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ABSTRACT. A recursive padding technique 1s used to obtan conditrons sufficient for separation of nondeter-
minstic multitape Turing machine time complexity classes If T, 1s a runming tume and T,(n + 1) grows more
slowly than T,(n), then there 1s a language which can be accepted nondetermmmstically within time bound T,
but which cannot be accepted nondeterministically within time bound T,. If even T,(n + f(n)) grows more
slowly than T,(n), where f 1s the very slowly growing “rounded inverse” of some real-time countable
function, then there 1s such a language over a single-letter alphabet. The strongest known diagonalization
results for both deterministic and nondeterministic time complexity classes are reviewed and orgamized for
comparnison with the results of the new padding technmique
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1. Introduction

Techniques such as those of Meyer and Stockmeyer [21], Meyer [19], Stockmeyer and
Meyer [29], Hunt [14], M.J. Fischer and Rabin [8], and Stockmeyer [28] sometimes
show that a particular computational task of interest is at least as difficult as any task in
some nondeterministic Turing machine time complexity class. For this reason and also
because nondeterministic complexity is even less well understood than deterministic
complexity, it is of interest to find provably hard computational tasks in each nondeter-
ministic time complexity class. For each rational r > 1, for example, Cook [7]
(Theorem 3 below) has shown that there is a language (a set of finite strings of symbols
from some finite alphabet) that is accepted by some nondeterministic Turing machine
within time ~" but by no such machine within time n"~¢ for any € > 0 in terms of string
length n. Our main results generalize Cook’s theorem, even separating the class
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NTIME (n”) of languages accepted by nondeterministic Turing machines within time n”
from classes as large as NTIME (n7/log log log n), for example, if » > 1 is rational.

We refer to what is usually called a nondeterministic multitape Turing machine [13]
simply as a TM, and we refer to its deterministic version as a deterministic TM. If such
an automaton has k tapes (each with a single read-write head), then we call it a k-tfape
TM or a determunistic k-tape TM, respectively. We often let a TM receive an input, a
finite string of symbols from some finite input alphabet %, initially written to the right
of the head on tape 1, the worktape which we sometimes call the input tape. A TM can
act as an acceptor by halting in some designated accepting state at the end of some
computations. We assume the reader is familiar with how concepts such as these can be
formalized. A good single reference for formal definitions relating to Turing machines
is [13].

Definition. Let M be any TM acceptor. M accepts the string x € £*, where X* is
the set of all finite strings of symbols from 3, if there is some computation by M on
input x that halts in a designated accepting state. M accepts the language L(M) = {x|M
accepts string x}. For x € L(M), Timey(x) is the number of steps in the shortest
accepting computation by M on x; for x &€ L(M), Timey(x) = * by convention.

Definition. A time bound is a function T:N — R with T(n) = n for every n, where
N is the set of ail nonnegative integers and R is the set of reals. In this paper, T, T, Ty,
etc., always refer to time bounds. The T-cutoff of the TM M is the language LA(M) =
{x| Timey(x) = T(lx)}, where |x| denotes the length of the siring x . (Note that L{M) C
L (M) because of the convention that Time(x) = « for x € L(M).) A language L 1s in
NTIME(T) if L = L(M) = Ly(M) for some TM acceptor M. Similarly, if M is
deterministic and L = L(M) = Ly(M), then L is in DTIME(T). If L(M) = L(M), then
we say that M accepts within time T.

Other slightly different definitions of the NTIME and DTIME complexity classes
have been proposed. Book, Greibach, and Wegbreit [4], for example, say that M
accepts within time T only if every accepting computation on input ¥ € L(M) reaches
the accepting state within 7(Jx|) steps. Such differences do not affect the complexity
classes determined by time bounds of the following type, however; and time bounds of
practical interest are of this type.

Defininon. 1If M is a deterministic TM acceptor with L(M) = {1}* and Time,(x) =
[T(Ix))] = |x|, then T is a running nme, and M is a clock for T.

Downward diagonalization is the best known technique for obtaining separation or
“hierarchy” results among the NTIME and DTIME complexity classes (see the Appen-
dix and [11, 12, 6]). For languages over {0, 1}, the following theorem summarizes the
best separation results that have been proved by downward diagonalization.

THEOREM 1. IfT,is a running ime, then each of the following set differences contains
a language over {0, 1}:

(ty DTIME(T,) — U{DTIME(T))|T, & O(TJog T))},
(i) DTIME(T,) — U{NTIME(T )|log T, & O(T,)},
(iii) NTIME(T,) — U{DTIME(T))|T, & O(T)}.*

A technicality rules out such strong separation results for languages over a one-letter
alphabet. Suppose, for example, that T, is a running time with n logn € o(T,(n)) and that
L € DTIME(T,) is a language over just {1}. If the complement of L is finite, then L 1s
regular (acceptable by a TM acceptor which does not write) and L € DTIME(n). If the
complement of L is infinite, on the other hand, then our convention that only acceptance

! For g a nonnegative real-valued function on N, we use the notation O(g) (o(g), respectively) for the class of
all nonnegative real-valued functions f on N that satsfy hm sup(f(n)/g(n)) < « (m(f(n)/g(n)) = O,
respectively) as # tends to infinity.

When the precise specification of a time bound is not relevant, we allow an mnprecise specification. Thus,
n the context of the O and o notations, the base and rounding for the logarithms in Theorems 1, 2, and 2’
need not be specified (See also Lemma 2 below.)
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time matters guarantees that L € DTIME(T,) for

[T it 1reL,
() = {n if &L

In either case, L € U{DTIME(T,)|T. € O(T, log T,)}. Theorems 2 and 2’ show two
ways of further restricting T, to get separation results for languages over a one-letter
alphabet. These theorems and Theorem 1 are proved in the Appendix.

TueOREM 2. If T, is a runming time, then each of the following set differences
contains a language over {1}:

() DTIME(T,) — U{DTIME(T,)|Tdog T, € o(T»)},
(@) DTIME(T,) — UINTIME(T)|T, € o(log T>)},
(tii)y NTIME(T;) — UW{DTIME(T)|T, € o(Ty)}.

THEOREM 2'. If T, is a running time, then each of the following set differences
contains a language over {1}:

() DTIME(T,) — U{DTIME(T))|T, is a runming time, T, € O(T\log T,)},
(u) DTIME(T,) — V{NTIME(T)|T, is a running time, log T, & O(Ty)},
(iiiy NTIME(T,) — V{DTIME(T))|T, is a running time, T, & O(T,)}.

CoroLLARY 2.1. For no recursive time bound T does NTIME(T) contain all the
recursive languages over {1}.

2. Separation of Nondeterministic Time Complexity Classes

The results obtained by diagonalizing over NTIME classes (part (ii) of each theorem
above) are relatively poor. Not even the gross separation result NTIME(n?) &
NTIME(2"), for example, follows directly from Theorem 1; yet DTIME(®n?) &
DTIME(n*(log n)?) does follow. Recently, however, Cook [7] proved the following
result by a new technique.

THeoreM 3 (Cook). NTIME(i") & NTIME(n®) whenever 1 = r <s.

We pursue Cook’s technical bi'eakthrdugh, simplifying his proof and generalizing the
result. Our proof of the main generalhization, Theorem 4 below, makes use of the very
gross separation result Corollary 2.1 gbove and Lemmas 1, 2, 3, and 6 below.

Turing machine design is greatly simplified if we allow more than one head per tape.
P. Fischer, Meyer, and Rosenberg [9] have shown that every TM with many heads per
tape can be simulated without time loss by a TM with only one head on each of some
greater number of tapes. (Furthermore, the simulation preserves determinism.) Using a
multthead TM to carry out two computations at the same time leads to results of the
following type.

LemMMa 1. Let M, M’ be TM acceptors, and let T be a running time. There are TM
acceptors MU M', M N'M', My with

LMUM)=LM)ULM), Timey,ux)=min{Timey(x), Timey(x)};
LM N M) = LM N LMD, Timeyn(x)=max{Timey(x), Timey(x)};
L(My) = L(M), Timey,(x) = Timey(x) for x € Lp(M).

