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1. Introduction 

T e c h n i q u e s  such  as t hose  of  M e y e r  a n d  S t o c k m e y e r  [21] ,  M e y e r  [19],  S t o c k m e y e r  a n d  
M e y e r  [29] ,  H u n t  [14] ,  M. J .  F i sche r  a n d  R a b i n  [8], a n d  S t o c k m e y e r  [28] s o m e t i m e s  
show t h a t  a pa r t i cu la r  c o m p u t a t i o n a l  t a sk  o f  i n t e r e s t  is a t  l eas t  as diff icult  as any  t a sk  in 
s o m e  n o n d e t e r m i n i s t i c  T u r i n g  m a c h i n e  t ime  complex i ty  class.  F o r  th is  r e a s o n  a n d  also 
because  n o n d e t e r m i m s t i c  complex i ty  is e v e n  less wel l  u n d e r s t o o d  t h a n  d e t e r m i n i s t i c  
complex i ty ,  it is of  m t e r e s t  to  f ind  p r o v a b l y  h a r d  c o m p u t a t t o n a l  tasks  m e a c h  n o n d e t e r -  
minis t ic  t ime  complex i ty  class.  F o r  e a c h  r a t i o n a l  r > 1, for  e x a m p l e ,  C o o k  [7] 
( T h e o r e m  3 b e l o w )  has  s h o w n  t h a t  t h e r e  is a l anguage  (a  se t  of  f ini te  s t r ings  o f  symbo l s  
f r o m  s o m e  f ini te  a l p h a b e t )  t h a t  is a c c e p t e d  by  some  n o n d e t e r m i n i s t i c  T u r i n g  m a c h i n e  
wi th in  t ime  n r b u t  by n o  such  m a c h i n e  wi th in  t ime  n r - '  fo r  any  ¢ > 0 in t e r m s  o f  s t r ing  
l eng th  n .  O u r  m a i n  resu l t s  genera l i ze  C o o k ' s  t h e o r e m ,  e v e n  s e p a r a t i n g  t he  class 
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NTIME(n r) of languages accepted by nondeterministic Turing machines within time n r 
from classes as large as NTIME(n~/Iog log log n), for example,  if r > 1 is rat ional .  

We refer to what is usually called a nondeterministic multi tape Turing machine [13] 
simply as a TM, and we refer to its deterministic version as a deterministic TM. If such 
an automaton has k tapes (each with a single read-write head),  then we call it a k-tape 
TM or a determmistic k-tape TM, respectively. We often let a TM receive an mput,  a 
finite string of symbols from some finite input alphabet  ~, initially written to the right 
of the head on tape 1, the worktape which we sometimes call the input tape. A TM can 
act as an acceptor by halting in some designated accepting state at the end of some 
computations.  We assume the reader  is famdiar with how concepts such as these can be 
formalized. A good single reference for formal definitions relating to Turing machines 
is [13]. 

Definition. Let M be any TM acceptor.  M accepts the string x ~ E*, where ~* is 
the set of all finite strings of symbols from E, if there is some computat ion by M on 
input x that halts in a designated accepting state. M accepts the language L(M) = {xlM 
accepts string x}. For  x ~ L(M),  Timeu(x) is the number  of steps in the shortest 
accepting computat ion by M on x; for x ~ L(M), Timeu(x) = oo by convention. 

Definitton. A time bound is a function T:N ---> R with T(n) -> n for every n,  where 
N is the set of all nonnegative integers and R is the set of reals. In this paper ,  T, T~, T2, 
etc.,  always refer to time bounds.  The T-cutoff of the TM M is the language Lr(M) = 
{xlTimeM(x ) _< T(lxl)}, where Ixl denotes the length of the s t r ingx.  (Note that Lr(M) C 
L(M) because of the convention that TimeM(x) = oo for x ~ L(M).) A language L is in 
NTIME(T)  if L = L(M) = LT(M) for some TM acceptor M. Similarly, if M is 
deterministic and L = L(M) = LT(M), then L is in DTIME(T) .  If L(M) = Lr(M),  then 
we say that M accepts within time T. 

Other  slightly different definitions of the NTIME and D T I M E  complexity classes 
have been proposed.  Book,  Grelbach,  and Wegbrett  [4], for example,  say that M 
accepts within time T only if every accepting computat ion on input x ~ L(M) reaches 
the accepting state withm T(Ixl) steps. Such differences do not affect the complexity 
classes determined by ttme bounds of the following type,  however; and time bounds of  
practical interest are of this type. 

Definitton. If M is a deterministic TM acceptor with L(M) = {1}* and TimeM(x) = 
tT(Ixl)] -> Ixl, then T is a running time, and M is a clock for T. 

Downward diagonalization is the best known technique for obtaining separation or 
"hierarchy" results among the NTIME and D T I M E  complexity classes (see the Appen-  
dix and [11, 12, 6]). For  languages over {0, 1}, the following theorem summarizes the 
best separation results that have been proved by downward diagonalization. 

THEOREM 1. I f  T2 is a running ttme, then each o f  the following set differences contains 
a language over {0, 1}: 

(t) DTIME(T2) - U{DTIME(T1)IT2 q~ O(Tllog Ti)}, 
(ii) DTIME(Tz) - U{NTIME(Ta)Ilog T2 q~ O(T~)}, 

(iii) NTIME(T2) - U{DTIME(T1)IT2 ~ O(T1)}. 1 

A technicality rules out such strong separation results for languages over a one-let ter  
alphabet .  Suppose, for example,  that T2 is a running time with n logn ~ o(T2(n)) and that 
L E DTIME(Tz) is a language over just {1}. If the complement  of L is finite, then L is 
regular (acceptable by a TM acceptor which does not write) and L ~ DTIME(n) .  If the 
complement  of L is infinite, on the other hand, then our convention that only acceptance 

1 For g a nonnegatwe real-valued function on N, we use the notation O(g) (o(g), respectively) for the class of 
all nonnegatwe real-valued functions f on N that saUsfy hm sup(f(n)/g(n)) < oo (hm(f(n)/g(n)) ~- O, 
respectwely) as n tends to mflmty. 

When the precise speclficatton of a time bound ts not relevant, we allow an imprecise speclficatton. Thus, 
m the context of the O and o notatmns, the base and rounding for the logarithms m Theorems l,  2, and 2' 
need not be specified (See also Lemma 2 below.) 
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time matters guarantees that L ~ DTIME(T1) for 

T l ( n ) = { n  Tz(n) if if ln~L.lnEL' 

In either case, L ~ U{DTIME(T1)IT2 $ O(T1 log Ti)}. Theorems 2 and 2' show two 
ways of further restricting T1 to get separation results for languages over a one-letter 
alphabet. These theorems and Theorem 1 are proved in the Appendix. 

THEOREM 2. I f  T2 is a runmng Ume, then each o f  the following set differences 
contains a language over {1}: 

O) DTIME(T2) - U{DTIME(T1)IT~Iog Ti ~ o(T2)}, 
(ii) DTIME(T2) - U{NTIME(T1)IT~ ~ o(log Tz)}, 

(iii) NTIME(Tz)  - U{DTIME(T~)IT 1 E o(T2)}. 

THEOREM 2'.  I f  Tz is a running time, then each o f  the following set differences 
contams a language over {1}: 

(i) DTIME(T~) - U{DTIME(TOIT1 is a runmng time, T2 ~ O(T~log T1)}, 
(u) DTIME(T2) - U{NTIME(T~)IT~ is a running time, log Tz ~ O(T1)}, 

(iii) NTIME(Tz)  - U{DTIME(Ti)IT1 is a running time, Tz ~ O(T1)}. 

COROLLARY 2.1. For no recursive time bound T does NTIME(T)  contain all the 
recursive languages over {1}. 

2. Separation o f  Nondeterministic Time Complemty Classes 

The results obtained by diagonalizing over NTIME classes (part (ii) of each theorem 
above) are relatwely poor. Not even the gross separation result NTIME(n z) 
NTIME(2n'), for example, follows directly from Theorem 1; yet DTIME(n z) 
DTIME(nZ(Iog n) z) does follow. Recently, however, Cook [7] proved the following 
result by a new technique. 

THEOREM 3 (Cook). NTIME(ri ~) ~ NTIME(n  s) whenever 1 -< r < s. 
We pursue Cook's technical breakthrough, simplifying his proof and generahzing the 

result. Our proof of the main generahzation, Theorem 4 below, makes use of the very 
gross separation result Corollary 2.1 above and Lemmas 1, 2, 3, and 6 below. 

Turing machine design is greatly simplified if we allow more than one head per tape. 
P. Fischer, Meyer, and Rosenberg [9] have shown that every TM with many heads per 
tape can be simulated without time loss by a TM with only one head on each of some 
greater number of tapes. (Furthermore, the simulation preserves determinism.) Using a 
multihead TM to carry out two computations at the same time leads to results of the 
following type. 

LEMMA 1. Let M, M' be TM acceptors, and let T be a running time. There are TM 
acceptors M O M',  M fq M' ,  MT with 

L (M U M') = L(M) O L(M') ,  TimeMuM,(X) = min{Timeg(x), Tlme~,(x)}; 
L(M n M') = L(M) fq L(M') ,  Tlmeunu,(X) = max{TimeM(x), TtmeM,(X)}; 

L(Mr) = LT(M), Timeur(X) = TimeM(x) for x E Lr(M).  

