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ABSTRACT  The method of odd-even reduction for tridiagonal systems 1s generalized to banded systems The
method 1s developed so that it can be easily implemented on a vector processor such as the CDC STAR-100
Results are presented which describe when this odd-even reduction can be performed on a pentadiagonal system
A computational example 1s given
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Introduction

With the installation of the CDC STAR-100’s at Lawrence Livermore Laboratory and
NASA Langley Research Center, the problem of how one solves a linear system of
equations on these machines has received considerable attention. The objective in designing
an algorithm for the STAR is to try to use the available vector instructions whenever
possible (cf [4]). In addition one would like to use these vector instructions on vectors
whose lengths are as large as possible. In the case when the matrix of the linear system is
full, defining the vectors to be the columns of the associated matrix problem enables the
system to be efficiently solved by Gaussian ehmination (via outer products 1n contrast to
mner products {7]); cf. {2]. However, in the case when the matrix of the linear system has
a banded structure, Gaussian elimination 1s no longer practical when the bandwidths are
relatively small. This is due to the fact that using the columns of the matrix as vectors gives
rise to short vectors.

In [8] it is shown that for a tridiagonal system of equations having no zero principal
minors, Gaussian elimination could be implemented in a practical manner on a vector
processor by defining the vectors to be the diagonals of the corresponding matrix In the
case when the tridiagonal system 1s positive definute, 1t is shown 1n [9] that the method of
cyclic odd-even reduction 1s faster than the recursive doubling algorithm of [8]. A
comparison of cyclic reduction with Gaussian elimination is given in [4].

The problem of the general banded system has yet to be effectively resolved. For positive
definite systems, Lambiotte i his thesis [3] recommends that the band structure be
approached in terms of a block tridiagonal structure. The main problem with this approach
is that 1t 1nvolves considerable effort to define the vectors at each stage of the cyclic
reduction process.

In this paper the method of odd-even reduction 1s generalized to banded linear systems.
The algorithm 1s developed so that it can be easily implemented on a vector processor. For
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clarity and ease of presentation, we will describe the odd-even reduction algorithm for
matrices whose entries are scalars (real numbers). Actually, the algonthm is easily seen to
be generalizable to the case of block matrices whose entries are themselves square
submatrices.

It should be noted that a variant of the method described 1n this paper has been used by
Bauer and Reiss [1] to solve the two-dimensional biharmonic problem. Their method,
however, only applies to the constant diagonal case and does not generalize easily to the
nonconstant case.

1. Vector Notation

If R 1s the set of real numbers, then by

al

we denote a vector of length m having elements in R. We define v(1) = v,, and we adopt the
“offset” notation of [5):
Vi+1
v(kil) =" .
N V-t

In addition we use the shortened notation
v(k;) = v(k;0), v(,1) = v(0;])

This notation 1s actually the syntax used in LRLTRAN [6], the vector extended Fortran at
the Lawrence Livermore Laboratory. If ¢ € R, then v = ¢ implies v(i) = ¢ for all i (similarly,
v 5% ¢ implies v(1) # c for all 7). If v and w are vectors of length m, then the vector operations
v = w, vw, and v/w are defined by componentwise operations. In this paper if the division
operation 1s used, then 1t is assumed to be well defined (1e. all components of w are
Nonzero).

The above notation is very useful for describing particular data structures for an nxn
matrix 4 = (a,), @, € R We define the vectors g, a,, j=0,1,...,n— 1, by

a](l) = Quity, i= l, PPN (aly I
a‘](l) = Q4 = l, R (] "'J

(1.1)

More explicitly, for y > 0, g, 1s the jth superdiagonal of 4 and a_, 1s the jth subdiagonal of
A. The length of the vectors a., is n — j. The matrix 4 1s denoted by 4 = (a), — (n — 1)
=j={(n— 1), 1n the case when A4 has a banded structure, 1. a_, =0 forj>/and g, =0
for j > u, we will use the notation

A=(a), ~I=j=u

2. Cychic Reduction

We now turn our attention to the method of cyclic reduction for solving a system Ax = b
where 4 = (a), —m =j=<m, and a, is of even length n The main 1dea behind the method
is to reduce the size of the problem by suitable row additions on the matrix 4. Specifically,
if P is a permutation matrix and PAPT 1s of the form

PAPT = j ;‘ ynl2 @.1)

then the 1dea 1s to construct a matrix Q so that

QPAP™ = DIUTyn/2
0{A4 '

22
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where D is an “easily” invertible matrix (relative to the invertibility of 4) and 4 has the
same band structure as that of 4.

