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ARIADNE: PATTERN-DIRECTED INFERENCE 
AND HIERARCHICAL ABSTRACTION IN 
PROTEIN STRUCTURE RECOGNITION 

The macro-molecular structural conformations of proteins exhibit higher 
order regularities whose recognition is complicated by many factors. 
ARIADNE searches for similarities between structural descriptors and 
hypothesized protein structure at levels more abstract than the primary 
sequence. 

RICHARD H. LATHROP, TERESA A. WEBSTER, and TEMPLE F. SMITH 

ARIADNE’ was developed as a hierarchical pattern- 
directed inference system for the ill-structured prob- 
lem area of protein structure analysis. The system 
(ARIADNE) identifies the optimal match between a 
given complex pattern descriptor and genetic (protein) 
sequences annotated with various inferred properties, 
by abstracting intermediate levels of structural organi- 
zation. Inference is grounded solely in knowledge de- 
rivable from the primary sequence, and exploits such 
weakly inferred properties as secondary structure pre- 
dictions and hydrophobicity. The proposed aminoacyl- 
tRNA synthetase alignment and functional domain 
identification shown below is new and was found using 
this system with an hypothesized descriptor. 

’ Ariadne was the Cretan princess who gave Thesus a ball of thread. by which 
he found his way out of the Labyrinth after slaying the Minotaur. 
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There are many situations in which a detailed low- 
level description encodes, through a hierarchical orga- 
nization, a recognizable higher-order pattern. For ex- 
ample, in the micro-world of VLSI integrated circuits, 
transistors are organized into inverters, inverters into 
register cells, register cells into register banks, and so 
on up to microprocessor. Another example occurs in 
board games such as chess, where a low-level descrip- 
tion of which pieces occupy what positions encodes 
high-level descriptions such as “queen-side attack,” 
through intermediate levels such as “pawn supports 
knight.” Or again, one sub-problem in vision research 
involves the organization of low-level features such as 
“red patch, ” “curved edge,” or “corner” into identifiable 
objects, and the situation of these objects into scenes. 
The common theme to these and other examples is 
that a few primitive types of low-level features encode 
a complex higher-order pattern by forming complex 
relationships with other low-level features. 

Recognition of a hierarchical organization from low- 
level detail proceeds most naturally by hierarchical 
construction of the intervening patterns. Each instance 
of a pattern, when recognized in a low-level descrip- 
tion, becomes available as a feature element for higher- 
order patterns. In this way a justifiable pyramid of in- 
ferences, each of manageable complexity, may connect 
the low-level features to the more abstract. 

Hierarchical organizations and patterns also permeate 
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Id. Tertiary Structure lc. Super-secondary Structure 
A purely hypothetical genetically engineered molecule. Lac- A typical mononucleotide binding fold structure (taken from 
tate Dehydrogenase domain I is shown spliced between Lactate Dehydrogenase domain I). P-sheet strancls are indi- 
Hexokinase domains I and II. cated by arrows, a-helices by spirals. 

lb. Secondary Structure 
A typical n-helix (residues 40-51 of the carp muscle calcium- 
binding protein). The helical coil passes along the backbone 
chain (darkened) with a periodicity of 3.6 to 3.7 residues. 

la. Primary Structure 
An amino acid, phenylalanine (three-letter code Phe, one- 
letter code F). Spheres represent atoms and rods represent 
chemical bonds. The alpha carbon is indicated by an ‘*‘. The 
backbone is darkened. 

The primary sequence is the linear chain of amino acids; it 
determines the helices, sheets and turns of secondary struc- 
ture; the super-secondary groupings of these into biochemi- 
tally active sites; the tertiary three-dimensional structure of 

the entire protein; and the quaternary structure of multipro- 
tein complexes which sometimes form. These figures have 
been adapted (by permission) from a quite lucid presentation 
of protein structure by Richardson [36]. 

FIGURE 1. Protein Organization 
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the natural world. The organization of the biopolymers, 
proteins, is an important example. Proteins consist of 
tens of thousands of atoms in an ordered spatial ar- 
rangement of high inherent complexity. Protein struc- 
ture, the focus of this study, has a number of identifia- 
ble hierarchical levels: the primary sequence of amino 
acids; locally regular secondary structure foldings of 
the primary sequence; groupings of these into super- 
secondary structures; the larger functional domains; 
overall three-dimensional tertiary structure; and occa- 
sionally quaternary structure of multi-protein com- 
plexes (see Figure 1 and the next section). Greatly com- 
plicating their analysis: protein three-dimensional 
structure is usually unknown; the processes by which 
amino acids form higher-order structures is poorly 
understood; pattern matching to known structures is 
inherently inexact due to mutations and various ge- 
netic rearrangements; patterns of interest are usually 
described only in terms of higher levels of organization; 
the applicable domain theory is incomplete, mostly 
heuristic, and incapable of directly predicting the de- 
sired higher-order groupings: and only weak and unre- 
liable knowledge sources are available for feature gen- 
eration at the lower levels of hierarchy construction. 
Kolata [ZZ] terms the problem of inferring protein struc- 
ture from protein primary sequence, “cracking the sec- 
ond half of the genetic code.” 