PROOF. To design M t3 M' or M f3 M',  combine M and M' by providing a second 
head on the first tape of each and a new input tape with a single head. Use the extra 
heads to copy the input string at full speed from the new input tape onto the old input 
tapes. Meanwhile the remaining heads can be used to carry out computations by M and 
M' on the respective transcribed coptes of the input string, even while they are still being 
transcribed from the real input tape (see Figure 1). To accept L(M) 12 L(M') within the 
desired time, M 12 M' enters its accepting state when the computation by either M or M' 
does. To accept L(M) n L(M') within the desired time, M n M' enters its accepting state 
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when the computations by both M and M'  have done so. By the result of [9], M U M'  
and M A M'  can be redesigned without time loss to use only one head per  tape. 

Because T is a running t ime, we can modify a clock for T to get a deterministic TM 
acceptor M" with L(M") = E* and TimeM,(X) = iT(Ix I)J, where ~ is the input alphabet  of 
M. To design Mr, combine M and M" m the same way that M and M'  were combined 
above. To accept Lr(M) within the desired ume,  Mr enters its accepting state when the 
computation by M enters its accepting state and the computat ion by M" has not earlier 
done so. [] 

The next lemma indicates that the NTIME complexity classes depend only on time 
bound growth rates. It also shows that we need at least the condition T2 ~ O(Ti) to be 
able to prove NTIME(Tz) - NTIME(T1) ~ 0 .  For T2 a running t ime, it follows by 
Theorem 1 (iii) that,  if (contrary to the intmtion of most researchers) DTIME(T) = 
NTIME(T) for all T, then NTIME(T2) - NTIME(T1) = DTIME(T~) - DTIME(T~) is 
nonempty precisely when T2 ~ O(T~). 

LEMMA 2. I f  Tz • O(T1), then NTIME(T2) C NTIME(Ti). 
PaOOF. For  T~(n) --> (1 + E)n for some ~ > 0, this is just the constant-factor speedup 

theorem of Hartmanls and Stearns [11]. The ~dea is to increase the size of each TM's  
worktape alphabet  so that several steps can be performed in one big step. The limitation 
is that the reading of the input string cannot be sped up. 

That the lemma holds for arbitrary T~(n) -~ n has been observed by Book and Greibach 
[3]. The ~dea is to use nondeterminism to guess the entire input string at the rate of 
several symbols per step so that the reading of the guessed input string can be sped up by 
the method of [11]. Meanwhile additional heads can be used to check the actual input 
stnng against the guessed one at the rate of one symbol per step ("full speed") .  By the 
result of [9], the use of more than one head per tape can be el iminated without time 
loss. [] 

The following lemma, due to Book,  Greibach,  and Wegbrel t  [4], indicates that for 
nondeterminist~c time complexity we can get by with TMs having a fixed number of 
tapes. No simdar result is known for deterministic time complexity. 

LEMMA 3. For each TM M there is a 2-tape TM M' and a constant c such that L(M') 
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= L(M) and TimeM,(X) --< c" TtmeM(x) for every x E L(M). z 
PROOF. If M has k tapes, then the "display" of a configuration of M will be a (k + 1)- 

tuple consisting of the control state and the k tape symbols scanned in that configuration. 
The display of a configuration determines which actions are legal as the next move and 
whether the configuration is an accepting one. The first task for M'  is to nondeterminzsti- 
cally guess on its second tape an alternating sequence of displays and legal actions by M. 
The question of whether the sequence describes a legal computation by M on the 
supplied input is just the question of whether the symbols actually scanned on each tape 
when the actions are taken agree with the guessed displays. This can be checked 
independently for each tape in turn by letting the first tape of M'  play the role of the tape 
while running through the guessed sequence of displays and actions. Clearly M'  runs for 
time proportional to the length of the sequence it guesses. For further details the reader 
is referred to [4]. [] 

Like Cook's proof of Theorem 3, our proof of the generalization (Theorem 4 below) 
makes crucial use of a trick called "padding." Acceptance time is measured as a function 
of input length; so if we can increase the lengths of the strings in a language L without 
significantly changing the hme needed to accept the strings, then we get a padded 
language L '  that is less complex than L as we measure complexity relative to input 
length. One way to pad the language L to L '  is to take 

L'  = p(L) = {xl0~lx E Z,lxl0k[ = p(Ixl)} 
for some p :N ---> N with p(n) > n. The next lemma shows how such padding reduces 
complexity. 

LEMMA 4. I f  p(n) > n is a running time, then 

p(L) ~ NTIME(T)  ¢-~ L ~ N T I M E ( T  o p), 

where T o p(n) = T(p(n)). 
PROOF. (~ )  Suppose M1 acceptsp(L) within time T. Design Ms to pad its input string 

x (which is found at the read-write head on the first worktape) out to x l0  k, where Ixl0kl 
= p([xl) , and then to compute on input x l0  k according to the transition rules of M1. 
Because p is a running time, the padding can be done m time proportional to P(IXl). 
Therefore M2 accepts L within time proportional to p(n) + T(p(n)) -< 2. T(p(n)). By 
Lemma 2 we conclude that L E NTIME(T(p(n))).  

( ~ )  Suppose Ms accepts L within time T(p(n)). Design M~ to check that its input is of 
the form x l0  k, where [xl&[ = p(Ixl), and then to compute on input x according to the 
transition rules of Ms. Then certainly L(M1) = p(L). Because p is a running time, the 
padding can be checked in time proportional to the length of the input. Therefore, ifn = 
Ixl0k[ = p(Ixl) and x E L, then TimeM,(Xl0 ~) is proportional to 

n + TimeM2(x) _< n + T(p(lxl) ) = n + T(n) <- 2. T(n). 

By Lemma 2 we conclude that p(L) = L(M~) ~ NTIME(T(n)). [] 
The following lemma, used below to prove Corollary 4.2 from Theorem 4, shows 

how padding of the above type may be used to refine separation results. Ruby and P. 
Fischer [24] first used this technique in connection with the deterministic time complex- 
ity of sequence generation, and Ibarra [15] used it more explicitly in connection with 
the nondetermmlstic space complexity of language acceptance (see [25] or [26, 27] for 
more on space complexity). Ibarra has used similar techniques in other contexts as well 
[16, 171. 

LEMMA 5. Let sets f f  ~, ~rz o f  time bounds be given. Say p~(n) > n . . . . .  pt(n) > n are 

2 An  tdea of [3] allows us to take c = 1 if we settle for a 3-tape TM M' (see Lemma 2 above) Aanderaa  [1] 
has shown that  we cannot  get by wtth c = 1 m the determmlst tc  case no mat ter  what  fixed number  of tapes 
we allow M' to have (His counterexample ts prowded by determmtst lc  TMs which accept m "rea l  t ime"  
(Tlmeu(x) ~-txl) . )  
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running times with T1 ° p ,  ~ O(Tz ° p,) whenever 1 -< i < l, Tl ~ ~1, 7"2 E ~2. I f  L E 
A{NTIME(T2 o p,)lT~ E ~-2} - t.J{NTIME(T~ o pOIT1 ~ ~'1}, then p~(L) 
A{NTIME(T2)IT2 E ~z} - U{NTIME(Ti)IT~ E J-~} for  some i. 

PROOF. For  l _< i _< l, let 

C(t, 1) = U{NTIME(T1 °p0lT~ ~ ff~}, C(,, 2) = A{NTIME(T2 op,)lT2 ~ 5r2}. 

Suppose L ~ C(l, 2) - C(1, 1). By Lemma 2, NTIME(T1 o P~+0 C NTIME(T2 o p~) 
whenever 1 <- i < l, T1 E ff~, 7"2 ~ if2; so, for 1 -< i < 1, 

L C C(i + 1,1)  ~ L ~ C(i, 2). 

If we were to have also 

L ~ C(i, 2) ~ L  ~ C(i, 1) 

for every t, then we would conclude from L E C(/, 2) that L E C(1, 1), a contradiction. 
For some i, therefore,  we must have 

L e C(t, 2) - C(i, 1) = N{NTIME(Tz op,)lT 2 ~ gr2} - U{NTIME(T, op,)IT~ e gr~}. 

By Lemma 4, 

p,(L) ~ N{NTIME(Tz)IT2 E 5r2} - t_J{NTIME(T0[T~ ~ gr~} for that same i. [] 

Remark.  We do not know how to determine the particular value of i for which 
p,(L) E A{NTIME(T2)IT~ ~ gr2} - U{NTIME(T01T~ E ~-~} above. In fact, we do not 
know how to exhibit any particular language that must be in A{NTIME(T2)IT2 E grz} - 
t_J{NTIME(T~)IT~ E :3-1}. 

It is interesting that the same technique can be applied to DTIME,  with a minor 
restrictmn, to strengthen the results of diagonalizatmn (Theorem 1 (i)) in some cases. 
The restriction that each time bound should exceed (1 + ~) n for some positive ~ allows 
the deterministic version 

T~ @ O(TO ~ DTIME(T~) C DTIME(T0  

of Lemma 2 to follow from just [11]. The deterministic versions of Lemmas 4 and 5 then 
follow as above. We state only the latter.  