Proor. To design M U M’ or M N M’, combine M and M’ by providing a second
head on the first tape of each and a new input tape with a single head. Use the extra
heads to copy the input string at full speed from the new input tape onto the old input
tapes. Meanwhile the remaining heads can be used to carry out computations by M and
M’ on the respective transcribed coptes of the input string, even while they are still being
transcribed from the real input tape (see Figure 1). To accept L(M) U L(M’) within the
desired time, M U M’ enters its accepting state when the computation by either M or M’
does. To accept L(M) N L(M') within the desired time, M N M’ enters its accepting state
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when the computations by both M and M’ have done so. By the result of {9], M U M’
and M N M’ can be redesigned without time loss to use only one head per tape.

Because T is a running time, we can modify a clock for T to get a deterministic TM
acceptor M” with L(M") = 3* and Timey(x) = | T(|x|}), where X is the input alphabet of
M. To design My, combine M and M" in the same way that M and M’ were combined
above. To accept L(M) within the desired time, My enters its accepting state when the
computation by M enters its accepting state and the computation by M” has not earlier
done so. O ‘

The next lemma indicates that the NTIME complexity classes depend only on time
bound growth rates. It also shows that we need at least the condition T, &€ O(T)) to be
able to prove NTIME(T,) — NTIME(T,) # . For T, a running time, it follows by
Theorem 1 (iii) that, if (contrary to the intwmition of most researchers) DTIME(T) =
NTIME(T) for all T, then NTIME(T,) — NTIME(T,) = DTIME(T,) — DTIME(T)) is
nonempty precisely when T, & O(T)).

Lemma 2. If T, € O(T,), then NTIME(T,) C NTIME(T,).

Proor. For Ty(n) = (1 + e)n for some € > 0, this is just the constant-factor speedup
theorem of Hartmanis and Stearns {11]. The 1dea is to increase the size of each TM’s
worktape alphabet so that several steps can be performed in one big step. The limitation
1s that the reading of the input string cannot be sped up.

That the lemma holds for arbitrary T,(n) = n has been observed by Book and Greibach
(3]. The 1dea is to use nondeterminism to guess the entire input string at the rate of
several symbols per step so that the reading of the guessed input string can be sped up by
the method of [11]. Meanwhile additional heads can be used to check the actual input
string against the guessed one at the rate of one symbol per step (“full speed”). By the
result of [9], the use of more than one head per tape can be eliminated without time
loss. O

The following lemma, due to Book, Greibach, and Wegbreit [4], indicates that for
nondeterministic time complexity we can get by with TMs having a fixed number of
tapes. No similar result is known for deterministic time complexity.

LemMa 3. Foreach TM M there is a 2-tape TM M’ and a constant c such that L(M')
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= L(M) and Timey(x) < c-Timey(x) for every x € L(M).2

Proor. If M has k tapes, then the “display” of a configuration of M will be a (k + 1)-
tuple consisting of the control state and the k tape symbols scanned in that configuration.
The display of a configuration determines which actions are legal as the next move and
whether the configuration is an accepting one. The first task for M’ is to nondeterministi-
cally guess on its second tape an alternating sequence of displays and legal actions by M.
The question of whether the sequence describes a legal computation by M on the
supplied input is just the question of whether the symbols actually scanned on each tape
when the actions are taken agree with the guessed displays. This can be checked
independently for each tape in turn by letting the first tape of M' play the role of the tape
while running through the guessed sequence of displays and actions. Clearly M’ runs for
time proportional to the length of the sequence it guesses. For further details the reader
is referred to [4]. O

Like Cook’s proof of Theorem 3, our proof of the generalization (Theorem 4 below)
makes crucial use of a trick called “padding.” Acceptance time is measured as a function
of input length; so if we can increase the lengths of the strings in a language L without
significantly changing the time needed to accept the strings, then we get a padded
language L' that is less complex than L as we measure complexity relative to input
length. One way to pad the language L to L’ is to take

L' = p(L) = {x10¥|x € L,|x10% = p(|x|)}

for some p:N — N with p(n) > n. The next lemma shows how such padding reduces
complexity.
LemMma 4. If p(n) > n is a running time, then

p(L) € NTIME(T) & L € NTIME(T ° p),

where T © p(n) = T(p(n)).

Proor. (=) Suppose M, accepts p(L) within time T. Design M, to pad its input string
x (which is found at the read-write head on the first worktape) out to x10%, where [x10%]
= p(Jx]), and then to compute on input x10* according to the transition rules of M,.
Because p is a running time, the padding can be done m time proportional to p(jx|).
Therefore M, accepts L within time proportional to p(n) + T(p(n)) = 2-T(p(n)). By
Lemma 2 we conclude that L € NTIME(T(p(n))).

(<) Suppose M, accepts L within time T'(p(n)). Design M, to check that its input is of
the form x10%, where |x10*} = p(|x]), and then to compute on input x according to the
transition rules of M,. Then certainly L(M;) = p(L). Because p is a running time, the
padding can be checked in time proportional to the length of the input. Therefore, ifn =
Ix10%| = p(lx|) and x € L, then Time,,(x10*) is proportional to

n + Timey,(x) < n + T(p(|x])) = n + T(n) < 2-T(n).

By Lemma 2 we conclude that p(L) = L(M,) € NTIME(T(n)). 0

The following lemma, used below to prove Corollary 4.2 from Theorem 4, shows
how padding of the above type may be used to refine separation results. Ruby and P.
Fischer [24] first used this technique in connection with the deterministic time complex-
ity of sequence generation, and Ibarra [15] used it more explicitly in connection with
the nondeterministic space complexity of language acceptance (see [25] or [26, 27] for
more on space complexity). Ibarra has used similar techniques in other contexts as well
[16, 17].

LemMMma 5. Letsets Ty, T, of time bounds be given. Say p,(n) > n, ..., pn) > n are

2 An idea of [3] allows us to take ¢ = 11f we settle for a 3-tape TM M’ (see Lemma 2 above) Aanderaa [1]
has shown that we cannot get by with ¢ = 1 m the determunistic case no matter what fixed number of tapes
we allow M’ to have (His counterexample is provided by determmistic TMs which accept 1 “real time”

(Time (x) = |x|).)
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running times with Ty op,., € O(T, o p) whenever 1 =i <, T\ € I, T, € T,. If L €
N{NTIME(T, ° p)T, € T, — UNTIME(T, ° p)|T, € I}, then p(L) €
MNTIME(T,)|T, € T} — UINTIME(T,)|T, € T4} for some i.

Proor. Forl =i =], let

Ct, 1) = U{NTIME(T,  p)|T; € 73}, CG, 2) = N{NTIME(T,  p)|T; € T3}

Suppose L € C(, 2) — C(1, 1). By Lemma 2, NTIME(T, ¢ p,;,,) C NTIME(T, ¢ p))
wheneverl =i <!, T, € J,, T, € Ty;s50,for1 =i <,

LECi+1,1)=>L €EC(,?2.
If we were to have also
LEC,2)>LECE

for every ¢, then we would conclude from L € C(/, 2) that L € (1, 1), a contradiction.
For some i, therefore, we must have

L € C@,2) — Ci, 1) = N{NTIME(T, o p))|T, € T} — U{NTIME(T, - p)|T, € T3}.
By Lemma 4,
p(L) € N{NTIME(T,)|T; € T,} — U{NTIME(T))|T, € 7} for that same i. [

Remark. We do not know how to determine the particular value of i for which
pAL) € N{NTIME(T)|T, € J,} — UNTIME(T)|T, € J,} above. In fact, we do not
know how to exhibit any particular language that must be in N{NTIME(T,)|T, € J,} —
UNTIME(T)|T, € T}

It is interesting that the same technique can be applied to DTIME, with a minor
restriction, to strengthen the results of diagonalization (Theorem 1 (i)) in some cases.
The restriction that each time bound should exceed (1 + €) n for some positive € allows
the deterministic version

T, € O(T,) = DTIME(T,) C DTIME(T,)

of Lemma 2 to follow from just [11]. The deterministic versions of Lemmas 4 and 5 then
follow as above. We state only the latter.