PROTEIN STRUCTURE 
“Genes are why we aren’t cats.” This simple truism 
expresses the fact that within the DNA sequence are 
encoded the instructions for building and regulating all 
biochemical hardware in living organisms. Proteins are 
one of the most important classes of encoded mole- 
cules. Each protein is a string written in a twenty- 
character alphabet of amino acid molecules. Enzymes 
are the proteins which control biochemical reactions, 
and thus indirectly most biological activity. Under- 
standing biological activity requires an understanding 
of protein function, and this in turn is intimately linked 
to protein structure. A quite lucid exposition of basic 
protein structure is given by Richardson [36]. The gen- 
eral problem of inferring protein structure from pri- 
mary sequence is summarized by Kolata [22]. The 
reader already broadly familiar with molecular biology 
may skip to the next section. 

The protein string folds up in solution into a compli- 
cated globular three-dimensional shape, directly deter- 
mined by the specific linear string of amino acids [2] 
(primary sequence, Figure la). Regions of the primary 
sequence which fold into locally regular arrangements 
(cY-helices, P-sheet strands, and &turns) are termed sec- 
ondary structures (Figure lb). Groupings of these often 
compose higher-order folding patterns known as super- 
secondary structures (Figure IC), which are less well- 
defined than the secondary structures. Enzymatically 
active sites (often cavities) may be composed of super- 
secondary structures, or may occur between larger 
protein sub-units known as domains. The full three- 
dimensional arrangement of the protein is termed ter- 

tiary structure (Figure Id). Occasionally multi-protein 
complexes assemble, forming quaternary structure. 

The three-dimensional shape of a protein directly 
determines its biochemical activity. At enzymatically 
active sites the local surface structure conforms closely, 
like a glove to a hand or a lock to a key, to one or more 
of the chemicals involved; where a few key local amino 
acids influence the reaction. This enzymatic catalysis 
may result in a reaction occurring over a million times 
faster than in the absence of the protein. Location of 
active sites or cavities is important both for understand- 
ing the basic biochemistry of a protein and also for 
genetic engineering, which may be used to alter or 
combine sites to make a more effective pharmaceutical 
or a more useful industrial enzyme. 

A protein’s primary sequence can be easily discov- 
erd,’ in contrast to full tertiary structure determination 
from X-ray crystallography which is difficult and slow 
(if possible at all). Frequently the only structural infor- 
mation available about a potentially interesting protein 
is its amino acid sequence (Figure 2a), and this will 
increasingly come to be the case in the future due to 
advances in sequencing technology. Although the pri- 
mary amino acid sequence contains all the information 
necessary to specify the complete three-dimensional 
structure (Figure 2b), the determinants of protein struc- 
ture and function are unfortunately very poorly under- 
stood [22]. Quantum mechanics provides a solution in 
principle, but the computation is impractical for large 
proteins [26]. 

PREVIOUS PATTERN MATCHING 
In the absence of rigorous and tractable domain theory, 
prediction and exploration of protein structure are 
often approached by methods which compare primary 
sequences (reviewed by Waterman [41] and Sankoff 
[si’]). Proteins with a substantial amount of primary 
sequence similarity invariably have similar functions 
and higher-order structures [lo], with active sites 
found in corresponding regions. When part of a poorly- 
understood biological sequence is found to be similar in 
some respects to another better-understood one, an 
analogical3 inference may map knowledge from the bet- 
ter understood case. These similarities have often had 
important and unexpected ramifications, as when hu- 
man growth hormones were found to be similar to an 
oncogene (cancer related gene) [12]. 

Computer approaches to comparing biosequences 
have included finite-state grammars, regular expression 
matching, measures of “edit distance,” exact string 
matches, and metric similarity measures [37, 411. Most 
are designed to apply equally well to either the protein 
amino acid alphabet or the DNA nucleotide alphabet. 
These approaches have led to important advances, but 

‘Often indirectly, by determining the DNA sequence of the gene encoding the 
protein’s amino acid sequence. 

3 Or homological. A homology is a similarity which arises from shared evolu- 
tionary history. 
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TQVAKKILVTCALPYANGSIHLGHMLEHIQADVWVFIYQRMRG 
HEVNFICADDAHGTPIMLKAQQLGITPEQMIGEMSQEHQTDF 
AGFNISYDNYHSTHSEENRQLSELIYSRLKENGFIKNRTISQLY 
DPEKGMFLPDRFVKGTCPKCKSPDQYGDNCEVCGATYSPTEL 
IEPKSVVSGATPVMRDSEHFFFDLPSFSEMLQAWTRSGALQEQ 
VANKMQEWFESGLQQWDISRDAPYFGFEIPNAPGKYFYVWLD 
APIGYMGSFKNLCDKRGDSVSFDEYWKKDSTAELYHFIGKDI 
VYFHSLFWPAMLEGSNFRKPSNLFVHGYVTVNGAKMSKSRGT 
FIKASTWLNHFDADSLRYYYTAKLSSRIDDIDLNLEDFVQRVN 
ADIVNKVVNLASRNAGFINKRFDGVLASELADPQLYKRFTDA 
AEVIGEAWESREFGKAVREIMALADLANRYVDEQAPWVVAK 
QEGRDADLQAIAQWGINLFRVLMTYLKPVLPKLTERAEAFLN 
TELTWDGIQQPLLGHKVNPFKALYNRIDMRQVEALVEASKEE 
VKAAAAPVTGPLADDPQDGCGRHDRVVDSGSK 

The 581 amino acid sequence for E. coli methionyl-tRNA Figure 2b. ARIADNE’s inferences are grounded :solely in 
synthetase [50]. This encodes the same information as knowledge derivable from similar primary sequences. 