LEMMA 5D. Let sets f f  ~, ~2 o f  time bounds be given, with h m ~ ®  inf(T(n)/n) > 1 
for  each T ~ f f  ~ U 0-2. Say p~(n) > n, ... , p~(n) > n are runmng ttmes with T~ o p~+~ 
O( Tz opt.y) whenever 1 -< i < 1, T~ ~ 5r l, Tz ~ 5rz. I f  L ~ A{DTIME(  Tz op~)lT~ ~ S-s} 
- U{DTIME(T ,  o p~)lT~ ~ ff~}, then p , (L)  ~ n{DTIME(T2)IT~ ~ ~-2} - 
U{DTIME(T1)IT~ ~ f f  ~} for  some t. 

Example. By Theorem 1 (i), 

DTIME(n ~) ff DTIME(n2(Iog n)e). 

In Lemma 5D, take 

J-a = {n2}, ~-z = {n2(log n)'/e°°}, l = 400, p,(n) = In (log n)~'-°/~°°j. 

Then conclude that 

DTIME(n 2) ff DYIME(n~(log n)'/~oo). 

Another  key idea in Cook's  proof  and our extensions of it involves universal 
simulation of  TMs. So that we may speak with precision about universal simulation, we 
assocmte a distinct program code from {0, 1}* with each 2-tape TM acceptor having 
input alphabet  {0, 1} and worktape alphabet  contained in some fixed countably infinite 
set; we do this in agreement  with the easily satisfied conditions listed below. We use 
the notation Lp ~ for the set of all program codes, and we denote by Me the 2-tape TM 
acceptor with program code e. 
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Condition 1. No  program code  is a prefix of  ano ther ,  and Lp.e ~ D T I M E ( n ) .  
Condmon 2. There  is a T M  accep tor  U (a "un iversa l  s imula to r" )  with 

L(U) = {ex[e E Lpe . ,x  E L(Me)}, 
Timev(ex) -< ce" TimeMe(X) f o r e  E Lp.e., x E L(Me), 

where  ce -> 1 depends  only on e. 
Condition 3. The re  is a recurs ive  funct ion f : L p  c. --> Lp e. such that  M~e) first wri tes 

e at its head  on tape  2 and the rea f t e r  acts according to the t ransi t ion rules of  M e. (This 
condi t ion is a var iant  of  the s ] - t heo rem of  recurs ive  funct ion theory  [23].) 

Most  c o m m o n  inst ruct ion-by-inst ruct ion or  s ta te-by-state  codings of  T M  programs  can 
be ta i lored to satisfy these  condi t ions .  

We  shall want  to pad strings and use the s imula tor  that  we design in a recurs ive  cont ro l  
s tructure.  To  this end we use Condi t ion  3 to p rove  one  more  l e m m a ,  a vers ion  of  the 
fixed point  t heo rem (Recurs ion  T h e o r e m )  of  recurs ive  funct ion theory  [23]. 

LEMMA 6. For each 2-tape TM acceptor M wtth L(M) C {0, 1}*, there is a 2-tape 
TM acceptor Meo and a constant c with 

L(Meo) = {xleox ~ L(M)}, 

TlmeMeo(X) --< c + TimeM(e oX) for  every x E L(Meo). 

PROOF. Le t  f be as in Condi t ion  3. T a k e  Me, to be  a 2- tape T M  that  ope ra te s  as 
follows, given x at its head  on tape  1 and e at its head  on tape  2: 

1. Convert e toy'~e). 

2 Convert x tof(e)x, and erase everything else 

3 Operate according to the transition rules of M on input f(e)x. 

Let  e0 = f(el).  T h e n  by def ini t ion Me0 opera te s  as follows on input  x: 

1 Write el at the head on tape 2 

2 Convert el tof(e~) = eo. 

3 Convert x to eox 

4 Behave like M on eoX. 

Thus 

x E L(Meo) ¢-~eox ~ L(M),  Timeue°(x) _< c + Tlmeu(e0x),  

where  c is the n u m b e r  of  steps used in writ ing e l ,  conver t ing  el to e0, and writ ing eo in 
f ront  o f x .  [] 

THEOREM 4. I f  T~ is a runnmg time, then the following set difference contains a 
language over {0, 1}: 

NTIME(T2) - U{NTIME(T~)Ithere is some recursively bounded but strictly increasing 
function f : N  ~ N for  which Tl( f(n + 1)) E o(T2(f(n)))}. 3 

PROOF. Le t  T2 be a running t ime,  and let U be a T M  accep tor  with 

L(U) = {exle ~ Lpe , x  C L(Me)}, 
Timev(ex) _< ce. TimeM,(X) for e ~ Lp. c , x E L(Me), 

where  Ce >-- 1 depends  only on e,  as m Condi t ion  2. By L e m m a  1, Lr~(U) E NTIME(T2) .  
Le t  f : N  --> N be any strictly increasing funct ion that  is bounded  above  by some  

3 The operator gap theorem [5, 31] shows that even results such as this are impossible wtthout sorde 
"honesty" condmon on T2, such as tts being a runmng Ume. For example, the operator gap theorem can be 
used to show that there are arbttrardy large, arbttranly complex time bounds T for which NTIME(T(n)) 
equals NTIME(n.T(n + I)), even though T(n + 1) Is certainly a member of o(n.T(n + 1)). 
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recursive funct ion.  We  prove  that Lr~(U) ~ N T I M E ( T i )  for any t ime bound  T1 
satisfying T~(f(n + 1)) E o(T2(f(n))). 

Suppose that Uj does accept  Lr,(U) within some t ime bound  T1 satisfying Tl( f (n + 1)) 
o(T2(f(n))). By L e m m a  1, U'  = U1 U U accepts L(U1 t.3 U) = L(Ui)  t3 L(U) = Lr~(U) 

U L(U) = L(U),  and 

T~({ex[) if ce" Tlmeue(X) --< Tz(lexl), 
Timev,(ex) (1) 

- [ce'TimeMe(X) in any even t  

for e E Lp c ,  x ~ L(Me). The  second inequali ty holds since Timeu(ex) -< Ce" T i m e x ( x )  
by choice of  U, and the first inequal i ty  holds because 

Timeu(ex) -< ce" Timeue(X) -< Tz([ex[) ~ e x  E Lr~(U) = L ( U 0  

Timev~(ex) -< T~(lexl). 

Note  that  when T~(lexl) < TimeM,(X) --< T2(lexl)/Ce, the  universal  s imulator  U '  will 
s imulate  the computa t ion  of  M e on x faster than the computa t ion  runs directly; i.e. there 
will be  s imulat ion t ime gain. Paddmg will enable  us to exploi t  this ex t reme  efficiency 
even for longer  computa t ions .  Using this idea recurswely will lead below to a contradic-  
tion of  Corol lary  2.1.  

Let  L C {1}* be any recursive language over  {1}. Because  L Is recursive,  we can take a 
running t ime T : N  ~ N so large that L ~ N T I M E ( T ) .  Le t  M accept  L within t ime T. 
Design a TM acceptor  M '  that  opera tes  as follows: 

1 Check that the input string is of the form exO k for some e ~ Lp ¢, x E {1}* Condmon 1 guarantees that this 
can be done m time proporttonal to the length of the input string 

2 Use a clock for the running time T to determine whether k -> T(Ixl) This reqmres at most k steps, so ~t 
certainly can be done m time proportmnal to the length of the input string 

3 Ifk -> T(Ixl), then erase everything butx and compute on mputx according to the transition rules of M For 
x E L(M), since TImeM(x) --< T(Ixl) --< k. this step, too, can be performed m time proportional to the length of 
the input string 

4 If k < T([xl), then pad the input string to ex~' for some nondetermmistically chosen k' > k, erase 
everything else, and compute on input exO k' according to the transmon rules of the universal simulator U' Thts 
step can be performed m time proportional to the length of the padded input string exO k' plus Tlmeu,(ex&'). 

For  some constant  d~, we may summarize  the b e h a w o r  and t iming of  M '  as follows: 
(i) M '  accepts only strings of  the form exO k for e ~ Lp ¢,  x E {1}*. 

(il) I f k  -> T(Ixl), then 
(a) exO k E L(M')  ~ x  ~ L(M), 
(b) Timeu,(exO k) --< dl" lexOk[ for exO k E L(M') .  

(iii) If  k < T(Ixl), then 
(a) exO k E L(M')  ~ exO k' ~ L(U' )  for some k '  > k,  
(b) TimeM,(exO k) _< d~. lexO~'l + Timev,(ex&') for every  k '  > k. 

Apply ing  L e m m a  3 to obtain  a 2- tape TM that accepts L(M')  with only a constant  
factor t ime loss, and then applying the Recurs lon T h e o r e m  ( L e m m a  6) to this machine ,  
we get a p rogram code e0 for a 2- tape TM that  accepts L(Meo) = {xOkleoxO k ~ L(M')} 
within t ime Tlme~0(x0 k) <_ d2.Timeu,(eoxO k) for some constant  d2. 

CLAIM 1. For each string x ~ {1}*, the fo l lowmg holds for every k : 

xO ~ ~ L(Meo) ¢-~ x ~ L(M).  

