead
to overestimates of the block accesses required if there is a variable number of
tokens per block [5]. In the following comparison, the costs at the index levels
will be estimated accurately, since the descriptors are of fixed length. We will
also assume that the data records have small variance in length. If this is not
true, then the estimates for both methods will be affected, since the estimated
costs of retrieving the actual data from disk will be biased.

We begin by considering the cost of answering a query using the one-level
scheme. If we assume that a single term has been supplied in the query, then the
one-level scheme consists of the following steps.

Algorithm 1 (one-leuel)
Step 1. Retrieve and transfer iz bit slices from disk. If the scheme is imple-

mented using a dedicated disk, then the cost of this step is

Cl=k.T,+k-N.T,.

On the other hand, if the secondary memory is shared and a seek is required for
every page that is retrieved from secondary store, then the cost of step 1 becomes

. (Ts + P - Td).

Step 2. AND k bit slices

Cz = (k - 1) . N . T,.

Step 3. Find the positions of the set bits in the resultant vector

c3 = N - T,+n. T,,

where

and

n = true record matches + false record matches = A + F

F = N . q(k; k, b, s).

Step 4. Determine the locations of the matching n records. If the array of
pointers to the data records is stored on disk, then the cost of this step is

If the array is kept in core, then the cost of step 4 can be ignored.
ACM Transections on Database Systems, Vol. 12, No. 4, December 1987.

666 l R. Sacks-Davis et al.

Step 5. Retrieve data

C, = e a [T, + P . Td + TJ.

We now present the costs of the two-level scheme. The steps involved are
described below.

Algorithm 2 (two-level)
Step 1. Retrieve and transfer k, bit slices from the block descriptor file stored

on disk. In a dedicated environment the cost is

Dl=$. T,+k,. N,. Td,

while in a shared environment, the cost is

Dl= k, . 5
I 1

. (Ts + 2’ . Td).

Step 2. AND $ bit slices

Dz = (ks - 1) . N, . T,.

Step 3. Find the positions of the set bits in the resultant vector

D3=N,. T,+n,. TO,

where

ns = true block matches + false block matches = e(A, N,, N,) + F,

and

Fs = Ns . q(ks; $3 b,, Nrs).

Step 4. Read record descriptors for matching blocks

D4 = n, . [Ts + P . Td].

Step 5. Determine the matching records by examining the record descriptors

D5 = n, . [(kr - 1) . N, e T, + N, - T, + c . TO],

where

and

and

n, = true record matches + false record matches = A + F,

F, = N, . n, . q(k,; k,, b,, s).

For simplicity, we have assumed that the record descriptors are also stored in bit
slice form in deriving D5.
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods l 667

Step 6. Retrieve data

Ds = e . [Ts + P . Td + T,].

In order to compare the two schemes, let us assume initially that a dedicated
disk drive is available. If we choose k = k, and we also assume that the number
of matching records is small, so that n, = n << N, then both schemes will require
the same number of seeks to answer a query for which a single term is specified.
The difference in costs for the two schemes reduces to the following:

DIFF = cost of one-level scheme - cost of two-level scheme

On most computers T, z T,, so the difference becomes

(N-N,)[T,j+T,]k,-n[k,. N,. T,+T,J.

Since the first term of the preceding expression dominates the second term for
typical parameter values, we can conclude that DIFF > 0 under these assump-
tions. For queries that result in a small number of matching records, the one-
level scheme is more expensive than the two-level scheme. On the other hand, as
the number of matching records, A, increases, it will be seen that the one-level
scheme becomes more competitive. The relationship between the two schemes
for typical parameter values is explored further below.

A number of experiments were conducted, comparing the two schemes using
databases of different sizes. For these tests, the parameters of the two-level
scheme were chosen using the following criteria. The number of blocks was
chosen to be an integral multiple of the page size, P, so that the bit slices were
aligned on page boundaries. The number of records per block was chosen so that
N, ’ (b, + w) = P/2’ for some integer i 2 0. It could then be guaranteed that the
record descriptors for a matching block could be retrieved using a single disk
access. For each database, b, was chosen so that the expected number of false
block matches was one.

The parameters of the one-level scheme were chosen so that k = lz, and the
storage overhead generated by the one-level scheme was equal to that of the two-
level scheme.

As an example, consider the following database of just over one million records,
each containing 20 terms. The parameters used in the comparisons are listed in
Figure 3.

The times in seconds to answer a query for various numbers of matching
records are presented in Figure 4. It can be observed that if the number of
matching records, A, is sufficiently large, then the one-level scheme is faster than
the two-level scheme, but when A is small, the two-level scheme is more efficient.
The crossover point depends on the system environment. In a shared environ-
ment, the two-level scheme is faster for queries with up to 2000 matching records.
In a dedicated environment, the crossover point is approximately 500 records if,
for the one-level scheme, the array pointers to the data records is stored on disk
and approximately 90 records if it is stored in core.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

668 . R. Sacks-Davis et al.

N = 1,048,576 (number of records)
s = 20 (number of attributes)
P = 8192 (page size (1K bytes))
B = 8 (average record size 128 bytes)

!I’. = 35 milliseconds
Td = 0.2 microseconds (5 megabits/s+
T, = 0.2 microseconds
T, = 0.2 microseconds
T, = 0.2 microseconds
T, = 500 microseconds

Two-Level Scheme
N, = 40,960 (number of blocks)
N,=26 (records per block)

k. = 4 k, = 8
b. = 28,540 b, = 283
qk ks, b., s . Nr) = l/N. q&r; k,, b., s) = 1/29N

One-Level Scheme
k=4
b = 1397
q(k; k, b, s) = 10/N
Storage = 8.93 bytes per indexed term

Fig. 3. Example database.

Total

query
time

(SeconW i 0.0

1 10 100 1000 10000

Record matches

Fig. 4. Query costs for page size = 1024 bytes, s = 20, N = 1,048,576.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods 669

total

wry
time

(seconds) I 0.0

1.0

- - - - - One level, shared
----------- One level, dedicated
-------- One level, pointers in memory
___ Two level, shared
-- - Two level, dedicated

0.2

I I I111111 I I111111 I llllll1 I I111111 I
1 10 100 1000 10000

record matches

Fig. 5. Query costs for page size = 4096 bytes, s = 10, N = 1,048,576.

As the page size increases, and the database gets smaller, the values of A at
the crossover points tend to decrease. In Figure 5, the page size is increased to
4K bytes, and s is reduced to 10. The values at the crossover points described
above are 600, 250, and 40, respectively. For a page size of 1K bytes, a database
of 131,072 records, and .s = 10, the values are 300, 120, and 8, respectively.

If we consider now queries for which more than one term is supplied, then for
the two-level scheme there is an additional cost involved due to unsuccessful
block matches. This additional cost is not present in the one-level scheme. In
order to estimate the effect of unsuccessful block matches on query performance,
we computed for each value of A for which the two-level scheme outperformed
the one-level scheme, the number of unsuccessful block matches, u(A), that
could be tolerated by the two-level scheme before becoming more expensive than
the one-level implementation.

u(A) =
cost of one-level scheme - cost of two-level scheme

cost of an unsuccessful block match ’

The cost of an unsuccessful block match is the time required to retrieve and
examine a block of matching record descriptors. This cost is T, + P . Td +
q . (k, - 1) . N, . T, + N, - T,. Here we have assumed that no false record

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

670 l Ft. Sacks-Davis et al.

