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Introduction 

With the installation of the CDC STAR-100's at Lawrence Livermore Laboratory and 
NASA Langley Research Center, the problem of how one solves a linear system of 
equations on these machines has received considerable attention. The objective in designing 
an algorithm for the STAR is to try to use the available vector instructions whenever 
possible (cf [4]). In addition one would like to use these vector instructions on vectors 
whose lengths are as large as possible. In the case when the matrix of the linear system is 
full, defining the vectors to be the columns of the associated mamx problem enables the 
system to be efficiently solved by Gaussian elimination (via outer products in contrast to 
inner products [7]); cf. [2]. However, in the case when the matrix of the linear system has 
a banded structure, Gausslan elimination is no longer practical when the bandwldths are 
relatively small. This is due to the fact that using the columns of the matrix as vectors gives 
rise to short vectors. 

In [8] it is shown that for a tndiagonal system of equations having no zero principal 
minors, Gausslan elimination could be implemented in a practical manner  on a vector 
processor by defining the vectors to be the diagonals of the corresponding matrix In the 
case when the tndiagonal system is positive definite, it is shown in [9] that the method of 
cyclic odd-even reduction is faster than the recursive doubling algorithm of [8]. A 
comparison of cyclic reduction with Gaussian elimination is given in [4]. 

The problem of the general banded system has yet to be effectively resolved. For positive 
defimte systems, Lambiotte in his thesis [3] recommends that the band structure be 
approached in terms of a block tridiagonal structure. The main problem with this approach 
is that it involves considerable effort to define the vectors at each stage of the cyclic 
reduction process. 

In this paper the method of odd-even reduction is generalized to banded linear systems. 
The algorithm is developed so that it can be easily implemented on a vector processor. For 
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clarity and  ease of  presentation, we wall describe the odd-even reduct ion algori thm for 
matrices whose entries are scalars (real numbers) .  Actually, the algori thm is easily seen to 
be generalizable to the case of  block matrices whose entries are themselves square 
submatrices. 

It should be noted that a variant  of  the method described in this paper  has been used by 
Bauer and  Reiss [1] to solve the two-dimensional  b iharmonic  problem. Thei r  method,  
however, only applies to the constant  diagonal  case and does not  generalize easily to the 
noncons tan t  case. 

1. Vector Nota t ton  

I f  R Is the set of  real numbers ,  then by 

we denote a vector of  length m having elements in R. We define v(O = v~, and  we adopt  the 
"offset" nota t ion of  [51: 

v(k,t) = 
m--1 

In  addi t ion we use the shortened notat ion 

v(k;) = v(k;0), v(, l )  = v(0;/) 

This  notat ion ~s actually the syntax used in L R L T R A N  [6], the vector extended For t ran  at 
the Lawrence Livermore Laboratory.  If  c E R, then v = c implies v(i) = c for all i (similarly, 
v # c implies v(t) ~ c for all 0. If  v and  w are vectors of  length m, then the vector operations 
v -i-_ w, vw, and  v / w  are defined by componentwise operations. In this paper  if  the division 
operauon  is used, then it is assumed to be well defined 0.e. all components  of  w are 
nonzero).  

The above notat ion is very useful for descnbmg particular data structures for an n x n  
matrix A = (a,j), a,j ~ R We define the vectors aj, a-j, j = 0, 1 . . . . .  n - 1, by 

aj(t) = ~,.~+j, i =  1 . . . . .  n - j ,  (1.1) 
a-j(  t) = aj ..... i = 1 . . . . .  n - j 

More explicitly, f o r j  > 0, aj is t he j t h  superdiagonal  of  A and  a- j  is t h e j t h  subdiagonal  o f  
,4. The length of  the vectors a+j is n - j .  The matrix A Is denoted by A = (aj), - (n - l) 
_<j _-_ (n - 1), m the case when A has a banded  structure, l.e a-~ = 0 f o r j  > l and  aj -- 0 
f o r j  > u, we will use the notat ion 

A = ( a j ) ,  - l _ < j _ < u .  

