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ABS'IRACT Two hnear algorithms are presented for solvmg the isomorphism problem for maximal outerplanar 
graphs (mops) These algorithms present improvements over corresponding hnear algorithms for planar graph 
isomorphism when apphed to mops The algorithms are based on a code for a mop G which is obtained from a 
umque Hamdtoman cycle m G The first involves a strmg-matchmg automaton and the second involves the 
removal of vertices of degree two m layers untd either an edge or triangular face remains 
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1. Introduction 

Two graphs Gl = (V ,  El) and G2 = (V2, E2) are Isomorphic if there exists a 1-1 function 
f Vl ~ V2 from V1 onto V2 such that two veruces ui, vi are adjacent in G1 if  and only if 
f(uO, f(vl) are adjacent m G2. The graph isomorphism problem (gwen two graphs G1 and 
G2, determine whether G1 and Gz are isomorphic) has been much studied in the hterature 
[17]. Although it ~s not known whether the general graph isomorphism problem is NP- 
complete, the related subgraph lsomorph~sm problem ~s NP-complete [1]. One of  the better 
isomorphism algorithms, due to Corneil and Gotl ieb [4], has an exponential time com- 
plexity m the worst case 

Linear-time soluuons to the ~somorphism problem have been obtained by Hopcroft and 
Tarjan [9] for trees, and by Hopcroft and Wong [10] for planar  graphs. This planar  graph 
algorithm presents an improvement over an O(V 2) algorithm for triply connected planar  
graphs by Welnberg [19] and an O(V log V) algorithm by Hopcroft and Tarjan [9]. 

In this paper the isomorphism problem is solved for a subclass of  planar, chordal graphs 
called maximal outerplanar graphs (mops). Since it was shown in [8] that trees, outerplanar 
graphs, and planar graphs form a natural hierarchy, this solution, together with those for 
trees and planar  graphs, completes the sequence It is also worth noting that the general 
graph isomorphism problem is polynomially reducible to the isomorphism problem for 
chordal graphs [3]. Consequently it is of  interest to know which other classes of  chordal 
graphs, m addition to trees and mops, have polynomial-t ime isomorphism solutions. 

The algorithms presented here, by taking advantage of  specific properties of  mops, are 
more efficient than Hopcroft and Wong's  algorithm when apphed to mops. 

It will be shown that each mop has associated with it a unique Hamiltonian cycle, which 
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FIG ! A maximal outerplanar graph (mop) 

can be determined in linear time [14]. This algorithm ~s briefly stated m the appendix. This 
cycle can be used, m a manner similar to Weinberg's use of  Eulenan cycles in triply 
connected graphs [19], to provide a unique code for a mop. The first algorithm relies on a 
string matching algorithm presented by Morris and Pratt [ 16], appearing in [ 1]. The second 
algorithm is further characterized by the use of  a restricted geometric dual of  a mop. 

2. Definitions 

An outerplanar graph is a graph which can be embedded in the plane in such a way that 
all vertices he on the exterior face. A maxzmal outerplanar graph (mop) is an outerplanar 
graph such that the addition of  an edge between any two nonadjacent vertices results in a 
nonouterplanar graph. The class of mops is equivalent to the class of  triangulations of 
polygons, and forms a subclass of  the class of  planar 2-trees [ 18] and a subclass of  the class 
of  chordal graphs [51 (see also [3] and [14]). 

A mop can be defined recurslvely as follows [2]: 

(!) The graph Ka, consisting of  three mutually adjacent vertices, is a mop. 
(2) If  G is a mop which is embedded in the plane so that every vertex lies on the exterior 

face, and H Is obtained by joining a new vertex to the two vertices of  an edge on the 
exterior face of  G, then H Is a mop. 

(3) Nothing is a mop unless its being so follows from a finite number of  applications of  
statements (1) and (2). 

An immediate consequence of  the recursive definition of  a mop is that every mop 
contains at least two vertices of  degree 2 (of. [7]); we call such a vertex a 2-vertex. The 
graph in Figure 1 is a mop in which u and v are 2-vertices. 