N = 1,048,576; s = 20; P = 8192

Two-level One-level One-level One-level
A shared shared dedicated dedicated/in-core

1280 0.075 0.084 0.070 0.039

5280 0.072 0.061 0.058 0.037

10,240 0.070 0.051 0.050 0.036

N = 1,048,576; s = 10; P = 32,768

Two-level One-level One-level One-level
A shared shared dedicated dedicated/in-core

1280 0.083 0.070 0.067 0.043

5120 0.079 0.047 0.046 0.038

10,240 0.075 0.041 0.041 0.036

N = 131,072; s = lo; P = 8192

Two-level One-level One-level One-level
A shared shared dedicated dedicated/in-core

1280 0.070 0.051 0.050 0.036

5120 0.060 0.037 0.036 0.032
10,240 0.050 0.030 0.030 0.028

Fig. 6. Cost, per record, of answering a query in seconds for large A.

matches will occur as a result of an unsuccessful block match. In the next section
we provide an encoding scheme for which the number of unsuccessful matches is
almost always between 0 and 1 per matching record. Thus for queries that supply
more than one value, the two-level scheme will almost certainly be less expensive
than the one-level scheme if u(A) L A. The point at which u(A) = A represents
a crossover value for multiterm queries in the sense that as the number of
matching records increases above this value, we can no longer guarantee that the
two-level scheme is more efficient.

For the database described in Figure 3, if we consider a shared environment,
the crossover point for multiterm queries is approximately 500 matching records
compared to the value of 2000 records for single-value queries. We can conclude
that for a particular multiterm query, the crossover point will be some value
between 500 and 2000 records. Using the same argument for multiterm queries
in the dedicated environment, the crossover point is some value between 50 and
500, and if in addition the array of pointers to the data records is kept in core
for the one-level scheme, the crossover value is between 20 and 90.

In Figure 6, the costs per matching record of answering a single-term query
are given for various configurations when the number of matching records, A, is
large. If we discuss these costs in terms of disk accesses, then for the two-level
scheme, the cost per matching record is typically 2 disk accesses. It decreases
slowly with increasing A. If we take unsuccessful block matches into account,
then for queries that supply a number of terms, the cost can be as high as 3 disk
access. For the one-level scheme, the cost decreases from 2 disk access to 1 disk
access as A increases. If the array of pointers is not stored in core, then it makes
little difference whether the environment is shared or dedicated. If, however, the
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods 671

pointer array is kept in core, then the cost remains close to 1 disk access for all
values of A.

In an interactive environment the performance of a method for queries for
which the number of matching records is small is very important. In an infor-
mation retrieval system, an interactive user would typically only be interested in
viewing a small number of records in response to a query. If a query is given for
which the number of matching records is large, the user is typically required to
supply more search terms to narrow the query response. The results of the tests
show that in a system where the files are stored in noncontiguous blocks, the
two-level scheme is clearly superior for this type of application. Even in a
dedicated environment where the descriptor files are stored contiguously on disk
and for which single seeks are sufficient to retrieve very large volumes of data,
the two-level scheme is faster for typical queries for files that are sufficiently
large. If, however, sufficient main memory is available to store the array of
pointers to the data records in core, then the one-level scheme becomes more
competitive, for smaller files in particular. In order to determine when the array
can be kept in core, a number of factors must be considered. For example, the
main memory requirements will be substantial; a file of one million records will
require about two megabytes of memory, unless some time tradeoffs are made.
Also, in a multiuser system, it will be required that separate users share the same
memory, and this is operating system dependent.

5. AN ENCODING SCHEME TO REDUCE UNSUCCESSFUL BLOCK
MATCHES

In order to model the behavior of the two-level scheme when more than one term
is supplied in a query, it is necessary to investigate the effect of unsuccessful
block matches on query performance. The aim is to produce an encoding scheme
for which the number of unsuccessful block matches is small. In this section we
describe a simple scheme for reducing unsuccessful block matches and then
propose a more robust scheme. A list of the parameters used in this section is
given in Figure 7.

Unsuccessful block matches are present due to the occurrence of particular
data terms in large numbers of records. In the following we assume that the
number of terms (tokens) stored in the database is NV = N . s, while the number
of distinct values is No. If we order the distinct values Ui, i = 1, 2, . . . , No by the
frequency of their occurrence, then u1 is the most commonly occurring data value,
followed by u2, and so on. We will assume that the probability of occurrence,
pi, of the ith value within the data file follows the well-known Zipfian
distribution [34]:

(Zipf’s law) for parameters (Y and /3.
Because the highest ranked values will appear in a large number of blocks, we

will modify the coding scheme so that these values will be treated differently
from the less frequently occurring data values. A data value will be referred to as

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

672 . R. Sacks-Davis et al.

N

x
NI
b.
b,
k.
k,
1,
C
Cl, c2,

r”

P
PD

PC

Vi

Pi

ff* B

SD

z,

ND

rcdi
blki
recij
b1ki.j
trUei, j
tOtdi,j

ubmi,j

number of records in database;
average number of terms per record,
number of blocks;
number of records per block;
length of a block descriptor;
length of a record descriptor;
bits set by a term in a block descriptor;
bits set by a term in a record descriptor;
number of bits set by pairs of common words,
number of common words;

Ca three classifications of common words;
cutoff for the number of block matches for combination bits;
maximum value of unsuccessful block matches per true block match within region covered

by common words,
average density of the block descriptor file (bits 1 through b.);
probability of a bit being set by a regular word in the block descriptor file (bits 1

through b,);
probability of a bit being set by a pair of common words in the block descriptor file

(bits 1 through b.);

value i, where i is the rank of the term;
probability of occurrence of vi;
parameters of Zipf ‘s distribution;
average number of distinct terms per record,
average number of common terms per record;
total number of terms in a database (N . s);
number of distinct terms in a database;
probability of vi appearing in a record;
probability of vi appearing in a block;
probability of a record containing vi and vi;
probability of a block containing a record with terms oi and vi;
number of blocks containing records with vi and vi;
number of blocks containing both vi and oj;
number of unsuccessful block matches resulting from a query containing vi and vj.

Fig. 7. Parameters for the two-level scheme.

a common word if its rank is between 1 and C, where C is a parameter of the
coding scheme. Values with rank C + 1 to ND will be referred to as regular words.

Regular words are treated exactly as described in the previous section. For
each regular word appearing in a record, a code-word, characterized by parameters
b, and ks, is formed and superimposed on to the appropriate block descriptor.
Common words are treated differently. In [23], Roberts suggested that rather
than setting ks bits in a block descriptor for a commonly occurring value, it is
better to set a smaller number of bits. In the coding scheme we propose, a single
bit only will be set for a common word. Moreover, this bit will be set in a disjoint
field that is allocated to each block descriptor for common words. For each
common word, one additional slice is allocated to the block descriptor file, so
that a block descriptor contains b, + C bits rather than b, bits. A bit set in the
ith position of slice b, + j will indicate that there is a record in the ith block
containing Uj , the j th ranked common word.

In order to eliminate unsuccessful block matches, bits will also be set in the
block descriptor file using pairs of common words. We will refer to those bits set
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods 673

in the block descriptor file by pairs of words as combination bits. Suppose a record
contains m common words. Then there are ($) pairs of common words. For each
pair, a code word of length b, with exactly 1, bits set will be formed and
superimposed onto the first b, bits of the appropriate block descriptor. Thus bit
positions 1 to b, are reserved for regular words and pairs of common words. Note
that with this method, a record containing m common words will set at most
b - m) + k, + m + 1, . (2”) bits in a block descriptor.

At the record descriptor level, no distinction between common and regular
words is made. The scheme used is unchanged from the previous section.

The encoding method assumes that all terms are indexed. Of course, it is
possible to treat the very common words as noise words and set no bits for these
words in the descriptor files. The problem with this approach is that although it
is not likely that common words will be specified in single-term queries, a number
of common words may be specified together in a query that results in a small
number of matching records. Ignoring common words entirely means that the
latter queries cannot be answered efficiently.