2. Cychc  Reduct ton 

We now turn our  at tent ion to the method of  cyclic reduction for solving a system A x  = b 
where A = (aj), - m  _<j _< m, and a0 is of  even length n The mare idea behind the method 
is to reduce the size of  the problem by suitable row addmons  on  the matrix A. Specifically, 
if P is a permuta t ion  matrix and PA pV Is of  the form 

p A p T = ~  }n/2. 

then the ~dea ~s to construct a m a t n x Q s o  that 

(2.1) 

QpApT = ~ } n / 2  (2 2) 
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where D is an "easily" invertible matrix (relative to the invertibility of  A) and A has the 
same band structure as that of  A. 

The solution of  the system A x  = b is then equivalent to the solution of  the system 
[QpApT]px = QPb. Letting 

, .  px and 5=QPb=[~] }n/2 , 

the solution of  the system [ QPAP T] = [~ is given by 

y2 ---- A-lb2, (2.3) 

yl  = O - ~ ( b x -  Uy2). (2.4) 

The final solution of  A x  = b is then x = pTy. Note that in (2.3) the system ~,iy = b2 still 
must be solved. However, since ,,i has the same band structure as A, the process descnbed 
above can be (in principle) performed on .4 which is half the size of  the original system. 
This successive application of  the above process defines the method of  cychc reduction. 
Note that these successwe reduction stages can be terminated when the matrix system 
remaining to be solved is of  sufficiently low order so that it can be solved more efficiently 
by other means (e.g. Gaussian elimination). 

The desired matrix Q will be one such that for the operation described m (2.2) the 
resultant matrix D will be a diagonal matrix. In effect Q will decouple all of  the even 
variables from the odd variables and we say that Q performs an odd-even reduction on A. 

3. Odd-Even Reductwn 

The key issues in odd-even reduction are the choice of  the permutation matrix P and the 
construction of  the matrix Q. The specific permutation matrix with which we will be 
concerned will be called an odd-even permutation matrix since its primary function is to 
isolate the odd and even rows and columns of  A from each other. The Q matrix will result 
from "diagonal elimination," a process whose name will become more meaningful later. 

The n×n odd-even permutation matrix P is defined by requiring that 

P(1, 2 . . . . .  n) r = (1, 3, 5 . . . . .  n - 1, 2, 4, 6 . . . . .  n) T. 

Specifically, P is obtained by permuting the rows of  the n×n identity matrix so that the 
odd rows appear sequentially in the top half  of  the matrix and the even rows are 
sequentially at the bottom. Multiplication of  a matrix or a vector by a permutation matrix 
is easily accomplished on the STAR-100 by vector instructions. It follows that P A P  T is of 
the form (2.1) where 

A1 = (b~), 

A2 = (c , ) ,  

A3 --  ( @ ,  

A .  - -  (e~), 

- [ m / 2 ]  --<j < [m/2], 

- [ ( m  + 1)/2] _ j _ <  [(m - l)/2], 

- [ ( m  - 1)/2] _ < j <  [(m + 1)/2], 

- [ m / 2 ]  <_ j < [m/2] 

(here y = [x] i fy  ts the greatest integer such that y _< x) and 

bj(O = a k ( 2 i -  1), k = 2 j ,  

G(i) = a~(2, - 1), k = 2j + 1, w h e n j  _> O, 

cjO) = ak(2i), k = 2 j +  1, w h e n j < O ,  

dj(i) = ak(2i), k = 2 j -  1, when j >  O, 

djO) = ak(21-- 1), k = 2 j -  1, whenj_<O, 

e,(t) = ak(2 O, k - 2j. 
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Hence, if m = 2k + 1, 

A~ = (b~), - k _ < j _ < k ,  

A2 = (cj), - ( k +  1)_<j_<k,  

and  if m = 2k, 

A, = (bj), - k - < j _ < k ,  

Az = (c~), -k_<j.~k- 1, 
DIAGONAL ELIMINATION. 

Q, that have the form 
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A3 = (d~), - k _ < j _ < k +  1, 
(3.1) 

A4 = (ej), - k _ < j _ < k ,  

A3 = (d~), - ( k -  l ) _ < j _ < k ,  
(3.2) 

A4 = (ej), - k _ < j _ < k  

The matrix Q will be the product  of  a sequence of  matrices 

or 

Our  approach will be in two stages. First we will determine how the Q,'s are calculated 
and  then we will show how their product does indeed effect an odd-even reduct ion of  A. 