Lemma 5D. Let sets 4, I, of time bounds be given, with im,. .., inf(T(n)/n) > 1
foreach T € I, U T,. Say p,(n) > n, ..., p,(n) > n are runmung times with T, °p,;, €
O(T,op<) whenever 1 <i <1, T, € Ty, T, € . If L € N{DTIME(T, °p))|T, € T3}
— U{DTIME(T, ° p)|T, € J,}, then p(L) € N{DTIME(T,)|T, € J,} -
U{DTIME(T)|T, € J,} for some 1.

Example. By Theorem 1 (i),

DTIME(n?) & DTIME(n*(log n)?).
In Lemma 5D, take
T, ={n?, T, = {n?(log n)1?°%} | = 400, p,(n) = {n (log n)e1H00],
Then conclude that

DTIME(n?) & DTIME(n2(log n)'/2%),

Another key idea in Cook’s proof and our extensions of it involves universal
simulation of TMs. So that we may speak with precision about universal simulation, we
associate a distinct program code from {0, 1}* with each 2-tape TM acceptor having
input alphabet {0, 1} and worktape alphabet contained in some fixed countably infinite
set; we do this in agreement with the easily satisfied conditions listed below. We use
the notation L, for the set of all program codes, and we denote by M, the 2-tape TM
acceptor with program code e.
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Condition 1. No program code is a prefix of another, and L, € DTIME(n).
Condition 2. There is a TM acceptor U (a “universal simulator’) with

L) = {exIe < Lp e X € uMe)}y
Timey(ex) < ¢, Timey(x) fore € L, ., x € LM,),

where ¢, = 1 depends only on e.

Condition 3. There is a recursive function f:L, . — L, .. such that M., first writes
e at its head on tape 2 and thereafter acts according to the transition rules of M,. (This
condition is a variant of the si-theorem of recursive function theory [23].)

Most common instruction-by-instruction or state-by-state codings of TM programs can
be tailored to satisfy these conditions.

We shall want to pad strings and use the simulator that we design in a recursive control
structure. To this end we use Condition 3 to prove one more lemma, a version of the
fixed point theorem (Recursion Theorem) of recursive function theory [23].

LemMa 6. For each 2-tape TM acceptor M with L(M) C {0, 1}*, there is a 2-tape
TM acceptor M, and a constant ¢ with

L(M,) = {x|e,x € L(M)},
szeMeo(x) = ¢ + Timeyle ox) for every x € L(M,).

Proor. Let f be as in Condition 3. Take M, to be a 2-tape TM that operates as
follows, given x at its head on tape 1 and e at its head on tape 2:
1. Convert e to fie).
2 Convert x to fle)x, and erase everything else

3 Operate according to the transition rules of M on mnput fle)x.
Let e, = fle;). Then by defimtion M, operates as follows on input x:

1 Wrte e, at the head on tape 2
2 Convert e, to fle,) = e

3 Convert x to eox
4

Behave like M on eyx.

Thus
x €LM,) ©epxr € L{M), TimeMen(x) = ¢ + Timey(eyx),

where ¢ is the number of steps used in writing e,, converting e, to e,, and writing e, in
frontofx. O

THEOREM 4. If T, is a runming time, then the following set difference contains a
language over {0, 1}:

NTIME(T,) — U{NTIME(T,)|there is some recursively bounded but strictly increasing
function f:N — N for which T,(f(n + 1)) € o(T(f(n)))}.2
Proor. Let T, be a running time, and let U be a TM acceptor with

L(U) = {ex|e € L, ,x € L(M,)},
Timeyfex) =< c.- Timey (x) fore €L, . ,x € L(M,),

where ¢, = 1 depends only on e, as in Condition 2. By Lemma 1, er(U) € NTIME(T,).
Let f:N — N be any strictly increasing function that is bounded above by some

3 The operator gap theorem [5, 31] shows that even results such as this are impossible without sor.ae
“honesty” condition on T, such as 1ts being a running time. For example, the operator gap theorem can be
used to show that there are arbitranly large, arbitrarly complex time bounds T for which NTIME(T(n))
equals NTIME(n-T(n + 1)), even though T(n + 1) 1s certamly a member of o(n-T(n + 1)).

.
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recursive function. We prove that L,(U) € NTIME(T,) for any time bound T,
satisfying T,(f(n + 1)) € o(T(f(n))).

Suppose that U, does accept Ly, (U) within some time bound T, satisfying T,(f(n + 1))
€ o(To(f(n))). By Lemma 1, U’ = U, U U accepts L(U, U U) = L(Up U L(U) = L, (V)
U L(U) = L(U), and

Ti(lex]) if ¢, - Timey (x) =< Ty(lex|),

Time,, = : .
vlex) c.- Timey (x) in any event

(1
fore € L,., x € L(M,). The second mequality holds since Timey(ex) = ¢, Timey(x)
by choice of U, and the first inequality holds because

Timey(ex) = c.* Timey (x) < Ty(|ex() = ex € Ly (V) = L(Uy)
> Timey (ex) < Ty(|ex|).

Note that when T(|lex|) < Timey (x) = T,(lex|)/c., the universal simulator U’ will
simulate the computation of M, on x faster than the computation runs directly; i.e. there
will be simulation time gain. Padding will enable us to exploit this extreme efficiency
even for longer computations. Using this 1dea recursively will lead below to a contradic-
tion of Corollary 2.1.

Let L C {1}* be any recursive language over {1}. Because L 1s recursive, we can take a
running time T:N — N so large that L € NTIME(T). Let M accept L within time T
Design a TM acceptor M’ that operates as follows:

1 _Check that the mput string 15 of the form ex(* for somee € L, ., x € {1}* Condition 1 guarantees that this
can be done 1n time proportional to the length of the input string

2 Use a clock for the running time T to determine whether k = T(|x|) This requires at most k steps, so 1t
certainly can be done 1n time proportional to the length of the input string

3 Ifk = T(|x|), then erase everything but x and compute on 1nput x according to the transition rules of M For
x € L(M), since Timey(x) =< T(|x|) < k. thss step, too, can be performed in time proportional to the length of
the input string

4 1If k < T(|x|), then pad the input string to ex0¥ for some nondetermnsstically chosen k' > k, erase
everything else, and compute on inputex(*’ according to the iransition rules of the universal simulator U’ This
step can be performed in ime proportional to the length of the padded input string ex0*' plus Tune,(ex0).
For some constant d,, we may summarize the behavior and timing of M’ as follows:
(i) M’ accepts only strings of the form ex0* fore € L, ., x € {1}*.
() If k = T(|x|), then
(a) ex0* € L(M') ©x € L(M),
(b) Timey(ex0*) < d,-[ex(¥| for ex0* € L(M’).
(iit) If k < T(|x|), then
(a) ex0* € L(M') & ex0*' € L(U') for some k' > k,
(b) Timey(ex0¥) < d,-|ex0*] + Time,(ex0*) for every k' > k.

Applying Lemma 3 to obtain a 2-tape TM that accepts L(M') with only a constant
factor time loss, and then applying the Recursion Theorem (Lemma 6) to this machine,
we get a program code e, for a 2-tape TM that accepts L(M,)) = {x0*|e,x0* & L(M")}
within time TlmeMen(xO") =< d,- Time,(e,x 0%) for some constant d,.

CrLam 1. For each string x € {1}*, the following holds for every k:
x0* € L(M,) &x € L(M).

