
Separating Nondeterministic Time Complexity Classes

JOEL I. SEIFERAS

The Pennsylvanm State University, Untverstty Park, Pennsylvama

MICHAEL J, FISCHER

Universtty of Washington, Seattle, Washington

AND

ALBERT R. MEYER

Massachusetts Institute of Technology, Cambridge, Massachusetts

AaSTancr. A recurslve padding technique is used to obtain conditions sufficient for separation of nondeter-
mlmsttc multltape Turlng machine time complexity classes If T2 is a running time and Tl(n + 1) grows more
slowly than T~(n), then there is a language which can be accepted nondetermmlstlcally within time bound T~
but which cannot be accepted nondetermlnlStlcally within time bound T1. If even T~(n + f(n)) grows more
slowly than Tz(n), where f is the very slowly growing "rounded reverse" of some real-time countable
function, then there is such a language over a single-letter alphabet. The strongest known dmgonalization
results for both deterministic and nondetermlmstlc time complexity classes are reviewed and orgamzed for
comparison with the results of the new padding technique

KEY WOADS ̂ NO PHaASrS: Turlng machine, complexity class, complexity hierarchy, time complexity,
nondetermmism, padding, recursmn theorem, dmgonahzatmn, single-letter alphabet

CR CAa~ORIES 5 23, 5.25, 5.26, 5 27

1. Introduction

T e c h n i q u e s such as t hose of M e y e r a n d S t o c k m e y e r [21] , M e y e r [19], S t o c k m e y e r a n d
M e y e r [29] , H u n t [14] , M. J . F i sche r a n d R a b i n [8], a n d S t o c k m e y e r [28] s o m e t i m e s
show t h a t a pa r t i cu la r c o m p u t a t i o n a l t a sk o f i n t e r e s t is a t l eas t as diff icult as any t a sk in
s o m e n o n d e t e r m i n i s t i c T u r i n g m a c h i n e t ime complex i ty class. F o r th is r e a s o n a n d also
because n o n d e t e r m i m s t i c complex i ty is e v e n less wel l u n d e r s t o o d t h a n d e t e r m i n i s t i c
complex i ty , it is of m t e r e s t to f ind p r o v a b l y h a r d c o m p u t a t t o n a l tasks m e a c h n o n d e t e r -
minis t ic t ime complex i ty class. F o r e a c h r a t i o n a l r > 1, for e x a m p l e , C o o k [7]
(T h e o r e m 3 b e l o w) has s h o w n t h a t t h e r e is a l anguage (a se t of f ini te s t r ings o f symbo l s
f r o m s o m e f ini te a l p h a b e t) t h a t is a c c e p t e d by some n o n d e t e r m i n i s t i c T u r i n g m a c h i n e
wi th in t ime n r b u t by n o such m a c h i n e wi th in t ime n r - ' fo r any ¢ > 0 in t e r m s o f s t r ing
l eng th n . O u r m a i n resu l t s genera l i ze C o o k ' s t h e o r e m , e v e n s e p a r a t i n g t he class

This paper represents a portion of the first author's Ph D d~ssertatlon [25] written at M.I.T. Project MAC
under the supervision of the third author
This work was partially supported by the National Science Foundation under research grant GJ-34671
Authors' addresses. J.I Selferas, Computer Science Department, 314 Whltmore Laboratory, The Pennsylva-
nia State Umverslty, University Park, PA 16802; M J Fischer, Department of Computer Science, FR-35,
Umverslty of Washington, Seattle, WA 98195, A.R Meyer, Laboratory for Computer Science, NE 43-806,
Massackusetts Institute of Technology, Cambridge, MA 02139.

Journal of the Assoclauon for Computing Machinery, Vol 25, No 1, January 1978, pp 146-167

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322047.322061&domain=pdf&date_stamp=1978-01-01

Separating Nondeterministic Time Complexity Classes 147

NTIME(n r) of languages accepted by nondeterministic Turing machines within time n r
from classes as large as NTIME(n~/Iog log log n), for example, if r > 1 is rat ional .

We refer to what is usually called a nondeterministic multi tape Turing machine [13]
simply as a TM, and we refer to its deterministic version as a deterministic TM. If such
an automaton has k tapes (each with a single read-write head), then we call it a k-tape
TM or a determmistic k-tape TM, respectively. We often let a TM receive an mput, a
finite string of symbols from some finite input alphabet ~, initially written to the right
of the head on tape 1, the worktape which we sometimes call the input tape. A TM can
act as an acceptor by halting in some designated accepting state at the end of some
computations. We assume the reader is famdiar with how concepts such as these can be
formalized. A good single reference for formal definitions relating to Turing machines
is [13].

Definition. Let M be any TM acceptor. M accepts the string x ~ E*, where ~* is
the set of all finite strings of symbols from E, if there is some computat ion by M on
input x that halts in a designated accepting state. M accepts the language L(M) = {xlM
accepts string x}. For x ~ L(M), Timeu(x) is the number of steps in the shortest
accepting computat ion by M on x; for x ~ L(M), Timeu(x) = oo by convention.

Definitton. A time bound is a function T:N ---> R with T(n) -> n for every n, where
N is the set of all nonnegative integers and R is the set of reals. In this paper , T, T~, T2,
etc., always refer to time bounds. The T-cutoff of the TM M is the language Lr(M) =
{xlTimeM(x) _< T(lxl)}, where Ixl denotes the length of the s t r ingx. (Note that Lr(M) C
L(M) because of the convention that TimeM(x) = oo for x ~ L(M).) A language L is in
NTIME(T) if L = L(M) = LT(M) for some TM acceptor M. Similarly, if M is
deterministic and L = L(M) = LT(M), then L is in DTIME(T) . If L(M) = Lr(M), then
we say that M accepts within time T.

Other slightly different definitions of the NTIME and D T I M E complexity classes
have been proposed. Book, Grelbach, and Wegbrett [4], for example, say that M
accepts within time T only if every accepting computat ion on input x ~ L(M) reaches
the accepting state withm T(Ixl) steps. Such differences do not affect the complexity
classes determined by ttme bounds of the following type, however; and time bounds of
practical interest are of this type.

Definitton. If M is a deterministic TM acceptor with L(M) = {1}* and TimeM(x) =
tT(Ixl)] -> Ixl, then T is a running time, and M is a clock for T.

Downward diagonalization is the best known technique for obtaining separation or
"hierarchy" results among the NTIME and D T I M E complexity classes (see the Appen-
dix and [11, 12, 6]). For languages over {0, 1}, the following theorem summarizes the
best separation results that have been proved by downward diagonalization.

THEOREM 1. I f T2 is a running ttme, then each o f the following set differences contains
a language over {0, 1}:

(t) DTIME(T2) - U{DTIME(T1)IT2 q~ O(Tllog Ti)},
(ii) DTIME(Tz) - U{NTIME(Ta)Ilog T2 q~ O(T~)},

(iii) NTIME(T2) - U{DTIME(T1)IT2 ~ O(T1)}. 1

A technicality rules out such strong separation results for languages over a one-let ter
alphabet . Suppose, for example, that T2 is a running time with n logn ~ o(T2(n)) and that
L E DTIME(Tz) is a language over just {1}. If the complement of L is finite, then L is
regular (acceptable by a TM acceptor which does not write) and L ~ DTIME(n) . If the
complement of L is infinite, on the other hand, then our convention that only acceptance

1 For g a nonnegatwe real-valued function on N, we use the notation O(g) (o(g), respectively) for the class of
all nonnegatwe real-valued functions f on N that saUsfy hm sup(f(n)/g(n)) < oo (hm(f(n)/g(n)) ~- O,
respectwely) as n tends to mflmty.

When the precise speclficatton of a time bound ts not relevant, we allow an imprecise speclficatton. Thus,
m the context of the O and o notatmns, the base and rounding for the logarithms m Theorems l, 2, and 2'
need not be specified (See also Lemma 2 below.)

148 J . I . SEIFERAS, M. J. FISCHER, AND A. R. MEYER

time matters guarantees that L ~ DTIME(T1) for

T l (n) = { n Tz(n) if if ln~L.lnEL'

In either case, L ~ U{DTIME(T1)IT2 $ O(T1 log Ti)}. Theorems 2 and 2' show two
ways of further restricting T1 to get separation results for languages over a one-letter
alphabet. These theorems and Theorem 1 are proved in the Appendix.

THEOREM 2. I f T2 is a runmng Ume, then each o f the following set differences
contains a language over {1}:

O) DTIME(T2) - U{DTIME(T1)IT~Iog Ti ~ o(T2)},
(ii) DTIME(T2) - U{NTIME(T1)IT~ ~ o(log Tz)},

(iii) NTIME(Tz) - U{DTIME(T~)IT 1 E o(T2)}.

THEOREM 2'. I f Tz is a running time, then each o f the following set differences
contams a language over {1}:

(i) DTIME(T~) - U{DTIME(TOIT1 is a runmng time, T2 ~ O(T~log T1)},
(u) DTIME(T2) - U{NTIME(T~)IT~ is a running time, log Tz ~ O(T1)},

(iii) NTIME(Tz) - U{DTIME(Ti)IT1 is a running time, Tz ~ O(T1)}.

COROLLARY 2.1. For no recursive time bound T does NTIME(T) contain all the
recursive languages over {1}.

2. Separation o f Nondeterministic Time Complemty Classes

The results obtained by diagonalizing over NTIME classes (part (ii) of each theorem
above) are relatwely poor. Not even the gross separation result NTIME(n z)
NTIME(2n'), for example, follows directly from Theorem 1; yet DTIME(n z)
DTIME(nZ(Iog n) z) does follow. Recently, however, Cook [7] proved the following
result by a new technique.

THEOREM 3 (Cook). NTIME(ri ~) ~ NTIME(n s) whenever 1 -< r < s.
We pursue Cook's technical breakthrough, simplifying his proof and generahzing the

result. Our proof of the main generahzation, Theorem 4 below, makes use of the very
gross separation result Corollary 2.1 above and Lemmas 1, 2, 3, and 6 below.