First we show how to estimate the bit density of the block descriptor file when
this encoding scheme is used. This estimate is required to predict the performance
of the method. Given that the probability of occurrence of the ith value, Ui, is pi,
we can estimate the probability that Ui appears in a record as rcdi where

rcdi=e(pi*N*~,s,N).

The number of distinct values per record, SD, is then
ND

SD= 1 rcdiss.
i=l

Similarly, the average number of common words per record, sc, can be
estimated as

c
SC= C rcdi.

i=l

We can estimate the probability of Ui appearing in a block as blki, where

blki=c(N. rcdi,N,,N,).

We need to determine the probability that a bit in position 1 to b, of a block
descriptor is set. The probability that it is set by a regular word, PLg, can be
estimated as

We now consider pairs of common words. Let rcdi,j be the probability that both
the ith and jth ranked values appear together in a record. The probability, PC,
that an arbitrary bit is set by a pair of common words is

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

674 l R. Sacks-Davis et al.

where

blki,j= e(N . rcdi,j 9 IV,, Ns)a

If we assume that the data values are independent, then we can estimate
rcdi,j by rcdi * rcdj.

The average density of the block descriptor file (here we are only concerned
with bits 1 through b,) is then P where

P = 1 - (1 - Pn)(l -PC)*

The expected number of false block matches when a single regular word is
supplied in a query is pks . N,. If a single common word is supplied, then no false
block matches occur with the coding scheme used. In order to evaluate the
performance of the method when two values are supplied, we have to consider
the number of unsuccessful block matches that can occur. The effect of the
coding scheme for queries for which two common words are specified, is that the
number of unsuccessful block matches will reduce by a factor of ~4 compared to
the previous scheme. This is because when answering such a query, the bit slices
corresponding to that pair of common words are retrieved. For queries that
contain a pair of attribute values that includes at least one regular word, the
number of unsuccessful block matches is not so reduced.

Suppose the rank of the two values supplied are i and j, respectively, with
i < j. The number of blocks containing records with both values is truei,j,
where

truei,j = blki,j . N, = e (N * rcdi . rcdj , N,, NS) * N,.

The number of blocks containing both values Ui and Vj is tota1i.j , where

total,i = NS * blki . blkj .

The number of unsuccessful block matches resulting from a query which specifies
two values is then

ubmi,j =
-i

/L”(tOt&j- tFUC?i,j), if i,jSC
tOt&,j - tIIlei,j, otherwise.

The number of unsuccessful block matches relative to the number of true matches
is ubm&ruei,;. This value determines the additional cost in disk accesses per
matching record of answering a query that is attributable to unsuccessful block
matches.

If we make the first-order approximation blki = N,. . rcdi, then

tot&j z N, * NF * rcdi . rcdj ,

truei,j = N, * N, * rcdi * rcdj,

totali,j - true,j = N, * N, * (N, - 1) * rcdi * rcdj,

and

ubm. r,lz
1

P’W, - l), if i,jSC
truei,j Nr - 1, otherwise.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 198’7.

Multikey Access Methods 675

This suggests the following design rule for computing the block descriptor
parameters. In order that the number of unsuccessful block matches per matching
record be limited to one, say, C should be chosen sufficiently large and ~1 chosen
so that

p[” * (Nr- 1) = 1.

Also, in order that the number of false block matches per query that occur when
a single attribute-value is supplied is limited to say, one, we have a second
constraint on p, namely

Combining these two criteria, we have

.=min[(+-y, (&y].

As an example, consider a database for which N = 150,000 and s = 10. The
number of blocks, N, = 15,000 and the number of records per block N, = 10.
Suppose the data are Zipf distributed, with (Y = 0.08137 and /? = 1.0. (With these
values, the frequency of the data value of lowest rank, uND, will be 1, and the
value of /3 is typical of the values that are observed in much naturally occurring
data [34].) In Figure 8, the values of ubmi,j/truei,j are plotted for various values
of i and j. It can be observed that as i and j increase, the ratio approaches N,.-i
as predicted. These values were computed assuming the number of common
words C = 0.

We have not discussed how many common words are typically required to
make effective use of the preceding encoding scheme. In order to determine how
many common words are necessary, a number of factors should be considered.
Although the ratio ubmi,j/truei,j grows with increasing i and j, the number of
block matches decreases. We would like to be able to set combination bits for
those queries for which the number of block matches exceeds some cutoff value,
say A. Let us consider a query that specifies two values Ui and Uj as a point (i, j)
in two-dimensional space, and draw a curve connecting those values of i and j
for which the total block matches, totali,j, equals a given value, A. A series of
such curves are presented for the example database in Figure 9. If we consider
all possible queries that supply two values, then for the given cutoff value, A, the
area that we would like to cover lies between the corresponding curve and the
axes, since this area contains the points (i, j) corresponding to queries for which
the total block matches exceed A. The area to the right of the curve contains the
pairs (i, j) corresponding to inexpensive queries.

The scheme we have just described, which is based on a set of C common
words, covers queries for which the ranks of the two values are less than or equal
to C (the square shaped area of Figure 10). In order to cover all points for which
tota1i.j 5 A, a very large number of common words will be required, even for quite
high values of A. The scheme becomes impractical to implement, since all of
these common words must be stored in memory and the overheads become
too large.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

676 l R. Sacks-Davis et al.

ubn-dtrue

8.0

6.0

jrank

Fig. 8. ubm&ueij vs. j for i = 1, 4, 64, 256.

To better approximate the desired area to be covered, we now consider a coding
scheme based on three parameters Ci, i = 1, 2, 3, where 1 I C1 I Cz 5 C3 s No.
This scheme identifies three sets of common words, and we will refer to a word
whose rank lies between 1 and Ci as a Ci-Common word, i = 1, 2, 3. Words with
rank greater than C3 will be referred to as regular words. With these parameters,
combination bits will be set for values (i, j) within the shaded area of Figure 11.
It will be seen that unlike the previous scheme, the new scheme is easy to
implement. Only GCommon words will need to be stored explicitly. The C,-
Common words that have rank greater than Cp can be determined using an
inexpensive filtering technique and need not be stored explicitly. This is impor-
tant, since in practice C, will be relatively small and Ca will be very much greater
than Cz.

When inserting a record into the database, the strategy for setting combination
bits is as follows. For every pair of CP-Common words appearing in a record,
1, combination bits will be set. (C, can be thought of as corresponding to C in
the previous scheme.) In the new scheme, however, combination bits will also be
set for pairs made from Ci-Common words and words with rank C, + 1 to Ca.
A block descriptor will be of width b, f Cz. For every Cz-Common word, an
additional slice is allocated as in the previous scheme. Note that additional slices
are not used for words with rank Cz + 1 to CS.
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods l 677

1.8

j 1.2
rank

x lOA

0.9

0.6

10
_____------
--_-- 80
- .._-. 320

0.3 0.6 0.9 1.2 1.5 1.8

i rank x 1 OA3

Fig. 9. Curves for which totalij = A, A = 10, 40, 80,320.

The new scheme can be analyzed in the same way as the previous scheme.
With the new scheme, 12, bits are set in a block descriptor for each word with
rank greater than Cz that appears in that block. The probability that a bit is set
by one of these words, ,.LD, is then

The probability that a bit is set by a pair of words, pc, is now

/.Lc=l-
(

1 -kblk,j) * ifIl j=$+l (1 -kblk,j).

The number of unsuccessful block matches resulting from a query that specifies
the values Ui and vj , i < j, is now given by

I-
/.LLa(tOt&j - trUei,j), if i, j I Cz

ubmi,j = . p’s(totali,j - truei,j), if i 5 C1 and CZ + 1 5 j I C,
tot&j - tlIlei,j, otherwise.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

678 l R. Sacks-Davis et al.