Proor. For each x, we establish the claim by induction on k running down from k =
T(|x|) tok = 0.
k = T(jx}):
x0* € L(M, ) ©eox0* € L(M') (by choice of e;)
&x € LM (by (ii-a)).
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k < T(|x|): Assume x0¥ € L(M,,) & x € L(M) holds for every k' > k. Then

x0F € LM, ) ©epx0F € L(M') (by choice of e,)
S eox0F € L(U') for some k' > k  (by (iii-a))
©x0F € L(M,) forsome k' >k (becausee, € L)
Sx € L(M) (by induction hypothesis). O

Cramm 2. For each sufficiently long string x € L(M), TimeMeD(x) = To(f(|eox])).

ProoF. Letd; = c,d,-(d, + 1). By the “translational” hypothesis T,(f(n + 1)) €
o(TAfn)), ds T(f(n + 1)) = Ty(f(n)) for every sufficiently large n. Let x € L(M) be
so long that d,- T,(f(n + 1)) = T,(f(n)) for every n = |eyx]|.

Assumig we could show

Time ;r(eox 07100z i+D-lecl) < T (f(legx| + 1)),
we could reason as follows:
TimeMeo(x) = d, - Timey(eox) (by choice of eg)
< d2'(d1'f('eox| + 1) + Timev,(eoxoﬂieoxl+1)—leox|))
(by (iii-b) since f(|egx| + 1) > |eox|)
= dy-(d;y-f(leox| + 1) + Ti(fleox| + 1))
= dy Ts(f(leox| + 1)
(since T, being a time bound implies f(leox| + 1) =< T,(f(leox| + 1))
= Ty(f(leox])) (because x is so long).
To prove
Timeyeox0le+0-1e0zl) < T (f(legx| + 1)),
we prove more generally that
Timevf(eox()“")_'e"”') = Tl(f(n))
for every n = |e,x|. We do this by induction on n running down from n = |e,x| so large
that f(n) = |eox| + T(|x]) ton = |egx|.
n = |egx| and f(n) = legx| + T(|x)):

ceo-TimeMeq(xOf(”"'eof') < ¢, dy Timey (eex0/™~'%7 1) (by choice of e)

= ¢, dydy-fln) (by (ii-b))

=d,-Ty(f(r + 1)) (since f(n) < f(n + 1)
= Ti(fln + 1))

= T (f(n) (because n = |eox|).

Therefore Timey (e,x0%®-Teot) < T\ (f(n)), by (1).

leox| = n = f(n) < |egx| + T(Jx|): Assume Time,deex0/ V-l oxly < T\ (f(n + 1)). Then
Ce,’ TimeMeo(xO"""'W') = ¢, dy Timey(eox0™~102)  (by choice of eo)
S o, dy (dyfln + 1) + Timeygox(Fmt01e0x 1))
(by (iii-b) since f(n + 1) > f(n))
S, dy (dy-fin + 1) + To(f(n + 1))
=d; T(f(n + 1)) (since f(n + 1) = Ty(f(n + 1))
= Ty(f(n)) (because n = |eox|).
Therefore Time(e,x(0 ™10y < T\ (f(n)), by (1). O
Finally, by Lemma 1, M, can be modified without time loss to reject padded inputs
(those not members of {1}*) and to quickly agree with M on short ones (those not
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sufficiently long for Claim 2). This gives a TM that accepts L = L{M) within time

To(f(leo| + n)) € O(ﬂ%n Tz(f(n’))) H

$0 L € NTIME( D, /<5, To(f(n"))) by Lemma 2. Since the latter time bound is recursively
bounded (because both f and T, are) and independent of the particular recursive
language L C {1}*, this contradicts Corollary 2.1. O

Example. For an arbitrary set A of nonnegative integers, let

_J1 if neA, _Jn if n€EA,
S(M)_{n if n€A; 8(2n+1)—{1 if n€A.

To see that NTIME(n2- §(n)) & NTIME(n?), just apply Theorem 4 with

;i nea,
f(")‘{zn+1 if nEA,

so that 8§(f(n + 1)) = 1 for every n.

In many applications 1t suffices to have Theorem 4 for the single function f(n) = n,
especially if we are concerned only with nondecreasing time bounds.

CoroLLaRY 4.1. If T, is a running time, then

NTIME(T,) — UNTIME(T)|Ts(n + 1) € o(T2(n))}

contains a language over {0, 1}.

The informal diagram in Figure 2 illustrates how the proof of Theorem 4 uses padding
to take advantage of deeply nested simulations by U’ to bring the time for an arbitrary
computation down to the vicinity of T, and T in the case f(n) = n of Corollary 4.1. The
direct computation on x, up around the level of T(|x[}, is brought down to below T, in
terms of the input length by padding x out to x07!V, By the hypothesized nature of U’,
simulating that computation brings its tme down to below 7. If we unpad by a single 0,
then the hypothesis that T,(n + 1) is small compared to T,(n) keeps the computation still
below T in terms of the input length. A simulation by U’ of this computation onx(T(#P-1
brings s time down to below T,. Continuing to nest alternating unpaddings and
simulations finally yields a computation on the original input string x down at the level of
T, and T,.

The “translational” condition Ty(n + 1) € o(T,(n)) of Corollary 4.1 is a severe one for
a rapidly growing running time 7,. When T,(n + 1) is worse than exponential in T,(n), in
fact, deterministic downward diagonalization within time bound T, (Theorem 1) yields
stronger results than does Corollary 4.1. Because Corollary 4.1 applies for Ty(n + 1) €
0(T5(n)) and Theorem 1 applies for log Ty(n) &€ O(T,(n)), Corollary 4.1 contributes new
results precisely when log Ty(n + 1) € o(T.(n)).

To see the strength of Corollary 4.1, let

2
log*n = min{k|2; = n}.
k
For constants ¢ > 1 and r = 1 whose digits in radix notation can be generated rapidly,
and in particular for rational ¢ and r, note that n”, n™-log*n, n”- (log*n)?, c*, c*-log*n,
etc., are running times. Thus we conclude that

NTIME(n") ¢ NTIME(n"-log*n) & NTIME(n"-(log*n)?) & ... ,
NTIME(c") & NTIME(c*- log*n) & NTIME(c"- (log*n)?) & ... .

These results do not follow immediately from Cook’s result (Theorem 3) or by
diagonalization (Theorem 1).

It is interesting to note that the containments corresponding to the examples above
are not known to be proper for deterministic time (DTIME). The fundamental reason
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- pad
<— unpad

T2
} speedup by simulation
x,T(x|N
[ ]

number of steps

o (x,T; (|x])), approx
X x0O x0? .. xOTUxh-1 L aTlxD)

Fic 2. Intuitive proof of Corollary 4 1

is that Lemma 3 is not known for DTIME. If that lemma were known for DTIME,
then downward diagonalization would give generally stronger results for DTIME than
would the proof of Theorem 4 anyway.?

Corollary 4 1 obviously implies that

NTIME(2") & NTIME(Q2®+". Jog*s), NTIME(2*") & NTIME(2*""" - log*n).
In fact we can strengthen these results to
NTIME(2") £ NTIME(2#+7") NTIME(2?") & NTIME(2:""),

by appeal to the following corollary.
CoroLrary 4.2. If T, is a running time, then

U {NTIME(T)|T\(n + 1) € O(Tx(n)), Ti(n) € o(Ty(n))} & NTIME(T),),

and there s a language over {0, 1} that bears witness to this fact.
Proor. Because T,(n) € o(To(n)) implies T,((n + 1) + 1) € o(Ty(n + 2)), Corollary
4.1 gives a language L C {0, 1}* in

NTIME(T,(n + 2)) — UINTIME(T,(n + 1))| Ty(n + 1) € O(Tx(n)), Ti(n) € o(T(n))}.
Applying Lemma 5 with

“In the hght of Lemma 3, another point of view s that our results separate the nondetermimistic time
complexity classes determined by k-tape TMs, for any fixedk = 2 W J Paul has shown recently [22] that
separation results as strong as our examples do happen to hold for the analogous deterministic classes
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I, = {Tll Tin + 1) € O(T(n), Ti(n) € o(To(n))}, T, = {Tz},
pin)=n+1, pyn)=n+2,

we conclude that either p,(L) or p,(L) is a member of
NTIME(T,) — U{NTIME(T))| T\(n + 1) € O(T:(n)), T1(n) € o(Tx(n))}.

