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ABSTRACT A numerical method for solving polynomial equations ms presented Its basic module is a method. 
using Sturm sequences, for counting the zeros which lie m a given rectangle m the complex plane The method 
ms deflation-free, handles multiple complex zeros, and contains budt-m safeguards against buildup of  roundoff  
error 
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1. Introduction 
We present here a method  for finding the roots o f  polynomia l  equat ions  on a digital 
compute l .  The  algori thm is global, i.e. no initial guesses are required, and convergence,  at 
least as far as significant digits allow, is assured. It finds all roots, real and complex,  o f  
equat ions w~th complex coefficients, together with their multiplicities. N o  deflat ion is done  
as roots are found, for none is needed,  and the stability o f  working always with the ortginal 
po lynomia l  is thereby retained. The  operat ing t ime is O(n "J) for an equa t ion  o f  degree n, 
and the compute r  program is o f  just  modera te  length. An internal  check against loss o f  
significant digits is carried along automatical ly  (see Section 3.3). 

The  underlying idea is this: Suppose we have a method  of  count ing the number  o f  zeros 
o f  a polynomia l  P(z) inside an arbitrary rectangle R in the complex plane. We  can then 
begin with some rectangle R0, large enough to contain all o f  the zeros. R0 can then be 
subdivided into four  subrectangles R1, .. , R4. Next,  we count  the zeros reside each o f  the 
R, (, = 1, 4), and each R, which actually contains at least one zero is put  on a stack together 
with the number  o f  zeros it contains. Thereaf te r  we remove  a rectangle f rom the stack and 
treat It as R0 was treated, until  its size has shrunk sufficiently, at which t ime we can output  
its center  and the number  o f  roots in its interior. 

In Section 2 we give the mathemat ica l  basis for the method,  which is a procedure  based 
on the theory o f  Sturm sequences for count ing the exact number  o f  zeros o f  a polynomia l  
which lie inside a given rectangle in the complex plane. In Section 3 we describe the precise 
implementa t ion  o f  these ideas as a compute r  algorithm. Section 4 contains a discussion o f  
the precision which is at tainable by the method  as well as a numer ica l  example,  and in 
Section 5 we make some concluding remarks. 

These  ideas are related to other  methods  which are already known.  A recent method  o f  
Pmker t  [10] also uses Sturm sequences to determine regions which contain zeros. Our  
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implementation is qmte &fferent. Instead of  working with infinite strips and blquadrants,  
we work always with a rectangle and its four subrectangles, a feature which makes the 
logic quite simple and modular.  The interesting observation of  Pinkert that Sturmian 
methods end themselves to exact  rational arithmetic applies to our method also, and would 
lead to complete elimination of  roundoff  error, although we have not programmed this 
approach. 

Another  related circle of  ideas is due to Henncl  and his co-workers [2-5], who have 
implemented a construction of  Weyl [11] to yield a method which produces small circles 
which contain the roots of  a given equation by operating on all roots at once. Although the 
results are the same, that small regions containing the roots, the theory, and the practice 
are quite different from ours; our method, for example, is wholly unperturbed by multiple 
roots while theirs increases somewhat m complexity with the multiphclty. 

2. Mathematical  Basts 

In this section we show how to calculate the number  of  zeros of  a given polynomial  P(z) 
which lie inside a given rectangle R in the complex plane. The method is based on the 
argument principle, but it is a finite algorithm; more precisely, it is an O(n 2) algorithm, 
where n is the degree of  P(z). The circle of  ideas on which the method is based is classical, 
having been evolved in connection with the Routh-Hurwitz stablhty criteria (see [1]). 

LEMMA 1 (the principle of  argument). Suppose that no zeros o f  P(z)  lie on the boundary 
OR o f  R. Then f o r  the number o f  zeros N whwh he reside R we have 

N = N(P; R) ffi (1/2qr)AaR (arg P(z)). (1) 

Next we consider the computation of  the right-hand side of  (1) m the case of  a polygon 
R. For  this purpose we give: 

Definition. By the Cauchy index l ~R(x )  of a rear rational function R(x )  on the real 
interval [a, b] we haean I~R(x )  = N + - - N¥,  where N_ + (respectively N¥) denotes the 
number  of  points of  [a, b] at which R(x)  jumps  from -oo to oo (respectively oo to -oo). 