The solution of the system 4x = b is then equivalent to the solution of the system
[QPAPT)Px = QPb. Letting

y=Px= 232 4hd b=QPb= by }"/2,
e by

the solution of the system [QPAP™] = b is given by
ye = A7'by, 23)
n= D_l(bl has Uyg) (24)
The final solution of Ax = b is then x = PTy. Note that in (2.3) the system Ay = b. still
must be solved. However, since A has the same band structure as A, the process described
above can be (in principle) performed on 4 which is half the size of the original system.
This successive application of the above process defines the method of cyclic reduction.
Note that these successive reduction stages can be terminated when the matrix system
remaining to be solved is of sufficiently low order so that it can be solved more efficiently
by other means (e.g. Gaussian elimination).
The desired matrix Q will be one such that for the operation described 1n (2.2) the

resultant matrix D will be a diagonal matrix. In effect O will decouple all of the even
variables from the odd variables and we say that Q performs an odd-even reduction on A.

3. Odd-Even Reduction

The key issues in odd-even reduction are the choice of the permutation matrix P and the

construction of the matrix Q. The specific permutation matrix with which we will be

concerned will be called an odd-even permutation matrix since its primary function is to

isolate the odd and even rows and columns of A4 from each other. The Q matrix will result

from “diagonal elimination,” a process whose name will become more meaningful later.
The nXn odd-even permutation matrix P is defined by requiring that

P1,2,...,n"=(1,3,5.,n—12,4,6,..,n)"

Specifically, P 1s obtained by permuting the rows of the nXn 1dentity matrix so that the
odd rows appear sequentially in the top half of the matrix and the even rows are
sequentially at the bottom. Multiplication of a matrix or a vector by a permutation matrix
is easily accomplished on the STAR-100 by vector instructions. It follows that PAPT is of
the form (2.1) where

41 = (b), —[m/2]=j=[m/2],
A2 = (¢), —l(m+1)/2]=j=<[(m-1)/2],
A3 = (d), —[(m~-1/2]=j=[(m+1)/2],
Ay = (), —Im/2)}=j=1m/2]
(here y = [x] if y 1s the greatest integer such that y < x) and

b() = a2i~ 1), k=2,

(i) = a2t—1), k=2+1, whenj=0,

(1) = a2i), k=2j+1, whenj<O0,

d(i) = ap(2i), k=2j—1, whenj>0,

a() = a2i—-1), k=2 -1, whenj=0,

e() = ar(2), k-2
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Hence, if m = 2k + 1,

A, = (b)), —k=j=k, As = (d), —-k=j=k+1, 3
A = (¢), —(k+1)=j=k, Ay = (e), —k=j=<k

and if m = 2k,
A = (b)), —k=)=k, As = (d), —~(k—-1D)=j=k, 32)
A; = (¢), —“k=j=sk-1, Ay = (e), —k=j=<k

Di1aGoNAL ELIMINATION. The matrix Q will be the product of a sequence of matrices
Q. that have the form
} n/2

or

Our approach will be 1n two stages. First we will determine how the Q.’s are calculated
and then we will show how their product does indeed effect an odd-even reduction of 4.

To start, suppose 4 = (@;), —m =< j =< m, and that P 1s the odd-even permutation matnx
such that PAP" has the form (2.1) where (recalling the notation in (1.1))

A = (b)), -Lh=j=u, As = (d), —hL=j=<us 33)
A: = (¢), —Lb=j=u, Ay = (), —L=j=u,.
As will be seen later, only two cases are of importance.
Case 1. mis odd.
us=w+ 1, h=05L ww=u, bL=L+1
We construct a matrix Q of the form
! 0 } n/2
0= o (34
o\
so that
erar -1,
where

133:(31), —(13—1)5_]5143—1

That 1s, Q will ellminate a superdiagonal and a subdiagonal from the lower left block. We
say that the matrix Q in (3 4) 1s of Type 1.