Containment holds by Lemma 2 O

Remarks. (i) Lemma 5 goes through equally well if we pad to the left rather than to
the right. For this remark, therefore, we may assume that p(L) = {0*1x|x € L, |0*1x| =
pijx]} fori = 1, 2 above.

For U the universal simulator of Condition 2, Lr,,,(U) serves as a witness language
for Theorem 4 and Corollary 4.1. One might naturally suspect, therefore, that Ly,q,(U)
would be a witness language for Corollary 4.2 as well. In the proof of Corollary 4.2, L =
Ly,ms+2(U) satisfies the condition for choosing L. If we shightly modify our program
coding by concatenating a single 1 in front of each old program code and if we let V be
the naturally derived new universal simulator, then we do get Lp (V) =1
Lp, (V) = {Ix|x € Lpui(V)} = py(L). Similarly, if we further concatenate a 0 in
front of each program code and let W be derived from V by taking this into account,
then we get Ly, (W) = 01:Lyp,gy0(U) = py(L). Yet we can show only that either
Ly, (W) or Ly, me1(V) is a witness to Corollary 4.2. We do not know whether there is
necessarily a witness language of the form L, ,(U) and whether the particular choice
of program coding and universal simulator U affects whether Lp,(U) is such a
language.

(i) Corollary 4.2 contributes new results (over Theorem 1) precisely when
log To(n + 1) € O(T,(n)).

3. Separation by Unary Languages

Padding strings over a one-letter alphabet by one symbol at a time does not leave them
decodable; so we cannot hope to use our method to get a result as strong as Corollary 4.2
for languages over a one-letter alphabet. Our final theorem, Theorem 5 below, demon-
strates that we can come very close, however.

Definition. The rounded inverse of a strictly mcreasing function f:N -—> N is the
function [f~']:N — N defined by

[f)n) = mn{k|f(k) = n}.

Examples.
function rounded inverse
2" [logon]
2
22 log*n
\v‘
n

LemMA 7. Let g:{0, 1}* — N — {0} be the bijection which maps each binary word x
to the integer whose binary representation (high-order bu first) is 1x. For f:N — N realx
time countable > define h:{0, 1}* — N inductively by

hix) = {f(g(x)) +gx) + 1 if xus not of the form y0,
rGy) + [f11(G))  ofx =y0.
Then h 1s an injection, and a deterministic TM can compute 1"® from x or x from 14®
within time 2-h(x).

* A strictly increasing function f N — N 1s real-ume countable [30] if some determimstic Turing machme
generates the charactenstic sequence of the range of f in real ume (1.e one character per step). (The
characteristic sequence has a 1 m position n if n 1s 1n the range of f and a 0 otherwise.)
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Proor. In the case that neither x nor x’ is of the form y0, we have
h(x) = h(x") only ifx = x’

because g is an injection andf(n) + n + 1 is strictly increasing. In the case thatx = y0 and
x’ = y'0, we have

h(x) = h(x) only if h(y) = h(y’)

because n + [f~t|(n) is strictly increasing. Unless there are strings x = y0 and x’ not of
that form with i(x) = h(x’), therefore, h must be an injection. For such strings to exist,
the ranges of the strictly increasing functions f(n) + n + 1 andn + [ f~'])(n) must intersect.
For every n, however,

f) + [f1(fn)=fin) + n <fln) +n + 1
<(f) + 1) + (n + 1) = (fn) + D) + [FYfln) + 1);

so the ranges are disjoint and % is an injection.

By the constant-factor speedup technique of [11] and Lemma 2 above, it remains only
to prove that a deterministic TM can perform the indicated converstons within time
proportional to the indicated time.

Let us first consider the conversion of an arbitrary string x0¥, where x 1s not of the
form y0, to 12=™_ A deterministic TM can first compute 19® by converting the binary
integer 1x to unary. It can do this in time proportional to g(x) = h(x) = h(x0%). Because
f is real-time countable, the deterministic TM can then compute 17%®” within time
proportional to f(g(x)) = h(x) = h(x0*). The machine can then combine these interme-
diate results to get 1% = 1e@N+a@+1 gtjl] within time proportional to h(x) = h(x0%).

The final conversion to 1™ is slightly more difficult. One way to compute 1<%
from 1@ and 0* is to generate and use a table of the values of [ f~1] at arguments up to
h(x0*~1). (Find the value [f'](h(x)), compute 12 = [h@+ 0N find the value
[f (7 (x0)), compute 1H*0» = [r@OH @D, erc) Since ARxO') — h(x0) =
[ 1(h(x0)), sequential storage of the values in the table would make it easy to go from
the h(x0¥)-th value i (i = [f1(h(x0"))) to the A(x0*+!)-th value: Just skip to the ith
following value. Successive values of [f-1] differ by at most 1; so a table of one-bit
values actually suffices, the nth bit (n = 0, 1, 2, ...) telling whether [ f~!] increases at
argument n + 1, and the number of positive bits preceding bit n therefore being equal
to [ f~](n). This table 1s just the characteristic sequence of the range of f; so it can be
generated in real time. The skipping can be done in linear time (in the number of skips)
by maintaining, on a separate tape, a unary count of the number of positive bits
preceding the currently scanned bit of the table. Thus 1*=® can be computed from
1= within time proportional to k(x0%).

Before we describe the reverse conversion, observe that n + [f'}(n) is a strictly
increasing function of n and that n + [f~'](n) > n if and only if n > f(0). For each n >
J(0), it follows that there is at most one n' for whichz’ + [f*{n") = n and that any such
n' must satisfyn > n' > f(0). For eachn, > f(0), therefore, there is a unique sequence

ne>n>-->n>m=0
such that
n+lfm) =n_forl=sisk, m+[fllm<n<@m+1)+[fNn+1).
Since [ f~1m + 1) — [f~']n) € {0, 1}, the latter pair of inequalitfes implies
[ + 1) = [f*lem) =1

and hence
fAf"m)) = m.

By the pair of inequalities, therefore,
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ne =m + [fm) + 1 = f[f"n)) + [f]om) + 1.

By definition, therefore, n, = h(x0) if [f'l(m) = g(x) for x not of the form y0.
Conversely, if

ny =< f(0) or

(no > f(0) &[f~'Ym) = 0) or

(o > f(0) &[f11(m) > 0 &[f-1}(m) = g(y0)),

then n, must not be in the range of . (If n, were equal to h(x0¥) for x not of the form y0,
then we would have

no = hix) = f(gx)) + glx) + 1> f(0),

and the unique sequence for n, would have to be

h(x0%), h(x0F-Y), ..., h(x), flgx)).)

To determine whether ng 1s in the range of £ and to calculate h~*(n,) if it is, it
therefore suffices to execute the following program:

1 Check whether n, > f(0) If not, then halt, h~*(n,) does not exist

2. Calculate the length k and the end m of the sequence starting at n,

3 Check whether [ f~'](m) > 0 If not, then halt; A~%(n,) does not exist

4 Calculate x = g~ '({ f'1(n))

5 Check whether x 15 of the form y0. If so, then halt, A~'(n,) does not exist. If not, then h7%(ny) = x0%.

Trivially, a deterministic TM can execute steps 1, 3, and 5 in time proportional to n,. It is
straightforward to execute step 4 in time proportional to m < n,. It remains only to
describe how a deterministic TM can execute step 2 in time proportional to 7.