To start, suppose A = (aj), - m  _<j _< rn, and that P is the odd-even permuta t ion  matrix 
such that PAP T has the form (2.1) where (recalhng the notat ion in (1.1)) 

Aa = (bj), - 1 1 - < y - < u t ,  A3 = (dj), -13-<y-<u3,  
(3 3) 

A2 = (C~),  --/2 --<J--< u2, A4 = (ej), - /4  -<J-< u4. 

As will be seen later, only two cases are of importance.  
Case 1. m is odd. 

u a = u l +  1, 1 1 = 1 3 ,  u 4 = u 2 ,  / 2 = / 4 +  1. 

We construct a matrix Q of the form 

so that 

where 

[\x~ox i ]  } n/2 Q = (3.4) 
0 

Lo'  

QpAp v = ~ ,  

h a = ( d j ) ,  - ( l a -  1 ) ~ ] ~ u 3 -  1 

That  is, Q will el iminate a superdiagonal  and  a subdiagonal  from the lower left block. We 
say that the matrix Q In (3 4) IS of  Type I. 
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Now, block multiphcation yields 

so that the desired effect will be obtained ff 

x~(,u~)b~(l) + d.~ = O, 

or 
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A~ + A3 = A3, 

KARUSH 

where 

Xx(,ul) = -duJbu,(l;), xo(t~;) = -d-~Jb-~ 1. (3.6) 

Note that (3.6) does not define all of  the elements of  xl and x0. However, the only property 
that is required of  the vectors x~ and Xo is that they effect the calculation (3 5). For  
definiteness we will assume that all of  the undefined elements of  Xo and xl are zero. 

Block multiplication also yields 

A4=(e~), -(14+ l ) < _ j < _ u 4 +  1, (3.7) 

so that a superdiagonal and a subdlagonal are added to the lower right block. 
Case 2. m is even. 

u~ = u3, ll = 13 + 1, /2 = 14, It4 = u2 + 1. 

For  this case we construct a matrix Q of  the form 

Q = [0 - ? ~ 1  (3.8) 

so that 

[A, J2] 
epApT = LZ-~j. 

~'il = ( / ~ ) ,  - ( l l  - 1) < j  < u l  - 1. ( 3 . 9 )  

That  is, Q will eliminate a superdlagonal and a subdiagonal from the upper left block. We 
soy that the matrix Q in (3.8) is of  Type 2. Again, block multiphcatlon yields 

A,+[~-~xo ° ] A~= ,i,, 
L o ~ J  

so that the desired effect will be obtained if  

b-q + x-l(13;)d%(, l) = O, bu~ + xo(,u3)du3 = 0 (3 lO) 

or 

x-l(la;) = -b-zJd%(; 1), Xo(;U3) = -bu,/du3. (3.11) 

As m case 1, (3.11) does not define all of  the elements of  x-1 and xo and again we will 
assume them to be zero. 

For  the remaining block, it is easy to see that 

- 42=(~ ) ,  - ( 1 2 +  l ) _ < j _ < u 2 +  1, (3.12) 

so that a superdlagonal and a subdlagonal are added to the upper right block. 
We summarize the essential points of  this section 

xo(ll,)b% + d% = 0 (3.5) 
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PROPOSITION 3.1. Let A be permuted to have the form given by (2.1). Suppose the 
conditions of  case 1 are sausfied (m ts odd). I f  Q is of  Type 1, then QPAP r satisfies the 
condmons of  case 2. Conversely, suppose the conditions of  case 2 are satisfied (m is even). I f  
Q ts o f  Type 2, then QPAP r sansfies the conditions of  case 1. 