76 G. H. RODRIGUE, N. K. MADSEN, AND J. I KARUSH

Now, block multiphication yields

\\xl 0
Xo \ A+ A3 = As,
0 \
so that the desired effect will be obtained 1f
xiGu)by, (1) + dy, =0,  xo(h,)b_y, +d_s=0 (3.5)
or

i) = ~di/bu(1), xo(h;) = —d-g/boy (3.6)

Note that (3.6) does not define all of the elements of x; and xo. However, the only property
that 15 required of the vectors x; and x, 1s that they effect the calculatnon (3 5). For
definiteness we will assume that all of the undefined elements of xo and x, are zero.

Block multiplication also yields

Adi= (&), —(L+D=j=us+1, 37

so that a superdiagonal and a subdiagonal are added to the lower right block.

Case 2. ms even.

ui=us, h=5h+1, L=1l, w=u+1.

For this case we construct a matnx Q of the form

Q= 3.8
so that
_[A4:i 4.
QPAPT—[AS Aq].
where
A=), -(h-D=j=m-1 (3.9)

That is, @ will eliminate a superdiagonal and a subdiagonal from the upper left block. We
say that the matrix Q in (3.8) is of Type 2. Again, block multiphication yields

0
Al+[\>—1x0 ]A3=/i|v
NG

so that the desired effect will be obtained if
boy, + x_1(l)d-1, (1) =0, by, + xo(us)du, = 0 (310
or
x-i(ls;) = =b—y/d_ (1), xoGus) = —bu,/du, (3.11)

As 1n case 1, (3.11) does not define all of the elements of x_; and xo and again we will
assume them to be zero.
For the remaining block, 1t 1s easy to see that

A2=(), —(b+D=sj=su+1, (3.12)

so that a superdiagonal and a subdiagonal are added to the upper right block.
We summarize the essential points of this section
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PROPOSITION 3.1. Let A be permuted to have the form gwven by (2.1). Suppose the
conditions of case | are sansfied (m 1s odd). If Q is of Type 1, then QPAPT satisfies the
conditions of case 2. Conversely, suppose the conditions of case 2 are satisfied (m is even). If
Q 1s of Type 2, then QPAPT sansfies the conditions of case 1.

We now use the concept of diagonal elimination to describe the method of odd-even
reduction. Let 4 = (a)), —m < j =< m, and P be an odd-even permutation matrix. Then
PAP" 1s of the form (2.1) where 4, — A, are defined 1n (3.1) or (3.2) depending on whether
m 15 odd or even, respectively. In the case when m is odd, A4 satisfies the conditions of case
1 and if m 1s even, A satisifes the conditions of case 2. We thus have demonstrated the
following:

PROPOSITION 3.2. Let A = (a)), —m < j < m, and PAP” be as in (2.1). Then, the matrix
Q = [I%1 Q. will effect an odd-even reduction of PAPT where

(1) of m1s odd, then (a) for odd 1, Q. s of Type 1, (b) for even i, Q. is of Type 2;
(2) if m1s even, then (a) for odd i, Q.1s of Type 2, (b) for even i, Q. is of Type 1.

Suppose a matrix Q as defined in Proposition 3 2 effects an odd-even reduction of PAP".

Then
QPAPT = [}Jr;’] (.13)

We now state the following proposition concerning the diagonal structure of U and 4.
ProPOSITION 3.3, Suppose A = (a;), —m < j < m, and Q as defined in Proposition 3.2
effects the odd-even reduction (3.13). Then,

A=(a), -m=j<m, and U=(y), -msj=m-—1

ProoF.
Case 1. m=2k+ 1. By Proposition 3.2, Q = [[:=; Q. where for odd 1, Q, 1s of Type
1 and for even i, Q,is of Type 2. By (3.1),

A2=(c), —(k+1)=sj=<k, and A,=(e¢), —-k=j=<k

By (3.7) a matrix of Type 1 adds a superdiagonal and a subdiagonal to the lower right
block and by (3.12) a matrix of Type 2 adds a superdiagonal and a subdiagonal to the
upper right block. Since the odd-even reduction process involves k + I matrices of Type
1 and & matrices of Type 2,