We shall relate the change in argument around the boundary of  a polygon R to the 
Cauchy indices of  a set of  rattonal functions, one for each side of  the polygon. 

Consider a point z whtch moves counterclockwise around OR, and the curve w = P(z) m 
the w-plane, which is the image of  OR under the polynomial  mappmg. We focus attention 
on the traversal of  a single bounding edge of  R, say that joining z = a to z = b by a straight 
hne, and we assume that P(z) is never zero on OR. 

As z moves from a to b we have z = a + (b - a)t (0 <_ t <_ 1), and so 

P(z) = P(a + (b - a)t) = ~ (ot~ + i[3~)f = Pn(t) + iPx(t). 

If  the image point P(z) crosses from the first quadrant  of  the w-plane to the second 
quadrant,  the real rational function Pt(O/PR(t)  will j ump  from + ~  to - ~ .  Likewise if  P(z) 
crosses from the third quadrant  to the fourth quadrant,  Pi(t) /PR(t)  also jumps  from + ~  to 
--00. 

Hence N¥ counts the number of  counterclockwise crossings of  the y-axis which the 
image curve makes as t goes from 0 to 1. Similarly N_ + counts the clockwise crossings, and 
N¥ - N -  + is the net excess of  the counterclockwise over the clockwise crossings as z 
traverses the edge ab. 

Next we sum the N¥ - N + _ around all edges of  the polygon, obtaining the excess of  
counterclockwise crossings of  the image curve around the entire #R. Then 

A~R arg P(z) = ~r ~ (N¥ - N-+), 
oR 

since each extra counterclockwise crossing of  the imaginary axis advances arg P(z) by ~r. 
This, with (1), proves 
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THEOREM 1. Let the complex polynomial P(z) have no zeros on the boundary o f  the 
polygonal regwn R, of  m sides. Then in the interior o f  R the number o f  zeros o f  P(z) Is exactly 

1 m 
N = N(P, R) = - ~  ,~1 I01 {p~D/p~)}, (2) 

where Io ~ ts the Cauchy index of  the real ratwnal functwn P~')(t)/P~(t) on the i-th edge o f  OR. 
Finally, following [1, 12], we describe the computation of  the Cauchy Index. 
Definition. A sequencefi, A ..... fp of  real polynomials is said to form a Sturm sequence 

for  a real interval [a, b] if 
(a) fp IS of  constant sign on [a, b], and 
(b) for each i ( 2  _< i _< p - 1) and each zero x* ~ [a, b] offfi(x) we have 

f,+l(x*)f,-l(x*) < 0. []  
The use of  Sturm sequences in calculating the Cauchy index is described by 
THEOREM 2. Let f i(x),  f2(x) . . . . .  fp(x) be a Sturm sequence for  [a, b], and let V(x) denote 

the number of  sign changes in this sequence at the point x. Then 

Iba(fz(x)/fi(x)) = V ( a ) -  V(b). (3) 

To summarize the ideas, then, let P(z) be a polynomial and R a rectangle in the complex 
plane. Let Q1, Q2, Q3, Q4 (Q5 = Q1) be the vertices of  R arranged in counterclockwise 
order around R. On side k of  R, containing Qk, Qk+a (k = 1, 4), we construct a Sturm 
sequence S, as follows: 

(i) Expand P(z) as a polynomial about the point Qk. Replace z by Qk + ik-xt, where t 
is a real variable (this takes the direction QkQk+a as the positive real axis, origin at Qk). Let 

n 

P(t) = ~ (o~ -I- ifl.)t v (a., fl. real O, = O, n)) 
v - O  

denote the resulting polynomial in t. Take 

fi(t) = a f ,  fz(t) = E flS.  (4) ~-0 riO 

(n) Construct a Sturm sequence whose first two elements are fi(t), Aft) by the usual 
negative-remainder algorithm 

ffi(x) = q,(x)f+l(X) - f+z(x) (t = 1, 2 . . . . .  p - 2), (5) 

in which each f,+2 is the negative remainder left after dividing fi by f,+~. The algorithm 
halts after finitely many steps withfo(x) = gcd(fi ,  f~), which is a constant under our 
hypothesis that P(z) has no zeros on the boundary of  R. 