FIGURE 2a. Protein Primary Structure (One-Letter Residue Abbreviations) 

have typically suffered from one or more of: failure to 
handle sequence element degeneracies: lack of a hier- 
archical organization in both pattern and biosequence 
representation; an inflexible description language 
framework; and especially, difficulty in using hypothe- 
sized secondary structure predictions (or other weak, 
unreliable knowledge sources). The dynamic program- 
ming biosequence comparative methods [41] are cur- 
rently used for finding similarities between various 
biosequences. Advances included the easy accommoda- 
tion of partial similarities, inexact matches, and arbi- 
trary length gaps. While the semantics of partial simi- 
larity used in these approaches are desirable, most of 
the problems mentioned above remain. 

PLANS [l, 91 is a rule-based expert system success- 
fully used to look for turns, and pioneered the use of a 
flexible recursive hierarchical pattern-matching lan- 
guage developed specifically for biosequences. PLANS 
was important because it showed the power and utility 
of a symbolic pattern descriptor. However, though the 
pattern definitions were hierarchical, the protein repre- 
sentation was not, making it difficult to exploit the sec- 
ondary and super-secondary level information. Also, in- 
ference was based on exact matches to rule antecedents 
formed from regular expressions. 

Gascuel and Danchin [18] successfully applied ma- 
chine learning techniques to construct primary se- 
quence descriptors which discriminate between prokar- 
yotic (E. coli) and eukaryotic (human) signal sequences 
of exported proteins. They demonstrated the biological 
utility of procedurally-defined primitive descriptors, as 
well as induction of appropriate descriptors directly 
from data. (For a discussion of artificial intelligence and 
molecular biology see Friedland [16].) 

Hayes-Roth et al. [2O] are exploring a constraint- 
based approach to inferring the protein three-dimen- 
sional structure directly. This approach is not directly 
comparable with ours because the inferences are not 
derived solely from primary sequence information (the 

NMR used requires complex equipment and analysis), 
and because a specific active site is not identified 
(rather, many possible tertiary structures are returned). 
However, the initial results are interesting. 

THE BENEFITS OF ARIADNE 
The major limitation of current biosequence compara- 
tive methods is that they require substantial primary 
sequence similarity in order to make inferences about 
protein structure. Although similar primary sequences 
generally indicates a similar folded conformation, the 
converse does not usually hold [25]. The problem oc- 
curs because secondary and super-secondary structures 
are important in forming required spatial configura- 
tions, but do not often exhibit recognizable primary 
sequence patterns. PLANS [l, 91 and the method of 
Gascuel and Danchin [18] partially address this by 
allowing more complex patterns of primary sequence 
elements. ARIADNE facilitates direct expression and 
manipulation of higher-order structures, allowing direct 
use of secondary structure predictions and thus a 
search for similarities at a higher level than primary 
sequence. 

A biologist first hypothesizes a protein structure of 
interest (see Figure 3a) based on biochemical knowl- 
edge. This three-dimensional structure is “unfolded” to 
form a pattern descriptor as a sequence of primary and 
secondary structure elements [Figure 3b). It is often 
convenient to describe this in terms of hierarchical 
groupings (Figure 3~). ARIADNE receives as input the 
pattern descriptor and also the protein primary se- 
quence (Figure 4a) overlaid with predicted secondary 
structures (Figure 4b). ARIADNE’s biological structure 
knowledge is encoded in a number of pattern/action 
inference rules: an antecedent which describes a rela- 
tionship between structural elements, and a consequent 
which hypothesizes the presence of a higher-order 
structure (see Figure 5). The rules solely address struc- 
tural organization, with as yet no “expert rule-of- 
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thumb” knowledge of general biochemical heuristics. 
The target protein is searched for regions which are 
plausibly similar to the rule antecedent. When the rule 
fires its consequent typically creates a new entry in the 
overlay of predicted structures (compare Figures 3c, 4c, 
and 5 for the Gly + helix). The new entry can enable 
the firing of subsequent rules, allowing a justified pyra- 
mid of manageable inferences to support the final hy- 
pothesized structure (Figures 4c-e). 

The power of pattern-directed inference (e.g., rule- 
based expert systems) is well known [ll, 401, as is its 
applicability to molecular biology [IS]. One of the first 
such systems ever constructed (DENDRAL [28]) also 
performed the task of chemical structure recognition. 
However, we allow flexible rule invocation based on a 
controllable degree of partial pattern similarity. This is 
implemented by an A* search [45] through the space of 
target protein subsequences. Much of our framework 

The three-dimensional form of E. soli methionyl-tRNA synthe- 
tase as depicted in Zelwer et al. [50) (by permission). Tertiary 
structure is available for only one other synthetase (6. sfear- 
ofhermophilus tyrosyl-tRNA synthetase). Only the (Y carbon 
main chain atoms are shown. Square markers depict 

the “nucleotide binding domain.” By focusing on the page 
while looking at infinity, it is possible to visually align the 
images stereoscopically. Alternatively, stereoscopic glasses 
may be employed. 

FIGURE 2b. Protein Tertiary Structure (Stereoscopic View) 
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for abstraction manipulation comes from research into 
precedent-based inference [46, 471, clich6s [35], and or- 
ganization of active agents into hierarchies and other 
computational structures [31]. 