PROOV. For  each x ,  we establish the claim by induct ion on k running down f rom k -> 
T(Ixl)  to k = 0. 

k -> T(Ix[): 

xO k ~ L(Meo) ¢-~eoxO k ~ L(M')  (by choice ofeo) 

,,:-~x ~ L(M) (by (ii-a)). 
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k < T([x[): Assume x0 k' ~ L(M%) ,,=~x E L(M) holds for every k '  > k. Then 

x0 k E L(M~0) <=~ eoxO k ~ L(M') (by choice of eo) 

¢=~eoxO ~' E L(U') for some k '  > k (by (iii-a)) 
x0 k' E L(Me0) for some k '  > k (because eo E Lp.c ) 

,,=->x ~ L(M) (by induction hypothesis)• 

CLAIM 2. For each sufficiently long string x E L(M), TimeM~o(x) --< T2(f(leoxl)).  
PROOF. Let d3 = Ceo'd2"(d~ + 1). By the "translational" hypothesis T~(f(n + 1)) E 

o(T2(f(n))), d3" T~(f(n + 1)) -< T2(f(n)) for every sufficiently large n. Let x E L(M) be 
so long that dz'T~(f(n + 1)) -< T2(f(n)) for every n -> leoxl. 

Assuming we could show 

Time u,(eoxO :¢le°xt+l)-Ie°xl) --< T~(f(leoxl + 1)), 

we could reason as follows: 

TimeMeo(X) --< d2" TimeM,(e0x) (by choice of e0) 

-< dz.(dl.f(leox[ + 1) + Timev,(eoxO ateoxH)-Ieozl)) 
(by (iii-b) sincef(leox I + 1) > le0xl) 

-< d~'(d~'f(leoxl + 1) + Tl(f(leox I + 1))) 
-< d~'T~(f(leoxl + 1)) 

(since T! being a time bound impliesf(Ieox I + 1) -< T~(f(leox [ + 1))) 
-< T~(f(leoxl)) (because x is so long). 

To prove 

Timeu,(eoxO ~leoxl+')-Ieo~l) _< Tl(f(leoxt + 1)), 

we prove more generally that 

Timev,(eox(P n)-Ie°xl) -< Tl(f(n)) 

for every n -> leoxl. We do this by induction on n running down from n -> leoxt so large 
thatf(n) -> leoxl + T(Ixl) t o n  = leoxl. 

n --> le0xl andf(n) --> le0xl + T(Ixl): 

Ceo" TimeM,o(X0 s~">- I e0z I) _< Ceo" d2" TimeM,(eox 0 :~n)- l eox I) (by choice of eo) 

-< Ceo'd2"dl"f(n) (by (ii-b)) 
-< d3" Tl(f(a + 1)) (sincef(n) < f(n + 1) 

-< T,(f(n + I))) 
-< T2(f(n)) (because n -> leoxI). 

Therefore Tlmev,(eoxO ~-1~oal) <_ T~(f(n)), by (I). 

leoxl ~ n -< f(n) < le0xl + T(Ixl): Assume Timeu,(eoxO f{n+l)-Ieo~l) ~ Tl(f(n + 1)). Then 

• n ) - - ~ e o x l  Ce o" TimeMeo(X Oan)-Ie°xt) --< Ceo'd2" TlmeM,(eoxO a ) (by choice of eo) 

Ceo'd2" (dl .f(n + 1) + Timeu,(eoxOa~+l)-Je°xl)) 
(by (iii-b) since f(n + 1) > f(n)) 

-< Ceo" d2" (d~ .f(n + 1) + T1(f(n + 1))) 
-< d3" Tl(f(n + 1)) (since f(n + 1) -< Tl(f(n + 1))) 
-< T2(f(n)) (because n -> leoxl). 

Therefore Timeu,(eoxOa'Heox9 _< Tl(f(n)), by (1). [] 
Finally, by Lemma 1, Men can be modified without time loss to reject padded inputs 

(those not members of  {1}*) and to quickly agree with M on short ones (those not 
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sufficiently long for Claim 2). This gives a TM that accepts L = L(M) within time 

T2(f(leo[ + n)) ~ O(n,~2n T2(f(n'))) ; 

so L ~ NTIME(~n,~_zn T2(f(n '))) by Lemma 2. Since the latter time bound is recursively 
bounded (because both f and T2 are) and independent of the particular recursive 
language L C {1}*, this contradicts Corollary 2.1. [] 

Example. For an arbitrary set A of nonnegative integers, let 

8( .2n)={~ if if nEZ,n q~Z; 8 ( 2 n + 1 ) = { ~  if if nnEZ'q~Z. 

To see that NTIME(n e- 8(n)) $ NTIME(n3), just apply Theorem 4 with 

{2~ i f n E A ,  
f ( n ) =  + 1  if nq~A,  

so that 8(f(n + 1)) = 1 for every n. 
In many applications it suffices to have Theorem 4 for the single function f(n) = n, 

especially if we are concerned only with nondecreasing time bounds. 
COROLLARY 4.1. I f  T 2 is a running time, then 

NTIME(T~) - U{NTIME(T1)ITi(n + 1) ~ o(Tz(n))} 

contains a language over {0, 1}. 
The informal diagram in Figure 2 illustrates how the proof of Theorem 4 uses padding 

to take advantage of deeply nested mmulations by U' to bring the time for an arbitrary 
computation down to the vicinity of T1 and Tz in the casef(n) = n of Corollary 4.1. The 
direct computation on x, up around the level of T(Ixl), is brought down to below T2 in 
terms of  the mput length by padding x out to x0 rtlxl~ . By the hypothesized nature of U' ,  
simulating that computation brings its t~me down to below Ti. If we unpad by a single 0, 
then the hypothes~s that T~(n + 1) is small compared to T2(n) keeps the computation still 
b e l o w  T 2 in terms of the input length. A simulation by U' of this computation onx0 r~jx°-~ 
brings tts time down to below Ti. Continuing to nest alternating unpaddings and 
simulations finally yields a computation on the original input stringx down at the level of 
T1 and Tz. 

The "translational" condition Tl(n + 1) ~ o(T2(n)) of Corollary 4.1 is a severe one for 
a rapidly growing running time T2. When T2(n + 1) is worse than exponential in T~(n), in 
fact, deterministic downward diagonalization within time bound T2 (Theorem 1) yields 
stronger results than does Corollary 4.1. Because Corollary 4.1 applies for Tx(n + 1) 
o(Tz(n)) and Theorem 1 applies for log Tz(n) q20(T,(n)), Corollary 4.1 contributes new 
results precisely when log T2(n + 1) E o(T2(n)). 

To see the strength of Corollary 4.1, let 
2 

log*n = min{k]2~ -> n}. 
k 

For constants c > 1 and r -> 1 whose digits in radix notation can be generated rapidly, 
and in particular for rational c and r, note that n ~, n ~.log*n, n ~. (log*n) ~, c ", c n. log*n, 
etc., are running times. Thus we conclude that 

NTIME(n0 ~ NTIME(n ~. log*n) ff NTIME(n r- (log*n) 2) ff . . . .  
NTIME(c n) ~ NTIME(c n- log*n) ff NTIME(c n. (log*n) 2) ff . . . .  

These results do not follow immediately from Cook's result (Theorem 3) or by 
diagonahzation (Theorem 1). 

It is interesting to note that the containments corresponding to the examples above 
are not known to be proper for deterministic time (DTIME).  The fundamental reason 
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FIG 2. Intuitive proof of Corollary 4 l 

is that Lemma 3 is not known for DTIME. If that lemma were known for DTIME, 
then downward diagonalization would give generally stronger results for DTIME than 
would the proof of Theorem 4 anyway.4 

Corollary 4 1 obviously implies that 

NTIME(2 n2) ~ NTIME(2 (n+l)L log*n), NTIME(22") ~ NTIME(22"+''log*n). 

In fact we can strengthen these results to 

NTIME(2 n~) ~ NTIME(2("+I~), NTIME(22") ~ NTIME(22"+'), 

by appeal to the following corollary. 
COROLLARY 4.2. I f  T2 is a running time, then 

tO {NTIME(T1)ITi(n + 1) ~ O(T2(n)), Tl(n) ~ o(T2(n))} ~ NTIME(T2), 

and there ts a language over {0, 1} that bears wttness to thts fact. 
PROOF. Because Tl(n) C o(T2(n)) implies Tl((n + 1) + 1) ~ o(T2(n + 2)), Corollary 

4.1 gives a language L C {0, 1}* in 

NTIME(Tz(n + 2)) - tO{NTIME(Ti(n + 1))] Ta(n + 1) ~ O(T2(n)), T~(n) E o(T2(n))}. 

Applying Lemma 5 with 

4 In the hght of Lemma 3, another point of wew ts that our results separate the nondetermm~st~c time 
complextty classes determined by k-tape TMs, for any fixed k -> 2 W J Paul has shown recently [22] that 
separation results as strong as our examples do happen to hold for the analogous determmisUc classes 
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~1 = {TiI T,(n + 1) ~ O(Tz(n)), T~(n) ~ o(T2(n))}, 32 -- {Tz}, 
p~(n) = n  + 1, p2(n) = n  + 2, 

we conclude that either p~(L) or p2(L) is a member  of 

NTIME(T~) - U{NTIME(Ta)[ T~(n + 1) ~ O(T2(n)), T~(n) ~ o(T2(n))}. 

Containment  holds by Lemma 2 [] 
Remarks.  (i) Lemma 5 goes through equally well if we pad to the left rather than to 

the right. For  this remark,  therefore,  we may assume that p,(L) = {OkIx Ix ~ L,  I~Ixl -- 
p~(lxl)} for i = 1, 2 above. 