Turing machine design is greatly simplified if we allow more than one head per tape.
P. Fischer, Meyer, and Rosenberg [9] have shown that every TM with many heads per
tape can be simulated without time loss by a TM with only one head on each of some
greater number of tapes. (Furthermore, the simulation preserves determinism.) Using a
multihead TM to carry out two computations at the same time leads to results of the
following type.

LEMMA 1. Let M, M' be TM acceptors, and let T be a running time. There are TM
acceptors M O M', M fq M' , MT with

L (M U M') = L(M) O L(M') , TimeMuM,(X) = min{Timeg(x), Tlme~,(x)};
L(M n M') = L(M) fq L(M') , Tlmeunu,(X) = max{TimeM(x), TtmeM,(X)};

L(Mr) = LT(M), Timeur(X) = TimeM(x) for x E Lr(M).

PROOF. To design M t3 M' or M f3 M', combine M and M' by providing a second
head on the first tape of each and a new input tape with a single head. Use the extra
heads to copy the input string at full speed from the new input tape onto the old input
tapes. Meanwhile the remaining heads can be used to carry out computations by M and
M' on the respective transcribed coptes of the input string, even while they are still being
transcribed from the real input tape (see Figure 1). To accept L(M) 12 L(M') within the
desired time, M 12 M' enters its accepting state when the computation by either M or M'
does. To accept L(M) n L(M') within the desired time, M n M' enters its accepting state

Separating Nondetermmistic Time Complexity Classes 149

new tope

t ~
(reod-only)

heod

tope I of M'

t-
n e w

(write-only)
heod

tope I of M

t t -
n e w

(write-only)
heod

tope 2 of M tope 2 of M'

t

lost tope of M lost tope of M °

t t
Y o

topes of M topes of M

FIG 1, M U M ' o r M N M '

when the computations by both M and M' have done so. By the result of [9], M U M'
and M A M' can be redesigned without time loss to use only one head per tape.

Because T is a running t ime, we can modify a clock for T to get a deterministic TM
acceptor M" with L(M") = E* and TimeM,(X) = iT(Ix I)J, where ~ is the input alphabet of
M. To design Mr, combine M and M" m the same way that M and M' were combined
above. To accept Lr(M) within the desired ume, Mr enters its accepting state when the
computation by M enters its accepting state and the computat ion by M" has not earlier
done so. []

The next lemma indicates that the NTIME complexity classes depend only on time
bound growth rates. It also shows that we need at least the condition T2 ~ O(Ti) to be
able to prove NTIME(Tz) - NTIME(T1) ~ 0 . For T2 a running t ime, it follows by
Theorem 1 (iii) that, if (contrary to the intmtion of most researchers) DTIME(T) =
NTIME(T) for all T, then NTIME(T2) - NTIME(T1) = DTIME(T~) - DTIME(T~) is
nonempty precisely when T2 ~ O(T~).

LEMMA 2. I f Tz • O(T1), then NTIME(T2) C NTIME(Ti).
PaOOF. For T~(n) --> (1 + E)n for some ~ > 0, this is just the constant-factor speedup

theorem of Hartmanls and Stearns [11]. The ~dea is to increase the size of each TM's
worktape alphabet so that several steps can be performed in one big step. The limitation
is that the reading of the input string cannot be sped up.

That the lemma holds for arbitrary T~(n) -~ n has been observed by Book and Greibach
[3]. The ~dea is to use nondeterminism to guess the entire input string at the rate of
several symbols per step so that the reading of the guessed input string can be sped up by
the method of [11]. Meanwhile additional heads can be used to check the actual input
stnng against the guessed one at the rate of one symbol per step ("full speed") . By the
result of [9], the use of more than one head per tape can be el iminated without time
loss. []

The following lemma, due to Book, Greibach, and Wegbrel t [4], indicates that for
nondeterminist~c time complexity we can get by with TMs having a fixed number of
tapes. No simdar result is known for deterministic time complexity.

LEMMA 3. For each TM M there is a 2-tape TM M' and a constant c such that L(M')

1 5 0 J . I . SEIFERAS, M. J. FISCHER, AND A. R. MEYER

= L(M) and TimeM,(X) --< c" TtmeM(x) for every x E L(M). z
PROOF. If M has k tapes, then the "display" of a configuration of M will be a (k + 1)-

tuple consisting of the control state and the k tape symbols scanned in that configuration.
The display of a configuration determines which actions are legal as the next move and
whether the configuration is an accepting one. The first task for M' is to nondeterminzsti-
cally guess on its second tape an alternating sequence of displays and legal actions by M.
The question of whether the sequence describes a legal computation by M on the
supplied input is just the question of whether the symbols actually scanned on each tape
when the actions are taken agree with the guessed displays. This can be checked
independently for each tape in turn by letting the first tape of M' play the role of the tape
while running through the guessed sequence of displays and actions. Clearly M' runs for
time proportional to the length of the sequence it guesses. For further details the reader
is referred to [4]. []

Like Cook's proof of Theorem 3, our proof of the generalization (Theorem 4 below)
makes crucial use of a trick called "padding." Acceptance time is measured as a function
of input length; so if we can increase the lengths of the strings in a language L without
significantly changing the hme needed to accept the strings, then we get a padded
language L ' that is less complex than L as we measure complexity relative to input
length. One way to pad the language L to L ' is to take

L' = p(L) = {xl0~lx E Z,lxl0k[= p(Ixl)}
for some p :N ---> N with p(n) > n. The next lemma shows how such padding reduces
complexity.

LEMMA 4. I f p(n) > n is a running time, then

p(L) ~ NTIME(T) ¢-~ L ~ N T I M E (T o p),

where T o p(n) = T(p(n)).
PROOF. (~) Suppose M1 acceptsp(L) within time T. Design Ms to pad its input string

x (which is found at the read-write head on the first worktape) out to x l0 k, where Ixl0kl
= p([xl) , and then to compute on input x l0 k according to the transition rules of M1.
Because p is a running time, the padding can be done m time proportional to P(IXl).
Therefore M2 accepts L within time proportional to p(n) + T(p(n)) -< 2. T(p(n)). By
Lemma 2 we conclude that L E NTIME(T(p(n))).

(~) Suppose Ms accepts L within time T(p(n)). Design M~ to check that its input is of
the form x l0 k, where [xl&[= p(Ixl), and then to compute on input x according to the
transition rules of Ms. Then certainly L(M1) = p(L). Because p is a running time, the
padding can be checked in time proportional to the length of the input. Therefore, ifn =
Ixl0k[= p(Ixl) and x E L, then TimeM,(Xl0 ~) is proportional to

n + TimeM2(x) _< n + T(p(lxl)) = n + T(n) <- 2. T(n).

By Lemma 2 we conclude that p(L) = L(M~) ~ NTIME(T(n)). []
The following lemma, used below to prove Corollary 4.2 from Theorem 4, shows

how padding of the above type may be used to refine separation results. Ruby and P.
Fischer [24] first used this technique in connection with the deterministic time complex-
ity of sequence generation, and Ibarra [15] used it more explicitly in connection with
the nondetermmlstic space complexity of language acceptance (see [25] or [26, 27] for
more on space complexity). Ibarra has used similar techniques in other contexts as well
[16, 171.

LEMMA 5. Let sets f f ~, ~rz o f time bounds be given. Say p~(n) > n pt(n) > n are

2 An tdea of [3] allows us to take c = 1 if we settle for a 3-tape TM M' (see Lemma 2 above) Aanderaa [1]
has shown that we cannot get by wtth c = 1 m the determmlst tc case no mat ter what fixed number of tapes
we allow M' to have (His counterexample ts prowded by determmtst lc TMs which accept m "rea l t ime"
(Tlmeu(x) ~-txl) .)

Separating Nondeterministic Time Complexity Classes 151

running times with T1 ° p , ~ O(Tz ° p,) whenever 1 -< i < l, Tl ~ ~1, 7"2 E ~2. I f L E
A{NTIME(T2 o p,)lT~ E ~-2} - t.J{NTIME(T~ o pOIT1 ~ ~'1}, then p~(L)
A{NTIME(T2)IT2 E ~z} - U{NTIME(Ti)IT~ E J-~} for some i.

PROOF. For l _< i _< l, let

C(t, 1) = U{NTIME(T1 °p0lT~ ~ ff~}, C(,, 2) = A{NTIME(T2 op,)lT2 ~ 5r2}.

Suppose L ~ C(l, 2) - C(1, 1). By Lemma 2, NTIME(T1 o P~+0 C NTIME(T2 o p~)
whenever 1 <- i < l, T1 E ff~, 7"2 ~ if2; so, for 1 -< i < 1,

L C C(i + 1,1) ~ L ~ C(i, 2).

If we were to have also

L ~ C(i, 2) ~ L ~ C(i, 1)

for every t, then we would conclude from L E C(/, 2) that L E C(1, 1), a contradiction.
For some i, therefore, we must have

L e C(t, 2) - C(i, 1) = N{NTIME(Tz op,)lT 2 ~ gr2} - U{NTIME(T, op,)IT~ e gr~}.

By Lemma 4,

p,(L) ~ N{NTIME(Tz)IT2 E 5r2} - t_J{NTIME(T0[T~ ~ gr~} for that same i. []

Remark. We do not know how to determine the particular value of i for which
p,(L) E A{NTIME(T2)IT~ ~ gr2} - U{NTIME(T01T~ E ~-~} above. In fact, we do not
know how to exhibit any particular language that must be in A{NTIME(T2)IT2 E grz} -
t_J{NTIME(T~)IT~ E :3-1}.

It is interesting that the same technique can be applied to DTIME, with a minor
restrictmn, to strengthen the results of diagonalizatmn (Theorem 1 (i)) in some cases.
The restriction that each time bound should exceed (1 + ~) n for some positive ~ allows
the deterministic version

T~ @ O(TO ~ DTIME(T~) C DTIME(T0

of Lemma 2 to follow from just [11]. The deterministic versions of Lemmas 4 and 5 then
follow as above. We state only the latter.