Fig. 10. Covered area when a single set
of common words is used.

Cl

i
Cl c2 c3

Fig. 11. Covered area when three sets of
common words are used.

We now describe a method for choosing the parameters of the block descriptor
file given data with a known distribution and a cutoff value, A. We will assume
that the data can be parameterized by values (Y and /3 as in the previous section,
and it is required to choose values for b,, C1, C,, and C,.

Step 1. Determine Cs. Compute the largest j such that total,,j L A.
Step 2. Determine Cz. There are two considerations we take into account when

determining C,. First, C, has to satisfy the requirement that totalc,,c, 5 A, so we
begin by computing the largest j such that totalj,j I A. Next we consider whether
it is possible to increase C, further, thereby covering a greater area, without
incurring additional costs.

Consider the effect of the choice of C, on the density of the block descriptors.
As we increase the number of C2-Common words, fewer bits are set in the block
descriptors by single values, since a &-Common word sets only a single bit in a
block descriptor, whereas other words set 12, bits. On the other hand, as Cz
increases, more combination bits are set. We therefore attempt to estimate the
largest value of C, such that the savings from single values are less than the costs
due to combinational bits.
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods 679

Fig. 12. Covered area when C, = Cp.

For a given Cp, the savings due to single values can be estimated as
12, . Cz, blki - Cz. The number of combination bits set per block descriptor by
pairs of C&-Common words is approximately 1, Cz;’ CT&+, blki,j. We therefore
compute the maximum C2 such that

k, * 2 blki < Zs ‘2’ 3 blki,j + C’z
i=l i=l j=i+l

and

totalc,,c, I A.

Step 3. Determine C1. In order to cover all pairs (i, j) for which the total block
matches exceeds A, we require that

tota& 5 A.

If totalc,,c, = A, then C, = Cp (Figure 12). Otherwise, totalcz,c, < A, and we fine
the greatest j < C, such that totalj,c, > A (Figure 11).

Step 4. Determine b,. With 1, combination bits set for pairs of common words,
P should be chosen according to the following formula:

p = min[($y, (&y-J.

We propose a slight modification, however, since if 1, = 1 and N,. is large, this
can impose an unnecessarily severe restriction on CL. The reason for the second
constraint on p is that, in the absence of combination bits, the number of
unsuccessful block matches relative to the number of true matches approaches
N, - 1 for large i, j. We are really interested in only those values of ubmi,j/truei,j
for points (i, j) within the covered region. It is possible to determine the maximum
value, f, of ubmi,j/truei,j within this region by evaluating this function at the
extreme points (C,, C,) and (C,, Cz):

f=max ubmc,,c, ubmc,,c,
truec,,c, ’ 1 truec,,c, *

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

660 l R. Sacks-Davis et al.

Then

p = min[($y, (jy].

The approach used to estimate what the value that b, should be in order that the
density of the block descriptors be p is based on first estimating the average
number of bits, #bits, that will be set in a block descriptor:

#bits = (i=$+l blki) . ks + (T$ j=$l blki,j + $, j=z+l blki,j) * 13.

The first term represents the contribution of single words (words with rank
greater than C,) and the last two terms represent an estimate of the number of
combinational bits. These sums can be computed using numerical quadrature
techniques in order to reduce the computation time. In practice, the estimate of
#bits would be obtained using sampling techniques, since most of the probabilities
used in the preceding formula would not be known. Note that the preceding
formula provides an overestimate of the number of bits set in a block descriptor.
Based on these values of p and #bits, we can then compute b, from the formula

6. COMPUTED RESULTS

In this section we present computed results using the model presented in the
previous section. These computed results allow us to examine the effects of
various parameters on system performance. Given a database of N records, each
containing s terms to be indexed, we are interested in using the computed results
to study the effects of varying N,, the number of blocks, N,, the number of
records per block, the number of common words, the parameters of the block
descriptors, b,, lz,, ls, and the parameters of the record descriptors, b, and k,. For
given values of these parameters we want to know the expected query cost and
the storage overhead generated.

We begin by considering various choices for the parameters previously given
for a database that contains 1.5 million terms to be indexed, that is, s . N =
s . N, . N, = 1.5 million. We assume that the data are skew distributed as in
Section 5, and that pi = alis with (Y = 0.08138 and p = 1. With these choices of
LY and p, the number of distinct terms in the database is 122,066. In these tests,
the parameters are chosen so that the expected number of false block matches
per query is one, and the number of unsuccessful block matches per matching
record, for queries which specify two or more common words, is limited to
approximately one. In this case, p is chosen according to the formula:

The numbers of Ci-Common words, i = 1, 2, 3 are calculated using the algorithm
given in Section 5.
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods l 661

In presenting these results, we provide the value of bp + C,, the width of a
block descriptor, as well as a normalized measure of the overhead generated by
the block descriptor file. The normalized measure given is the size of the block
descriptor file divided by s . N. This represents the overhead per indexed term.

The overhead generated by the block descriptor file represents typically 70-90
percent of the total overhead generated by the two-level scheme. If the record
descriptors are designed so that they have approximately half their bits set (this
is the most storage-efficient choice [29]), then b, and k, are related by the formula

b =Izr”
r log, 2 *

If these parameters are chosen so that the probability of a false record match is
approximately 1/8N,, in order that there be only one false record match for every
8 block matches, then k, = 3 + log2 N,. A pointer is required for each record in
the data file, so the total overhead generated by the record descriptor file per
indexed term is 4.8 + 1.6 log2 N, + ptr/s, where ptr is the pointer size. Here we
have used the fact that l/log, 2 = 1.6.

With these design decisions, the number of false record matches will be small
and the performance of the two-level scheme will closely follow that predicted
for Algorithm 2 of Section 4 of this paper. Assuming N, I P, the cost of answering
a query can be estimated as hs + n, + n, + 1 disk accesses, where n, is the total
block matches (true block matches and unsuccessful block matches) and n, is the
total record matches (true record matches and false record matches). For single-
term queries there will be no unsuccessful matches, while for multiterm queries,
the number of unsuccessful block matches will be multiple, E, of the true block
matches, 0 5 t 5 1. With the chosen parameters the number of false record
matches will be approximately n,/8, so n, = 9 . n,/8. Since the performance of
the method on query can be predicted, we will provide the storage overheads
required in order to achieve these query times in the following tables.

In Figure 13, the effect that the parameters N,, N,, and 1, have on the storage
overhead can be observed. When 1, = 1, and N, > 10, the block descriptor density,
~1, is severely constrained by the requirement that the number of unsuccessful
block matches for queries that specify two or more common words be limited to
one per matching record. The storage overhead is consequently very high. This
restriction on p virtually disappears when l2 = 2. In this case,

and the limiting restriction on p comes from the restriction on the number of
false matches allowed. For each of the configurations, the number of &-Common
words is small enough so that each &.-Common word can be accommodated
within main memory. The value for A in these tests was 50. In order to study the
effect of the choice of A on system performance, a number of tests were run for
which the only parameter to vary was A. The results of these tests appear in
Figure 14. As A reduces in size, more queries are covered and the number
of common words as well as the storage overhead rises. For the given data

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

682 l R. Sacks-Davis et al.

N. = 15,000
N,= 10

N. = 7500
N, = 20

N, = 3000
N,=50

18 (iy (Fy p Cl CZ C, b, + C, Overhead

1 0.090 0.115 0.090 136 136 2436 4232 42.32

1 0.107 0.055 0.055 191 191 2433 13,541 67.70

1 0.135 0.022 0.022 294 294 2421 81,493 162.99

N. = 15,000 2 0.090 0.339 0.090 136 136 2436 6001 60.01
N,= 10

N. = 7500 2 0.107 0.235 0.107 191 191 2433 9825 49.13
N,= 20

N. = 3000 2 0.135 0.148 0.135 294 294 2421 18,538 37.08
N, = 50

Fig. 13. Results for s = 10, k, = 4, A = 50.