We now use the concept of diagonal elimination to describe the method of  odd-even 
reduction. Let A = (aj), - m  _< j _< m, and P be an odd-even permutation matrix. Then 
PA pV is of  the form (2.1) where A1 - A4 are defined in (3.1) or (3.2) depending on whether 
m Is odd or even, respectively. In the case when m is odd, A satisfies the conditions of  case 
1 and ff m Is even, A satislfes the condiuons of  case 2. We thus have demonstrated the 
following: 

PROPOSITION 3.2. Let A = ( aj), - m  _< j _< m, and PAP T be as in (2.1). Then, the matrix 
Q = l[I,m_l Q, wdl effect an odd-even reductmn of  PAP T where 

(1) t f  m ts odd, then ( a) for  odd l, Q, is o f  Type 1, ( b ) for  even i, Q, is of  Type 2; 
(2) tf m is even, then ( a) for  odd i, Q, is of  Type 2, ( b) for  even i, Q, is of  Type 1. 

Suppose a matrix Q as defined in Proposmon 3 2 effects an odd-even reduction of  PAP T. 
Then 

QPAP r = [-~-~] (3.13) 
LO I.,ij 

We now state the following proposition concerning the dmgonal structure of  U and .4. 
PROPOSITION 3.3. Suppose A = (a j), - m  _< j _< m, and Q as defined in Proposition 3.2 

effects the odd-even reduction (3.13). Then, 

A = ( ~ j ) ,  - m _ < j _ < m ,  and U = ( u j ) ,  - m _ < j _ < m - 1  

PROOF. 
Case 1. m = 2k + 1. By Proposmon 3.2, Q = [ITL1 Q, where for odd t, Q, IS of  Type 

1 and for even i, Q, is of  Type 2. By (3.1), 

A 2 = ( c j ) ,  - ( k +  l )_< j_<k ,  and A4=(e~),  - k _ < j _ < k .  

By (3.7) a matrix of Type 1 adds a superdiagonal and a subdlagonal to the lower right 
block and by (3.12) a matrix of Type 2 adds a superdiagonal and a subdmgonal to the 
upper right block. Since the odd-even reducUon process involves k + 1 matrices of  Type 
1 and k matrices of  Type 2, 

i i  = (,~j), 

= ( 4 ) ,  

and 

- ( k  + k + 1)_< j_< (k  + k + 1), 

- ( 2 k  + 1) _<j _< (2k + 2), 

Case 2. m = 2 k .  

U = (uj), - ( k +  l + k ) _ < j _ < k + k ,  

= (uj), - ( 2 k +  1)<_j_<2k.  

By ProposiUon 3.2, Q = [I?-1 Q, where for odd l, Q, is of  Type 2, 
and for even i, Q, is of  Type 1. By (3.2), 

A 2 = ( q ) ,  - k _ < j _ < k -  1, and A 4 = ( e j ) ,  - k _ < j _ < k .  

Since the odd-even reduction process involves k matrices of  Type 1 and Type 2, we have 
by (3 7) and (3 12) that 

d = (,~), - ( k  + k) _<j _< (k + k), 

= (,~j), - 2 k _ < j <  2k, 

and 

U = (uj), - ( k + k ) ~ j ~ ( k -  1 + k ) ,  

= (uj), - ( 2 k ) _ < y ~ _ ( 2 k -  1). 
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4. S o m e  Suf f ic tent  C o n d m o n s  

In this secUon we establish some properties on the original matrix A = (a:), - m  _<j _< m, 
so that a single odd-even reduction can be performed. 

TRIDIAGONAL SYSTEMS (m = 1). For  m -- 1, only the matrix Qa is generated. Using the 
notation estabhshed in (1. l), Q~ is given explicitly by 

QI= [~xo 0 xl 0 1 
Lo "~1 

carried out. 
PENTADIAGONAL SYSTEMS (m = 2). 

For  Qa, (3.8) applies so that 

where 

x l  = - d l / b o ( l , ) ,  xo = -do / bo .  

The vector b0 consists of  the odd elements from the main diagonal of  the original matrix 
A. Hence the odd-even reduction can be performed on A If the main diagonal elements of  
A are nonzero. The question of  whether odd-even reduction can be continued cyclically 
and be performed on ,,1 is a more difficult one to answer. However, it is well known that 
odd-even reducuon on a scalar tndlagonal  system A is equivalent to block Gaussian 
ehmination on P A P  T where the blocks are as in (3. l). Hence, all of  the well-known results 
for Gausslan e l immauon can be applied. That is, tf A has certain properties such as 
posltive-defimteness or irreducible diagonal dominance, then cyclic reduction can be 

For  m = 2, two matrices Q1 and Q2 are generated. 