A mop G having m vertices labeled 1, 2 . . . . .  m is recursively labeled if vertices 1, 2, and 
3 form a triangle in G, and every vertex with label k is adjacent to exactly two vertices with 
label k for 3 _< k _< m. Mops which are recursively labeled reflect the manner in which they 
can be constructed according to the recursive definition given above. Recursive mops can 
also be represented canonically by two linear arrays HIGH(I), HIGH(2) . . . . .  HIGH(m) 
and LOW(I), LOW(2) . . . . .  LOW(m), where HIGH(k) and LOW(k) are the labels of  the 
two vertices adjacent to vertex k whose labels are less than k. We assume that HIGH(k) 
> LOW(k), that HIGH(I), LOW(I), and LOW(2) are undefined, and that HIGH(2) ffi 1. 
Figure 2 illustrates' a recursive mop and its canonical representation. 

An algorithm, linear in the number of  verttces, which has been previously presented [14] 
to find the unique Hamiltonian cycle in G, is restated in the appendix. 

3. Hamiltonian Degree Sequence of Mops 

Since every mop G can be embedded in the plane in such a way that every vertex lies on 
the exterior face, the collection of  exterior edges defines a Hamiltonian cycle in G (a cycle 
which contains every vertex of  G exactly once). Let u~, u2 . . . . .  urn, u~ define a Hamiltonian 
cycle in a mop G, and let D = dr, d2 . . . . .  d,~ be the corresponding sequence of  degrees of  
these vertices--i.e., the degree of  vertex u~ is d~; we call D a Hamiltonian degree sequence 
of  G. 
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FIG 2 A hnear representation of a mop 

Since each vertex ui can initiate a Ham i l t om an  degree sequence in each o f  two ways 
(clockwise and counterclockwise),  every mop G with m vertices has 2m (not necessardy 
distract) Hami l ton ian  degree sequences We next show that any one o f  these sequences 
uniquely  determines the mop  G up to isomorphism. 

THEOREM 1. Let  D = da, d e ,  . ,  dm be a Hamtl toman degree sequence o f  some mop G 
Then G ts umque up to tsornorphtsm. 

PROOF. We proceed by Induction on the number  m of  vertices. The  result is tr ivially 
true for m _< 5 since there is only one mop on 3, 4, and 5 vertices, respectively 

Assume the result is true for all values o f  m _< k. Let D = dl, d2 . . . . .  dk, dk+j be the 
Hami l ton ian  degree sequence o f  some mop G and let ui, u2 . . . . .  uk, uh+l be the correspond-  
mg sequence o f  vertices. Since this is the degree sequence o f  some mop  G, at least one 
vertex u, in G must have degree 2, i .e ,  for some i, d, = 2 We  assume without  loss o f  
general i ty that 1 < i < k + 1. It follows, therefore, that vertex u, must  be adjacent  to 
vertices u,-~ and u,+~, and fur thermore  that vertices u,-1 and Ul+l are themselves adjacent.  
Thus  D '  = di, d2 . . . . .  d,-1, d,-1 - 1 . . . .  dk, dk+~ is a Hami l ton ian  degree sequence o f  a 
mop  G'  with k vertices. But by our  mduc twe  hypothesis,  this mop  is unique.  Consequent ly  
it follows that the mop described by D is unique.  []  

COROLLARY 1. A sequence dl, d2 . . . . .  d,-l, 2, d,+l . . . . .  dR ts a Hamdtonian degree 
sequence o f  a mop i f  and only i f  the sequence 

dl, d2 . . . .  d,-i - 1, d , + l -  1 . . . . .  dm 

ts a Hamiltonian degree sequence 
We next present Algor i thm MOP,  which m linear t ime takes a Hami l ton ian  degree 

sequence and produces the unique,  corresponding mop. The  Hami l ton ian  degree sequence 
is reduced by the process described in Corol lary  1 untd the sequence 222 remains.  As each 
vertex is r emoved  from the sequence, the highest unused label f rom the set o f  integers 1, 
2, . . . ,  M is associated with it. This  results m a recursive labehng of  the mop,  f rom which 
a " canomca l "  representation is easily obtained.  The  algori thm requires that the H a m d t o n -  
mn degree sequence be rotated so as not  to begin with a vertex o f  degree 2. 