LEMMA 5D. Let sets f f ~, ~2 o f time bounds be given, with h m ~ ® inf(T(n)/n) > 1
for each T ~ f f ~ U 0-2. Say p~(n) > n, ... , p~(n) > n are runmng ttmes with T~ o p~+~
O(Tz opt.y) whenever 1 -< i < 1, T~ ~ 5r l, Tz ~ 5rz. I f L ~ A{DTIME(Tz op~)lT~ ~ S-s}
- U{DTIME(T , o p~)lT~ ~ ff~}, then p , (L) ~ n{DTIME(T2)IT~ ~ ~-2} -
U{DTIME(T1)IT~ ~ f f ~} for some t.

Example. By Theorem 1 (i),

DTIME(n ~) ff DTIME(n2(Iog n)e).

In Lemma 5D, take

J-a = {n2}, ~-z = {n2(log n)'/e°°}, l = 400, p,(n) = In (log n)~'-°/~°°j.

Then conclude that

DTIME(n 2) ff DYIME(n~(log n)'/~oo).

Another key idea in Cook's proof and our extensions of it involves universal
simulation of TMs. So that we may speak with precision about universal simulation, we
assocmte a distinct program code from {0, 1}* with each 2-tape TM acceptor having
input alphabet {0, 1} and worktape alphabet contained in some fixed countably infinite
set; we do this in agreement with the easily satisfied conditions listed below. We use
the notation Lp ~ for the set of all program codes, and we denote by Me the 2-tape TM
acceptor with program code e.

152 J . I . SEIFERAS, M. J. FISCHER, AND A. R. MEYER

Condition 1. No program code is a prefix of ano ther , and Lp.e ~ D T I M E (n) .
Condmon 2. There is a T M accep tor U (a "un iversa l s imula to r") with

L(U) = {ex[e E Lpe . ,x E L(Me)},
Timev(ex) -< ce" TimeMe(X) f o r e E Lp.e., x E L(Me),

where ce -> 1 depends only on e.
Condition 3. The re is a recurs ive funct ion f : L p c. --> Lp e. such that M~e) first wri tes

e at its head on tape 2 and the rea f t e r acts according to the t ransi t ion rules of M e. (This
condi t ion is a var iant of the s] - t heo rem of recurs ive funct ion theory [23].)

Most c o m m o n inst ruct ion-by-inst ruct ion or s ta te-by-state codings of T M programs can
be ta i lored to satisfy these condi t ions .

We shall want to pad strings and use the s imula tor that we design in a recurs ive cont ro l
s tructure. To this end we use Condi t ion 3 to p rove one more l e m m a , a vers ion of the
fixed point t heo rem (Recurs ion T h e o r e m) of recurs ive funct ion theory [23].

LEMMA 6. For each 2-tape TM acceptor M wtth L(M) C {0, 1}*, there is a 2-tape
TM acceptor Meo and a constant c with

L(Meo) = {xleox ~ L(M)},

TlmeMeo(X) --< c + TimeM(e oX) for every x E L(Meo).

PROOF. Le t f be as in Condi t ion 3. T a k e Me, to be a 2- tape T M that ope ra te s as
follows, given x at its head on tape 1 and e at its head on tape 2:

1. Convert e toy'~e).

2 Convert x tof(e)x, and erase everything else

3 Operate according to the transition rules of M on input f(e)x.

Let e0 = f(el). T h e n by def ini t ion Me0 opera te s as follows on input x:

1 Write el at the head on tape 2

2 Convert el tof(e~) = eo.

3 Convert x to eox

4 Behave like M on eoX.

Thus

x E L(Meo) ¢-~eox ~ L(M), Timeue°(x) _< c + Tlmeu(e0x),

where c is the n u m b e r of steps used in writ ing e l , conver t ing el to e0, and writ ing eo in
f ront o f x . []

THEOREM 4. I f T~ is a runnmg time, then the following set difference contains a
language over {0, 1}:

NTIME(T2) - U{NTIME(T~)Ithere is some recursively bounded but strictly increasing
function f : N ~ N for which Tl(f(n + 1)) E o(T2(f(n)))}. 3

PROOF. Le t T2 be a running t ime, and let U be a T M accep tor with

L(U) = {exle ~ Lpe , x C L(Me)},
Timev(ex) _< ce. TimeM,(X) for e ~ Lp. c , x E L(Me),

where Ce >-- 1 depends only on e, as m Condi t ion 2. By L e m m a 1, Lr~(U) E NTIME(T2) .
Le t f : N --> N be any strictly increasing funct ion that is bounded above by some

3 The operator gap theorem [5, 31] shows that even results such as this are impossible wtthout sorde
"honesty" condmon on T2, such as tts being a runmng Ume. For example, the operator gap theorem can be
used to show that there are arbttrardy large, arbttranly complex time bounds T for which NTIME(T(n))
equals NTIME(n.T(n + I)), even though T(n + 1) Is certainly a member of o(n.T(n + 1)).

Separating Nondetermmist tc Time Complexity Classes 153

recursive funct ion. We prove that Lr~(U) ~ N T I M E (T i) for any t ime bound T1
satisfying T~(f(n + 1)) E o(T2(f(n))).

Suppose that Uj does accept Lr,(U) within some t ime bound T1 satisfying Tl(f (n + 1))
o(T2(f(n))). By L e m m a 1, U' = U1 U U accepts L(U1 t.3 U) = L(Ui) t3 L(U) = Lr~(U)

U L(U) = L(U), and

T~({ex[) if ce" Tlmeue(X) --< Tz(lexl),
Timev,(ex) (1)

- [ce'TimeMe(X) in any even t

for e E Lp c , x ~ L(Me). The second inequali ty holds since Timeu(ex) -< Ce" T i m e x (x)
by choice of U, and the first inequal i ty holds because

Timeu(ex) -< ce" Timeue(X) -< Tz([ex[) ~ e x E Lr~(U) = L (U 0

Timev~(ex) -< T~(lexl).

Note that when T~(lexl) < TimeM,(X) --< T2(lexl)/Ce, the universal s imulator U ' will
s imulate the computa t ion of M e on x faster than the computa t ion runs directly; i.e. there
will be s imulat ion t ime gain. Paddmg will enable us to exploi t this ex t reme efficiency
even for longer computa t ions . Using this idea recurswely will lead below to a contradic-
tion of Corol lary 2.1.

Let L C {1}* be any recursive language over {1}. Because L Is recursive, we can take a
running t ime T : N ~ N so large that L ~ N T I M E (T) . Le t M accept L within t ime T.
Design a TM acceptor M ' that opera tes as follows:

1 Check that the input string is of the form exO k for some e ~ Lp ¢, x E {1}* Condmon 1 guarantees that this
can be done m time proporttonal to the length of the input string

2 Use a clock for the running time T to determine whether k -> T(Ixl) This reqmres at most k steps, so ~t
certainly can be done m time proportmnal to the length of the input string

3 Ifk -> T(Ixl), then erase everything butx and compute on mputx according to the transition rules of M For
x E L(M), since TImeM(x) --< T(Ixl) --< k. this step, too, can be performed m time proportional to the length of
the input string

4 If k < T([xl), then pad the input string to ex~' for some nondetermmistically chosen k' > k, erase
everything else, and compute on input exO k' according to the transmon rules of the universal simulator U' Thts
step can be performed m time proportional to the length of the padded input string exO k' plus Tlmeu,(ex&').

For some constant d~, we may summarize the b e h a w o r and t iming of M ' as follows:
(i) M ' accepts only strings of the form exO k for e ~ Lp ¢, x E {1}*.

(il) I f k -> T(Ixl), then
(a) exO k E L(M') ~ x ~ L(M),
(b) Timeu,(exO k) --< dl" lexOk[for exO k E L(M') .

(iii) If k < T(Ixl), then
(a) exO k E L(M') ~ exO k' ~ L(U') for some k ' > k,
(b) TimeM,(exO k) _< d~. lexO~'l + Timev,(ex&') for every k ' > k.

Apply ing L e m m a 3 to obtain a 2- tape TM that accepts L(M') with only a constant
factor t ime loss, and then applying the Recurs lon T h e o r e m (L e m m a 6) to this machine ,
we get a p rogram code e0 for a 2- tape TM that accepts L(Meo) = {xOkleoxO k ~ L(M')}
within t ime Tlme~0(x0 k) <_ d2.Timeu,(eoxO k) for some constant d2.

CLAIM 1. For each string x ~ {1}*, the fo l lowmg holds for every k :

xO ~ ~ L(Meo) ¢-~ x ~ L(M).

PROOV. For each x , we establish the claim by induct ion on k running down f rom k ->
T(Ixl) to k = 0.

k -> T(Ix[):

xO k ~ L(Meo) ¢-~eoxO k ~ L(M') (by choice ofeo)

,,:-~x ~ L(M) (by (ii-a)).

154 J . I . SEIFERAS, M. J. FISCHER, AND A. R. MEYER

k < T([x[): Assume x0 k' ~ L(M%) ,,=~x E L(M) holds for every k ' > k. Then

x0 k E L(M~0) <=~ eoxO k ~ L(M') (by choice of eo)

¢=~eoxO ~' E L(U') for some k ' > k (by (iii-a))
x0 k' E L(Me0) for some k ' > k (because eo E Lp.c)

,,=->x ~ L(M) (by induction hypothesis)•

CLAIM 2. For each sufficiently long string x E L(M), TimeM~o(x) --< T2(f(leoxl)).
PROOF. Let d3 = Ceo'd2"(d~ + 1). By the "translational" hypothesis T~(f(n + 1)) E

o(T2(f(n))), d3" T~(f(n + 1)) -< T2(f(n)) for every sufficiently large n. Let x E L(M) be
so long that dz'T~(f(n + 1)) -< T2(f(n)) for every n -> leoxl.