1. A (iy ($)‘” p C, C, C3 b, + C, Overhead

N, = 15,000
N,= 10
s = 10
k. = 4

N, = 7500
N, = 20
s = 10
k. = 4

N, = 3000
N, = 50
s = 10
ka = 4

1 m
1 100
1 50
1 10

2 m
2 100
2 50
2 10

2 Q,
2 100
2 50
2 10

0.090
0.090
0.090
0.090

0.107
0.107
0.107
0.107

0.135
0.135
0.135
0.135

-
0.115
0.115
0.113

-

0.237
0.235
0.232

-
0.151
0.148
0.145

0.090
0.090
0.090
0.090

0.107
0.107
0.107
0.107

0.135
0.135
0.135
0.135

1 1 1 3432 34.32
95 95 1216 4010 40.10

136 136 2436 4232 42.32
311 311 12,200 4925 49.25

1 1 1 5337 26.68
132 132 1212 8930 44.65
191 191 2433 9825 49.13
437 437 12,198 12,327 61.63

1 1 1 9441 18.88
201 201 1200 16,725 33.45
294 294 2421 18,538 37.08
684 684 12,187 23,528 47.06

Fig. 14. Effect of A on various databases.

distribution, the number of C&Common words was less than 10 percent of the
number of unique terms even for A = 10.

In order to reduce the storage overhead generated by the block descriptor file,
various alternatives exist. The restrictions on p can be relaxed by allowing more
false matches or more unsuccessful block matches. Another possibility is to
increase k, and lS, and thereby increase the query cost by only a constant number
of disk accesses. For the various combinations of N, and N,. given in Figure 14,
the storage overheads generated using values of ks ranging from 4 to 12 are
presented in Figure 15. For each value of /zS the value of 1, within the range of 1
to 4 that results in the smallest overhead was computed. In these tests A was
fixed at 50. It can be observed that for these databases of 1.5 million tokens,
storage overheads of between 20 and 25 bits per indexed term are feasible.
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods 683

k. 1.

4 1
6 2
8 3

10 3
12 3

N. = 15,000 N, = 10

P b, + C, Overhead

0.090 4232 42.32
0.201 3096 30.96
0.301 2174 21.74
0.383 2323 23.23
0.449 2090 20.90

N. = 7500 N, = 20

k, Ir h + G Overhead

4 2 0.107 9825 49.13
6 3 0.226 6603 33.02
8 3 0.328 4853 24.27

10 3 0.381 4494 22.47
12 4 0.476 4234 21.17

N. = 3000 N, = 50

k. 1. P b, + G Overhead

4 2 0.135 18,538 37.08
6 3 0.263 13,293 26.59
8 4 0.368 11,853 23.71

10 4 0.385 12,176 24.35
12 4 0.385 13,173 26.35

Fig. 15. Effect of ks and 1, on storage overhead.

N, = 15,000 N, = 10

s tokens(s . N) a 1, C, Cz G P h + C, Overhead

2 300,000 0.092 3 23 42 474 0.303 359 17.95
5 750,000 0.085 2 68 76 1271 0.301 953 19.06

10 1,500,000 0.081 2 136 136 2436 0.301 2306 23.06
20 3,000,000 0.077 2 260 260 4632 0.301 6224 31.12
50 7,500,000 0.072 2 610 610 10,864 0.301 26,895 53.79

Fig. 16. Effect of increasing s while N, and N, remain fixed.

In order to study the effect of s, Figure 16 presents results for which the
number of records, N, is fixed at 150,000, with N, = 15,000 and N, = 10, while s
is increased from 2 to 50. As s increases, so does the number of indexed terms,
s - N. For each database, the value of /3 is fixed at 1, while CY is chosen so that
the token of lowest rank appears once in the database (s . N . pND = 1). The
value of $ is fixed at 8 and A = 50. For small values of s the overhead generated
is very small. For s > 5, p is fixed at 0.301 and is constrained by the requirement
that the number of false matches be limited to one. The storage overhead
increases with s and the only way to reduce storage costs substantially is to relax
this restriction. Note that although the number of indexed terms increases only
linearly with s, the number of combinational bits will grow faster than linearly.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

684 l R. Sacks-Davis et al.

N, = 40,320 N, = 26 s = 20

k, 1, cc bs + C, Overhead

4 2 0.071 69,744 134.12
6 2 0.171 30,583 58.81
8 3 0.266 27,024 52.08

10 3 0.344 21,302 40.97
12 4 0.413 21,777 41.88
14 4 0.449 20.423 39.27

Fig. 17. Database of 1,048,576 records, each contain-
ing 20 terms.

N. = 15,000 N, = 10 s = 10

a B ND Cl c* cs 1. P b, + C, Overhead

0.017 0.8 322,676 66 66 1889 2 0.301 2190 21.90
0.081 1.0 122,066 136 36 2436 2 0.301 2306 23.06
0.201 1.2 36,786 127 127 1410 2 0.301 1866 18.66

N, = 40,000 N, = 25 s = 20

(Y B ND Cl c* c3 18 P h + G Overhead

0.010 0.8 4,175,795 302 302 13,070 3 0.266 14,195 28.39
0.068 1.0 1,360,548 663 663 13,588 3 0.266 23,378 46.76
0.193 1.2 307,664 534 534 6621 2 0.207 18,698 37.40

Fig. 18. Effect of vary the skew of the data, (3.

Results for a large database are presented in Figure 17. This database contains
over one million records, each containing 20 attribute values. The parameters N,
and N, have the same values as were used in the database described in Section
4. For each value of ks, 1, is chosen from the range 1 to 4 such that storage costs
are minimized, and A is fixed at 50. For this database of approximately 20 million
tokens, storage overheads of around 40 bits per indexed term are feasible.

In the results presented so far, it has been assumed that the data are Zipf
distributed with a skew of 1.0. The effect of varying the skew parameter, /3, is
presented in Figure 18. In these tables, results are presented for a database of
150,000 records as well as for a database of l,OOO,OOO records. The parameter 0
varies from 0.8 to 1.2. As in the previous table, A is fixed at 50 and k, is fixed at
8. As /? decreases, the data become more uniformly distributed and for realistic
values of 0, good results are possible. As p increases, the number of common
words required decreases, and for the databases in Figure 18, the number of
combination bits required decreases.

7. EXPERIMENTAL RESULTS

An experiment was conducted using a library database of 150,000 records, each
containing approximately 20 terms to be indexed (s - N = 3 million). Each record
contains information about books in an institute library. The terms include
author names, subject and title keywords and phrases, publication dates, and
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods l 685

accession numbers (unique identifiers). These records were stored in a database
using the two-level scheme with N, = 16,384 and N, = 11.

In designing this database, we chose C1 = CZ = 300 and C, = 2000. The most
common term u1 (title keyword = editor) appeared in approximately 7000 blocks,
ulo (publication date = 1970) appeared in 4220 blocks, u300 (title keyword =
model) appeared in 903 blocks, and u 2ooo appeared in 58 blocks. With the above
choices for Ci to C3, combination bits would be set for multiterm queries involving
more than 50 block matches (i.e., A z 50), since

= max(7000 . 58/16,384, 903 . 903/16,384)
= max(24.8, 49.8) = 50.

The characteristics of the records were as follows. The average number of
terms per record was 19.97, while the average number of distinct terms per record
was 13.29. This included 3.94 C-Common words, 6.67 C3-Common words, and
6.62 regular words.