For  U the universal simulator of Condition 2, Lr, t,~(U) serves as a witness language 
for Theorem 4 and Corollary 4.1. One might naturally suspect, therefore,  that Lr~t,)(U) 
would be a witness language for Corollary 4.2 as well. In the proof of Corollary 4.2, L = 
Lr~,+2~(U) satisfies the condition for choosing L.  If we shghtly modify our program 
coding by concatenating a single 1 in front of each old program code and if we let V be 
the naturally derived new universal simulator,  then we do get Lrz<,+l)(V) = 1- 
LT~,+2~(U) = {Ix[x E Lr~,+2~(U)} = p~(L). Similarly, if we further concatenate a 0 in 
front of each program code and let W be derived from V by taking this into account, 
then we get LT~,~(W) = 01"Lr~,+2~(U) = pz(L). Yet we can show only that either 
Lr,~,~(W) or Lr,<,+~(V) is a witness to Corollary 4.2. We do not know whether there is 
necessarily a witness language of the form Lr~t,~(U) and whether the part icular choice 
of program coding and universal simulator U affects whether Lr2~n)(U) is such a 
language. 

(ii) Corollary 4.2 contributes new results (over Theorem 1) precisely when 
log Tz(n + 1) E O(T2(n)). 

3. Separation by Unary Languages 

Padding strings over a one-let ter  alphabet  by one symbol at a time does not leave them 
decodable;  so we cannot hope to use our method to get a result as strong as Corollary 4.2 
for languages over a one-let ter  alphabet.  Our  final theorem, Theorem 5 below, demon- 
strates that we can come very close, however.  

Definitton. The rounded inverse of a strictly increasing function f : N  ~ N is the 
function [f-~] :N ~ N defined by 

Examples. 

[ f -q(n)  = mm{k l f(k ) -> n}. 

function rounded inverse 
n z In 1/2] 
2 ~ [ l o g s ]  

2 

2 2 log*n 
n 

LEMMA 7. Let g :{0, 1}* ~ N - {0} be the bijection which maps each btnary word x 
to the integer whose binary representation (high-order btt first) ts Ix. For f : N  ~ N realx  
time countable, ~ define h:{0, 1}* ~ N inductively by 

~ f(g(x)) + g(x) + 1 if  x ts not o f  the form yO, h(x) 
(h(y) + [ f - ' ]  (h(y)) t f x  = yO. 

Then h t s  an mlectton, and a deterministic TM can compute 1 n<z) from x or x from 1 h<x) 
withm ttme 2.h(x). 

5 A strictly increasing function f N ~ N ~s real-trine countable [30] if some deterministic Turmg machine 
generates the characteristic sequence of the range of f m real Ume (,.e one character per  step). (The 
characterlsttc sequence has a 1 m posmon n ff n ~s m the range o f f  and a 0 otherwise.)  
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PROOF. In the case that neither x nor x '  is of the form y 0,  we have 

h(x) = h(x ' )  only i fx  = x '  

becauseg  is an injection andf(n) + n + 1 is strictly increasing. In the case tha tx  = y0 and 
x '  = y ' 0 ,  we have 

h(x) = h(x ' )  only if h(y )  = h ( y ' )  

because n + [f-1](n) is strictly increasing. Unless there are strings x = yO and x '  not of 
that form with h(x) = h(x ' ) ,  therefore,  h must be an injection. For  such strings to exist,  
the ranges of the strictly increasing functionsf(n) + n + I and n + [ f -q (n)  must intersect.  
For  every n ,  however,  

f (n)  + [ f - ' ] ( f (n ) )=  f (n)  + n < f (n)  + n + 1 
< {f(n) + 1) + (n + 1) = ( f (n)  + 1) + r f - l l ( f (n)  + 1); 

so the ranges are disjoint and h is an injection. 
By the constant-factor speedup technique of [11 ] and Lemma 2 above,  it remains only 

to prove that a determinist ic TM can perform the indicated conversions within time 
proport ional  to the indicated time. 

Let us first consider the conversion of an arbitrary string x0 ~, where x is not of the 
form y0,  to 1 a(x~). A determinist ic TM can first compute 1 ~x) by converting the binary 
integer lx  to unary. It can do this in time proport ional  to g(x) -< h(x) -< h(xOk). Because 
f is real-time countable,  the determinist ic TM can then compute 1 ~ x "  within time 
proport ional  to f (g (x ) )  _< h(x) -< h(xOk). The machine can then combine these interme- 
diate results to get I htx~ = 1 a~x~+~z~+~, still within t ime proport ional  to h(x) -< h(xOk). 

The final conversion to 1 h~¢~ is slightly more difficult. One way to compute 1 ntx°~ 
from 1 htz~ and 0 ~ is to generate and use a table of the values of  [ f - q  at arguments up to 
h(xOk-1). (Find the value [ f - q ( h ( x ) ) ,  compute  1 h~x°) = 1 h<~)+l rq~h~,;  find the value 
[ f -q(h(xO)) ,  compute 1 h~x°~ = lh~x°~+frq~h'~°'; etc.) Since h(xO l+l) - h(xO l) = 
[ f -q(h(x lY)) ,  sequential  storage of the values in the table would make it easy to go from 
the h(x0Z)-th value i (i = [f-1](h(xOI))) to the h(x0t+l)-th value: Just skip to the t th 
following value. Successive values of  [ f - q  differ by at most 1; so a table of one-bit  
values actually suffices, the nth  bit (n = 0, 1, 2, ...) telling whether [ f - q  increases at 
argument n + 1, and the number  of positive bits preceding bit n therefore being equal 
to [ f -q (n) .  This table is just the characteristic sequence of the range o f f ;  so it can be 
generated in real t ime. The skipping can be done m hnear  t ime (in the number  of skips) 
by maintaining, on a separate tape,  a unary count of the number  of positive bits 
preceding the currently scanned bit of the table.  Thus 1 ntxdq can be computed from 
I ht~ within time proport ional  to h(xOk). 

Before we describe the reverse conversion, observe that  n + [f-~](n) is a strictly 
increasing function of  n and that n + [ f -q (n)  > n if and only if n > f(0). For  each n > 
f(0), it follows that there  is at most one n '  for which n '  + [ f - q ( n ' )  = n and that any such 
n '  must satisfy n > n '  > f(0). For  each no > f(0), therefore,  there  is a unique sequence 

no > n~ > ' "  > nk > m -> 0 

such that 

n ~ + [ f - q ( n f ) = n H f o r  1 - ~ i - < k ,  m + [ f - q ( m ) < n ~ < ( m  + 1) + [ f - q ( m  + 1). 

Since [ f - q ( m  + 1) - [ f -q (m)  ~ {0, 1}, the lat ter  pair of inequalit ies implies 

r f -q (m + 1) - [ f - ' l (m)  = 1 
and hence 

f(rf-'l(m)) = m .  

By the pair of inequalities,  therefore,  
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nk = m + [f -q(m) + 1 = f([f-1](m)) + [f-1](m) + 1. 

By definition, therefore, no = h(xO k) if [ f -q(m) = g(x) for x not of the form yO. 
Conversely, if 

n0 -< f(O) or  
(no > f(0) & r f - q ( m )  = 0) or 
(no > f(0) & [f-ll(m) > 0 & rf-q(m) = g(v0)), 

then n0 must not be in the range o fh .  (lfno were equal toh(x0 k) forx not of the fo rmy0,  
then we would have 

no >- h(x) = £(g(x)) + g(x) + 1 > £(0), 

and the unique sequence for no would have to be 

h(x0k), h(xOk-'), ... , h(x), f(g(x)).) 

To determine whether no is in the range of h and to calculate h-~(no) if it is, it 
therefore suffices to execute the following program: 

1 Check whe the r  no > f(0) If not ,  then halt ,  h-l(no) does  not  exist 

2. Calcula te  the length k and  the end m of the sequence  s tar t ing at  no 

3 Check  whe the r  [ f - q ( m )  > 0 If not ,  then halt;  h-l(no) does  not  exist 

4 Ca l cu l a t ex  = g-l(ff-q(m)) 
5 Check  whe the r  x is of the f o r m y 0 .  If so, then halt ,  h-~(no) does  not  exist. If  no t ,  then h-t(n0) = x0  ~. 

Trivially, a deterministic TM can execute steps 1 ,3 ,  and 5 in time proportional tono. It is 
straightforward to execute step 4 in time proportional to m < no. It remains only to 
describe how a deterministic TM can execute step 2 in time proportional to no. 

The TM for step 2 starts by counting up to position no of the table of bits used above in 
the encoding process. It records in unary the number of positive bits passed in the 
process; this number is [f-1](n0). Given position n~ in the table and [ f -q(n0  in unary, the 
TM finds the next position in the sequence by skipping to preceding positions p in the 
table until eitherp + [f- l](p) = n, (in which casep = n,+l) o rp  + [ f -q(p)  < n~ (in which 
case p = m).  (One or the other certainly must occur for some p _> 0.) Substituting 
[ f -q (p)  = [f-1](n,) - (the number of positive bits reached while skipping) gives the 
termination condition (n, - p) + (the number of positive bits reached while skipping) _> 
[f-i](n,) ; i.e. the skipping should continue until the number of skips, plus the number of 
positive bits reached while skipping, equals or exceeds [f-q(n~). It follows that the next 
table position in the sequence and the corresponding value of [ f - t ]  can be found in time 
proportional to the number of skips necessary. Therefore the length k and the end m of 
the entire sequence can be determined in time proportional to no, as required. [] 

THEOREM 5. I f  T2 ts a running time and f is real-time countable, then there ts a 
language over {1} m 

NTIME(T2) - U{NTIME(T, ) IT , (n  ++ [f-q(n)) ¢ o(T2(n))}. 