A=(), —(k+k+D)=j=s(k+k+1),
= (d), -Qk+1)=;=<(k+2),
and
U= (u), —(k+1+k=sj=sk+k
= (u), —-QRk+1)=<;=<2k

Case 2. m = 2k. By Proposition 3.2, Q = [[’=1 Q. where for odd z, Q. is of Type 2,
and for even i, Q,is of Type 1. By (3.2),

As=(c), =k=y=<k-1, and As=(e¢), —k=j=k.

Since the odd-even reduction process involves k matrnices of Type 1 and Type 2, we have
by (37) and (3 12) that

A=(a), —-(k+k=y=sk+k),
= (4), —2k=j=2k,
and
U= (u), —(k+k=<j=<(k—-1+k),
= (), -Qky=y=(k-1).
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4. Some Sufficient Conditions

In this section we establish some properties on the original matrix 4 = (a), —-m=j=m,
so that a single odd-even reduction can be performed.

TRIDIAGONAL SYSTEMS (m = 1). For m = |, only the matrix 0, is generated. Using the
notation established in (1.1), Qs 1s given explicitly by

where
x1 = —di/bo(1,), Xo = —do/bo.

The vector by consists of the odd elements from the main diagonal of the original matrix
A. Hence the odd-even reduction can be performed on A 1f the main diagonal elements of
A are nonzero. The question of whether odd-even reduction can be continued cychcally
and be performed on A 1s a more difficult one to answer. However, 1t 1s well known that
odd-even reduction on a scalar tridiagonal system A is equivalent to block Gaussian
elimination on P4 PT where the blocks are as in (3.1). Hence, all of the well-known results
for Gaussian elimmation can be applied. That 1s, if 4 has certain properties such as
positive-definiteness or irreducible diagonal domunance, then cyclic reduction can be
carried out.

PENTADIAGONAL SYSTEMS (m = 2). For m = 2, two matrices ; and Q; are generated.
For Qs, (3.8) applies so that

O =

where (using the notation of (3.2))
X-1 = —b_1/dy(;1), xo(;1) = —b1/d:. 4.1)

Then,
0
N
Qi(PAPT) = 0\\\0\ ,
N
where

so = bo + xodb, so(13) = so(1;) + x-1ds. “4.2)
Q- now takes the form (3.4),

1 0
Q=

\)’1

2, \ {
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where
Yo = —do/s0, n = —di/s«l;). 4.3)

It follows from (4.1) and (4.3) that odd-even reduction can be performed on A if the
vectors dy, d1, and so have no zero elements. By (3.2), dy and d| originate from the first off-
diagonals of A. Thus, dy and 41 will have no zero elements if the first super- and
subdiagonals of A have no zero elements. More explicitly, do and 4, will have no zero
elements if every even-numbered variable has a nonzero coupling to its adjacent odd-
numbered variables. We now suppose this to be the case and turn to the analysis of 5.

If A = (a,), 1 =1, =< n (ie. the standard notation), then the elements of s are given by

ay3dsz;
So(l) =dan — W’

A er2Ai+1, Q21,0

so(k) = a,, — , k=2, ..,n/2-1,i=2k—-1,

A+ 1,042 Ar-1,-2

an-2,n~18n—1,n-3

s50(n/2) = @n-1p-1 — —f——

Consider the following submatrices of A:
M, = I:an als:l’
an az;

ai-11-2 A-14 0
Mi=|ay,-2 a. Az |, k=2, .n/2—1,1=2k-1,

0 Ai+1e Qi+l 142

An-1n-3 Gn-1n-1

An-2,n-3 Qn-2n—1
M = [ ]

We then get the following theorem:

THEOREM 4.1. Suppose A = (a)), =2 < j =< 2, such that a.; # 0. Then so(i) # 0 if and
only if M, is nonsingular

PrOOF. Note that

azsso(1) = determinant (M,),
Ari1,420,-1,-250(k) = determinant (My),
Qn—2-350(n/2) = determinant (M,2).