At the block level, the average number of records per block was 9.04. The
average number of distinct terms per block was 112.59. This included 33.39
C,-Common words, 56.48 C3-Common words, and 56.10 regular words.

The database parameters were as follows:

b, = 10,700, ks = 4, and 1, = 1.
b, = 320 and k, = 8.

This represents a storage overhead of 7.4 bytes per indexed term due to the block
descriptor file and 2.2 bytes per indexed term due to the record descriptor file.
With these parameters the average density of the block descriptor file p was 0.06.
The average number of bits set in positions 1 through b, of a block descriptor by
individual terms was 317. The average number of combination bits per block
descriptor was 267. In addition, an adjacency bit was set for each pair of adjacent
terms in a subject or title phrase. The average number of adjacency bits per block
descriptor was 73. Note that b, was chosen to be large (the expected number of
false block matches for single term queries was 0.22) in order to study the effect
of unsuccessful block matches. As a consequence, we have assumed that any
failed block matches are due to unsuccessful block matches.

For comparison, a second database was created with the same descriptor sizes
(storage overheads) but with no common words (Ci = Cz = C3 = 0).

In order to conduct the experiment 1000 “random” queries using terms con-
tained in the database were generated. Each query contained two terms. The
queries were executed and various parameters were recorded. For 375 of these
queries, combination bits were generated using the database with 2000 common
words. For each of these queries the number of unsuccessful block matches was
recorded and compared to the number of unsuccessful block matches that
occurred using the database with no common words. The results appear in
Figures 19 and 20. In Figure 19 the average number of unsuccessful block matches
per record match is plotted against the number of matching records for each of
the 375 queries. In Figure 20 the absolute numbers of unsuccessful matches is
plotted against the number of matching records for each of the two methods. It

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

686 . R. Sacks-Davis et al.

10.0

Unsuccessful
Block

Matches8.0

per
Record
Match 6.0

4.0

2.0

0.0

- 0 Common Words
----------- 2000 Common Words

10 20 40

Number of Record Matches

Fig. 19. Average unsuccessful block matches per record match, b, = 10,700, k, = 41, = 1.

can be seen that the use of a single combination bit has the desired effect of
eliminating most of the unsuccessful block matches. For the database without
common words we would expect that the number of unsuccessful block matches
per true record match would be approximately 10 (i.e., N, - 1) when the number
of record matches was small and we would expect this to reduce to less than one
for the database with 2000 common terms. These trends were reflected in the
experimental results.

A second experiment was conducted in order to test the effect of setting
adjacency bits when forming the block descriptors. The subject and title descrip-
tors contained in the records consisted of word phrases as well as single words.
For each pair of adjacent words contained in a phrase, a single adjacency bit was
set in the appropriate block descriptor. The cost of setting these bits is small.
These bits contributed less than 12 percent to the density of the block descriptor
file. Again, 1000 queries were constructed. Each query contained a phrase
consisting of two words. These queries were executed using two methods. In the
first method, the adjacency bit was used to reduce the number of failed block
matches. In this case, a failed match can occur even when a record contains the
two terms, if they are not in adjacent locations. In the second method, the
adjacency bit was not set in the query descriptor. The results are presented in
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987

Multikey Access Methods . 687

0.5

Number o’4
of

Unsuccesful
Block o.3

Matches
x lOA

0.2

0.1

0.0

~ 0 common words
----------- 2000 common words

‘5

__-_s-\ ,‘*,’
,-; :, : “,,*‘...

-._-------\ ,’ \.,.*,t
;‘:

1: --..
._...___-___-_.-._._.-----...------------- ‘.’

I I I I I I I I I I / I,,,,, I

4 10 20 40 100 200

Number of Record Matches

Fig. 20. Unsuccessful block matches vs. record matches, b, = 10,700, k8 = 4,1, = 1.

Figure 21. The results are impressive and indicate that direct indexing on word
phrases at low cost is possible using descriptor-based methods.

In order to study the effect of the algorithm using parameters for which the
storage overheads are low, the experiments were repeated using the parameters
b, = 6000, ks = 6, and 1, = 2. With these parameters, the storage overhead due to
the block descriptor file is reduced from 7.4 to 4.1 bytes per term. The configu-
ration at the record descriptor level remains unchanged. In Figure 22 the results
for the two sets of block descriptor parameters are presented. The results obtained
using the smaller block descriptor file are very similar to those obtained previously
and show that the effect of reducing b, can be compensated by increasing k, and
1, appropriately.

8. IMPLEMENTATION ISSUES

In order to implement the scheme proposed in Section 5, it is necessary to identify
the common terms appearing in the data file. Sampling techniques must be used
to determine these common words together with their frequencies. The results
computed from the theoretical model show that although the number of Cz-
Common words will typically be of the order of several hundred, the number of

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

666 l R. Sacks-Davis et al.

1.4

Number
of 1.2

Unsuccesful
Block 1.0

Matches
x lO”3

0.8

1.8 -

____ Without Adjacency Bit

1.6 -
----------- With Adjacency Bit

0.6

0.4

0.2 -

,,O\\
0.0 --y-y-y,

*’ ________-__-.___.._..--.-~~~~----~~ _L____--_.e- .______ I. I *< ,,=, \ _--- , , , , I I I IllIll r
2 4 10 20 40 100 200

Number of Record Matches

Fig. 21. Effect of adjacency bits on unsuccessful block matches.

C&Common words may be several thousand. During execution of the two-level
method, it may not be feasible to store each &-Common word within main
memory. The approach we have taken is to store each &-Common word explicitly
and to use a filter to identify the &-Common words. We briefly outline a method
that we have found useful for representing the C&Common words with the use
of a filter. The filter is just a bit vector that is formed using hash-coding
techniques similar to those used to form record descriptors.

Before the filter can be formed it is necessary to determine the common terms
and their frequencies. To reduce the number of terms that have to be stored in
memory during the sampling process, the following technique can be used.
A descriptor of length b with k bits set is formed for each term in the database.
An array of b integers is used to keep a cumulative count of the number of times
that each bit position is set by one of these terms.

During a second pass of the data file, a table of terms and their frequencies is
formed. For each term the minimum of the counts for each of the k bits set by
the term is also stored. The minimum count provides a rough indication of the
rank of the term. The way terms are added to the table is as follows. For each
term examined, the table is searched and if the term already exists in the table,
its frequency is incremented. Otherwise, we attempt to add the term to the table.
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Unsuccessf+$
Block

Matches

per 0.8
Record
Match

0.6

0.4

0.2

0.0

Multikey Access Methods l 689

- bs = 6000, ks 6, Is 2 = =
----------- bs = 10700, ks 4, Is 1 = =

I I Illlll I I I IllIll I
4 10 20 40 100 200

Number of Record Matches

Fig. 22. Comparing databases with 2000 common words and different block descriptor parameters.

If the table is full, the count for the new term is compared with the lowest count
in the table. If the new term count is greater, then the new term replaces the
term associated with the lowest count. The table size should be chosen sufficiently
large to include all C, terms, the number of which is not generally known at the
beginning of the pass. Even when C, is known, the table size should be larger
than C3, as the sampling method may cause some less frequent terms to be
accepted as more frequent terms. A table size of 5000 should be adequate for
most applications.

From the frequencies of the terms in the table, we can determine C1, C,, and
C, using the steps described in Section 5.

Once the C&Common terms are known, a filter can be constructed by simply
superimposing all of the term descriptors for the common terms. This type of
filter is known as a Bloom filter [3]. In order to determine whether an arbitrary
term appearing in a record is a common term, its descriptor is formed. If every
bit set in the descriptor is also set in the filter, the term is deemed to have passed
through the filter and is designated a common term.

