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ABSTRACT  Two linear algorithms are presented for solving the isomorphism problem for maximal outerplanar
graphs (mops) These algornthms present improvements over corresponding linear algonthms for planar graph
1somorphism when apphed to mops The algonthms are based on a code for a mop G which 1s obtaned from a
unique Hamiltoman cycle in G The first involves a string-matching automaton and the second involves the
removal of vertices of degree two mn layers until either an edge or triangular face remains
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1. Introduction

Two graphs G, = (V1. E1) and Gz = (V2, E2) are 1somorphic if there exists a 1-1 function
f Vi— V:from V; onto V: such that two vertices u;, v, are adjacent in G, if and only 1f
SGu), f(v)) are adjacent in Go. The graph isomorphism problem (given two graphs G, and
G,, determine whether G, and G: are 1somorphic) has been much studied in the literature
[17]. Although it 1s not known whether the general graph 1somorphism problem 1s NP-
complete, the related subgraph isomorphism problem 1s NP-complete [1]. One of the better
1somorphism algorithms, due to Corneil and Gotlieb [4], has an exponential time com-
plexity 1n the worst case

Linear-time solutions to the 1somorphism problem have been obtained by Hopcroft and
Tarjan [9] for trees, and by Hopcroft and Wong {10] for planar graphs. This planar graph
algorithm presents an improvement over an O(¥?) algorithm for triply connected planar
graphs by Weinberg [19] and an O(V log V) algorithm by Hopcroft and Tarjan {9].

In this paper the isomorphism problem is solved for a subclass of planar, chordal graphs
called maximal outerplanar graphs (mops). Since it was shown in [8] that trees, outerplanar
graphs, and planar graphs form a natural hierarchy, this solution, together with those for
trees and planar graphs, completes the sequence It is also worth noting that the general
graph isomorphism problem is polynomially reducible to the isomorphism problem for
chordal graphs [3]. Consequently it 1s of interest to know which other classes of chordal
graphs, 1n addition to trees and mops, have polynomial-time isomorphism solutions.

The algonthms presented here, by taking advantage of specific properties of mops, are
more efficient than Hopcroft and Wong’s algorithm when apphed to mops.

It will be shown that each mop has associated with 1t a unique Hamiltonian cycle, which
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Fic 1 A maximal outerplanar graph (mop)

can be determined in linear time [14]. Thus algorithm 1s briefly stated 1n the appendix. This
cycle can be used, in a manner similar to Weinberg’s use of Eulenan cycles in triply
connected graphs [19], to provide a unique code for a mop. The first algorithm relies on a
string matching algornthm presented by Morris and Pratt [16], appearing in [1]. The second
algonthm is further characterized by the use of a restricted geometric dual of a mop.

2. Definitions

An outerplanar graph is a graph which can be embedded in the plane 1n such a way that
all vertices he on the exterior face. A maximal outerplanar graph (mop) is an outerplanar
graph such that the addition of an edge between any two nonadjacent vertices results in a
nonouterplanar graph. The class of mops is equivalent to the class of triangulations of
polygons, and forms a subclass of the class of planar 2-trees [18] and a subclass of the class
of chordal graphs [5] (see also [3] and [14]).

A mop can be defined recursively as follows [2]:

(1) The graph K, consisting of three mutually adjacent vertices, is a mop.

(2) If Gis a mop which is embedded in the plane so that every vertex lies on the exterior
face, and H 1s obtained by joining a new vertex to the two vertices of an edge on the
exterior face of G, then H 1s a mop.

(3) Nothing is a mop unless its being so follows from a finite number of applications of
statements (1) and (2).

An immediate consequence of the recursive definition of a mop is that every mop
contains at least two vertices of degree 2 (cf. [7]); we call such a vertex a 2-vertex. The
graph in Figure 1 is a mop in which u and v are 2-vertices.

A mop G having m vertices labeled 1, 2, ..., m is recursively labeled if vertices 1, 2, and
3 form a triangle in G, and every vertex with label % is adjacent to exactly two vertices with
label & for 3 < k < m. Mops which are recursively labeled reflect the manner in which they
can be constructed according to the recursive definition given above. Recursive mops can
also be represented canonically by two linear arrays HIGH(1), HIGH(2), ..., HIGH(m)
and LOW(l), LOW(2), ..., LOW(m), where HIGH(k) and LOW(k) are the labels of the
two vertices adjacent to vertex k whose labels are less than k. We assume that HIGH(k)
> LOW(k), that HIGH(1), LOW(1), and LOWA(2) are undefined, and that HIGH(2) = 1.
Figure 2 illustrates a recursive mop and its canonical representation.