The TM for step 2 starts by counting up to position n, of the table of bits used above in
the encoding process. It records in unary the number of positive bits passed in the
process; this number is [ f~11(n,). Given position n, in the table and [ f-*1(n,) in unary, the
TM finds the next position in the sequence by skipping to preceding positions p in the
table until eitherp + [f~')(p) = n, (in which casep = n,,) orp + [ f1l(p) < n, (in which
case p = m). (One or the other certainly must occur for some p = 0.) Substituting
[£(p) = If*I(n,) — (the number of positive bits reached while skipping) gives the
termination condition (n, — p) + (the number of positive bits reached while skipping) =
[f~')n,); i.e. the skipping should continue until the number of skips, plus the number of
positive bits reached while skipping, equals or exceeds [ f~'l(n,). It follows that the next
table position in the sequence and the corresponding value of [ f~1] can be found in time
proportional to the number of skips necessary. Therefore the length k and the endm of
the entire sequence can be determined in time proportional to n,, as required. O

THEOREM 5. If T, is a running time and f is real-time countable, then there is a
language over {1} in

NTIME(T,) — U{NTIME(T))|T:(n + [ n)) € o(T(n))}.

Proor. Let T, be arunning time, and let f be real-time countable. We start with U as
in the proof of Theorem 4; i.e.

L(U) = {exle €L, ., x € LM,)},
Timey(ex) < c,-Timey, (x) for e €L;., x € LM,

where ¢, = 1 depends only one. To adapt the earlier proof, however, we must construct
a witness language as the T, cutoff of some other “universal simulator” V having input

alphabet just {1}. It is to this end that we define an injection £ :{0, 1}* — N from f as in
Lemma 7.

From U we construct V to operate as follows on inputy € {1}*:

1 Fmndx with 1%® = y if 1t exists
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2. Compute on x according to the transition rules of U

By Lemma 1, Ly, (V) € NTIME(T,). We prove that Ly, (V) € NTIME(T,) for any time
bound T, satisfying T,(n + [f(n)) € o(T,(n)).
Suppose that V; does accept L (V) within some time bound T, satisfying Ty(n +

[f)#)) €Eo(Tx(n)). ByLemma 1, V' =V, U Vaccepts L{V, U V) = L(V)) UL(V) = L,
(V) U L(V) = I(V), and

T, (h(ex)) 1 2-h(ex) + c. - Timey, (x) < Ty(h(ex)),

4 A 1Her)) <
Timey (1%¢2) = {Z-h(ex) + ¢, Timey, (x) in any event

fore € L,,, x € L(M,). From V' we construct U’ to operate as follows on inputx €
{o, 1}*:
1. Compute 1/,
2 Compute on 1%® according to the transition rules of V’
Then L(U') = {x|1"® € L(V')} = {x|1*® & L(V)} = L(V), and
Timey(ex) = 2-h(ex) + Timey.(1%¢%)
- ] 2-hiex) + Ty(h(ex)) if 2-hlex) + c,-Timey (x) =< Ty(h(ex)),
~ | 4-h(ex) + ¢, Timey (x) in any event

fore € L,., x € L(M,).
For any recursive L C {1}*, we can use U’ as in the proof of Theorem 4 to get a 2-

tape TM acceptor M, for {x0*|x € L, k € N}, with

d- (eox(]kl ifk = T([x D,

H K
Timey, (x0%) S{d- legx0%+1| + d- Timey(eox0¥+1) ifk < T(x])

for some sufficiently large constant d and some appropriate time bound T.
CLAM. For each sufficiently long string x € L, TimeM%(x) = Ty(h(eex)).

Proor. Let x € L be so long that
(2 + ¢, 4d) - Ty(n + [ f11(n)) < Toln)
for every n = h(eyx). Then certainly
4d - T (h(eox0)) = 4d - T (h{eox) + [ f~(h(eox))) = Ty(hleox));
so it suffices to prove TimeMen(x) < 4d-Ty(h{eox0)). In fact we prove by induction on k
running down from k = T(|x|) to k = 0 that
TimeMeo(xO") < 4d - Ty(h{eox 0FFY)).

k = T(|x]): Using the facts |y| = h(y) = T,(h(y)) fory = egx 01, we have
TimeMea(xO") =d-|egx0*| = 4d - Ty (h(eox 0Ft1)).
k <T(|x|): Assume TimeMeo(xO"“) <= 4d - T, (h(egx0¥*2)). Then

2-hlegx0F**) + ¢ TimeMeo(xO’““)
=< 2-h(eox0F*") + c,, - 4d - Ti(h(eox 05%))
= 2-h(eox 0**1) + c,, - 4d- Ty(h(eox OFY) + [f~11(h(eox 05*1)))
= (2 + cqp-4d)- Ti(h(eox 05*) + [f~11(h(eox 0F*1)))
< Ty(h(e,x 0F1)).
Therefore

Timeyleox 1) < 2-hlegx 05+Y) + Ti(h(egx0F™)) < 3- Ty(h(e,x 0FFY)).



Separating Nondeterministic Time Complexity Classes 161

Therefore

TimeM%(x(}") = d-leex 0| + d - Timey(egx 05 +1)
=d-|egx 0| + 3d - Ty(h(eox 05")) =< 4d - Ty(hlegx 05*1)). i

By Lemma 1, M,, can be modified without time loss to reject padded inputs. This
gives a TM that accepts L within a time bound of O3, <enT»(h(x))); so L €
NTIME (2/<;.T2(h(x))) by Lemma 2. Since the latter time bound is recursively bounded
and independent of the particular recursive language L C {1}*, this contradicts Corollary
2.1, 0O

2

Example. Taking fin}) = 2> , we get a language over {1} in NTIME(2”-log*n) —

2"
NTIME(2").

4. Open Questions

1. For T, a running time, is the condition T, & O(T,) enough in general for separation
between NTIME(T,) and NTIME(T,) or between DTIME(T,) and DTIME(T,)?

2. Is there an actual difference between the separation results that hold for NTIME
and those that hold for DTIME? Is DTIME@®? & DTIME(n?-log log n)? Is
NTIME(2®") & NTIME(22"" /log*n)? Is there a language over a one-letter alphabet in
NTIME(22"") — NTIME(22")?

3. What 1s the relationship between NTIME and DTIME? Does NTIME(T) =
DTIME(T)?

4. That a language L 1s not a member of NTIME(T,) means only that every acceptor
M for L has Timey{x) > T,(|x|) for strings x € L of infinitely many lengths. Stronger
senses of lower bounds, requiring that Time,(x) > T,(|x|) for strings x € L of all but
finitely many lengths or for all but finitely many strings x € L, have been studied
extensively (see [2, 18, 10], for example). It is known, for instance, that there is a
language L that requires more than 2'*' many steps deterministically on almost every
string x € L but that can be accepted within time (2 + ¢)* for any € > 0. Our methods
do not give such results for nondeterministic acceptance time complexity; so we leave it
open whether there is a language L € NTIME((2 + ¢)") that requires, even on
nondeterministic machines, more than 2'#' steps on inputs x € L of all but finitely many
lengths or on all but finitely many x € L.

5. A purely technical question arising from Theorem 4 is whether we can allow f to
range over all one-one functions rather than just over strictly increasing recursively
bounded ones. A plausible proof strategy is to design M’ in the proof of Theorem 4 so
that, in the case k < T(|x|}, 1t pads or unpads ex 0* to ex0*' for some nondeterministically
chosen k' # k. Under this strategy, however, even Claim 1 seems to elude proof.

6. What is the relationship between determnistic time complexity and number of
worktapes?

7. What is the relationship between time complexity and worktape alphabet size?
(Compare [25] or [27] on the relationship between space complexity and worktape
alphabet size.)

8. Is there any language in NTIME(T,) that requires more time than the language
Lz,(U) m the proof of Theorem 4?

9. In the conclusion of Lemma 5, can we exhibit a single language that must
definitely belong to M{NTIME(T,)|T, € J,} — U{NTIME(T)|T, € J}? (Compare
Remark (i) following the proof of Corollary 4.2.)

Appendix. Downward Diagonalization
In this Appendix we prove Theorems 1, 2, and 2'. We proceed less formally than above,
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not explicitly stating the conditions our program codes must satisfy.