Assuming we could show

Time u,(eoxO :¢le°xt+l)-Ie°xl) --< T~(f(leoxl + 1)),

we could reason as follows:

TimeMeo(X) --< d2" TimeM,(e0x) (by choice of e0)

-< dz.(dl.f(leox[+ 1) + Timev,(eoxO ateoxH)-Ieozl))
(by (iii-b) sincef(leox I + 1) > le0xl)

-< d~'(d~'f(leoxl + 1) + Tl(f(leox I + 1)))
-< d~'T~(f(leoxl + 1))

(since T! being a time bound impliesf(Ieox I + 1) -< T~(f(leox [+ 1)))
-< T~(f(leoxl)) (because x is so long).

To prove

Timeu,(eoxO ~leoxl+')-Ieo~l) _< Tl(f(leoxt + 1)),

we prove more generally that

Timev,(eox(P n)-Ie°xl) -< Tl(f(n))

for every n -> leoxl. We do this by induction on n running down from n -> leoxt so large
thatf(n) -> leoxl + T(Ixl) t o n = leoxl.

n --> le0xl andf(n) --> le0xl + T(Ixl):

Ceo" TimeM,o(X0 s~">- I e0z I) _< Ceo" d2" TimeM,(eox 0 :~n)- l eox I) (by choice of eo)

-< Ceo'd2"dl"f(n) (by (ii-b))
-< d3" Tl(f(a + 1)) (sincef(n) < f(n + 1)

-< T,(f(n + I)))
-< T2(f(n)) (because n -> leoxI).

Therefore Tlmev,(eoxO ~-1~oal) <_ T~(f(n)), by (I).

leoxl ~ n -< f(n) < le0xl + T(Ixl): Assume Timeu,(eoxO f{n+l)-Ieo~l) ~ Tl(f(n + 1)). Then

• n) - - ~ e o x l Ce o" TimeMeo(X Oan)-Ie°xt) --< Ceo'd2" TlmeM,(eoxO a) (by choice of eo)

Ceo'd2" (dl .f(n + 1) + Timeu,(eoxOa~+l)-Je°xl))
(by (iii-b) since f(n + 1) > f(n))

-< Ceo" d2" (d~ .f(n + 1) + T1(f(n + 1)))
-< d3" Tl(f(n + 1)) (since f(n + 1) -< Tl(f(n + 1)))
-< T2(f(n)) (because n -> leoxl).

Therefore Timeu,(eoxOa'Heox9 _< Tl(f(n)), by (1). []
Finally, by Lemma 1, Men can be modified without time loss to reject padded inputs

(those not members of {1}*) and to quickly agree with M on short ones (those not

Separating Nondeterministic Time Complexity Classes 155

sufficiently long for Claim 2). This gives a TM that accepts L = L(M) within time

T2(f(leo[+ n)) ~ O(n,~2n T2(f(n'))) ;

so L ~ NTIME(~n,~_zn T2(f(n '))) by Lemma 2. Since the latter time bound is recursively
bounded (because both f and T2 are) and independent of the particular recursive
language L C {1}*, this contradicts Corollary 2.1. []

Example. For an arbitrary set A of nonnegative integers, let

8(.2n)={~ if if nEZ,n q~Z; 8 (2 n + 1) = { ~ if if nnEZ'q~Z.

To see that NTIME(n e- 8(n)) $ NTIME(n3), just apply Theorem 4 with

{2~ i f n E A ,
f (n) = + 1 if nq~A,

so that 8(f(n + 1)) = 1 for every n.
In many applications it suffices to have Theorem 4 for the single function f(n) = n,

especially if we are concerned only with nondecreasing time bounds.
COROLLARY 4.1. I f T 2 is a running time, then

NTIME(T~) - U{NTIME(T1)ITi(n + 1) ~ o(Tz(n))}

contains a language over {0, 1}.
The informal diagram in Figure 2 illustrates how the proof of Theorem 4 uses padding

to take advantage of deeply nested mmulations by U' to bring the time for an arbitrary
computation down to the vicinity of T1 and Tz in the casef(n) = n of Corollary 4.1. The
direct computation on x, up around the level of T(Ixl), is brought down to below T2 in
terms of the mput length by padding x out to x0 rtlxl~ . By the hypothesized nature of U' ,
simulating that computation brings its t~me down to below Ti. If we unpad by a single 0,
then the hypothes~s that T~(n + 1) is small compared to T2(n) keeps the computation still
b e l o w T 2 in terms of the input length. A simulation by U' of this computation onx0 r~jx°-~
brings tts time down to below Ti. Continuing to nest alternating unpaddings and
simulations finally yields a computation on the original input stringx down at the level of
T1 and Tz.

The "translational" condition Tl(n + 1) ~ o(T2(n)) of Corollary 4.1 is a severe one for
a rapidly growing running time T2. When T2(n + 1) is worse than exponential in T~(n), in
fact, deterministic downward diagonalization within time bound T2 (Theorem 1) yields
stronger results than does Corollary 4.1. Because Corollary 4.1 applies for Tx(n + 1)
o(Tz(n)) and Theorem 1 applies for log Tz(n) q20(T,(n)), Corollary 4.1 contributes new
results precisely when log T2(n + 1) E o(T2(n)).

To see the strength of Corollary 4.1, let
2

log*n = min{k]2~ -> n}.
k

For constants c > 1 and r -> 1 whose digits in radix notation can be generated rapidly,
and in particular for rational c and r, note that n ~, n ~.log*n, n ~. (log*n) ~, c ", c n. log*n,
etc., are running times. Thus we conclude that

NTIME(n0 ~ NTIME(n ~. log*n) ff NTIME(n r- (log*n) 2) ff
NTIME(c n) ~ NTIME(c n- log*n) ff NTIME(c n. (log*n) 2) ff

These results do not follow immediately from Cook's result (Theorem 3) or by
diagonahzation (Theorem 1).

It is interesting to note that the containments corresponding to the examples above
are not known to be proper for deterministic time (DTIME). The fundamental reason

156 J . I . SEIFERAS, M. J. FISCHER, AND A. R. MEYER

--'~ pod

unpod T2
speed up by slmulotion /

(x,T(Ixl)) / , ,

-[. .

U--"
* lx ,~ (Ix])), opprox
x xO xO ~ • • • xO r{Ixl)-I xO T(Ixl)

FIG 2. Intuitive proof of Corollary 4 l

is that Lemma 3 is not known for DTIME. If that lemma were known for DTIME,
then downward diagonalization would give generally stronger results for DTIME than
would the proof of Theorem 4 anyway.4

Corollary 4 1 obviously implies that

NTIME(2 n2) ~ NTIME(2 (n+l)L log*n), NTIME(22") ~ NTIME(22"+''log*n).

In fact we can strengthen these results to

NTIME(2 n~) ~ NTIME(2("+I~), NTIME(22") ~ NTIME(22"+'),

by appeal to the following corollary.
COROLLARY 4.2. I f T2 is a running time, then

tO {NTIME(T1)ITi(n + 1) ~ O(T2(n)), Tl(n) ~ o(T2(n))} ~ NTIME(T2),

and there ts a language over {0, 1} that bears wttness to thts fact.
PROOF. Because Tl(n) C o(T2(n)) implies Tl((n + 1) + 1) ~ o(T2(n + 2)), Corollary

4.1 gives a language L C {0, 1}* in

NTIME(Tz(n + 2)) - tO{NTIME(Ti(n + 1))] Ta(n + 1) ~ O(T2(n)), T~(n) E o(T2(n))}.

Applying Lemma 5 with

4 In the hght of Lemma 3, another point of wew ts that our results separate the nondetermm~st~c time
complextty classes determined by k-tape TMs, for any fixed k -> 2 W J Paul has shown recently [22] that
separation results as strong as our examples do happen to hold for the analogous determmisUc classes

Separating Nondeterministic Time Complexity Classes 157

~1 = {TiI T,(n + 1) ~ O(Tz(n)), T~(n) ~ o(T2(n))}, 32 -- {Tz},
p~(n) = n + 1, p2(n) = n + 2,

we conclude that either p~(L) or p2(L) is a member of

NTIME(T~) - U{NTIME(Ta)[T~(n + 1) ~ O(T2(n)), T~(n) ~ o(T2(n))}.

Containment holds by Lemma 2 []
Remarks. (i) Lemma 5 goes through equally well if we pad to the left rather than to

the right. For this remark, therefore, we may assume that p,(L) = {OkIx Ix ~ L, I~Ixl --
p~(lxl)} for i = 1, 2 above.

For U the universal simulator of Condition 2, Lr, t,~(U) serves as a witness language
for Theorem 4 and Corollary 4.1. One might naturally suspect, therefore, that Lr~t,)(U)
would be a witness language for Corollary 4.2 as well. In the proof of Corollary 4.2, L =
Lr~,+2~(U) satisfies the condition for choosing L. If we shghtly modify our program
coding by concatenating a single 1 in front of each old program code and if we let V be
the naturally derived new universal simulator, then we do get Lrz<,+l)(V) = 1-
LT~,+2~(U) = {Ix[x E Lr~,+2~(U)} = p~(L). Similarly, if we further concatenate a 0 in
front of each program code and let W be derived from V by taking this into account,
then we get LT~,~(W) = 01"Lr~,+2~(U) = pz(L). Yet we can show only that either
Lr,~,~(W) or Lr,<,+~(V) is a witness to Corollary 4.2. We do not know whether there is
necessarily a witness language of the form Lr~t,~(U) and whether the part icular choice
of program coding and universal simulator U affects whether Lr2~n)(U) is such a
language.

(ii) Corollary 4.2 contributes new results (over Theorem 1) precisely when
log Tz(n + 1) E O(T2(n)).

3. Separation by Unary Languages

Padding strings over a one-let ter alphabet by one symbol at a time does not leave them
decodable; so we cannot hope to use our method to get a result as strong as Corollary 4.2
for languages over a one-let ter alphabet. Our final theorem, Theorem 5 below, demon-
strates that we can come very close, however.

Definitton. The rounded inverse of a strictly increasing function f : N ~ N is the
function [f-~] :N ~ N defined by

Examples.