PROOF. Let T2 be a running time, and le t f  be real-time countable. We start with U as 
in the proof of Theorem 4; i.e. 

L(U) = {exle ~ Lpc,  x E L(Me)}, 
Ttmev(ex) _< ce -TimeM, (x) for e ~ Lp.e, x E L(M~), 

where Ce -> 1 depends only on e. To adapt the earlier proof, however, we must construct 
a witness language as the T2 cutoff of some other "universal simulator" V having input 
alphabet just {1}. It is to this end that we define an injection h :{0, 1}* + N f r o m f  as in 
Lemma 7. 

From U we construct V to operate as follows on inputy ~ {1}*: 

1 F m d x  with 1 a(x) = y ff It exmts 
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2. Compute on x according to the transition rules of U 

By Lemma 1, Lr2(V) E NTIME(T2). We prove that Lr2(V) ~ NTIME(T1) for any time 
bound Ti satisfying Tl(n + [f-q(n))  E o(T2(n)). 

Suppose that V1 does accept L~o(V) within some time bound T, satisfying T~(n + 
[f-q(n))  ~o(T2(n)). By Lemma 1, V' = V1 t.J V accepts L(V1 t_J V) = L(VI) t.) L(V) = Lr2 
(V) t_J L(V) = L(V), and 

~ Tl(h(ex)) tf 2.h(ex) + Ce" Time~, (x) -< T2(h(ex)), 
Timev'(lh~ex)) --< [2 .h(ex)  + Ce" TimeMe (x) in any event 

for e ~ l-.o.c, x ~ L(M~). From V' we construct U' to operate as follows on input x 
{o, 1}*: 

1. Compute I h~x~. 

2 Compute on 1 n<x) according to the transmon rules of V' 

Then L(U')  = {xll h<~) ~ L(V')} = {xll hoe) ~ L(V)} = L(U), and 

Timev,(ex) <- 2.h(ex) + Timee,(1 h~e~) 

< J'2.h(ex) + Tl(h(ex)) if 2.h(ex) + ce'TimeM~(X) --< T2(h(ex)), 
- [4 .h(ex)  + c~'TimeMe(X) in any event 

for e ~ Lp.c., x ~ L(M~). 
For any recursive L C {1}% we can use U' as in the proof  of  Theorem 4 to get a 2- 

tape TM acceptor Me0 for {x&lx ~ L, k ~ N}, with 

<~'d.teoxOk[ ifk -> T(lxl), 
TimeM'o(x0k) -- [d"  leox0k+'l + d.  Timev,(eox0 k+l) i fk < T(lx I) 

for some sufficiently large constant d and some appropriate rime bound T. 
CLAXM. For each sufficiently long string x ~ L, Timeue,(X) --< Tz(h(eox)). 
PROOF. Let  x ~ L be so long that 

(2 + Ceo" 4d)" T,(n + [f-1](n)) ~ T2(n) 

for every n -~ h(eox). Then certainly 

4d. T~(h(eoxO)) = 4d. r,(h(eox) + [ f-'](h(eox))) -~ Tz(h(eox)) ; 

so it suffices to prove TimeM, (x) --< 4d. Tl(h(eoxO)). In fact we prove by induction on k 

running down from k -~ T(Ix I) to k = 0 that 

TimeM,0(x0 k) --< 4d. ra(h(eox(F+~)). 

k -> T(Ixl): Using the facts [Yl -< h(y) ~ Tl(h(y)) fo ry  = eox(F +1, we have 

TimeM~0(x0 k) ~ d. [eox~[ ~ 4d. Tx(h(eoxOk+')). 

k < T(Ix I): Assume TimeM,o(X0k+l) ~- 4d" Tl(h(eox~+*)). Then 

2"h(eox~ +1) + Ceo" TimeM,0(x0 ~+a) 

-~ 2"h(eoxO ~+~) + Ceo" 4d" T~(h(eoxO~+~)) 
= 2.h(eoxO ~+~) + Ceo.4d.T~(h(eoxO ~+~) + [f-q(h(eoxO~+~))) 
-< (2 + c~0.4d). T,(h(eox~ +') + ff-q(h(eoxO~+q)) 

T2(h(eox&+l)). 

Therefore 

Timeu,(eoxO ~+~) _< 2.h(eoxO ~+~) + Ta(h(eoxO~+a)) ~ 3.T~(h(eox&+~)). 
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Therefore 

Timeue0(x0k) <-- d.  [e0x0k+l I + d" Timeu,(e0x& +1) 
_< d.leoxOk+~[ + 3d.T~(h(eoxOk+~)) <_ 4d. Ta(h(eoxOk+l)). [] 

By Lemma 1, Me0 can be modified without time loss to reject padded inputs. This 
gives a TM that accepts L within a time bound of O(~lzl~znT2(h(x))); so L 
NTIME(Eizi~2,T2(h(x))) by Lemma 2. Since the latter time bound is recursively bounded 
and independent of the particular recursive language L C {1}*, this contradicts Corollary 
2.1. [] 

2 

Example. Takingf(n) = 2 ~ , we get a language over {1} in NTIME(2".Iog*n) - 

22" 
NTIME(2"). 

4. Open Questions 

1. For T2 a running time, is the condition T2 q~ O(T1) enough m general for separation 
between NTIME(T0 and NTIME(T2) or between DTIME(T,) and DTIME(T2)? 

2. Is there an actual difference between the separation results that hold for NTIME 
and those that hold for DTIME? Is DTIME(n 2) ~ DTIME(n2.10g log n)? Is 
NTIME(22") ~ NTIME(2Z"+I/Iog*n)? Is there a language over a one-letter alphabet in 
NTIME(22"+') - NTIME(22")? 

3. What is the relationship between NTIME and DTIME? Does NTIME(T) = 
DTIME(T)? 

4. That a language L Is not a member of  NTIME(T0 means only that every acceptor 
M for L has TlmeM(x ) > T~(Ix I) for strings x E L of infinitely many lengths. Stronger 
senses of lower bounds, requiring that TimeM(x) > T,(Ix I) for strings x ~ L of all but 
finitely many lengths or for all but finitely many strings x ~ L,  have been studied 
extensively (see [2, 18, 10], for example). It is known, for instance, that there is a 
language L that requires more than 2 ~x~ many steps deterministically on almost every 
string x ~ L but that can be accepted within time (2 + e)n for any E > 0. Our methods 
do not give such results for nondeterministic acceptance time complexity; so we leave it 
open whether there is a language L E NTIME((2 + e)n) that requires, even on 
nondeterministic machines, more than 2 txl steps on inputs x E L of all but finitely many 
lengths or on all but finitely many x ~ L. 

5. A purely technical question arising from Theorem 4 is whether we can allow ff to 
range over all one-one functions rather than just over strictly increasing reeursively 
bounded ones. A plausible proof strategy is to design M' in the proof of Theorem 4 so 
that, in the case k < T(Ixl), it pads or unpads exO k to exO Je for some nondeterministically 
chosen k '  4 k. Under this strategy, however, even Claim 1 seems to elude proof. 

6. What is the relationship between deterministic time complexity and number of 
worktapes? 

7. What is the relationship between time complexity and worktape alphabet size? 
(Compare [25] or [27] on the relationship between space complexity and worktape 
alphabet size.) 

8. Is there any language in NTIME(T2) that requires more time than the language 
Lr2(U) m the proof of Theorem 4? 

9. In the conclusion of Lemma 5, can we exhibit a single language that must 
definitely belong to N{NTIME(T2)IT2 ~ if-z} - t_J{NTIME(T0]Ti E ~1}? (Compare 
Remark (i) following the proof of Corollary 4.2.) 

Appendix. Downward Dtagonahzation 

In this Appendix we prove Theorems 1, 2, and 2' .  We proceed less formally than above, 
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not explicitly stating the conditions our program codes must satisfy. 
THEOREM 1. I f T z  is a running time, then each o f  the following set differences contams 

a language over {0, 1}: 
(i) DTIME(T~) - U{DTIME(T, ) IT  2 q~ O(Tllog TO}, 

(ii) DTIME(T2) - U{NTIME(T,)I log Tz q~ O(T~)}, 
(iii) NTIME(T2) - U{DTIME(T~)IT~ ~ O(T~)}. 
PROOF. Let T2 be a running time. For (i) and (ii), we use the construction of [11, 

12]. Let L~.¢. C {0, 1}* be the set of program codes for deterministic 2-tape TM 
acceptors having input alphabet {0, 1}. First we design a deterministic TM acceptor U 
with 

L(U) = {exle E Lg.c., ex ~ L(Me)}, 
Timev(ex) .~ c~- Timeu~(ex) for e ~ Lg~., ex E L(Me), 

where Ce depends only on e. Then we design another deterministic TM acceptor M' to  
accept the complement of Lr,(U) in time T~. (This uses the closure of DTIME(T2) 
under complements. Because it is not known whether NTIME(T2) Is dosed under 
complements, we cannot reason analogously with nondetermimstic TM acceptors.) 