An algorithm, linear in the number of vertices, which has been previously presented [14]
to find the unique Hamiltonian cycle in G, is restated in the appendix.

3. Hamiltonian Degree Sequence of Mops

Since every mop G can be embedded in the plane in such a way that every vertex lies on
the exterior face, the collection of exterior edges defines a Hamiltonian cycle in G (a cycle
which contains every vertex of G exactly once). Let uy, us, . . . , tm, u; define a Hamiltonian
cycle in a mop G, and let D = d,, d, . .., dn be the corresponding sequence of degrees of
these vertices—i.e., the degree of vertex w, is dy; we call D a Hamiltonian degree sequence
of G.
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Since each vertex u; can 1nitiate a Hamiltoman degree sequence in each of two ways
(clockwise and counterclockwise), every mop G with m vertices has 2m (not necessarily
distinct) Hamiltonian degree sequences We next show that any one of these sequences
uniquely determines the mop G up to isomorphism.

THEOREM 1. Let D = di, ds, ., dn be a Hamultonian degree sequence of some mop G
Then G 1s umique up to isomorphism.

Proor. We proceed by induction on the number m of vertices. The result is triviaily
true for m =< 5 since there 1s only one mop on 3, 4, and 5 vertices, respectively

Assume the result 1s true for all values of m < k. Let D = d}, ds, ..., di, dnes be the
Hamiltonian degree sequence of some mop G and let uy, U, . . . , g, tr+1 be the correspond-
ing sequence of vertices. Since this 15 the degree sequence of some mop G, at least one
vertex #, in G must have degree 2, i.e, for some i, d, = 2 We assume without loss of
generality that 1 < i < k + 1. It follows, therefore, that vertex u, must be adjacent to
vertices #,-1 and w11, and furthermore that vertices u,—, and w.., are themselves adjacent.
Thus D' = dy, ds, ..., diy, di-1 — 1, .., dh, disy is a Hamiltonian degree sequence of a
mop G’ with k vertices. But by our inductive hypothesis, this mop 1s unique. Consequently
it follows that the mop described by D is unique. O

CoroLLARY |. A sequence di, do, ..., d,-1, 2, disy, ..., dn 1s a Hanultonian degree
sequence of a mop if and only iIf the sequence

dlad2$'- ,d,_1-' lde-l— 17---7dm

1s @ Hamiltonian degree sequence

We next present Algorithm MOP, which in linear time takes a Hamiltonian degree
sequence and produces the umque, corresponding mop. The Hamiltonian degree sequence
1s reduced by the process described in Corollary 1 until the sequence 222 remains. As each
vertex is removed from the sequence, the highest unused label from the set of integers 1,
2, ..., M 1s associated with it. This results in a recursive labeling of the mop, from which
a “canonical” representation is easily obtained. The algorithm requires that the Hamilton-
1an degree sequence be rotated so as not to begin with a vertex of degree 2.

ALGORITHM MOP

Given a Hamiltomian degree sequence DEG(l), DEG(2), , DEG(M) of a mop with M vertices, to produce a
recursive labeling LABEL(1), LABEL(2), , LABEL(M) of G, where LABEL(I) 1s the new label of the vertex
with DEG(I), arrays LEFT and RIGHT form a doubly linked list of the sems in the array DEG, vertices of
degree 2 are labeled as they are removed from the doubly linked list, throughout L 1s the highest integer between
1 and M which has not been used to label a vertex
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Step O [Iniualize]
Set LEFT(l) « M
For/] —2toMdoset LEFT(]) —I—10d
For/ —ltoM— 1doset RIGHT(]) «— I+ 1 0d
Set RIGHT(M) « 1
Set NEXT «2
SetL—M
Step I [Remove and label all but three vertices]
While L > 3 do
[find a 2-vertex and label 1t]
while DEG(NEXT) # 2 do set NEXT — RIGHT(NEXT) od
set LABEL(NEXT) « L
set L —L~—1
Jupdate adjacencies]
set L «— LEFT(NEXT)
set R « RIGHT(NEXT)
set DEG(L) <« DEG(L) — 1
set DEG(R) « DEG(R) — 1
set RIGHT(L) < R
set LEFT(R) « L
|get NEXT vertex]
if DEG(L) =2
then set NEXT « L
else set NEXT «— R
fiod
Step 2 [Label last three vertices]
Set LABEL(NEXT) « 3
Set LABEL(RIGHT(NEXT)) « 2
Set LABEL(LEFT(NEXT)) « 1
Stop