[f -q(n) = mm{k l f(k) -> n}.

function rounded inverse
n z In 1/2]
2 ~ [l o g s]

2

2 2 log*n
n

LEMMA 7. Let g :{0, 1}* ~ N - {0} be the bijection which maps each btnary word x
to the integer whose binary representation (high-order btt first) ts Ix. For f : N ~ N realx
time countable, ~ define h:{0, 1}* ~ N inductively by

~ f(g(x)) + g(x) + 1 if x ts not o f the form yO, h(x)
(h(y) + [f - '] (h(y)) t f x = yO.

Then h t s an mlectton, and a deterministic TM can compute 1 n<z) from x or x from 1 h<x)
withm ttme 2.h(x).

5 A strictly increasing function f N ~ N ~s real-trine countable [30] if some deterministic Turmg machine
generates the characteristic sequence of the range of f m real Ume (,.e one character per step). (The
characterlsttc sequence has a 1 m posmon n ff n ~s m the range o f f and a 0 otherwise.)

1 5 8 J . I . SEll:ERAS, M. J. FISCHER, AND A. R. MEYER

PROOF. In the case that neither x nor x ' is of the form y 0, we have

h(x) = h(x ') only i fx = x '

becauseg is an injection andf(n) + n + 1 is strictly increasing. In the case tha tx = y0 and
x ' = y ' 0 , we have

h(x) = h(x ') only if h(y) = h (y ')

because n + [f-1](n) is strictly increasing. Unless there are strings x = yO and x ' not of
that form with h(x) = h(x ') , therefore, h must be an injection. For such strings to exist,
the ranges of the strictly increasing functionsf(n) + n + I and n + [f -q (n) must intersect.
For every n , however,

f (n) + [f - '] (f (n))= f (n) + n < f (n) + n + 1
< {f(n) + 1) + (n + 1) = (f (n) + 1) + r f - l l (f (n) + 1);

so the ranges are disjoint and h is an injection.
By the constant-factor speedup technique of [11] and Lemma 2 above, it remains only

to prove that a determinist ic TM can perform the indicated conversions within time
proport ional to the indicated time.

Let us first consider the conversion of an arbitrary string x0 ~, where x is not of the
form y0, to 1 a(x~). A determinist ic TM can first compute 1 ~x) by converting the binary
integer lx to unary. It can do this in time proport ional to g(x) -< h(x) -< h(xOk). Because
f is real-time countable, the determinist ic TM can then compute 1 ~ x " within time
proport ional to f (g (x)) _< h(x) -< h(xOk). The machine can then combine these interme-
diate results to get I htx~ = 1 a~x~+~z~+~, still within t ime proport ional to h(x) -< h(xOk).

The final conversion to 1 h~¢~ is slightly more difficult. One way to compute 1 ntx°~
from 1 htz~ and 0 ~ is to generate and use a table of the values of [f - q at arguments up to
h(xOk-1). (Find the value [f - q (h (x)) , compute 1 h~x°) = 1 h<~)+l rq~h~,; find the value
[f -q(h(xO)) , compute 1 h~x°~ = lh~x°~+frq~h'~°'; etc.) Since h(xO l+l) - h(xO l) =
[f -q(h(x lY)) , sequential storage of the values in the table would make it easy to go from
the h(x0Z)-th value i (i = [f-1](h(xOI))) to the h(x0t+l)-th value: Just skip to the t th
following value. Successive values of [f - q differ by at most 1; so a table of one-bit
values actually suffices, the nth bit (n = 0, 1, 2, ...) telling whether [f - q increases at
argument n + 1, and the number of positive bits preceding bit n therefore being equal
to [f -q (n) . This table is just the characteristic sequence of the range o f f ; so it can be
generated in real t ime. The skipping can be done m hnear t ime (in the number of skips)
by maintaining, on a separate tape, a unary count of the number of positive bits
preceding the currently scanned bit of the table. Thus 1 ntxdq can be computed from
I ht~ within time proport ional to h(xOk).

Before we describe the reverse conversion, observe that n + [f-~](n) is a strictly
increasing function of n and that n + [f -q (n) > n if and only if n > f(0). For each n >
f(0), it follows that there is at most one n ' for which n ' + [f - q (n ') = n and that any such
n ' must satisfy n > n ' > f(0). For each no > f(0), therefore, there is a unique sequence

no > n~ > ' " > nk > m -> 0

such that

n ~ + [f - q (n f) = n H f o r 1 - ~ i - < k , m + [f - q (m) < n ~ < (m + 1) + [f - q (m + 1).

Since [f - q (m + 1) - [f -q (m) ~ {0, 1}, the lat ter pair of inequalit ies implies

r f -q (m + 1) - [f - ' l (m) = 1
and hence

f(rf-'l(m)) = m .

By the pair of inequalities, therefore,

Separating Nondeterministic Time Complexity Classes 159

nk = m + [f -q(m) + 1 = f([f-1](m)) + [f-1](m) + 1.

By definition, therefore, no = h(xO k) if [f -q(m) = g(x) for x not of the form yO.
Conversely, if

n0 -< f(O) or
(no > f(0) & r f - q (m) = 0) or
(no > f(0) & [f-ll(m) > 0 & rf-q(m) = g(v0)),

then n0 must not be in the range o fh . (lfno were equal toh(x0 k) forx not of the fo rmy0,
then we would have

no >- h(x) = £(g(x)) + g(x) + 1 > £(0),

and the unique sequence for no would have to be

h(x0k), h(xOk-'), ... , h(x), f(g(x)).)

To determine whether no is in the range of h and to calculate h-~(no) if it is, it
therefore suffices to execute the following program:

1 Check whe the r no > f(0) If not , then halt , h-l(no) does not exist

2. Calcula te the length k and the end m of the sequence s tar t ing at no

3 Check whe the r [f - q (m) > 0 If not , then halt; h-l(no) does not exist

4 Ca l cu l a t ex = g-l(ff-q(m))
5 Check whe the r x is of the f o r m y 0 . If so, then halt , h-~(no) does not exist. If no t , then h-t(n0) = x0 ~.

Trivially, a deterministic TM can execute steps 1 ,3 , and 5 in time proportional tono. It is
straightforward to execute step 4 in time proportional to m < no. It remains only to
describe how a deterministic TM can execute step 2 in time proportional to no.

The TM for step 2 starts by counting up to position no of the table of bits used above in
the encoding process. It records in unary the number of positive bits passed in the
process; this number is [f-1](n0). Given position n~ in the table and [f -q(n0 in unary, the
TM finds the next position in the sequence by skipping to preceding positions p in the
table until eitherp + [f- l](p) = n, (in which casep = n,+l) o rp + [f -q(p) < n~ (in which
case p = m). (One or the other certainly must occur for some p _> 0.) Substituting
[f -q (p) = [f-1](n,) - (the number of positive bits reached while skipping) gives the
termination condition (n, - p) + (the number of positive bits reached while skipping) _>
[f-i](n,) ; i.e. the skipping should continue until the number of skips, plus the number of
positive bits reached while skipping, equals or exceeds [f-q(n~). It follows that the next
table position in the sequence and the corresponding value of [f - t] can be found in time
proportional to the number of skips necessary. Therefore the length k and the end m of
the entire sequence can be determined in time proportional to no, as required. []

THEOREM 5. I f T2 ts a running time and f is real-time countable, then there ts a
language over {1} m

NTIME(T2) - U{NTIME(T,) IT , (n ++ [f-q(n)) ¢ o(T2(n))}.

PROOF. Let T2 be a running time, and le t f be real-time countable. We start with U as
in the proof of Theorem 4; i.e.

L(U) = {exle ~ Lpc, x E L(Me)},
Ttmev(ex) _< ce -TimeM, (x) for e ~ Lp.e, x E L(M~),

where Ce -> 1 depends only on e. To adapt the earlier proof, however, we must construct
a witness language as the T2 cutoff of some other "universal simulator" V having input
alphabet just {1}. It is to this end that we define an injection h :{0, 1}* + N f r o m f as in
Lemma 7.

From U we construct V to operate as follows on inputy ~ {1}*:

1 F m d x with 1 a(x) = y ff It exmts

160 J . I . SEIFERAS, M. J. FISCHER, AND A. R. MEYER

2. Compute on x according to the transition rules of U

By Lemma 1, Lr2(V) E NTIME(T2). We prove that Lr2(V) ~ NTIME(T1) for any time
bound Ti satisfying Tl(n + [f-q(n)) E o(T2(n)).

Suppose that V1 does accept L~o(V) within some time bound T, satisfying T~(n +
[f-q(n)) ~o(T2(n)). By Lemma 1, V' = V1 t.J V accepts L(V1 t_J V) = L(VI) t.) L(V) = Lr2
(V) t_J L(V) = L(V), and

~ Tl(h(ex)) tf 2.h(ex) + Ce" Time~, (x) -< T2(h(ex)),
Timev'(lh~ex)) --< [2 .h(ex) + Ce" TimeMe (x) in any event

for e ~ l-.o.c, x ~ L(M~). From V' we construct U' to operate as follows on input x
{o, 1}*:

1. Compute I h~x~.

2 Compute on 1 n<x) according to the transmon rules of V'

Then L(U') = {xll h<~) ~ L(V')} = {xll hoe) ~ L(V)} = L(U), and

Timev,(ex) <- 2.h(ex) + Timee,(1 h~e~)

< J'2.h(ex) + Tl(h(ex)) if 2.h(ex) + ce'TimeM~(X) --< T2(h(ex)),
- [4 .h(ex) + c~'TimeMe(X) in any event

for e ~ Lp.c., x ~ L(M~).
For any recursive L C {1}% we can use U' as in the proof of Theorem 4 to get a 2-

tape TM acceptor Me0 for {x&lx ~ L, k ~ N}, with

<~'d.teoxOk[ifk -> T(lxl),
TimeM'o(x0k) -- [d" leox0k+'l + d. Timev,(eox0 k+l) i fk < T(lx I)

for some sufficiently large constant d and some appropriate rime bound T.
CLAXM. For each sufficiently long string x ~ L, Timeue,(X) --< Tz(h(eox)).
PROOF. Let x ~ L be so long that

(2 + Ceo" 4d)" T,(n + [f-1](n)) ~ T2(n)

for every n -~ h(eox). Then certainly

4d. T~(h(eoxO)) = 4d. r,(h(eox) + [f-'](h(eox))) -~ Tz(h(eox)) ;

so it suffices to prove TimeM, (x) --< 4d. Tl(h(eoxO)). In fact we prove by induction on k

running down from k -~ T(Ix I) to k = 0 that

TimeM,0(x0 k) --< 4d. ra(h(eox(F+~)).

k -> T(Ixl): Using the facts [Yl -< h(y) ~ Tl(h(y)) fo ry = eox(F +1, we have

TimeM~0(x0 k) ~ d. [eox~[~ 4d. Tx(h(eoxOk+')).

k < T(Ix I): Assume TimeM,o(X0k+l) ~- 4d" Tl(h(eox~+*)). Then

2"h(eox~ +1) + Ceo" TimeM,0(x0 ~+a)

-~ 2"h(eoxO ~+~) + Ceo" 4d" T~(h(eoxO~+~))
= 2.h(eoxO ~+~) + Ceo.4d.T~(h(eoxO ~+~) + [f-q(h(eoxO~+~)))
-< (2 + c~0.4d). T,(h(eox~ +') + ff-q(h(eoxO~+q))

T2(h(eox&+l)).