THEOREM 1. IfT, is a running time, then each of the following set differences contains
a language over {0, 1}

() DTIME(T,) — U{DTIME(T))|T, & O(T\log T))},

(i) DTIME(T,) — U{NTIME(T )|log T, & O(T,)},

(@) NTIME(T,;) — U{DTIME(T)|T, & O(T,)}.

Proor. Let T, be a running time. For (i) and (ii), we use the construction of [11,
12]. Let LB, C {0, 1}* be the set of program codes for deterministic 2-tape TM
acceptors having input alphabet {0, 1}. First we design a deterministic TM acceptor U
with

L(U) = {ex|le € L., ex € L(M,)},
Timey(ex) < c.- Timey (ex) for e €LY, ex € L(M,),

where ¢, depends only on e. Then we design another deterministic TM acceptor M 'to
accept the complement of Ly (U) in time T,. (This uses the closure of DTIME(TS)
under complements. Because it is not known whether NTIME(T,) 1s closed under
complements, we cannot reason analogously with nondeterministic TM acceptors.)

(i) Let T, satisfy T, /€ O(T\log T,), and suppose L(M) € DTIME(T;). According to
[12], there is some e € L2, such that M, accepts L(M) within time c¢- T,log,T, for
some constant ¢. Since T, /€ O(T.log T,), we can take x € {0, 1}* so that
ce-¢-Ty(lexiog, Ty(fex|) = Ty(lex|). Then

ex € L(M) > ex € L(M,)
> ¢, Timey (ex) < ¢, ¢ Ti(lex|)log.Ti(lex|) = Tx(lex|)
>ex € Ly (V)
>ex € LM

and also
ex € LUM) > ex € 1, (V) C (V) S ex € LM,) = L(M).

This contradiction establishes L(M) & DTIME(T;). Therefore L{M) € DTIME(T,) —
U{DTIME(T))|T; & O(T,log T)}.

(ii) Let T, satisfy log T, & O(T}), and suppose L(M) € NTIME(T,). By straightforward
simulation, there is some e € L2, such that M, accepts L(M) withmn time ¢™ for some
constant c. Since log T, & O(T,), we can take x € {0, 1}* so that ¢, c7¢™ < Ty(lex]).
Then

ex € LIM) = ex € L(M,)
> c.- Timey (ex) < c.-c™1e™) < Ty(jex|)
>ex € Ly (V)
>ex € (M)

and also
ex & (M) > ex € Lp(U) C L(U) > ex € LIM,) = L(M).

This contradiction establishes L(M) & NTIME(T,). Therefore L(M) € DTIME(T,) —
U{NTIME(T,)|log T, €& O(T})}.

For (iii), we make use of the simulation techmque of [4] (Lemma 3 above). We
assume familiarity with the proof sketch above of Lemma 3. Recall that the simulation
involves guessing a sequence of displays and actions and then checking it (deterministi-
cally) for one of three outcomes: not a legal computation, legal computation without
acceptance, legal computation with acceptance. The TM acceptor M which we design
expects an input of the form ex, with e now a program code for an arbitrary (multitape)
deterministic TM acceptor M, having input alphabet {0, 1} that halts only to accept. On
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such an input, M performs the (nondeterministic) Lemma 3 simulation of M, on ex. If
the guessed sequence involves exactly | To(lex|)/|e|} actions by M, and the outcome is
“legal computation without acceptance,” then M accepts ex, and this is the only way M
accepts its input. Since M, is deterministic and halts only to accept, it follows that

ex € (M) © Timey (ex) > [Ty(|ex])/|e]).

(Recall that, by convention, Timey (ex) == if ex & L(M,).)

Assuming we do not choose unusually succinct program codes, M can guess and
check in Tyf|ex|) steps any display and action sequence involving only |Ty(lex])/|e]]
actions by M,. Since T, is a running time, checking whether the number of actions is
exactly | T»(|ex|)/|e|] also requires only T,(|ex}) steps. Therefore L(M) &€ NTIME(T)).

Let T, satisfy T, & O(T,), and suppose some deterministic TM acceptor M, accepts
L(M) within time T,. Since T, & O(T,), we can take x € {0, 1}* so that | T.(|ex])/le|] =
T,(Jex|). Then

ex € L(M) = Timey (ex) > |To(lex|)/|e|] = Ti(lex[) = ex € L(M,) = L(M),
and also
ex & L(M) > Timey (ex) < |Tolex|)/|e|] < © > ex € L(M,) = L(M).

This contradiction establishes L(M) & DTIME(T,). Therefore L{M) € NTIME(T,) —
UDTIME(T, |T,) € O(Ty}. O

THEOREM 2. If T, is a running time, then each of the following set differences
contains a language over {1}

(i) DTIME(T,) — U{DTIME(T,)|T\log T, € o(T,)},

(i) DTIME(T,) — U{NTIME(T)|T, € o(log T,)},

(uii) NTIME(T,) — U{DTIME(T)|T, € o(T,)}.

Proor. Let T, be a running time. To adapt the proof of Theorem 1, we make use
of the function g:{0, 1}* — N defined in Lemma 7 so that the binary representation of
the integer g(x) is 1x. We design a deterministic TM acceptor U with

L(U) = {17¢®|e € L], 1#¢® € L(M,)},
Timey(17¢#) =< ¢, Timey (17¢®) for e € L}., 19¢® € L(D,),

where ¢, depends only on e. Then we design another deterministic TM acceptor M to
accept {1}* — Ly (U) in time T,.

(1) Let T, satisfy T,log T, € o(T,), and suppose L(M) € DTIME(T,). According to
[12], there is some e € L2, such that M, accepts L(M) within time ¢ - T,log, T, for some
constant c¢. Since T,log T, € o(T,), we can take x € {0, 1}* so long that
ce ¢~ Ty(glex))log,T(glex)) = Ty(glex)). Then

19(81') (= L(M) $ 19tex) = L(Me)
> .- Timey, (17°¢2) = ¢, -c - Ty(glex)og,T(glex)) = Tx(g(ex))
$ lo(e.r) [ L'I'Z(U)
3 lg(ea:) @ L(M)

and also

q9tex) é L(M) $ joen) ]42((‘[) C L(U) $ 19ter) = L(Me) = um

This contradiction establishes L(M) & DTIME(T,). Therefore L(M) € DTIME(T,) —
U{DTIME(T)|Tylog T, € o(T,)}. For part (ii), similarly, I(M) € DTIME(T,) —
U{NTIME(T))|T, € o(log T»)}.

For (ui) as for part (iii) of Theorem 1, we make use of the technique of [4] to design
the nondeterministic TM acceptor M. The acceptor M expects an input of the form
192 with e now a program code for an arbitrary (multitape) deterministic TM
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acceptor M, having input alphabet {1} that halts only to accept. On such an input, M
calculates ¢ and then performs the (nondeterministic) Lemma 3 simulation of M, on
192, If the guessed sequence involves exactly | To(g(ex))/| e}] actions by M, and the
outcome is “legal computation without acceptance,” then M accepts 19¢®, and this is
the only way M accepts its input. It follows that

192 & L(M) < Timey (17¢?) > | T(glex))/| e|].

Since M can calculate ¢ from 19°® in time proportional to g(ex) = T,(g(ex)), it follows as
in the proof of Theorem 1 (iii) that L(M) € NTIME(T,).

Let T, satisfy T, € o(T,), and suppose some deterministic TM acceptor M, accepts
L(M) within time T,. Since T, € o(T,), we can take x € {0, 1}* so long that|T,(g(ex))/| e]]
= T(g(ex)). Then

196 € L(M) = Timey, (1) > | T(glex)/|e|) = Ti(glex)
> e & LM, = L(M)

and also

19 ¢ (M) = Timey (19°®) = | Ty(g(ex))/| e[| < =
> 19 € L(M,) = L(M).