ARIADNE is implemented in Lisp on a Symbolics 
3600.4 Design and construction of the basic research 
environment required roughly nine person-months of 
collaborative effort between a molecular biology do- 
main expert and an artificial intelligence researcher. 

’ A trademark of Symbolics. Inc 

p-sheet strands are represented by arrows, a-helices by cyl- 
inders, and p-turns by angular bends. 

FIGURE 3a. Schematic of the Yononucleotide Binding Fold- 
like Structure 

The first p-strand/p-turn/n-helix/p-strand sequence will form 
the basis of the structural descriptor used in this paper. Key 
amino acids have been labeled. 

FIGURE 3b. The Mononucleotide Binding Fold Unfolded into a 
Linear Sequence 

It is often convenient to be able to describe a structure in 
terms of intermediate levels. 

FIGURE 3c. The Unfolded Mononucleotide Binding Fold as 
Hierarchical Groupings 

PREDICTING SECONDARY STRUCTURE 
Lacking the ability to perform a full quantum mechani- 
cal minimum energy analysis of all atoms as a function 
of their three-dimensional positions, the knowledge 
sources which connect the primary sequence to predic- 
tions of secondary structure cY-helices, p-strands, and 
P-turns, are necessarily uncertain heuristics. Because 
the “best” indicators of secondary structur’e have surely 
not yet been developed, ARIADNE is designed to ex- 
ploit a wide variety of potential sources: 

(1) 

(4 

(3) 

(4) 

Complex primary sequence patterns which repre- 
sent secondary structure elements (for example, 
hierarchical regular expressions in PLANS [I, 91). 
Output from any of several ancillary secondary 
structure prediction programs, discussed below. 
Transforms of the primary sequence into a different 
representation, such that observable low-level fea- 
tures in the new repesentation are expected to be 
correlated with secondary structures (for example, 
hydropathy and hydrophobic moment profiles [13, 
231). 
Biochemical tests which indicate secondary struc- 
tures experimentally (for example, NM:R-based 
approaches [ZO]). 

In actual practice we try to use two or more sources, to 
increase predictive accuracy. 

For purposes of the discussion in this paper, however, 
the secondary structure cy-helices, P-strands and /?- 
turns were predicted solely by the ancillary program 
PRSTRC [34] based on the Chou and Fasman pseudo- 
probabilities [7]. There are several semi-empirical, heu- 
ristic methods for predicting secondary structure from 
primary sequence [7, 17, ,271 and tertiary structure from 
secondary structure [8, 321. The accuracy of most sec- 
ondary structure prediction methods is only about 50- 
70 percent for cY-helices and P-strands, and about 90 
percent for p-turns, when compared to X-ray deter- 
mined structures. The Chou and Fasman method of 
pseudoprobabilities appears to indicate a 10~1 possibility 
for secondary structure formation. Multiple overlapping 
predictions (which are mutually inconsistent) are often 
generated, but unfortunately without the ability to ac- 
curately choose between them. We set the PRSTRC pa- 
rameters to optimally predict the actual secondary 
structures in the two synthetases with known tertiary 
structure. We also retained all multiple predictions. 
Thus if a given secondary structure actually does exist 
in the protein, it is quite likely to be predicted; but, 
many spurious predictions are generated as well (see 
Figures 4a-b). 

Input to ARIADNE consists of the primary sequence, 
any secondary structure predictions, and patterns de- 
scribing the structure of interest. The primary sequence 
forms protein target objects, initially in a linear chain5 

5 Observe lhat different micro-worlds would imply different organization. e.g. 
for VLSI structures the underlying relationship is topological connectivity 
rather than linear chain [%I. 
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FIGURE 4e. E. cofi Ile-RS (residues 48-99 of 939 residues) 
(Final prediction constructed by ARIADNE. No other instances 

of Mononucleotide-binding-fold are predicted.) 

llbf-tai I 
flbf-tai I ilbf-tai.1 

A 
DCHG 

FIGURE 4d. E. coli Ile-RS (residues 48-99 of 939 residues) 
(Intermediate predictions constructed by ARIADNE) 

FIGURE 4c. E. coli Ile-RS (residues 48-99 of 939 residues) 
(Intermediate predictions constructed by ARIADNE) 

FIGURE 4b. E. coli Ile-RS (residues 48-99 of 939 residues) 
(Chou & Fasman predictions 17, 341 input to ARIADNE) 

FIGURE 4a. E. coli Ile-RS (residues 48-99 of 939 residues) 
(Primary sequence input to ARIADNE) 

FIGURE 4. Hierarchical Inference in ARIADNE 

November 1987 Volume 30 Number II Communications of the ACM 915 



Articles 

(Figure 4a). This is immediately overlaid with addi- 
tional target objects (Figure 4b) representing secondary 
structure predictions. Thereafter ARIADNE manipu- 
lates pairings consisting of a pattern p and a group of 
target objects It,, . . , tn). Each pair m = (p, it;)) repre- 
sents an hypothesis that the group of target objects it,) 
supports (or is similar to) the pattern p as parameter- 
ized. The pair m has an associated measure, g(m), of the 
similarity of p to [ti}. Typically, a single new target 
object is created for each pair showing a positive simi- 
larity (Figures k-e). 