This filtering technique has been used on the library database described in the
previous section. Filters were formed using parameters b = 10,700 and 12 = 4. In
order to test the effectiveness of the filter, a large number of terms were randomly

ACM Transactions on Database Systems, Vol. 12, No. 4, December 198’7.

690 l Ft. Sacks-Davis et al.

0.8

0.7

Ratio of
terms passir&6
the filter on
total values 0.5

: I
8’ /
,’ I
: / :

3’ /
8’ /
: ’ I

0.4 1’ ,’

/ 8’
3’ I

I
#’ i

#’ I
>’ /

0.3 3’ /
/ #’

#’ I
: I

0.2 I------ / ,’ ,’ , /
,,’ /

0.1 /’ >,’ ’
I’ /’ , /

,’
200 250 300 350 400 450 500

Matching blocks for terms

Fig. 23. Ratio of terms passing through the filter, b = 10,700, k = 4.

selected, and for each term, the number of matching blocks was computed. It
was then determined whether the term had passed through the filter. Results
obtained using a filter formed from terms that appeared in 400 or more blocks
appear in Figure 23 (refer to the solid line). In addition to the terms that appeared
in more than 400 blocks, a large number of less frequently occurring terms passed
through the filter. For example, approximately 20 percent of the terms that
occurred in 160 blocks passed through the filter. If a single such filter was used
to identify C3-Common words, then the C&-Common words would include some
infrequently occurring terms. This would result in some unnecessary combination
bits being set, but would not detract very much from the efficiency of the scheme.

In order to reduce the number of infrequently occurring terms that are
designated as C&Common words, several strategies are possible. One approach
is to use more than one filter. A word is then designated a &-Common word only
if it passes through all the filters. Figure 23 presents the results when two filters
are used and when four filters are used. The extra filters were constructed using
the same values for b and k. When four filters were used, virtually no word that
appeared in less than 200 blocks passed through all of the filters.

An alternative to this technique for building a filter was used by McIlroy [X3].
After the Ca-Common words have been determined a filter constructed with very
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987

Multikey Access Methods 691

large b is constructed and the resulting bit string is compressed. This method
saves space [ll] but is slower on query.

The following method can be used to determine the database parameters when
setting up a database.

(1) Sample the data to form the array of b integers that will be used for identifying
the &-Common words. At the same time compute the number of unique
terms per record, s.

(2) Determine N, and N,. The parameters at the record descriptor level are
determined by the following three equations.

b, = k, . --!-
log, 2 ’

P = N, . (b, + ptr).

The first equation results from the requirement that the density of the record
descriptor be l/2 The second equation gives the probability of a false record
match in terms of kr; a typical design would set the value of F, to something
like 1/(4N,). The third equation results from the requirement that all of the
record descriptors fit on a single page of size P. The user supplies the values
of F,; s and P are known and the above system of three implicit equations is
solved for k,, b,, and N,. The value of N, can then be determined using
N= N, - N,.

(3) The data are resampled and the array of b integers from step 1 is used to
determine the common words as previously described. At the same time the
frequencies of these common words at both the record and block level are
computed. In addition, the number of unique terms per block, sB can be
computed.

(4) C1, Cp, and CB are computed using the methods outlined in steps 1 to 3 of the
algorithm given in Section 5.

(5) This is a modified version of step 4 of the algorithm used in Section 5. The
required bit density, p, of the block descriptor file can be computed using the
formula

p = min[($--, (&r].

The choices of k, and 1, will affect the query times, storage overheads as well
as the interactive insertion costs so they are application dependent. A number
of different values for these parameters should be considered and the various
tradeoffs analyzed. The number of (nonunique) bits, #bits, that will be set in
a block descriptor formula can be estimated using the formula

C,-1 c,-1 c,

#bits = SB - C blki C 2 blki,j + 3 ? blki,j . 1,.
i=l i=l j=i+l i=l j=C!,+l

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

692 l R. Sacks-Davis et al.

Here, the probabilities, blki, i = 1, . . . , CS are those computed from step 3.
Alternatively, the data can be sampled a third time to obtain an estimate of
#bits. The block descriptor parameter, b,, can then be computed using

9. A FAST INSERTION ALGORITHM

By far the major cost when inserting a record comes from updating the corre-
sponding block descriptor, since the block descriptor file is stored in bit slice
form. For each of the terms specified in a record, k, bits of the block descriptor
will need to be set and these bits will typically reside on separate pages of physical
store. Thus for each term, lz, reads and possibly Fz, writes must be performed. If
there are s terms in the record, then up to 2 . s . $ disk accesses will need to be
performed. Actually a slightly smaller number than this is generally required. If
a particular bit position has already been set by another term, then the write can
be avoided and one disk access saved. Ignoring this factor, the number of disk
accesses required to form the block descriptor file when N records are inserted
into the database is 2 . N . s . ks.

The other insertion costs, namely writing the record descriptor and the data
to disk, involve only two read/write pairs per record. In the following, when we
refer to the insertion costs, we are referring to the costs involved in forming the
block descriptor file.

For interactive insertions, the costs cannot be substantially reduced. If, how-
ever, the database is initially loaded using a batch insertion facility, considerable
savings can be effected. Because the block descriptor file is a two-dimensional
bit matrix, one strategy is to form parts of this matrix in a buffer in memory and
then write these formed submatrices on to disk in such a way that no parts of
these submatrices need be overwritten at a later time.

It is assumed that a buffer is available in memory; the size of the buffer required
can be as small as 1OOK bytes (depending on the database parameters), but larger
buffer sizes will result in more efficient insertion. Let us assume that the buffer
size is B (bits) and let M = LB/b,l. In this case, the buffer can hold M block
descriptors. Records are then processed in groups of M . N,, and these
records are allocated to the next available M blocks. The block descriptors
for these records are formed in memory and after all the records from this
group have been processed, the b, partial bit slices of size M are written to disk
(see Figure 24). This requires b, read/write pairs each time the buffer is
written to disk (although only writes are required on the first pass). The
total number of disk accesses to load N records using this method is therefore
(1 + 2 . (INS/Ml - 1)) . b,.

Consider the following database of approximately one million records, each
containing 20 values:

N = 1,048,576 Number of records,
s = 20 Values per record,
P = 8192 Page size, 1K bytes,
N, = 40,960 Number of blocks
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods l 693

bs !
Fig. 24. In the one-pass algorithm, b. partial
slices of length Mare written to disk.

Fig. 25. Temporary file created during two-
pass algorithm.

N, = 26 Records per block
b, = 20,185 Block descriptor width
k, = 4 Bits set per indexed value
B = 2,097,152 Buffer size, 256K bytes

The cost of inserting a record using the interactive method is approximately
2 - s . ks = 160 disk accesses, while the cost per record using the batch insertion
scheme is only 15.30 disk accesses, a saving of over tenfold.

Further improvements to the batch insertion scheme can be made if two block
descriptor files can be temporarily accommodated on disk. With this method, the
descriptors formed in memory are written contiguously onto the first file in bit
slices of length M (see Figure 25). After all the block descriptors have been
formed in the first file, they are rearranged onto the second file. Suppose that m
bit slices of length N, can be stored in the buffer, that is, m = LB/N,j, then the
rearrangement proceeds as follows. The appropriate bit slices from the first file
are collected and reorganized to form m complete slices (see Figure 26). The m
complete slices are then written to disk and the process is repeated until the
reorganization is complete. Each step requires that fN,/Ml sets of m . M
consecutive bits be read from the first file in order to form m complete slices in
memory. These slices are written to the second file, requiring f(m . N,)/Pl writes
(and perhaps a small number of reads). The number of disk accesses required to

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

694 l Fi. Sacks-Davis et al.

Fig. 26. Construction of the block descrip-
tor file from the temporary file.