ALGORITHM MOP 

Given a Hamdtoman degree sequence DEG(I), DEG(2), , DEG(M) of a mop with M vertices, to produce a 
recursive labeling LABEL(I), LABEL(2), , LABEL(M) of G, where LABEL(l) is the new label of the vertex 
with DEG(1), arrays LEFT and RIGHT form a doubly linked list of the items in the array DEG, vertices of 
degree 2 are labeled as they are removed from the doubly linked list, throughout L Is the highest integer between 
1 and M which has not been used to label a vertex 
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Step 0 [lniuahze} 
Set LEFT(I) *- M 
For i ~- 2 to  M do  se t  LEFT(I) ~ 1 - ! od 
For 1 ~ I to M - 1 do  se t  RIGHT(I) ~-- 1 + 1 od 
Set RIGHT(M) ~ 1 
Set NEXT ~ 2 
Set L ~- M 

Step I [Remove and label all but three vernces] 
W h i l e  L > 3 do  

[find a 2-vertex and label it] 
while DEG(NEXT) # 2 do s e t  NEXT .~- RIGHT(NEXT) od 
set LABEL(NEXT) ~-- L 
set L ~--L- 1 
[update adjacenoes] 
set L ~.- LEFT(NEXT) 
se t  R *- RIGHT(NEXT) 
set  DEG(L) ~- DEG(L) - I 
se t  DEG(R) ~ DEG(R) - 1 
set RIGHT(L) ~-- R 
se t  LEFT(R) ~- L 
lget NEXT vertex] 
if DEG(L) = 2 
then set NEXT ~-- L 
else set NEXT ~- R 
fiod 

Step 2 [Label last three vertices] 
Set LABEL(NEXT) ~.- 3 
Set LABEL(RIGHT(NEXT))  ~ 2 
Set LABEL(LEFT(NEXT)) ~ 1 
S t o p  

T. BEYER, W. JONES, AND S. MITCHELL 

The example in Figure 3 illustrates the application of Algorithm MOP to a Hamlltonian 
degree sequence for the mop G. The new labels of the vertices in the degree sequence are 
used to generate a new representation of a mop H which is isomorphic to G. 

4. I s o m o r p h i s m  o f  M o p s  

We have by now established that a Hamlltoman degree sequence uniquely defines a mop. 
Therefore, two mops are isomorphic if and only if they have an idenucal Hamiltonian 
degree sequence. However, two recognition problems arise when we attempt to deode 
whether two degree sequences define the same mop. First, two sequences for the same 
mop may not start at the same vertex. Second, even if they both begin at the same vertex, 
one may represent a clockwise traversal of the mop whereas the other reflects a counter- 
clockwise traversal. 

We present two algorithms for solving this problem m time linear in the number  of 
vemces. The first is based on a string-matching algorithm of Morns and Pratt [ 16], which 
appears in [1]. The second algorithm determines unique vertices at which to ininate 
Hamiltonian degree sequences. 

STRING-MATCHING SOLUTION. This isomorphism problem can be formally character- 
ized by the following result, which follows immediately from Theorem 1 

THEOREM 2. L e t  G a n d  G '  be  m o p s  with  H a m i l t o m a n  degree  s e q u e n c e s  D = dl ,  d~ . . . . .  

dm a n d  D '  = d~, d~, . ,  d'~, respect ively.  G a n d  G '  are  i s o m o r p h i c  i f  a n d  on l y  i f  D '  is a cycl ic  

shi f t  a n d ~ o r  invers ion  o f  D. 

If $ denotes an end-of-string marker, then the following result is immediate from 
Theorem 2 

COROLLARY 2 G a n d  G '  are  i s o m o r p h w  i f  a n d  o n l y  z f  D" is a subs t r i ng  o f  D D $ D R D  R. 

Morns and Pratt have presented an algorithm which will deode if D '  is a substring of 
D D $ D n D  R in  O ( m )  steps independent of the size of the alphabet. Their algorithm 
constructs a deterministic finite automaton from sequence D '  so that if the automaton is 
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9 II 10 8 6 7 4 5 3 2  I: 4 2 3 4 4 2 5 2 4 2  

N e w  Iobe ls  

6 4 [ ~  3 4 4  2 5 2 4 2  

6 3 - [~ ]  4 4 2 5 2 4 2  

6 [ ~ - -  - 3 4 2 5 2 4 2  

5 - - - -  ~ ] 4 2 5 2 4 2  

4 3 ~ 5 2 4 2  

4 ~ - - 4 2 4 2  

3 3 ~ 4 2  

3 ~ - - 3 2  

2 2 2  

FIG 3 An example of Algorithm MOP 

m state ~ after having read symbol d~ and the next symbol read is d~+l, then the machine 
wdl move to state z + I. The stnng DDSDRD g will serve as the input string to the 
automaton, and the subsequent acceptance or rejection of the input string is performed in 
O(m) steps. 