Viewed from top-to-bottom, the added target objects 
impose a hierarchical organization. Viewed from Ieft- 
to-right they impose a lattice structure because of the 

partial ordering, “followed-by,” inherited f.rom the un- 
derlying linear chain. Pattern recognition consists of 
exploring alternate pathways through the lattice struc- 
ture. For example, in Figure 4b the target object repre- 
senting the first Iysine (the first “K” in “G K T F . , .I’) 
may be followed either by a threonine object (“T”) or 
by an object representing a P-strand prediction. The 
p-strand object, in turn, may be followed e:ither by a 
histidine object (“HI’) or by a p-turn object. This permits 
structural elements (at any level) to be manipulated 
and searched as a unit, independent of their actual 
length or composition, in a way that is difficult or 
impossible in most existing biosequence analysis 
approaches. 

(defpattern Glyfhelix "Gly, f, helix" 
(pattern 

'(a-helix 
(near-front-of-prev 

:search-for 
((G :score-if-mismatched ,-infinity) 

(or :amino-acids (C K H N Q R) 
:score-if-mismatched ,-infinity)) 

:start-offset -5. 
:stop-offset +5.))) 

(action '((abstract-group)))) 

(defpattern MBF-LEADER "Introductory structures'* 
(pattern 

'(b-strand 
(allow-overlaps :max-overlap 1.) 
(spacer :min 0 :max 4) 
b-turn)) 

(action '((abstract-group)))) 

(defpattern MBF-CORE "Center Gly-thelix, strand" 
(pattern 

'(Gly+helix 
(allow-overlaps :max-overlap 3.) 
(spacer :min 0 :max 11) 
b-strand)) 

(action '((abstract-group) 
(record-in-buffer}))) 

(defpattern MBF-TAIL "Trailing key amino acids" 
(pattern 

'((D :score-if-missing -.5) 
(spacer :min 2 :max 2) 
(G :score-if-missing --.333))) 

(action '((abstract-group)))) 

(defpattern MONONUCLEOTIDE-BINDING-FOLD "Hypothesizt?d MBF" 
(pattern 

'(MBF-LEADER 
(spacer :min 3 :max 3) 
MBF-CORE 
(spacer :min 0 :mgx 11) 

MBF-TAIL)) 
(action '((abstract-group) 

(record-in-buffer) 
(expunge-overlaps)))) 

These would typically be written by the users of the system, creating patterns using primitives defined for them 

FIGURE 5. Composite Pattern Type Definition 
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PRIMITIVE AND COMPOSITE PATTERNS 
The pair m = (p, it,)) is treated differently depending on 
whether p is a composite or a primitive pattern. Com- 
posite patterns (e.g., branch nodes of Figure 3c) are de- 
fined in terms of a pattern descriptor, which specifies a 
group of component objects and relationships. Primitive 
patterns are atomic (in the computational, if not the 
chemical, sense). 

Primitive patterns usually appear only as components 
in higher-order pattern descriptors. They include the 
twenty primitive amino acids and various classifica- 
tions (positively charged, hydrophobic, H-bond donors, 
etc.); several spacer, overlap, positioning, and contain- 
ment operators; primitive graph features such as peak, 
valley and slope; and so forth. Their match behavior is 
governed by attached procedures which directly in- 
spect and manipulate the target objects. Our overall 
goal is a declarative language of protein structure 
knowledge, but the ability to escape into procedural 
constructs facilitates exploration of which declarative 
forms may ultimately prove useful. 

Composite patterns (see figure 6) possess a pattern de- 
scriptor, which is a declarative representation of the 
lower-level features and relationships required as sup- 
port. A composite pattern is paired to a set of target 
objects by pairing each component of its descriptor to a 
subset. For example, suppose the pattern descriptor for 
p in the example pair m above were [p,, pz, p3]. Then p 
might be paired to It,, . . , t,l as follows: [(pi, ItI, f2f), 
(pz, lf3l)s (p3, It49 . . I Ll)]. 

Matches to an ideal pattern at any level will rarely be 
exact, due to mutations and various genetic rearrange- 
ments, thus a differential measure of partial similarity 
is used to gauge overall plausibility. For example, the 
“spacer” primitive pattern allows for two flanking target 
objects to be separated by several amino acids. A sepa- 
ration slightly outside the allowable range (perhaps a 
genetic insertion) incurs a similarity score penalty. The 
larger the separation the larger the penalty, reflecting 
the biological intuition that long insertions are some- 
what less likely than short ones. In our composite ex- 
ample, the similarity of p to (tI, . . . , t,], i.e. u(m), is 
computed recursively from a(pl, {tl, tZ)), o(p,, (f3)), 

and u(p3, b.. . , fnl). 

PATTERN INVOCATION ALGORITHM 
Because a small number of patterns are hierarchically 
organized, the choice of which rule to invoke is usually 
unproblematic. For a number of reasons, however, per- 
fect matches at any level are unlikely. The dominant 
problem becomes, not which rule to invoke, but to 
which bcations in the protein the rule most plausibly 
applies. We map the rule invocation problem into a 
search problem, and search for groups which are suffi- 
ciently similar to the antecedent pattern. 