(i) Let Tt satisfy Tz /~ O(T~log TO, and suppose L(M) ~ DTIME(T1). According to 
[12], there is some e ~ L~.c such that Me accepts L(M) within time c. T~log2T~ for 
some constant c. Since Tz /~  O(Talog Ta), we can take x ~ {0, 1}* so that 
C e "C" T~(lex [)log2T~(lex l) -~ T~(lex I). Then 

and also 

ex E L(M) ~ ex E L(Me) 
ce " TimeM,(ex) _< c~ . c . T~(lex [) logz T~([ex [) -< T~(lex [) 

~ ex ~ tc,( U) 
ex ~ L(M) 

ex ~ L(M) ~ e x  ~ Lr2(U) C L(U) ~ e x  E L(Me) = L(M). 

This contradiction establishes L(M) ~ DTIME(T0.  Therefore L(M) E DTIME(T2) - 
U{DTIME(TOIT~ ~ O(Tdog TO}. 

(ii) Let Ti satisfy log Tz ~ O(T1), and suppose L(M) E NTIME(T0. By straightforward 
simulation, there is some e E L~.e such that M e accepts L(M) within time c r, for some 
constant c. Since log To q~ O(TO, we can take x ~ {0, 1}* so that Ce.C r'~le=° -< T2(tex I)" 
Then 

ex ~ L(M) ~ ex 'E L(Me) 
ce" TlmeM,(ex) --< Ce "c r'~l~x~) --< Tz(lex 1) 

~ e x  ~ Lr,(U) 
~ ex q~ L( m) 

and also 

ex q~ L(M) ~ ex E Lr2(U) C L(U) ~ ex ~ L(M~) = L(M). 

This contradiction establishes L(M) ~ NTIME(T0. Therefore L(M) E DTIME(T2) - 
U{NTIME(T,)IIog :/'2 ~ O(7"1)}. 

For (iii), we make use of the simulation technique of [4] (Lemma 3 above). We 
assume familiarity with the proof sketch above of Lemma 3. Recall that the simulation 
involves guessing a sequence of displays and actions and then checking it (deterministi- 
cally) for one of three outcomes: not a legal computation, legal computation without 
acceptance, legal computation with acceptance. The TM acceptor M which we design 
expects an input of the form ex, with e now a program code for an arbitrary (multitape) 
deterministic TM acceptor M e having input alphabet {0, 1} that halts only to accept. On 
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such an input, M performs the (nondeterministic) Lemma 3 simulation of M e on ex. If  
the guessed sequence involves exactly tT2(lex Me l] actions by M e and the outcome is 
"legal computation without acceptance," then M accepts ex, and this is the only way M 
accepts its input. Since Me is deterministic and halts only to accept, it follows that 

ex ~ L(M) ¢-~ TimeMe(ex) > tTdlexl)/[el]. 

(Recall that, by convention, TimeM~(ex ) =oo if ex q~ L(Me).) 
Assuming we do not choose unusually succinct program codes, M can guess and 

check in T~(lexl) steps any display and action sequence involving only tT2(lexl)/lelJ 
actions by Me. Since Tz is a running time, checking whether the number of actions is 
exactly [Td[ex I)/le IJ also requires only Tdlex l) steps. Therefore L(M) ~ NTIME(T2). 

Let T1 satisfy T2 ~ O(T~), and suppose some deterministic TM acceptor M e accepts 
L(M) within time Ti. Since T2 q~ O(T~), we can take x E {0, 1}* so that [Tdlex Me 1] -> 
Tl(lex D' Then 

ex E L(M) ~ TimeMe(ex) > [T2(lexl)/lelJ -> Td[exD ~ e x  q~ L(Me) = L(M), 

and also 

ex q~ L(M) ~ Timeue(ex) _< tT2(lexl)/lelJ < ~o ~ ex ~ L(Me) = L ( M ) .  

This contradiction estabhshes L(M) q~ DTIME(T1). Therefore L(M) ~ NTIME(T2) - 
t3{DTIMFE(TiITz) q~ O(T~)}. [] 

THEOREM 2. I f  T2 ts a running time, then each o f  the following set differences 
contains a language over {1}: 

(i) DTIME(T2) - U{DTIME(T3[Tdog r~ ~ o(r~)}, 
(ii) DTIME(T2) - U{NT1ME(T~)[T~ E o(log T2)}, 

(ui) NTIME(T2) - U{DTIME(T~)[T~ ~ o(T2)}. 

PROOF. Let T2 be a running time. To adapt the proof of Theorem 1, we make use 
of the function g :{0, 1}* ~ N defined in Lemma 7 so that the binary representation of 
the integer g(x) is lx. We design a deterministic TM acceptor U with 

L(U) = {l~eX'te E Lye ,  p(ex) E L(Me)}, 
Timeu(1 g(~x)) _< ce.TlmeM~(1 g(e*)) for e ~ L~)~, 1 g(ez) ~ L(De), 

where Ce depends only on e. Then we design another deterministic TM acceptor M to 
accept {1}* - Lr,(U) in time T,. 

0) Let T~ satisfy Tllog T~ E o(T2), and suppose L(M) E DTIME(T~). According to 
[12], there is some e E LpD~ such that M e accepts L(M) w~thin time c.  T~log2T~ for some 
constant c. Since T~log Ti ~ o(T2), we can take x ~ {0, 1}* so long that 
ce'c" T~(g(ex))log2Tl(g(ex)) -< T2(g(ex)). Then 

1 ~ex) ~ L(M) ~ 1 ~(~x) ~ L(Me) 
Ce" TimeMe(1 g(ez)) --< Ce "c" Tl(g(ex))log2T~(g(ex)) ~ Tz(g(ex)) 
1 g(~x) ~ Lr~(U) 

1 °(~x) ~ L(M) 

and also 

1 g(ex' ~ L(M) ~ 1 a(ex) ~ Lr2(U) C L(U) ~ 1 g`ex) E L(Me) = L(M). 

This contradiction establishes L(M) ~ DTIME(T~). Therefore L(M) ~ DTIME(T2) - 
U{DTIME(T~)IT~Iog T1 C o(T2)}. For part (ii), similarly, L(M) ~ DTIMF.(T2) - 
tA{NTIME(T,)IT, ~ o(log T2)}. 

For (ui) as for part (iii) of Theorem 1, we make use of the technique of [4] to design 
the nondeterministic TM acceptor M. The acceptor M expects an input of  the form 
1 °(ex), with e now a program code for an arbitrary (multltape) deterministic TM 
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acceptor Me having input alphabet {1} that halts only to accept. On such an input, M 
calculates e and then performs the (nondetermmistic) Lemma 3 simulation of Me on 
I °tez). If the guessed sequence involves exactly [T2(g(ex))/[ e IJ actions by Me and the 
outcome is "legal computation without acceptance," then M accepts 1 ~e~), and this is 
the only way M accepts its input. It follows that 

1 u(ex) ~ L(M) ~ TimeMe(1 "(ez)) > [T2(g(ex))/I e [J. 

Since M can calculate e from 1 u'ex) in time proportional to g(ex) -< Tz(g(ex)), it follows as 
in the proof of Theorem 1 (iii) that L(M) ~ NTIME(T2). 

Let T~ sattsfy Tt ~ o(Tz), and suppose some deterministic TM acceptor M e accepts 
L(M) within time Ti. Since Tt ~ o(T~), we can takex ~ {0, 1}* so long that [T2(g(ex))/[ e [J 
>- T~(g(ex)). Then 

1 y(ez) ~ L(M) ~ Time~(1 ~(ez)) > [Tz(g(ex))/I e IJ -> T~(g(ex)) 

© 1 g(ex) q~ L(Me) = I.J(M) 

and also 

1 "ex) ~t L(M) ~ TimeMe(1 "ex)) _< tT2(g(ex))/I e [J < o0 
I g(e~) ~ L(Me) = L(M). 

This contradiction establishes L(M) ~ DTIME(T,).  Therefore L(M) ~ NTIME(T2) - 
U{DTIME(T,)[Tt ~ o(T2)}. [] 

THEOREM 2'. I f  T2 ts a running nine, then each o f  the following set differences 
contains a language over {1}: 

(i) DTIME(T2) - U{DTIME(T,)[T,  is a running time, T2 ¢~ O(T,log T,)}, 
(ii) DTIME(T2) - LJ{NTIME(T,)[T, is a running time, log T2 ¢~ O(T,)}, 

(iii) NTIME(T~) - LJ{DTIME(T,)[T, is a running time, T2 ~ O(T,)}. 

PROOF. We make use of the techmque of [20] to further adapt the proof of 
Theorem 2. Let T2 be a running time. Then we can design a deterministic TM acceptor 
M which halts on every input and whmh operates as follows on input ln: 

1 Check in [T:(n)J steps whether T:(n) --> 2n. If not, then halt without accepting the input and without 
cancehng any mteger (see step 2). 