01 = 

0 .  

0 I t 

where (using the notation of  (3.2)) 

x - 1  = - b - 1 / d o ( ;  1), 

Then, 

Qi( PAI if) = 

where 

So = bo + xodo, 

Q2 now takes the form (3.4), 

Xo(; 1) = - b l / d l .  

×] 
so(l;) = so(l;) + x-ld~.  

Lo>Oq 

(4.1) 

(4.2) 
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where 

yo = -do~so, y l  = -d~/so(l;) .  (4.3) 

It follows from (4.1) and (4.3) that odd-even reduction can be performed on A if  the 
vectors do, d~, and so have no zero elements. By (3.2), do and d~ originate from the first off- 
diagonals of  A. Thus, do and d~ will have no zero elements if  the first super- and 
sub&agonals of A have no zero elements. More explicitly, do and dl will have no zero 
elements if every even-numbered variable has a nonzero coupling to its adjacent odd- 
numbered variables. We now suppose this to be the case and turn to the analysis of  so. 

I fA  = (a,j), 1 _< ~, j _< n (i.e. the standard notation), then the elements of  s0 are given by 

at3a21 
so(l) = a l l  a2a , 

a~,,+2a~+la a~,~-2a~-l,~ 
so(k) = a,, - - -  

at+l,L+2 a~-l , t-2 ' 

an--2,n-- l a n  - 1,n--3 
so(n~2) = a n - l , n - 1  an -2 ,n -3  

Consider the following submatrices of  A: 

 l Eol a3] 
a2l a23 ' 

i ,-I  ,-2 a,-1,, 0 1 Mk = ,,,-2 a,, a~a+2 , 
a,+la al+l ,+2 

k = 2  . . . .  n / 2 -  1, i = 2 k -  1, 

k = 2 ,  , n / 2 - 1 ,  t =  2 k -  l, 

We then get the foUowmg theorem: 
THEOREM 4.1. Suppose A = (aj), - 2  _< j _< 2, such that a±l ~ O. Then so(i) ~ 0 i f  and 

only i f  M~ ts nonsingular 
PROOF. Note that 

azas0(1) = determinant (M1), 
a,+l,,+2az-l,,-2so(k) = determinant (Mk), 

a,-2,,-3so(n/2) = determinant (M,/2).  

Since a±l ~ 0, the above determinants are nonzero if and only if  So ~ 0. Q.E.D 
We get the following corollaries: 
COROLLARY 4.1. I r A  = (a,j) satisfies the fo l lowmg propernes: 

(i) [a,,I > ]a,-1.,I + [a,+l.,I, 
(it') [a~.,_tl > [a~÷t.,-t[, 

(,ii) la,.,+~[ > [a,-~.,+ll, 

then So ~ O. 
PROOF The above assumptions force each of  the matrices M, to be strictly column 

&agonally dommant.  Q E D. 
COROLLARY 4.2. I f  A ts symmetric and sattsfies the following: 

(0 la,,[ > la,.,-l[ + ]az.,+~[, 
(u) la,.,+~l > la,.,+2l, 

(m') la,,,-ll > la,,,-2l, 

then So ~ O. 
In the case when A is symmetric with constant diagonals we get the following: 
COROLLARY 4.3. l f  A = (a~), - 2  _< j _< 2, such that 

ao= 1, a ± l = b ~ O ,  a ± z = c ,  
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then So # 0 i f  and only t f  c # ½ and c # 1. 
PROOF. Note that 

determinant ( m 0  = determinant (m~/2) = b(1 - c) 

and 

determinant (M,) = b2(1 - 2c), k = 2 . . . . .  n /2  - 1, 

so that Theorem 4.1 now apphes. Q E.D. 
All of the above results determine propemes of a pentadiagonal matrix A so that a 

single odd-even reduction can be performed Specific properties of A which will guarantee 
that cychc reduction can be performed still remain to be determined. Also, condmons for 
odd-even reduction to work on a general banded system are still not known. 