The search for a differential similarity to a composite 
pattern consists of attempting to pair each component 
of its pattern descriptor to an admissible subset of target 
objects. A partial pairing, constructed at some interme- 
diate stage, might pair only some of the descriptor com- 
ponents. For a given composite pattern, ARIADNE’s 

search space is the set of all possible partial pairings. 
The single start node in this search space is the empty 
partial pairing, and goal nodes are complete pairings of 
all descriptor components. An operator which carries 
one partial pairing into its successors, is to expand the 
next unpaired descriptor component by hypothesizing 
pairings to every admissible set of target objects. By 
applying this operator first to the start node and then 
iteratively to resulting partial pairings, all complete 
pairings may be found. 

Since complete pairings are ordered by the similarity 
score c and only the higher-scoring ones are of interest, 
an efficient search strategy is desirable. The well- 
known A* search [45] efficiently accommodates differ- 
entially inexact similarities to a descriptor and tends to 
focus search effort on the most promising candidates6 
A* (see Figure 6) is a best-first branch-and-bound 
search with dynamic elimination of redundant pairings 
and an optimistic estimate of the contribution of the 
remaining unpaired descriptor components. (The elimi- 
nation of redundant pairings may optionally be sup- 
pressed.) Optimality and convergence are both guaran- 
teed. 

The key to A* search is in the selection of which 
partial pairing to expand. Each partial pairing has a 
“best possible score,” which is the highest score that the 
most favorable possible pairing of yet-unpaired descrip- 
tor components could ever yield. At each step the par- 
tial pairing with the highest best-possible-score is se- 
lected. If its best-possible-score is below the cut-off 
threshold the search can fail immediately, as no partial 
pairing could possibly exceed the threshold. Similarly, 
if it is a complete pairing, then no other partial pairing 
can ever complete to a higher score. Otherwise, its next 
unpaired descriptor is expanded and the algorithm iter- 
ates. It is possible to enumerate all complete pairings 
in decreasing order of similarity score, pausing and 
continuing the search at will. 

MONONUCLEOTIDE BINDING FOLD 
To illustrate the power of matching against secondary 
structure predictions, we present a novel proposed pro- 
tein alignment, found using this system, for the protein 
class of aminoacyl-tRNA synthetases. The proposed 
alignment agrees with the few existing alignments 
based on primary sequence similarities (or homologies) 
where such are known, and predicts novel alignments 
for some enzymes having no known primary sequence 
similarities. However, ARIADNE uses no primary se- 
quence similarities in constructing this alignment. 

The aminoacyl-tRNA synthetases help establish the 
rules of the genetic code, by mediating the translation 
of DNA to protein. They are responsible for attaching 
an amino acid to its corresponding tRNA, so that the 
tRNA can transfer the amino acid to a growing protein 
chain. It is known from co-crystal structures of the en- 
zymes plus substrate that the mononucleotide binding 

6However. other problem areas with different underlying properties could 
exploit search strategies closer to that area’s native structure. For example, 
hierarchical recognition in a well-structured problem area requiring only 
exact matches could employ a depth-first graph isomorphism search. 
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fold is involved in the binding of ATP and the amino 
acid [6]. 

The synthetases all bind similar substrates and all 
catalyze the same reaction [38], but have dissimilar 
primary sequences. A small region of six to eleven 
identical amino acids is known for four synthetases [43] 
(the tyrosyl-tRNA synthetase (TyrRS) from B. stearother- 
mophilus and methionyl-tRNA synthetase (MetRS), iso- 
leucyl-tRNA synthetase (IleRS), and glutamyl-tRNA 
synthetase (GlnRS) from E. coli), and this region is con- 
served in species variants. High-resolution X-ray crystal 

1. Form a queue of partial pairings, of 
pattern descriptor components to target 
object sets. Let the initial queue 
consist of the empty pairing having no 
descriptor components matched at all. 

2. Until the queue is empty, a complete 
pairing is reached, or the upper-bound 
estimate of the best possible score 
falls below cutoff: 

2a. If the first pairing is complete, 
or its best possible score falls 
below cutoff, do nothing. 

2b. If the first pairing has some 
unpaired descriptor components: 

2bl. Remove the first pairing 
from the queue. 

2b2 Form new pairings from the 
removed pairing by matching 
its next unpaired descriptor 
component to possible groups 
of target objects. 

2b3. Add the new pairings to the 
queue. 

2b4. Sort the queue by an UPPER- 
ROUND estimate of the best 
similarity score which could 
be achieved by the most 
favorable possible pairing 
of the remaining unpaired 
components, highest-scoring 
pairings in front. 

2b5. If eliminating redundant 
pairings and two or more 
pairings pair the same 
pattern component to the 
same group of target 
objects, delete all those 
pairings except the one that 
has the highest similarity 
score for the objects paired 
to that point. 

3. If a complete pairing has been found 
which is above cut-off threshold, 
announce success; otherwise announce 
failure. 

FIGURE 6. ARIADNE’s A’ Search Algorithm (this figure has been 
adapted (by permission) from Winston [45]) 

structures are available for only two of these enzymes 
(TyrRS and MetRS) [6, 501. These two show a common 
super-secondary structure incorporating the small iden- 
tical region: a 140 amino acid structure of nearly identi- 
cal folding which includes the mononucleotide binding 
fold (see Figure 3a). It has been of considerable interest 
to determine if this structure might also exist in the 
other synthetases, but the primary sequences are too 
dissimilar to support further inference. 