2 For i ffi 1, 2, 3, . , [log2 T2(n)l, successively, do the following: 
a. Spend [T:(n)/2 f] steps reviewing the computatmns by Mon as many of the shorter inputs 1, 12, 1 a . . . . .  
1 ~-1 as time permits, trying to discover whether M cancels t (m step 2b) on some shorter input (The 
standard Recursmn Theorem [23] makes It possible for M to rewew Us own computatmns. Efflcmncy will 
not matter here.) 

b. If ~ was not discovered to have been canceled on some shorter input, then spend lT2(n)/2~J steps trying 
to dmcover whether the ~th determlmstm 2-tape TM acceptor (in some fixed effecUve enumeratmn of 
these machines) accepts 1 ~ Do this by performing a slmulatmn of the ith machine in the usual manner, so 
that no more than ct t steps are reqmred to simulate t steps, where Cl depends only on t. If a halt ~s 
d~scovered m the simulated computatmn, then differ from the outcome, cancel i, and halt 

3. If this step is reached, then halt without canceling any integer and (arbitrarily) without accepting the 
input 

By design, M accepts within time 
~o 

T2(n) + ~ 2. T2(n)/2 ~ = 3. T2(n); 

so L(M) E DTIME(3T2). Because of step 1, x E L(M) implies T2([xl) _> 21xl. 
Therefore the constant-factor speedup technique of [11] and Lemma 2 above yields 
L(M) ~ DTIME(T2). 

(i) Let T~ be a running tame that satisfies T2 ~ O(T~log T~), and suppose L(M) E 
DTIME(T~). According to [12], there is some deterministic 2-tape TM acceptor M' 
that accepts L(M) within ume c. T~log2 T1 for some constant c. Because T~ is a running 
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t ime ,  we can  a s sume  tha t  M '  ha l t s  e v e n  o n  inpu ts  x ~ L ( M ' ) w i t h i n  c -Ti ( I  x I)log~ T~( I x I) 
s teps.  S uppose  t h a t  M'  is the  k th  m a c h i n e  in o u r  f ixed effect ive  e n u m e r a t i o n  of  
de t e rmin i s t i c  2 - tape  T M  accep tors .  Fo r  each  j < k,  let  

0,  i f ]  n e v e r  gets cance led ;  
f(j) = the  n u m b e r  of  s teps it t akes  to d iscover  (by the  rev iew p r o c e d u r e  used  

in s tep  2a)  tha t  ] gets  cance led ,  i f ]  does  get  cance led .  

Since T2 ~ O ( T l i o g  TO, we can take  n so tha t  T2(n) -> 2n ; eve ry  i n t e g e r / <  k tha t  gets  
cance led  gets  cance led  on  some  inpu t  sho r t e r  t han  ln ;  [T2(n)/2 k] _> f(j) for  eve ry  ] 
k; [T2(n)/2 k] _> ck'c" Tl(n)log2T~(n). C o n s i d e r  the  c o m p u t a t i o n  by M on  inpu t  I n for  
this n .  Since T2(n) -> 2n, M gets by  s tep  1 Since eve ry  i n t e g e r . / <  k t ha t  gets  cance l ed  
gets  cance led  on  some  inpu t  shortei" t han  1 n and  [Tz(n)/2 J] -> [T2(n)/2 k] -> f(j)  for  each  
s u c h ] ,  M does  d i scover  the  cance l l a t ion  of  each  s u c h j  in the  execu t ion  of  s tep  2a  for  i 
= j .  T h e r e f o r e  M does  even tua l ly  go o n  to s tage i = k.  If  M does  no t  d i scover  in s tep  
2a for  i = k t ha t  k i tself  is cance l ed  on  some  sho r t e r  inpu t ,  t h e n  M final ly tr ies to  cance l  
k .  Since M '  hal ts  on  inpu t  1 n wi th in  c'Tl(n)log2Tl(n) s teps  an d  [T2(n)/2 k] -> 
ck.c.T~(n)log2T~(n), M does  cance l  k in this  case.  In e i t he r  case,  t h e r e f o r e ,  k gets  
cance led  on  some  input  1 n'. Bu t  t hen  1 n' E L(M) ~ 1 n' ~ L ( M ' ) .  This  c o n t r a d i c t i o n  
es tab l i shes  L(M) ~ D T I M E ( T 0 .  T h e r e f o r e  L(M) ~ DTIME(T2)  - LI{DTIME(T~)IT1 is 
a r u n n i n g  t ime ,  T2 ~ O(T~log T~)}. Fo r  pa r t  (ii), s imilar ly,  L(M) ~ DTIME(T2)  - 

U{NTIME(T1)[T1 is a r u n n i n g  t ime ,  log T2 q~ O(T1)}. 
F o r  ( i i0 ,  we m a k e  use of  the  t e c h n i q u e  of  [4] to  des ign  a n o n d e t e r m i n i s t i c  T M  

accep to r  M which  is qmte  s imilar  to  the  d e t e r m i m s t i c  T M  accep to r  des igned  above .  M 
will hal t  in every  c o m p u t a t i o n  on  eve ry  inpu t  In at  mos t  o n e  of  its c o m p u t a t i o n s  o n  
each  inpu t ,  M will cancel  an  in t ege r  be fo re  ha l t ing;  m all o t h e r  c o m p u t a t i o n s ,  M will 
ha l t  w i thou t  cance l ing  any in tege r  and  wi thou t  accep t ing  the  inpu t .  O n  inpu t  I n, M 
ope ra t e s  as follows: 

1 For ~ = 1, 2, 3, , [log2T2(n)J. successavely, do the following 
a Spend iT2(n)/2'J steps determlmstacally revaewmg all the computataons by M on as many of the shorter 
inputs 1, 12, 1 a, , l n-~ as time permits, trying to discover whether M cancels i m some computation on 
some shorter input 

b Ifa was not dascovered to have been canceled on some shorter input, then spend [T2(n)/2'j steps trymg 
to dascover whether the tth determmastac (multaape) TM acceptor (m some fixed effeetwe enumeration of 
these machanes) accepts 1 ~ Do thas by performing the (nondetermmastac) Lemma 3 samulauon of the tth 
deterministic multatape machine, so that no more than c,.t steps are reqmred to samulate (Le guess and 
check) each computation of length t, where c, depends only on t If an entire halting computation as 
samulated, then differ from the outcome, cancel t, and halt If an incomplete but legal computation ~s 
samulated and there would have been msufficaent tame to guess and check a longer computation, then just 
continue m the loop of step 1 (Because the samulated machine Is determmast~c, the dascovery of such a 
maxamal computatmn indicates that a as canceled m none of the computations on 1 ~ ) Otherwise, halt 
w~thout canceling any integer and wathout accepting the input (Because an dlegal or nonmax~mal 
computataon has been samulated, the anteger z maght be canceled in some other computataon on 1 n ) 

2 If thas step is reached, then halt without cancehng any integer and (arbatrarfly) without accepting the 
input 

N o t e  t ha t ,  s ince each  s imula t ed  m a c h i n e  above  is de te rmin i s t i c ,  t h e r e  is a u n i q u e  
c o m p u t a t i o n  by M on  o u t p u t  1 n which  n e v e r  r eaches  the  " o t h e r w i s e "  in s tep  l b .  Call  
this  the  main computation by M on  inpu t  I n. Since only  a ma in  c o m p u t a t i o n  can  lead to 
cance l la t ion  or  accep tance ,  cance l l a t ion  of  the  i n t ege r  t on  the  i npu t  1 n will g u a r a n t e e  
t ha t  M does  d isagree  wi th  the  t th  de t e rmin i s t i c  mu l t i t ape  m a c h i n e  o n  inpu t  1 n. 

By des ign,  L(M) ~ NTIME(3T2) ,  and  NTIME(3T2)  C NTIME(T2)  by  L e m m a  2. O n  
the  o t h e r  h a n d ,  let  T~ be  a r u n n i n g  tame tha t  satisfies T2 ~ O(T1),  an d  s u p p o s e  some  
de te rmin i s t i c  T M  accep to r  M '  accepts  L(M) wi th in  t ime  T1. Becau s e  T~ is a r u n n i n g  
t ime,  we can  as sume  tha t  M '  ha l t s  even  on  inpu ts  x ~ L ( M ' )  wi th in  T~(Ixl) s teps .  
Suppose  tha t  M '  is the  k t h  m a c h i n e  in ou r  fixed effect ive  e n u m e r a t i o n  of  de t e rmin i s t i c  
(mul t i t ape )  T M  accep tors .  Fo r  e a c h j  < k ,  let  
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0, i f / n e v e r  gets canceled; 
f(./) = the number of steps it takes to discover (by the review procedure used 

in step la)  that j gets canceled, i f j  does get canceled. 

Since T2 ~ O(TJ,  we can take n so that every integer ] < k that gets canceled gets 
canceled on some input shorter than 1~; [T2(n)/2ki --> f(j) for every /  < k; [T2(n)/2k| >-- 
ck.T~(n). Consider the main computation by M on input I n for this n,  implicitly 
ignoring all other computations. Since every i n t e g e r /  < k that gets canceled gets 
canceled on some input shorter than 1 ~ and [Tz(n)/2~J -> [T2(n)/2kJ -> f(j) for each such 
/ ,  M does discover the cancellation of each s u c h / i n  the execuUon of  step la  for i = j. 
Therefore M does eventually go on to stage i = k. If M does not discover in step la  for 
i = k that k itself ts canceled on some shorter input, then M finally tries to cancel k.  
Since M' halts on input 1 n within Tl(n) steps and tT2(n)/2~J -> Ck" Tj(n), M does cancel 
k in this case, in its main computation. In either case, therefore, k gets canceled on 
some input 1"). But then In' E L(M) ~ 1 ~' q~ L(M'). This contradiction establishes 
L(M) ~ DTIME(T~).  Therefore L(M) ~ NTIME(T2) - U{DTIME(Ti)t  T~ is a running 
t ime,  T2 ~ O(T~)}. []  
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