Therefore

Timeu,(eoxO ~+~) _< 2.h(eoxO ~+~) + Ta(h(eoxO~+a)) ~ 3.T~(h(eox&+~)).

Separating Nondeterministic Time Complexity Classes 161

Therefore

Timeue0(x0k) <-- d. [e0x0k+l I + d" Timeu,(e0x& +1)
< d.leoxOk+~[+ 3d.T~(h(eoxOk+~)) < 4d. Ta(h(eoxOk+l)). []

By Lemma 1, Me0 can be modified without time loss to reject padded inputs. This
gives a TM that accepts L within a time bound of O(~lzl~znT2(h(x))); so L
NTIME(Eizi~2,T2(h(x))) by Lemma 2. Since the latter time bound is recursively bounded
and independent of the particular recursive language L C {1}*, this contradicts Corollary
2.1. []

2

Example. Takingf(n) = 2 ~ , we get a language over {1} in NTIME(2".Iog*n) -

22"
NTIME(2").

4. Open Questions

1. For T2 a running time, is the condition T2 q~ O(T1) enough m general for separation
between NTIME(T0 and NTIME(T2) or between DTIME(T,) and DTIME(T2)?

2. Is there an actual difference between the separation results that hold for NTIME
and those that hold for DTIME? Is DTIME(n 2) ~ DTIME(n2.10g log n)? Is
NTIME(22") ~ NTIME(2Z"+I/Iog*n)? Is there a language over a one-letter alphabet in
NTIME(22"+') - NTIME(22")?

3. What is the relationship between NTIME and DTIME? Does NTIME(T) =
DTIME(T)?

4. That a language L Is not a member of NTIME(T0 means only that every acceptor
M for L has TlmeM(x) > T~(Ix I) for strings x E L of infinitely many lengths. Stronger
senses of lower bounds, requiring that TimeM(x) > T,(Ix I) for strings x ~ L of all but
finitely many lengths or for all but finitely many strings x ~ L, have been studied
extensively (see [2, 18, 10], for example). It is known, for instance, that there is a
language L that requires more than 2 ~x~ many steps deterministically on almost every
string x ~ L but that can be accepted within time (2 + e)n for any E > 0. Our methods
do not give such results for nondeterministic acceptance time complexity; so we leave it
open whether there is a language L E NTIME((2 + e)n) that requires, even on
nondeterministic machines, more than 2 txl steps on inputs x E L of all but finitely many
lengths or on all but finitely many x ~ L.

5. A purely technical question arising from Theorem 4 is whether we can allow ff to
range over all one-one functions rather than just over strictly increasing reeursively
bounded ones. A plausible proof strategy is to design M' in the proof of Theorem 4 so
that, in the case k < T(Ixl), it pads or unpads exO k to exO Je for some nondeterministically
chosen k ' 4 k. Under this strategy, however, even Claim 1 seems to elude proof.

6. What is the relationship between deterministic time complexity and number of
worktapes?

7. What is the relationship between time complexity and worktape alphabet size?
(Compare [25] or [27] on the relationship between space complexity and worktape
alphabet size.)

8. Is there any language in NTIME(T2) that requires more time than the language
Lr2(U) m the proof of Theorem 4?

9. In the conclusion of Lemma 5, can we exhibit a single language that must
definitely belong to N{NTIME(T2)IT2 ~ if-z} - t_J{NTIME(T0]Ti E ~1}? (Compare
Remark (i) following the proof of Corollary 4.2.)

Appendix. Downward Dtagonahzation

In this Appendix we prove Theorems 1, 2, and 2' . We proceed less formally than above,

162 J . I . SEIFERAS, M. J. FISCHER, AND A. R. MEYER

not explicitly stating the conditions our program codes must satisfy.
THEOREM 1. I f T z is a running time, then each o f the following set differences contams

a language over {0, 1}:
(i) DTIME(T~) - U{DTIME(T,) IT 2 q~ O(Tllog TO},

(ii) DTIME(T2) - U{NTIME(T,)I log Tz q~ O(T~)},
(iii) NTIME(T2) - U{DTIME(T~)IT~ ~ O(T~)}.
PROOF. Let T2 be a running time. For (i) and (ii), we use the construction of [11,

12]. Let L~.¢. C {0, 1}* be the set of program codes for deterministic 2-tape TM
acceptors having input alphabet {0, 1}. First we design a deterministic TM acceptor U
with

L(U) = {exle E Lg.c., ex ~ L(Me)},
Timev(ex) .~ c~- Timeu~(ex) for e ~ Lg~., ex E L(Me),

where Ce depends only on e. Then we design another deterministic TM acceptor M' to
accept the complement of Lr,(U) in time T~. (This uses the closure of DTIME(T2)
under complements. Because it is not known whether NTIME(T2) Is dosed under
complements, we cannot reason analogously with nondetermimstic TM acceptors.)

(i) Let Tt satisfy Tz /~ O(T~log TO, and suppose L(M) ~ DTIME(T1). According to
[12], there is some e ~ L~.c such that Me accepts L(M) within time c. T~log2T~ for
some constant c. Since Tz /~ O(Talog Ta), we can take x ~ {0, 1}* so that
C e "C" T~(lex [)log2T~(lex l) -~ T~(lex I). Then

and also

ex E L(M) ~ ex E L(Me)
ce " TimeM,(ex) _< c~ . c . T~(lex [) logz T~([ex [) -< T~(lex [)

~ ex ~ tc,(U)
ex ~ L(M)

ex ~ L(M) ~ e x ~ Lr2(U) C L(U) ~ e x E L(Me) = L(M).

This contradiction establishes L(M) ~ DTIME(T0. Therefore L(M) E DTIME(T2) -
U{DTIME(TOIT~ ~ O(Tdog TO}.

(ii) Let Ti satisfy log Tz ~ O(T1), and suppose L(M) E NTIME(T0. By straightforward
simulation, there is some e E L~.e such that M e accepts L(M) within time c r, for some
constant c. Since log To q~ O(TO, we can take x ~ {0, 1}* so that Ce.C r'~le=° -< T2(tex I)"
Then

ex ~ L(M) ~ ex 'E L(Me)
ce" TlmeM,(ex) --< Ce "c r'~l~x~) --< Tz(lex 1)

~ e x ~ Lr,(U)
~ ex q~ L(m)

and also

ex q~ L(M) ~ ex E Lr2(U) C L(U) ~ ex ~ L(M~) = L(M).

This contradiction establishes L(M) ~ NTIME(T0. Therefore L(M) E DTIME(T2) -
U{NTIME(T,)IIog :/'2 ~ O(7"1)}.

For (iii), we make use of the simulation technique of [4] (Lemma 3 above). We
assume familiarity with the proof sketch above of Lemma 3. Recall that the simulation
involves guessing a sequence of displays and actions and then checking it (deterministi-
cally) for one of three outcomes: not a legal computation, legal computation without
acceptance, legal computation with acceptance. The TM acceptor M which we design
expects an input of the form ex, with e now a program code for an arbitrary (multitape)
deterministic TM acceptor M e having input alphabet {0, 1} that halts only to accept. On

Separating Nondeterministic Time Complexity Classes 163

such an input, M performs the (nondeterministic) Lemma 3 simulation of M e on ex. If
the guessed sequence involves exactly tT2(lex Me l] actions by M e and the outcome is
"legal computation without acceptance," then M accepts ex, and this is the only way M
accepts its input. Since Me is deterministic and halts only to accept, it follows that

ex ~ L(M) ¢-~ TimeMe(ex) > tTdlexl)/[el].

(Recall that, by convention, TimeM~(ex) =oo if ex q~ L(Me).)
Assuming we do not choose unusually succinct program codes, M can guess and

check in T~(lexl) steps any display and action sequence involving only tT2(lexl)/lelJ
actions by Me. Since Tz is a running time, checking whether the number of actions is
exactly [Td[ex I)/le IJ also requires only Tdlex l) steps. Therefore L(M) ~ NTIME(T2).

Let T1 satisfy T2 ~ O(T~), and suppose some deterministic TM acceptor M e accepts
L(M) within time Ti. Since T2 q~ O(T~), we can take x E {0, 1}* so that [Tdlex Me 1] ->
Tl(lex D' Then

ex E L(M) ~ TimeMe(ex) > [T2(lexl)/lelJ -> Td[exD ~ e x q~ L(Me) = L(M),

and also

ex q~ L(M) ~ Timeue(ex) _< tT2(lexl)/lelJ < ~o ~ ex ~ L(Me) = L (M) .