LAYERED REMOVAL OF 2-VERTICES SOLUTION. We wish to compare the Hamiltonian 
degree sequences of two mops after first ensuring that they begin at the same vertex. In 
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(d) 

A recursive mop G and its dual tree T (a) recurswe mop G with labeled triangular faces, (b) recurswe 
representauon of mop G, (c) dual tree T, (d) recurswe representation of dual tree T 

actuahty we determine a set of  either two or three vertices, which we can uniquely identify 
in a mop. We then use only the set of  Hamdtonian degree sequences which begin with 
these vertices for comparaUve purposes. 

We obtain this special set of  vemces by methodically removing 2-vertices in layers, until 
either an edge (two vertices) or a triangle face (three vertices) remains. A first isomorphic 
check can be made at this time since the two mops are isomorphic only if what remains by 
this process is the same for both. Each of  these two (or three) "central" vertices v in G~ will 
be taken as the initial vertex of  the two Hamiltonian degree sequences (clockwise and 
counterclockwise) which start at v. Only one such sequence S need be taken from the 
second mop G2. The sequence is compared to each of  the four (or six) sequences from G] 
symbol by symbol; G~ and G2 are isomorphic if and only if S matches one of  these 
sequences. 

We briefly describe a process by which the "central" vertices can be determined. Note 
that removing a 2-vertex from a mop is equivalent to removing a triangular face. The 
geometric dual of  a mop G is a tree T if the exterior region is ignored. Hence, the removal 
of  a 2-vertex from G is equivalent to removing an endvertex from the dual tree T. 

Numerous examples or recurswe representations of  trees have appeared in the literature 
(cf. [6, 12-15]). We can easily obtain a recursive representation for the dual tree T from the 
recursive representation of  the mop G. We associate with each triangular face (vertex of  
T) the highest label of  the vertices which define the face. The dual tree T, therefore, will 
have labels in the range 3 to m (cf. Figure 4). The reeursive representation D U A L  of  T 
(shown in Figure 4(d)) is the same as the array H I G H ( I ) ,  I = 4 . . . . .  M ,  of  the recursive 
representation o f  G (with all 2's changed to 3's). We can then determine the Jordan center 
of  T (cf. [11]) using an algorithm presented in [14]. The Jordan center of  T will either be 
one tree vertex, corresponding to three "central" vertices in G, or two tree vertices, 
corresponding to two "central" vertices in G. 

Two nonisomorphic mops which have isomorphic unlabeled dual trees are presented in 
Figure 5. If  the dual trees are to be used directly in the isomorphic process, they must be 
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appropriately labeled to reflect their orientation in the plane and a labeled tree isomorphism 
algorithm must be used. 

Appendix 

We have seen that the exterior edges of  a mop G define the Hamiltonian cycle; hence, to 
find the Hamiltonian cycle it is sufficient to be able to distinguish between exterior and 
interior edges. This ts simple to do when G is described using the canonical recursive 
representation HIGH and LOW. The interior edges of  G are precisely the edges (HIGH(I), 
LO W(I)) for I = 3 . . . . .  M. 

The algorithm iteratively removes 2-vertices by making one right-to-left pass over the 
canonical recurswe representation, exposing interior edges to the outer face. Let us denote 
the two edges joining a 2-vertex to its adjacent vertices as pendant edges and the two 
adjacent vertices as remote vertices. (w and x are remote vertices of  u in Figure 1.) Each of  
these interior edges can be marked so as to prohibit its addition to the set through the use 
of  an array CANT. A value of  CANT(l) = 0 indicates that both of  the pendant edges 
incident to vertex I are in the Hamiltonian cycle. A value of  CANT(I) = - 1  indicates that 
neither of  these pendant edges are in the cycle. Otherwise, only one pendant edge incident 
to vertex I is on the Hamiltonian cycle and CANT(I) identifies the remote vertices of  the 
forbidden edge. 
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