Since a.; # 0, the above determinants are nonzero if and only if 5o # 0. Q.E.D
We get the following corollaries:
CoROLLARY 4.1. If A = (ay,) satisfies the following properties:

(i) 'aul > Ial—l,ll + IaH-l,tl,
@) {au| > (@],
(lii) Iaz,z+ll > 'az—l,H—lI’
then sy # 0.
Proor The above assumptions force each of the matrices M, to be strictly column
diagonally dominant. QED.
COROLLARY 4.2. If A 1s symmetric and satisfies the following:
(1) lau' > 'al,l—ll + Iaz,H—lly
(") Iat,H-l’ > |a1,1+2|»
(Hi) |a1,z-1| > |al,l—2|7
then so # 0.

In the case when A 1s symmetric with constant diagonals we get the following:
CorOLLARY 4.3. IfA = (a), =2 <) =<2, such that

a()=l, ai1=b#0, a+2 = C,
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then 5o % 0 if and only if ¢ # § and ¢ # 1.
Proor. Note that

determinant (M;) = determinant (M.,,2) = b(1 - ¢)
and
determinant (M) = b*(1 ~2¢), k=2,..,n/2 -1,

so that Theorem 4.1 now apphes. QE.D.

All of the above results determine properties of a pentadiagonal matrix 4 so that a
single odd-even reduction can be performed Specific properties of 4 which will guarantee
that cychc reduction can be performed still remain to be determined. Also, conditions for
odd-even reduction to work on a general banded system are still not known.

CoMPUTATIONAL ExaMPLE. Cyclhic reduction was used to solve the system 4x = b
where 4 was the biharmonic matrix

[ 5 -4
—4 6-4

and b =[1, 1, ..., 1]¥. If n 1s the order of A, then it 1s known that the condition number of
A 1s approximately 16(n/7)~*. The cyclic odd-even reduction algonthm was coded in
single-precision LRLTRAN [6] at the Lawrence Livermore Laboratory and compared
with a single-precision Fortran version of Gaussian elimination (Cholesky square-root free
variation) on a CDC-STAR-100. The timing analysss (in milhseconds) is given 1n Table 1.
A least squares fit of the timing data 1n Table I indicates that cyclic reduction behaves like

00053n + 0 807 logsn — 1.431
and Gaussian elimination behaves like
0.302n — 0.147.

The particular forms of these equations anse from operation counts performed for cychic
reduction and Gaussian elimination 1n [3]

To give some feeling for the stability of the new algorithm the “exact” solution x was
computed (using 96-bit mantissas) for n = 128 and n = 512 If xcr and xgg represent the
computed solutions from cyclic reduction and Gaussian elimination, respectively (using
48-bit mantissas), then for n = 128,

1% = xcelle/ [ ¥lle =3 X 1075, ||% = xcrflo/|| X[l = 3 X 1077,
and for n = 512,

1% — xce[l«/ |l Xl = 8 X 107 || % = xcrllo/[| X|ls = 1 X 107"

5. Conclusions

The major purpose of this paper has been to mtroduce a new method of odd-even reduction
for banded systems of hnear equations. This new algorithm 1s unique because the basic
reduction process 1s performed using the longer diagonals of the banded matnx rather
than the shorter rows or columns. This fact makes the algorithm attractive for possible
implementation on vector processors such as the CDC STAR-100 which require long
vectors for efficient operation.
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TABLE 1

n Cyche reduction Gaussian elimination
8 1059 2292
16 1872 4653
32 2749 9485
64 3793 19 191
128 4831 38 465
256 6303 77 168
512 8694 154 399
1024 12 008 308 929

We have also established some conditions which are sufficient to guarantee that odd-
even reduction can be performed. However, there remain several interesting unanswered
questions.

Conditions which are sufficient to guarantee that this new odd-even reduction algorithm
can be applied in a cyclical manner need to be established. Since the off-diagonal matrix
elements are used 1n the odd-even reduction process in a manner which 1s analogous to the
use of pivot elements in Gaussian elimination, the overall stabihity of this cyclic reduction
process needs to be theoretically analyzed. We hope that this paper will serve to siumulate
the nvestigation of some of these questions.
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