This contradiction estabhshes L(M) q~ DTIME(T1). Therefore L(M) ~ NTIME(T2) -
t3{DTIMFE(TiITz) q~ O(T~)}. []

THEOREM 2. I f T2 ts a running time, then each o f the following set differences
contains a language over {1}:

(i) DTIME(T2) - U{DTIME(T3[Tdog r~ ~ o(r~)},
(ii) DTIME(T2) - U{NT1ME(T~)[T~ E o(log T2)},

(ui) NTIME(T2) - U{DTIME(T~)[T~ ~ o(T2)}.

PROOF. Let T2 be a running time. To adapt the proof of Theorem 1, we make use
of the function g :{0, 1}* ~ N defined in Lemma 7 so that the binary representation of
the integer g(x) is lx. We design a deterministic TM acceptor U with

L(U) = {l~eX'te E Lye , p(ex) E L(Me)},
Timeu(1 g(~x)) _< ce.TlmeM~(1 g(e*)) for e ~ L~)~, 1 g(ez) ~ L(De),

where Ce depends only on e. Then we design another deterministic TM acceptor M to
accept {1}* - Lr,(U) in time T,.

0) Let T~ satisfy Tllog T~ E o(T2), and suppose L(M) E DTIME(T~). According to
[12], there is some e E LpD~ such that M e accepts L(M) w~thin time c. T~log2T~ for some
constant c. Since T~log Ti ~ o(T2), we can take x ~ {0, 1}* so long that
ce'c" T~(g(ex))log2Tl(g(ex)) -< T2(g(ex)). Then

1 ~ex) ~ L(M) ~ 1 ~(~x) ~ L(Me)
Ce" TimeMe(1 g(ez)) --< Ce "c" Tl(g(ex))log2T~(g(ex)) ~ Tz(g(ex))
1 g(~x) ~ Lr~(U)

1 °(~x) ~ L(M)

and also

1 g(ex' ~ L(M) ~ 1 a(ex) ~ Lr2(U) C L(U) ~ 1 g`ex) E L(Me) = L(M).

This contradiction establishes L(M) ~ DTIME(T~). Therefore L(M) ~ DTIME(T2) -
U{DTIME(T~)IT~Iog T1 C o(T2)}. For part (ii), similarly, L(M) ~ DTIMF.(T2) -
tA{NTIME(T,)IT, ~ o(log T2)}.

For (ui) as for part (iii) of Theorem 1, we make use of the technique of [4] to design
the nondeterministic TM acceptor M. The acceptor M expects an input of the form
1 °(ex), with e now a program code for an arbitrary (multltape) deterministic TM

164 J . I . SEIFERAS, M. J. FISCHER, AND A. R. MEYER

acceptor Me having input alphabet {1} that halts only to accept. On such an input, M
calculates e and then performs the (nondetermmistic) Lemma 3 simulation of Me on
I °tez). If the guessed sequence involves exactly [T2(g(ex))/[e IJ actions by Me and the
outcome is "legal computation without acceptance," then M accepts 1 ~e~), and this is
the only way M accepts its input. It follows that

1 u(ex) ~ L(M) ~ TimeMe(1 "(ez)) > [T2(g(ex))/I e [J.

Since M can calculate e from 1 u'ex) in time proportional to g(ex) -< Tz(g(ex)), it follows as
in the proof of Theorem 1 (iii) that L(M) ~ NTIME(T2).

Let T~ sattsfy Tt ~ o(Tz), and suppose some deterministic TM acceptor M e accepts
L(M) within time Ti. Since Tt ~ o(T~), we can takex ~ {0, 1}* so long that [T2(g(ex))/[e [J
>- T~(g(ex)). Then

1 y(ez) ~ L(M) ~ Time~(1 ~(ez)) > [Tz(g(ex))/I e IJ -> T~(g(ex))

© 1 g(ex) q~ L(Me) = I.J(M)

and also

1 "ex) ~t L(M) ~ TimeMe(1 "ex)) _< tT2(g(ex))/I e [J < o0
I g(e~) ~ L(Me) = L(M).

This contradiction establishes L(M) ~ DTIME(T,). Therefore L(M) ~ NTIME(T2) -
U{DTIME(T,)[Tt ~ o(T2)}. []

THEOREM 2'. I f T2 ts a running nine, then each o f the following set differences
contains a language over {1}:

(i) DTIME(T2) - U{DTIME(T,)[T, is a running time, T2 ¢~ O(T,log T,)},
(ii) DTIME(T2) - LJ{NTIME(T,)[T, is a running time, log T2 ¢~ O(T,)},

(iii) NTIME(T~) - LJ{DTIME(T,)[T, is a running time, T2 ~ O(T,)}.

PROOF. We make use of the techmque of [20] to further adapt the proof of
Theorem 2. Let T2 be a running time. Then we can design a deterministic TM acceptor
M which halts on every input and whmh operates as follows on input ln:

1 Check in [T:(n)J steps whether T:(n) --> 2n. If not, then halt without accepting the input and without
cancehng any mteger (see step 2).

2 For i ffi 1, 2, 3, . , [log2 T2(n)l, successively, do the following:
a. Spend [T:(n)/2 f] steps reviewing the computatmns by Mon as many of the shorter inputs 1, 12, 1 a
1 ~-1 as time permits, trying to discover whether M cancels t (m step 2b) on some shorter input (The
standard Recursmn Theorem [23] makes It possible for M to rewew Us own computatmns. Efflcmncy will
not matter here.)

b. If ~ was not discovered to have been canceled on some shorter input, then spend lT2(n)/2~J steps trying
to dmcover whether the ~th determlmstm 2-tape TM acceptor (in some fixed effecUve enumeratmn of
these machines) accepts 1 ~ Do this by performing a slmulatmn of the ith machine in the usual manner, so
that no more than ct t steps are reqmred to simulate t steps, where Cl depends only on t. If a halt ~s
d~scovered m the simulated computatmn, then differ from the outcome, cancel i, and halt

3. If this step is reached, then halt without canceling any integer and (arbitrarily) without accepting the
input

By design, M accepts within time
~o

T2(n) + ~ 2. T2(n)/2 ~ = 3. T2(n);

so L(M) E DTIME(3T2). Because of step 1, x E L(M) implies T2([xl) _> 21xl.
Therefore the constant-factor speedup technique of [11] and Lemma 2 above yields
L(M) ~ DTIME(T2).

(i) Let T~ be a running tame that satisfies T2 ~ O(T~log T~), and suppose L(M) E
DTIME(T~). According to [12], there is some deterministic 2-tape TM acceptor M'
that accepts L(M) within ume c. T~log2 T1 for some constant c. Because T~ is a running

Separating Nondeterministic Time Complexity Classes 165

t ime , we can a s sume tha t M ' ha l t s e v e n o n inpu ts x ~ L (M ') w i t h i n c -Ti (I x I)log~ T~(I x I)
s teps. S uppose t h a t M' is the k th m a c h i n e in o u r f ixed effect ive e n u m e r a t i o n of
de t e rmin i s t i c 2 - tape T M accep tors . Fo r each j < k, let

0, i f] n e v e r gets cance led ;
f(j) = the n u m b e r of s teps it t akes to d iscover (by the rev iew p r o c e d u r e used

in s tep 2a) tha t] gets cance led , i f] does get cance led .

Since T2 ~ O (T l i o g TO, we can take n so tha t T2(n) -> 2n ; eve ry i n t e g e r / < k tha t gets
cance led gets cance led on some inpu t sho r t e r t han ln ; [T2(n)/2 k] _> f(j) for eve ry]
k; [T2(n)/2 k] _> ck'c" Tl(n)log2T~(n). C o n s i d e r the c o m p u t a t i o n by M on inpu t I n for
this n . Since T2(n) -> 2n, M gets by s tep 1 Since eve ry i n t e g e r . / < k t ha t gets cance l ed
gets cance led on some inpu t shortei" t han 1 n and [Tz(n)/2 J] -> [T2(n)/2 k] -> f(j) for each
s u c h] , M does d i scover the cance l l a t ion of each s u c h j in the execu t ion of s tep 2a for i
= j . T h e r e f o r e M does even tua l ly go o n to s tage i = k. If M does no t d i scover in s tep
2a for i = k t ha t k i tself is cance l ed on some sho r t e r inpu t , t h e n M final ly tr ies to cance l
k . Since M ' hal ts on inpu t 1 n wi th in c'Tl(n)log2Tl(n) s teps an d [T2(n)/2 k] ->
ck.c.T~(n)log2T~(n), M does cance l k in this case. In e i t he r case, t h e r e f o r e , k gets
cance led on some input 1 n'. Bu t t hen 1 n' E L(M) ~ 1 n' ~ L (M ') . This c o n t r a d i c t i o n
es tab l i shes L(M) ~ D T I M E (T 0 . T h e r e f o r e L(M) ~ DTIME(T2) - LI{DTIME(T~)IT1 is
a r u n n i n g t ime , T2 ~ O(T~log T~)}. Fo r pa r t (ii), s imilar ly, L(M) ~ DTIME(T2) -

U{NTIME(T1)[T1 is a r u n n i n g t ime , log T2 q~ O(T1)}.
F o r (i i0 , we m a k e use of the t e c h n i q u e of [4] to des ign a n o n d e t e r m i n i s t i c T M

accep to r M which is qmte s imilar to the d e t e r m i m s t i c T M accep to r des igned above . M
will hal t in every c o m p u t a t i o n on eve ry inpu t In at mos t o n e of its c o m p u t a t i o n s o n
each inpu t , M will cancel an in t ege r be fo re ha l t ing; m all o t h e r c o m p u t a t i o n s , M will
ha l t w i thou t cance l ing any in tege r and wi thou t accep t ing the inpu t . O n inpu t I n, M
ope ra t e s as follows:

1 For ~ = 1, 2, 3, , [log2T2(n)J. successavely, do the following
a Spend iT2(n)/2'J steps determlmstacally revaewmg all the computataons by M on as many of the shorter
inputs 1, 12, 1 a, , l n-~ as time permits, trying to discover whether M cancels i m some computation on
some shorter input

b Ifa was not dascovered to have been canceled on some shorter input, then spend [T2(n)/2'j steps trymg
to dascover whether the tth determmastac (multaape) TM acceptor (m some fixed effeetwe enumeration of
these machanes) accepts 1 ~ Do thas by performing the (nondetermmastac) Lemma 3 samulauon of the tth
deterministic multatape machine, so that no more than c,.t steps are reqmred to samulate (Le guess and
check) each computation of length t, where c, depends only on t If an entire halting computation as
samulated, then differ from the outcome, cancel t, and halt If an incomplete but legal computation ~s
samulated and there would have been msufficaent tame to guess and check a longer computation, then just
continue m the loop of step 1 (Because the samulated machine Is determmast~c, the dascovery of such a
maxamal computatmn indicates that a as canceled m none of the computations on 1 ~) Otherwise, halt
w~thout canceling any integer and wathout accepting the input (Because an dlegal or nonmax~mal
computataon has been samulated, the anteger z maght be canceled in some other computataon on 1 n)

2 If thas step is reached, then halt without cancehng any integer and (arbatrarfly) without accepting the
input

N o t e t ha t , s ince each s imula t ed m a c h i n e above is de te rmin i s t i c , t h e r e is a u n i q u e
c o m p u t a t i o n by M on o u t p u t 1 n which n e v e r r eaches the " o t h e r w i s e " in s tep l b . Call
this the main computation by M on inpu t I n. Since only a ma in c o m p u t a t i o n can lead to
cance l la t ion or accep tance , cance l l a t ion of the i n t ege r t on the i npu t 1 n will g u a r a n t e e
t ha t M does d isagree wi th the t th de t e rmin i s t i c mu l t i t ape m a c h i n e o n inpu t 1 n.

By des ign, L(M) ~ NTIME(3T2) , and NTIME(3T2) C NTIME(T2) by L e m m a 2. O n
the o t h e r h a n d , let T~ be a r u n n i n g tame tha t satisfies T2 ~ O(T1), an d s u p p o s e some
de te rmin i s t i c T M accep to r M ' accepts L(M) wi th in t ime T1. Becau s e T~ is a r u n n i n g
t ime, we can as sume tha t M ' ha l t s even on inpu ts x ~ L (M ') wi th in T~(Ixl) s teps .
Suppose tha t M ' is the k t h m a c h i n e in ou r fixed effect ive e n u m e r a t i o n of de t e rmin i s t i c
(mul t i t ape) T M accep tors . Fo r e a c h j < k , let

166 j . I . SEIFERAS, M. J. FISCHER, AND A. R. MEYER

0, i f / n e v e r gets canceled;
f(./) = the number of steps it takes to discover (by the review procedure used

in step la) that j gets canceled, i f j does get canceled.

Since T2 ~ O(TJ, we can take n so that every integer] < k that gets canceled gets
canceled on some input shorter than 1~; [T2(n)/2ki --> f(j) for every / < k; [T2(n)/2k| >--
ck.T~(n). Consider the main computation by M on input I n for this n, implicitly
ignoring all other computations. Since every i n t e g e r / < k that gets canceled gets
canceled on some input shorter than 1 ~ and [Tz(n)/2~J -> [T2(n)/2kJ -> f(j) for each such
/ , M does discover the cancellation of each s u c h / i n the execuUon of step la for i = j.
Therefore M does eventually go on to stage i = k. If M does not discover in step la for
i = k that k itself ts canceled on some shorter input, then M finally tries to cancel k.
Since M' halts on input 1 n within Tl(n) steps and tT2(n)/2~J -> Ck" Tj(n), M does cancel
k in this case, in its main computation. In either case, therefore, k gets canceled on
some input 1"). But then In' E L(M) ~ 1 ~' q~ L(M'). This contradiction establishes
L(M) ~ DTIME(T~). Therefore L(M) ~ NTIME(T2) - U{DTIME(Ti)t T~ is a running
t ime, T2 ~ O(T~)}. []

REFERENCES

1. AANDERAA, S.O On k-tape versus (k - 1)-tape real time computation. In Complexity o f Computation
(SIAM-AMS Proceedings, Vol 7), R M Karp, Ed , Amer Math. Soc, Providence, R I , 1974, pp
75-96.

2. BLUM, M. A machine-independent theory of the complexity of recurslve funcuons J. ACM 14, 2 (April
1967), 322-336

3 BOOR, R V , AND GREIBACH, S.A. Quasi-realtlme languages Math. Syst Theory 4, 2 (June 1970), 97-
111.

4. BOOK, R V., GREmACH, S A , AND WEGBREIT, B. Time- and tape-bounded Tunng acceptors and
AFLs. J. Comptr Syst Sci 4, 6 (Dec 1970), 606-621.

5. CONSTABLE, R.L. The operator gap J. ACM 19, 1 (Jan. 1972), 175-183.
6. CONSTABLE, R.L. Two types of hierarchy theorem for axiomatic complexity classes In Computational

Complexity, R Rustm, Ed., AIgonthmics Press, New York, 1973, pp 37-63
7 COOK, S A. A hierarchy for nondetermintstic rime complexity. J Comptr Syst Sc~. 7, 4 (Aug. 1973),

343-353
8. FISCHER, M J , AND RABIN, M.O Super-exponential complexity of Presburger arithmetic In Complexity

o f Computation (SIAM-AMS PrGceedmngs, Vol. 7), R M Karp, Ed., Amer Math SGC, Providence,
R I., 1974, pp 27-41

9. FISCHER, P C., MEYER, A.R, AND ROSENRERG, A L Real-time simulation of multihead tape units. J
ACM 19, 4 (Oct 1972), 590-607

10. GILL, J., AND BLUM, M On almost everywhere complex recursive functions. J ACM 21, 3 (July
1974), 425-435

11. HXRTMANtS, J., AND STEARNS, R.E. On the computational complexity of algorithms. Trans Amer.
Math. Soc 117 (May 1965), 285-306.

12. HENNIE, F.C, AND STEARNS, R.E. Two-tape simulation of multitape Tunng machines. J ACM 13, 4
(Oct. 1966), 533-546

13. HOPCROFr, J E., AND ULLMAN, J D. Formal Languages and Their Relation to Automata Addison-
Wesley, Reading, Mass , 1969.

14 HUNT, H.B III The equivalence problem for regular expressions w~th intersection is nGt polynomial m
tape. Tech Rep. 73-161, Dept. Gf Comptr Scl., Corneli U , Ithaca, N.Y, March 1973

15 IRAmtX, O H A note concerning nondetermmlsUc tape complexRles. J. ACM 19, 4 (Oct 1972), 608-
612

16. IRARRA, O.H On two-way muluhead automata. J Comptr. Syst. Sct 7, 1 (Feb 1973), 28-36.
17. IRAR~, O H A hierarchy theorem for polynomml-space recognition SlAM J. Comptng 3, 3 (Sept.

1974), 184-187.
18 LYNCH, N.A., MEYER, A.R., AND FISCHER, M J Relatlvlzation of the theory of computational

complexity. Trans. Amer Math. Soc 220 (June 1976), 243-287.
19. MEYER, A.R Weak monadlc second order theory of successor is nGt elementary-recursive In Logzc

Colloquium, Lecture Notes m Mathematics, No 453, R Parikh, Ed., Springer-Verlag, Berlin, 1975, pp
132-154.

20 METER, A.R, AND McCREmHr, E.M ComputatlGnally complex and pseudo-random zero-one valued
functions. In Theory o f Machines and Computations, Z. Kohavt and A. Paz, Ed , Academic Press, New
York, 1971, pp 19-42.

Separatmg Nondetermtnist ic Time Complexi ty Classes 1 6 7

21. MEYER, A R., AND STOCKMEYER, L J The equivalence problem for regular expressions with squaring
requires exponential space Proc 13th Annual Syrup on Switching and Automata Theory, College Park,
Md , 1972, pp 125-129.

22. PAUL, W J On time hierarchies Proc Ninth Annual ACM Symp on Theory of Comptng., Boulder,
Colo , 1977, pp. 218-222

23 ROGERS, H JR Theory of Reeursive Funcnons and Effective Computabduy. McGraw-Hill, New York,
1967.

24. Ruav, S , AND FISCHER, P C Translational methods and computational complexity Conf. Rec. IEEE
Syrup. on Switching Circuit Theory and Logical Design. Ann Arbor, Mich , 1965, pp. 173-178.

25 SEIVERAS, J I Nondetermlmstlc time and space complexity classes. Tech. Rep. 137, Proj. MAC,
M.I T., Cambridge, Mass , Sept 1974

26. SEIEERAS, J.l. Techniques for separating space complexity classes J Comptr. Syst. Sci. 14, 1 (Feb.
1977), 73-99

27 SEIFE~S, J 1. Relating refined space complexity classes. J Comptr Syst. Sci. 14, 1 (Feb. 1977), 100-
129.

28 STOCrdaEYER, L.J The complexity of decision problems in automata theory and logic. Tech. Rep. 133,
Pro I MAC, M I T., Cambridge, Mass., June 1974.

29 STOCKMEYER, L J . AND MEYER, A R Word problems requiring exponential time: Preliminary report.
Proc Fifth Annual ACM Symp. on Theory of Comptng., Austin, Tex., 1973, pp. I -9 .

30. YAMADA, n . Real-time computation and recursive functions not real-time computable. IRE Trans.
Electron. Comptrs. EC-l l , 6 (Dec 1962), 753-760, Corrections IEEE Trans. Electron. Comptr$. EC-
12, 4 (Aug 1963), 400.

31. YOUNG, P Easy constructions in complexity theory" Gap and speed-up theorems. Proc. Amer. Math.
Soc 37, 2 (Feb. 1973), 555-563.

RECEIVED SEPTEMBER 1 9 7 6 , REVISED MARCH 1 9 7 7

Journal of the Association for Computm s Machinery, Vol 25, No l, January 1978