We hypothesized a pattern descriptor for the synthe- 
tase mononucleotide binding fold [6] (see Figures 3c 
and 7). This pattern (manuscript in press [44]) combines 
primary and secondary structure elements. It consists of 
three types of pattern elements (Figure 7a): secondary 
structure objects (elements 1, 3, 5 and 7); amino acid 
objects (8 and 10); and spacer (or gap) objects (2, 4, 6 
and 6). Secondary structures were hypothesized by the 
Chou and Fasman pseudoprobabilities 17, 341. Spacer 
objects indicate the minimum and maximum number 
of amino acids between the flanking objects before 
a penalty is imposed. Object 5 is an a-helix with the 
“Gly +” dipeptide-a Glycine (G) amino ac.id immedi- 
ately followed by an H-bond donor amino acid (C, 
K, H, N, Q, or R)-within four amino acids from the 
N-terminal (left] end of the a-helix. 

This pattern was input to ARIADNE together with 
the protein data consisting of the fourteen primary se- 
quences [3, 4, 14, 19, 21, 29, 30, 33, 39, 42, 43, 48, 491 
annotated with secondary structure predictions of (Y- 
helices, P-sheet strands, and p-turns [7, 341. A match 
was found once in twelve of the fourteen synthetases 
(Figure 7b). The unique match in the E. coli MetRS and 
the B. stearothermophilus TyrRS corresponded well to 
the regions of the mononucleotide binding fold detected 
in the X-ray crystal structures. The unique matches in 
the Ile-, Tyr-, Met-, and Gln-tRNA synthetases include 
the small known region of identical amino acids. Spe- 
cies variants of the same synthetase often exhibit strong 
homologies, presumably indicating similar tertiary 
structure. The pattern was found in the region of the 
E. coli TyrRS homologous to the known structure from 
B. stearothermophilus TyrRS. The two matches for the 
tryptophanyl enzymes (TrpRS) were also found in ho- 
mologous regions. No matches were found in a set of 
fourteen structurally representative control enzymes 
known not to bind mononucleotides. 

The aminoacyl-tRNA synthetase structure is the 
subject of ongoing research and analysis by molecular 
biologists. The example presented here is intended to 
illustrate the power and utility of the computational 
approach described in this paper, not to be a detailed 
biochemical analysis. Instead, it presents the most ped- 
agogical of several patterns we have explored. To con- 
form to the canons of science, a biochemical analysis 
would necessitate presentation of far more molecular 
biology than is appropriate for the intended audience of 
this paper. The technique would be calibrated against 
a functional group of proteins with known structure. 
A much larger set of control proteins would be anal- 
yzed in order to more conclusively characterize false- 
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OBJECT X 1 2 3 4 5 

a 
6 

E.coll fletRSt* [K I L U 1 C FIIIL P Y A N G]S I H]L GH M L E H IO A D U U U]R Y 0 R tl R G HIE U N F I CIA D@lA Ha 
1-- 

S.cercv. MetRS ~~SR~~~NNUPHLGNII~GSULSRDIFRRY]CKGR[NYNRLFIC~GT@IEY~ 

E.steer. TyrRSt 
lb=- 

FDBIDSLHI e]RrYRrp I AL U GIG R 1[13 

E.coli TyrRS P[I fl L Y C GjFm/Ll S L H L GH L(V P L L C L K R F 0 Q A G HIKIP U fl L V G]G R la 

E.cc.11 IleRS 5b- sIHIG~S~-~KGLSG~DSP~GU[LIJCH~ 

S.ccrev. IleRS pF!=‘m]F R 1 G 1 P HIY GH I L R S 111 K D[I U P R Y A 1 n T]G H H U E R R 

E.&tar. TrpRS M~~~SGI~CVITI~N Y]IGALROFUELQ]HHYNCYFCIUUUH]RIlUUQ]~PH 
4 

E.coli TrpRS P~SGR~~]ELlI~~~ YHGALRQUUKHoDD]Yl~qOH 
687 

E.coli GlyRS 
NIF 78 

IESKL-]I1 ~~RPRL~IDRE~~T~IIIIR 

E.coll HisRS SILT- LLYNQEQrmlGPtIF 
488 

E.coll AlaRS R[~[O~~lR E S G GQ Up-q fl]~UE~TQK 
251 

S.ccreu. GlnR.5 0?-uTnlFlP P E P N G YJL HrI GH S K A I r( U N]F G Y A K Y H N GrT C Y L qFaD 

b 

(a) Pattern for mononucleotide binding fold shown as a linear All boxed secondary structure objects were predicted by the 
string of pattern objects (see text for description). (b) Amino ancillary program PRSTRC [34], based on Chou and Fasman 
acid sequences (in the one-letter amino acid code) of the pseudo-probabilities [7]. 
regions which matched the mononucleotide binding fold pat- (**) The underlined amino acids are known by X-ray crystal 
tern with a positive similarity. The regions which correspond data [5] to form the first strand (object l), the turn (object 3) 
to objects 1, 3, 5, 7, 8 and 10 are boxed. The Gly and H- the helix (object 5) and the second strand (object 7) in the 
bond donor amino acid of object 5 (see text) are bold-faced. S. stear. TyrRS [6] and the E. coli Met% [50]. 