This contradiction establishes I{M) & DTIME(T,). Therefore L(M) € NTIME(T,) —
U{DTIME(T))|T, € o(T,)}. O

THeoreM 2'. If T, 1s a runming time, then each of the following set differences
contains a language over {1}:

() DTIME(T,) — U{DTIME(T))|T, is a running time, T, &€ O(T\log T))},
() DTIME(T,) — U{NTIME(T)|T, is a running time, log T, € O(T,)},
(@) NTIME(T,) — U{DTIME(T)|T, is a running time, T, & O(T)}.

Proor. We make use of the technique of [20] to further adapt the proof of
Theorem 2. Let T, be a running time. Then we can design a deterministic TM acceptor
M which halts on every mput and which operates as follows on input 1™

1 Check in |T,y(n)) steps whether T,o(n) = 2n. If not, then halt without accepting the mput and without
canceling any integer (see step 2).

2 Fori=1,2,3,. ,|log, Txn)], successively, do the following:
a. Spend [T.(n)/2'] steps reviewing the computations by M on as many of the shorter mputs 1, 1%, 13, ...,
1*% as time permuts, trying to discover whether M cancels ¢ (in step 2b) on some shorter mput (The
standard Recursion Theorem [23] makes 1t possible for M to review its own computations. Efficiency will
not matter here.)

b. If 1 was not discovered to have been canceled on some shorter 1nput, then spend | Ty(n)/2!] steps trying
to discover whether the ith determmistic 2-tape TM acceptor (in some fixed effective enumeration of
these machines) accepts 1* Do this by performing a simulation of the ith machine in the usual manner, so
that no more than ¢, ¢ steps are required to simulate ¢ steps, where ¢; depends only on :. If a halt 1s
discovered 1n the simulated computation, then differ from the outcome, cancel i, and halt

3. If this step 1s reached, then halt without canceling any nteger and (arbatrarily) without accepting the
mput

By design, M accepts within time
Tyn) + 2 2-Ty(n)/2' = 3-Ty(n),
=1

so L(M) € DTIME(3T,). Because of step 1, x € L(M) implies To(|x]) = 2|x|.
Therefore the constant-factor speedup technique of [11] and Lemma 2 above yields
L(M) € DTIME(T,).

(i) Let T, be a running time that satisfies T, € O(Tjlog T,), and suppose L(M) €
DTIME(T;). According to [12], there is some deterministic 2-tape TM acceptor M’
that accepts L(M) within time ¢ - T\log, T, for some constant c. Because T is a running
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time, we can assume that M’ halts even on inputs x &€ L(M') within ¢ T,(|x[Mlog, T,(| x})
steps. Suppose that M’ is the kth machine in our fixed effective enumeration of
deterministic 2-tape TM acceptors. For each j < k, let

0, if j never gets canceled;
f(j) = { the number of steps it takes to discover (by the review procedure used
in step 2a) that j gets canceled, if ) does get canceled.

Since T, & O(T,log T,), we can take n so that T,(n) = 2n; every integerjy < k that gets
canceled gets canceled on some input shorter than 1*; [T,y(n)/2*] = f(j) for every j <
k; [To(n)/2%] = ci-c-Ti(n)log, Ty(n). Consider the computation by M on input 1* for
this #. Since T,(n) = 27, M gets by step 1 Since every integerj < k that gets canceled
gets canceled on some input shorter than 17 and [T,(r)/27] = [T,(n)/2*] = f(j) for each
such j, M does discover the cancellation of each such j in the execution of step 2a for i
= j. Therefore M does eventually go on to stage i = k. If M does not discover in step
2afori = k that k itself is canceled on some shorter input, then M finally tries to cancel
k. Since M’ halts on mput 1 within ¢:T,(n)log,T,(n) steps and [T,(n)/2¥] =
¢k ¢ Ty(n)log:T,(n), M does cancel k in this case. In either case, therefore, k gets
canceled on some mput 1. But then 1 € L(M) & 1¥ & L(M'). This contradiction
establishes L(M) & DTIME(T,). Therefore L(M) € DTIME(T,) — U{DTIME(T))|T, is
a running time, T, & O(T,log T,)}. For part (ii), similarly, L(M) € DTIME(T,) —
U{NTIME(T)|T, is a runmng time, log T, & O(T,)}.

For (ii1), we make use of the technique of [4] to design a nondeterministic TM
acceptor M which is quite similar to the determimstic TM acceptor designed above. M
will halt in every computation on every input In at most one of its computations on
each input, M will cancel an integer before halting; 1n all other computations, M will
halt without canceling any integer and without accepting the input. On input 1*, M
operates as follows:

1 For:i=1,2,3, ,|log,T,n)), successively, do the following
a Spend |Ty(n)/2'] steps deterministically reviewing all the computations by M on as many of the shorter
mputs 1, 1%, 13, , 1! as time permuts, trymg to discover whether M cancels i 1n some computation on
some shorter input

b If: was not discovered to have been canceled on some shorter input, then spend | T»(n)/2'] steps trymg
to discover whether the rth determimustic (multitape) TM acceptor (i some fixed effective enumeration of
these machines) accepts 1* Do this by performmg the (nondetermimistic) Lemma 3 sunulation of the ith
determimstic multitape machine, so that no more than c, ¢ steps are required to simulate (1.e guess and
check) each computation of length ¢, where ¢, depends only on : If an entire halting computation 1s
simulated, then differ from the outcome, cancel 1, and halt If an incomplete but legal computation 1s
stmulated and there would have been msufficient tune to guess and check a longer computation, then just
continue 1 the loop of step 1 (Because the simulated machine 1s deterministic, the discovery of such a
maximal computation ndicates that : 1s canceled 1n none of the computations on 1" ) Otherwise, halt
without canceling any integer and without accepting the mput (Because an illegal or nonmaximal
computation has been simulated, the integer : might be canceled in some other computation on 1* )

2 1If this step 1s reached, then halt without canceling any integer and (arbitranly) without accepting the
mput

Note that, since each simulated machine above 1s deterministic, there is a unique
computation by M on output 1* which never reaches the “otherwise” in step 1b. Call
this the main computation by M on input 17, Since only a main computation can lead to
cancellation or acceptance, cancellation of the integer ; on the input 1* will guarantee
that M does disagree with the ith deterministic multitape machine on input 17,

By design, L(M) € NTIME(3T,), and NTIME(3T,) C NTIME(T,) by Lemma 2. On
the other hand, let T, be a running time that satisfies T, & O(7T,), and suppose some
deterministic TM acceptor M’ accepts L(M) within time T,. Because T, is a running
time, we can assume that M’ halts even on mputs x € L(M’) within T,(jx]) steps.
Suppose that M’ is the kth machine in our fixed effective enumeration of deterministic
(multitape) TM acceptors. For eachj < k, let
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0, if j never gets canceled;
f(j) = { the number of steps it takes to discover (by the review procedure used
in step la) that j gets canceled, if j does get canceled.

Since T, &€ O(T,), we can take n so that every integer j < k that gets canceled gets
canceled on some input shorter than 1%; |Ty(n)/2¥| = f(j) for everyj < k; |Ty(n)/2¥] =
¢ Ty(n). Consider the main computation by M on input 1* for this », implicitly
ignoring all other computations. Since every integer j < k that gets canceled gets
canceled on some input shorter than 1* and | T,(n)/2'} = | T»(n)/2¥] = f(j) for each such
Jj» M does discover the cancellation of each such j in the execution of step la fori = j.
Therefore M does eventually go on to stage i = k. If M does not discover in step 1a for
i = k that k itself 1s canceled on some shorter mput, then M finally tries to cancel k.
Since M’ halts on input 1* within T,(n) steps and [T,(n)/2*| = ¢,- Ty(n), M does cancel
k in this case, in its main computation. In erther case, therefore, k gets canceled on
some input 1*). But then 1n’ € L(M) < 1¥ & L(M’). This contradiction establishes
(M) & DTIME(T),). Therefore L(M) € NTIME(T,) — U{DTIME(T,){T, is a running
time, T, € O(T)}. 0O
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