(iii) Let Vk(t) denote the number of  sign variations in the kth Sturm sequence (k = 1, 2, 
3, 4) evaluated at the point t. The number of  zeros of  the polynomial P(z) which lie inside 
R is exactly 

N(P; R) = ~ (Vk(lQk+~ - Qkl) - vk(0)). (6) 
k- -1  

3. Algorithmic Implementation 

In this section we discuss the various phases of  a computer program which carries out the 
bisection procedure. We treat first a generic step in the calculation, second the start-up 
procedure, and third the termination criteria 

3.1 A TYPICAL STEP. We maintain a stack of  rectangles, each of  which contains at 
least one zero of  P(z). We suppose, recursively, that for each rectangle R on the stack we 
have stored the following information: 

(i) NZ, the number of  zeros of  P(z) which he reside R, 
(ii) COR, the northwest corner of  the rectangle R; 
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(iii) D l, D2, the length and breadth of  R; 
(iv) the Sturm sequences $1 . . . . .  $4 on the four sides of  R. 

These sequences are stored by storing the quotients qdx )  (i = l . . . . .  p - 2), which appear  
in (5) because then 2n or fewer registers suffice to store a sequence. Evaluation of  the sign 
variation function V(x) at a point x is done by reading the recurrence (5) backward, so 
that we l ind V(x) m O(n) operaUons. A complete description of  a sequence requires also 
its origin and its constant termf~, both of  which are stored. 

The information on the stack which relates to the next rectangle R is read into working 
storage. We locate the center z~ of  R, and divide R into four subrectangles through zc, 
numbered as shown below: 

COR 

I II 

ze 

Ill IV 

We form the Taylor expansion of  P(z) about zc, by means of  algorithm Taylor of  [9]. 
The Sturm sequence which governs the horizontal line through z,., with Re(zc) as its origin, 
is formed as in (4) and (5). We rotate the expansion 90 ° counterclockwise (i e. find the 
coefficients of  P(zc + it)), and repeat (4) and (5) to obtain the Sturm sequence which hves 
on the vertical line through z~, with Im(z~) as its origin. We have now all six of  the 
necessary sequences. 

F rom (6), translated to the correct origins, we can readily compute the number of  zeros 
inside each subrectangle I, II, III, and IV. Each one of  these four subrectangles which 
actually contains 1 or more zeros of  P(z) IS written on the stack, m the sense that the 
informaUon (i)-(w) above, all of  which is available m working storage, is placed on the 
stack. 

3.2 START-UP PROCEDURE. To begin the calculauon, we choose an mmal  square S, 
whose center is at a randomly chosen point in the unit square of  the complex plane and 
whose side length is a random number. We compute the number of  zeros reside S by the 
methods already described. I f  this number Is less than n, we double the side length and 
repeat. Otherwise we record the stack reformation described in Section 3.1, all of  which is 
available in working storage, on the stack, and proceed as described in SecUon 3.1. 

3.3 TERMINATION PROCEDURE. The stopping criteria are qmte interesting. The left- 
hand side of  eq. (6) is an integer; hence the sum which appears on the right-hand side must 
be an even number. I f  this should ever fad to happen, it must be that a loss of  significant 
digits in the calculaUon has introduced spurious sign changes into the Sturm sequences. 

Continuous monitoring of  the parity of  this sum provides an excellent check on loss of  
significance, as follows: The large rectangle R, from the stack, is subdivided into four 
subrectangles as descnbed above. All four of  the sums just  menUoned are checked for 
evenness. If  all are even we proceed as previously described. I f  one or more are odd we 
have lost significance, possibly because a zero of  P(z) lies on or close to the new lines of  
subdwision. 

Our  response ~s to rechoose the "center" zc of  the large rectangle R by selecting ~t at 
random in a suitable small zone which contains the true center 0t  is here that the rectangles, 
which had been squares, became nonsquare for the first time). We examine the four new 
sums to see if  they are even, and repeat this process up to three times, if  necessary, m an 
attempt to obtain four even sums. I f  we fail three times, we output the rectangle R and the 
number  of  zeros in its interior. Otherwise the calculaUon continues. Our experience is that 
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this allows about  an  addit ional  reduct ion by a factor o f  eight m the size of  the output  
rectangle over what  we would have obtained by stopping as soon as loss of  significance 
was found for the first time. 