FIGURE 7. Proposed Mononucleotide Binding Fold Alignment of Aminoacyl-tRNA Synthetases 

positive behavior. Other predictors would supplement 
the Chou-Fasman pseudoprobabilities. New synthetase 
sequences, published since this paper was written, 
would be analyzed. The pattern descriptor would be 
further refined to include all relevant biological knowl- 
edge. These tasks have been performed and largely 
corroborate the initial results given here, but their 
presentation is beyond the scope of this paper. Detailed 
analysis of the molecular biology aspects of the amino- 

measure as an A* search [45]. This provides an effi- 
cient enumeration of match candidates, in order of 
decreasing similarity. 

(4) A flexible framework for pattern descriptor lan- 
guage development and extension. This is important 
because all the appropriate descriptor elements are 
surely not yet known. 

(5) Explicit identification and representation of the in- 
termediate hierarchy, which helps in several ways: 

acyl-tRNA synthetase mononucleotide binding fold 
functional domain will be published elsewhere [&I. 

(4 

POWER SOURCE 
The principle sources of power in ARIADNE are the 
following: 

(1) The ability to entertain multiple, unreliable, incon- 
sistent knowledge sources. Since no prediction 
scheme produces accurate predictions, any infer- 
ence procedure which vitally depended on the con- 
sistency of its database (e.g., some forms of theorem- 
proving) would be ineffective. 

(2) The use of a pattern-similarity measure to guide 
flexible invocation of inference rules. This conveys 

S.4 

(c) 

(4 

Many of the higher-order (super-secondary) 
structures of interest are most effectively 
expressed in terms of lower and intermediate 
levels of hierarchy (secondary structure 
groupings), and not directly at the lowest level 
of description. 
Handling patterns in small pieces encourages 
selective pattern refinement. 
Expressing patterns consisting of key residues 
embedded in secondary structures involves the 
interaction of different hierarchical levels. 
Breaking a large pattern into pieces increases 
search efficiency by reducing the potentially 
exponential time dependency on pattern size. 

a degree of robustness in the face of pattern fluctua- 
tions such as mutations. 

(3) Implementation of the rule-invocation similarity 

The approach presented here is limited to detecting 
similarities in patterns of known and/or predicted 
structural elements. To the extent that hypotheses of 
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interest can be expressed in the form of a structural 
pattern, ARIADNE provides a powerful and efficient 
vehicle for finding supporting regions in the target pro- 
teins. However, no use is currently made of primary 
sequence similarities (or homologies), which would pro- 
vide additional evidence for favoring some alignments 
over others. No direct use is made of three-dimensional 
spatial constraints (such as investigated by [ZO]). The 
secondary structure predictions remain inherently in- 
accurate, even though trade-offs can be made between 
reliability and coverage. No attempt has been made to 
encode or exploit “expert rule-of-thumb” knowledge of 
general biochemical heuristics. 

Construction of abstract organizational hypotheses 
implies that low-level features meet the additional con- 
straints imposed by higher-order patterns and relation- 
ships. These constraints take two forms: requiring a 
specified relationship with an element unambiguously 
present in the primary input (e.g., key amino acids): 
and requiring a specified relationship with other pre- 
dicted or inferred features. Importantly, in a hierar- 
chical pattern recognizer the structure imposed by 
higher-order patterns implies strong constraints on the 
admissibility and interpretation of low-level features, 
because those not fitting into a higher-level pattern will 
be dropped. A pattern acts to prune the (uncertain, 
heuristic, empirical) low-level features by selective at- 
tention, based on the strong constraint of fitting into 
higher-order organization (see Figure 4a-e). Low-level 
features will be interpreted in terms of the expectations 
encoded in the patterns being searched for. 

This has both good and bad aspects. When an intelli- 
gent agent (e.g., a biologist) hypothesizes and searches 
for the existence of a particular pattern based on sup- 
porting biochemical or circumstantial evidence, selec- 
tive feature attention extends that evidential support 
down to low-level feature selection, and features sup- 
porting the pattern will be propagated upward. When a 
large number of patterns are sought randomly in a large 
number of targets (as in a database search), then each 
pattern will impose its own selective bias and addi- 
tional confirming evidence should be sought. In either 
case, an important estimate of the false positive (resp. 
false negative) rate may be had by testing a control set 
known not to (resp. known to) actually satisfy the 
descriptor. 

SUMMARY AND FUTURE RESEARCH 
We have described a flexible pattern-action framework 
for the recognition of molecular biological structures. 
The micro-world is characterized by recognizable 
higher orders of organization obscured by a high degree 
of uncertainty and imprecision, and the general ap- 
proach should be applicable to similarly ill-structured 
problem areas. ARIADNE supports inexact but similar 
matches, direct representation of higher orders of orga- 
nization, the use of ancillary secondary structure hy- 
potheses, an extensible pattern-description language, 
and arbitrary actions on pattern invocation similar to a 
rule-based expert system. A novel proposed alignment 

of the aminoacyl-tRNA synthetases was found using 
this system. 

We expect this to be useful for continuing research in 
the fields of both molecular biology and machine learn- 
ing. Possible explorations in molecular biology include 
further investigation of patterns suspected to exist at 
the super-secondary level, as well as alternate inde- 
pendent sources of the low-level feature hypotheses. 
Possible explorations in machine learning include use 
of this system as an hypothesis verification mechanism 
for some other system which proposes hypothesized 
similarities. We are exploring automatic pattern discov- 
ery based on empirical regularities, but results are too 
preliminary to discuss here. 
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