COMPUTATIONAL EXAMPLE. Cyclic reduction was used to solve the system A x  = b 
where A was the biharmonic matrix 

- 5 - 4  1 

- 4  6 - 4  1 0 

0 1 - 4  6 - 4  
1 - 4  5 

and b = [1, 1 . . . . .  1] 'r. I f n  is the order of A, then it is known that the condmon number  of 
A is approximately 16(n/~r) -4. The cyclic odd-even reduction algonthm was coded in 
single-precision LRLTRAN [6] at the Lawrence Lwermore Laboratory and compared 
with a single-precision Fortran version of Gaussian ehmmauon (Cholesky square-root free 
variation) on a CDC-STAR-100. The timing analysis (in mllhseconds) is given m Table I. 
A least squares fit of the timing data m Table I indicates that cyclic reduction behaves like 

0 0053n + 0 807 log2n - 1.431 

and Gausslan elimination behaves like 

0.302n - 0.147. 

The particular forms of these equauons anse from operation counts performed for cychc 
reduction and Gausslan ehminatlon m [3] 

To give some feehng for the stability of the new algorithm the "exact" solution 5c was 
computed (using 96-bit mantissas) for n = 128 and n = 512 If xca and XGE represent the 
computed solutions from cyclic reduction and Gaussian eliminaUon, respectwely (using 
48-bit mantissas), then for n = 128, 

II ~ - xcEIl~/llxl)~ = 3 × l0 -s, II ~ - xcRIl~/llxllo~ = 3 x l0 -~,  

and for n = 512, 

I1~ - x c E I l ~ / U c l l ~  = 8 × l 0  -6 ,  I1~ - x c R I l ~ / l l ~ l l ~  = 1 × l 0  -~1 

5. Conclustons 

The major purpose of this paper has been to introduce a new method of odd-even reductton 
for banded systems of hnear equations. This new algorithm is unique because the basic 
reduction process is performed using the longer diagonals of the banded matrix rather 
than the shorter rows or columns. This fact makes the algorithm attractive for possible 
implementation on vector processors such as the CDC STAR-100 which require long 
vectors for efficient operation. 
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TABLE 1 

81 

n Cyclic reduction Gausslan ehmmatlon 

8 1 059 2 292 
16 1 872 4 653 
32 2 749 9 485 
64 3 793 19 191 

128 4 831 38 465 
256 6 303 77 168 
512 8 694 154 399 

1024 12008 308 929 

W e  h a v e  a l so  e s t a b h s h e d  s o m e  c o n d i t i o n s  w h i c h  a r e  s u f f i c i e n t  to g u a r a n t e e  t h a t  o d d -  

e v e n  r e d u c t i o n  c a n  be  p e r f o r m e d .  H o w e v e r ,  t h e r e  r e m a i n  s e v e r a l  i n t e r e s t i n g  u n a n s w e r e d  

q u e s t i o n s .  

C o n d i t i o n s  w h i c h  a re  s u f f i c i e n t  to g u a r a n t e e  t h a t  t h i s  n e w  o d d - e v e n  r e d u c t i o n  a l g o r i t h m  

c a n  be  a p p l i e d  in  a c y c h c a l  m a n n e r  n e e d  to  be  e s t a b h s h e d .  S ince  t h e  o f f - d i a g o n a l  m a t r i x  

e l e m e n t s  a re  u s e d  m t h e  o d d - e v e n  r e d u c t i o n  p r o c e s s  in  a m a n n e r  w h i c h  as a n a l o g o u s  to  t h e  

u s e  o f  p i v o t  e l e m e n t s  m G a u s s l a n  e l i m i n a t i o n ,  t h e  o v e r a l l  s t a b d l t y  o f  th i s  cycl ic  r e d u c t i o n  

p r o c e s s  n e e d s  to be  t h e o r e t i c a l l y  a n a l y z e d .  W e  h o p e  t h a t  t h i s  p a p e r  wil l  s e rve  to s u m u l a t e  

t h e  i n v e s t i g a t i o n  o f  s o m e  o f  t h e s e  q u e s t i o n s .  
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