I m

read m . M consecutive bits is f (m, M, P), where f (m, M, P) = k + 1 if m . M
= (k + l/2’) . P for some integers j, k z 0 and f (m, M, P) = 1 + m . M/P
otherwise. The formula for f (m, M, P) recognizes that the m . M consecutive
bits to be read may cross a page boundary. The number of steps required in the
reorganization process is r bJm1. The cost to initially form the first file is
r(b, . M)/Pl . fN,IMl. The total cost is therefore

Using the facts that m . N, =: M . b, =: B and N,/M =: b,/m, we can express the
total cost as

For the example database described earlier in this section, we have M = 103,
m = 51, fN,/Ml = 398, f (m, M, P) = 1.64, and the insertion cost per record is
only 0.44 disk accesses. This is approximately 400 times cheaper than the
interactive method and 40 times cheaper than the previous batch insertion
method.

10. CONCLUSIONS

For large data files, the one-level implementations of descriptor file methods
become relatively inefficient because of the large amount of descriptor file that
has to be examined at query time. A two-level scheme overcomes this problem,
but introduces a new cost due to unsuccessful block matches. One way to reduce
the cost of these unsuccessful block matches is to set combinational bits in the
block descriptors. This approach can be extended so that direct indexing of word
phrases is supported. Both theoretical and experimental results indicate that the
use of combinational bits significantly reduces query costs, and the storage
ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

Multikey Access Methods l 695

overheads incurred are relatively small. It is also possible to achieve very low
insertion costs with the two-level method if insertions are batched.

ACKNOWLEDGMENTS

We wish to thank the referees for their valuable suggestions and Professor
G. Salton for his helpful comments regarding this paper.

REFERENCES

1. AHO, A. V., AND CORASICK, M. J. Fast pattern matching: An aid to bibliographic search.
Commun. ACM 18,6 (19’75), 333-340.

2. BESAI, B. C., GOYAL, P., AND SADRI, F. A data model for use with formatted and textual data.
J. Am. Soc. Znf. Sci. 37,3 (May 1986), 158-165.

3. BLOOM, B. H. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13,
7 (July 1970), 422-426.

4. BOYER, R. S., AND MOORE, J. S. A fast string searching algorithm. Commun. ACM 20, 10
(1977), 162-772.

5. CHRISTODOULAKIS, S. Implications of certain assumptions in database performance evaluation.
ACM Trans. Database Syst. 9,2 (June 1984), 163-186.

6. CHRISTODOULAKIS, S., AND FALOUTSOS, C. Design considerations for a message file server.
IEEE Trans. Softw. Eng. SE-IO, 2 (1984), 201-210.

7. CHRISTODOULAKIS, S. Issues in the architecture of a document archiver using optical disk
technology. In Proceedings of the International SIGMOD Conference on Management of Data
(Austin, Tex., May 28-31, 1985). ACM, New York, 1985, pp. 34-50.

8. COLOMB, R. M., AND JAYASOORIAH, J. A clause indexing system for PROLOG based on
superimposed coding. Aust. Comput. J. 18, 1 (Feb. 1986), 18-25.

9. DATTOLA, R. FIRST: Flexible information retrieval system for text. J. Am. Soc. Inf. Sci. 30,
(1979), 9-14.

10. FALOUTSOS, C. Access methods for text. Comput. Suru. 17,1 (Mar. 1985), 49-74.
11. FALOUTSOS, C. Signature files: Design and performance comparison of some signature extrac-

tion methods. In Proceedings of the International SIGMOD Conference on the Management of
Data (Austin, Tex., May 28-30,1985). ACM, New York, 1985, pp. 63-82.

12. FALOUTSOS, C., AND CHRISTODOULAKIS, S. Design of a signature tile method that accounts for
nonuniform occurrence and query frequencies. In Proceedings of the 11th Conference on Very
Large Data Bases (Stockholm, Aug. 21-23, 1985). pp. 165-170.

13. HARRISON, M. C. Implementation of the substring test by hashing. Commun. ACM 14, 12
(Dec. 1971), 777-779.

14. HASKIN, R. L. Special purpose processors for text retrieval. Database Eng. 4, 1 (1981), 16-29.
15. HASKIN, R. L., AND LORIE, R. A. On extending the functions of a relational database system.

In Proceedings of the International SZGMOD Conference (Orlando, Fla., June 2-4, 1982). ACM,
New York, 1982, pp. 207-212.

16. HILLIS, W. D. The Connection Machine. M.I.T. Press, Cambridge, Mass., 1985.
17. KNUTH, D. E.;MORRIS, J. H., AND PRATT, V. R. Fast pattern matching in strings. SIAM J.

Comput. 6, 2 (1977), 323-350.
18. MCILROY, M. D. Development of a spelling list. IEEE Trans. Commun. COM-30,l (Jan. 1982),

91-99.
19. MCLEOD, I. A. A database management system for document retrieval applications. Znf. Syst.

6, 2 (1981), 131-137.
20. PFALTZ, J. L., BERMAN, W. J., AND CAGLEY, E. M. Partial-match retrieval using indexed

descriptor files. Commun. ACM 23,9 (Sept. 1980), 522-528.
21. RABITTI, F., AND ZIZKA, J. Evaluation of access methods to text documents in office systems.

In Proceedings of the 3rd Joint ACM-BCS Symposium on Research and Development in Znfor-
mation Retrieval (Cambridge, Mass., July 2-6, 1984). pp. 21-40.

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

696 l R. Sacks-Davis et al.

22. RAMAMOHANARAO, K., AND SHEPHERD, J. A superimposed codeword indexing scheme for very
large Prolog databases. In Proceedings of the Third International Conference on Logic Program-
ming (London, 1986). pp. 569-576.

23. ROBERTS, C. S. Partial-match retrieval via the method of superimposed codes. Proc. IEEE 67,
12 (Dec. 1979), 1624-1642.

24. SACKS-DAVIS, R., AND RAMAMOHANARAO, K. A two level superimposed coding scheme for
partial match retrieval. Znfi Syst. 8, 4 (1983), 273-280.

25. SACKS-DAVIS, R. Performance of a multi-key access method based on descriptors and super-
imposed coding techniques. Znf. Syst. 10,4 (1985), 391-403.

26. SALTON, G. The SMART Retrieval System-Experiments in Automatic Document Processing.
Prentice-Hall, Englewood Cliffs, N.J., 1971.

27. SALTON, G., AND MCGILL, M. J. Introduction to Modern Information Retrieual. New York,
McGraw-Hill, 1983.

28. STAIRS/VS REFERENCE MANUAL. IBM System Manual, 1979.
29. STIASSNY, S. Mathematical analysis of various superimposed coding schemes. Am. Documen.

11,2 (Feb. 1960), 155-169.
30. VAN-RIJSBERGEN, C. J. Information Retrieval, 2nd. ed. Butterworths, London, 1979.
31. WHANG, K.-Y., WIEDERHOLD, G., AND SAGALOWICZ, D. Estimating block accesses in database

organizations: A closed noniterative formula. Commun. ACM 26, 11 (Nov. 1983), 940-944.
32. WONG, H. K. T., Lru, H., OLKEN, F., ROTEM, D., AND WONG, L. Bit transposed files. In

Proceedings of the 11th Conference on Very Large Data Bases (Stockholm, Aug. 21-23, 1985).
pp. 44&457.

33. YAO, S. B. Approximating block accesses in database organizations. Commun. ACM 20, 4
(Apr. 1977), 260-261.

34. ZIPF, G. Humun Behnviour and the Principle of Least Effort: An Introduction to Human Ecology.
Hafner Publications. 1949.

Received July 1986; revised February 1987; accepted June 1,1987

ACM Transactions on Database Systems, Vol. 12, No. 4, December 1987.