Of  course, the calculation can also be halted when the rectangles become small enough.  

4. Accuracy ,  and  an E x a m p l e  

The method rehes on accurate evaluat ion of  P(z)  for its operation. Consider  a zero z* of  
multiplicity p. For  z near  z* we have P(z)  ~ cp(z - z*) p (cp # 0). Suppose further that we 
carry d decimal digits in our  calculation, and that K is the modulus  of  the largest coefficient 
o f  P(z)  about  the origin. 

If  it happens  that [cp(z - z*)" I < lO-dK, then we shall surely have lost all sigmficant 
digits in z*. Hence each such zero z* Is surrounded by a "fog zone" of  approximate radius 

R r ~  l O - a / P l g l c ,  I ' / ' .  (7) 

For  example, in a calculation which retains 16 digits, if we assume that )K/cp] ~/" ~ 1, 
then a zero of  mult iphci ty 4 cannot  be approached nearer  than .0001, and  therefore could 
not  be calculated by this method to better than ±.0001 accuracy without resorting to higher 
precision arithmetic. As discussed in Section 3, the method wdl itself realize that signifi- 
cance is lost, and  will cease subdwision and  reform the user of  the size of  the domain  of  
uncertainty.  

Fol lowing the suggestions of  [7] for vigorous testing of  new methods,  we computed m 
double-precision ari thmetic (16 digits) the zeros of  the polynomial  

P(z)  = z ~ - (13.999 + 50z 4 + (74.99 + 55.9980z '3 
- (159 959 + 260.982/)z 2 + (1.95 + 463.934/)z 
+ (150 - 199.95 0 (8) 

= (z - (1 + t))2(z - (4 - 3t))(z - (4 + 3/))(z - (3.999 + 3t)), 

which appears m [6]. Shown below are, for each of  the five roots, its real part  (the center  
of  the last rectangle), its uncertainty (half  the width of  the last rectangle), its imaginary  
part, and  its uncertainty.  We show 12 digits. 

Root Real (error) Imaginary (error) 

i 4 00000000000 (± 3D - 1 5 )  - 3  00000000000 (± 3D - 15) 
2 3 99999999999 (_+ 4D - I 1) 2 99999999999 (_+ 2D - 1 I) 
3 3 99899999999 (_+ ID - 11) 3 00000000000 (± ID - 1 I) 
4 0 99999998109 (± 5D - 8) 0 99999997949 (± 5D - 8) 
5 1 00000002282 (± 3D - 8) ! 00000002142 (±.3D - 8) 

We observe that the simple zero and  the "close" pair give the method little difficulty, as 
does the fact that these three have nearly equal  modulus.  The double  zero is determined 
up to the size of  the natura l  fog which surrounds it, gwen that the calculation was done in 
double  precision. Note also that the double zero was actually spht into two, and  that the 
final sizes of  the rectangles do not  gwe strict upper  bounds  on the errors, but  only  their 
orders of  magnitude.  

5. Conclusions 

For  those who need guaranteed root-finding ability, this method is recommended.  It seems 
quite unstoppable,  and  will converge as near  to the roots as the significant digits carried 
will allow. The absence of  deflation is another  plus, as is the internal  check on loss of  
significance. 

Such luxuries come only at some cost, in this case time. For  large degree n, the operat ion 
t ime will be ~ C n  a, compared with Cn ~ of  several competitors. The time could be 
considerably reduced by switching to some local i teratwe method when the rectangles 
become moderately  small. 

Compared  with the Lehmer-Schur  algorithm [8], ours is o f  about  the same complexity 
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and running time, but avoids deflation because of the fact that our rectangles do not 
overlap whereas circles must. Compared with the Jenkins-Traub procedure, once again 
the present method avoids deflation whereas theirs does not. Also our algorithm has one 
stage compared with their three, which simplifies the program. Against this must be placed 
the O(n 3) operating time as opposed to their O(n2). Variations on root-squaring and related 
algorithms offer similar global convergence m O(n 2) time with, however, both deflation 
and sensitivity to roots of  equal or nearly equal modulus, which leads to the necessity for 
complicated countermeasures. 
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