The example in Figure 3 illustrates the application of Algorithm MOP to a Hamiltonian
degree sequence for the mop G. The new labels of the vertices in the degree sequence are
used to generate a new representation of a mop H which is isomorphic to G.

4. Isomorphism of Mops

We have by now established that a Hamiltoman degree sequence umquely defines a mop.
Therefore, two mops are isomorphic 1f and only if they have an identical Hamiltonian
degree sequence. However, two recognition problems arise when we attempt to decaide
whether two degree sequences define the same mop. First, two sequences for the same
mop may not start at the same vertex. Second, even if they both begin at the same vertex,
one may represent a clockwise traversal of the mop whereas the other reflects a counter-
clockwise traversal.

We present two algorithms for solving this problem in time linear in the number of
vertices. The first 1s based on a string-matching algorithm of Morrs and Pratt [16], which
appears in [1}. The second algorithm determines unique vertices at which to initiate
Hamiltonian degree sequences.

STRING-MATCHING SOLUTION. This isomorphism problem can be formally character-
ized by the following result, which follows immediately from Theorem 1

THEOREM 2. Let G and G’ be mops with Hamiltoran degree sequences D = dy, ds, . . .,
dwand D' = d, ds, ., dm, respectively. G and G’ are isomorphic if and only if D’ is a cyclic
shift and/or inversion of D.

If $ denotes an end-of-string marker, then the following result is immediate from
Theorem 2

COROLLARY 2 G and G’ are isomorphic if and only if D’ is a substring of DD$D*D¥.

Mormns and Pratt have presented an algorithm which will decide if D’ is a substring of
DD$DED® in O(m) steps independent of the size of the alphabet. Their algorithm
constructs a deterministic finite automaton from sequence D’ so that if the automaton is
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1n state s after having read symbol d; and the next symbol read 1s ..., then the machine
will move to state 1 + 1. The sting DDSD*D¥ will serve as the input string to the
automaton, and the subsequent acceptance or rejection of the input string 1s performed in
O(m) steps.

LAYERED REMOVAL OF 2-VERTICES SOLUTION. We wish to compare the Hamiltonian
degree sequences of two mops after first ensuring that they begin at the same vertex. In



608 T. BEYER, W. JONES, AND S. MITCHELL

HIGH 2 3 4 2 4 5 5

Low | 1 | ! 3 | 49

ovAaL 3 4 3 4 5 5
© @)

Fi6 4 A recursive mop G and its dual tree T (a) recursive mop G with labeled triangular faces, (b) recursive
representation of mop G, (¢) dual tree T, (d) recursive representation of dual tree T

actuality we determine a set of either two or three vertices, which we can uniquely identify
in a mop. We then use only the set of Hamiltonian degree sequences which begin with
these vertices for comparative purposes.

We obtain this special set of vertices by methodically removing 2-vertices in layers, until
either an edge (two vertices) or a trangle face (three vertices) remains. A first isomorphic
check can be made at this time since the two mops are isomorphic only if what remains by
this process is the same for both. Each of these two (or three) “central” vertices v in G, will
be taken as the initial vertex of the two Hamiltonian degree sequences (clockwise and
counterclockwise) which start at v. Only one such sequence S need be taken from the
second mop Gz. The sequence is compared to each of the four (or six) sequences from G,
symbol by symbol; G, and G are isomorphic if and only if S matches one of these
sequences.

We briefly describe a process by which the “central” vertices can be determined. Note
that removing a 2-vertex from a mop 1s equivalent to removing a triangular face. The
geometric dual of a mop G is a tree T 1f the exterior region is ignored. Hence, the removal
of a 2-vertex from G is equivalent to removing an endvertex from the dual tree T.

Numerous examples or recursive representations of trees have appeared in the literature
(cf. [6, 12-15]). We can easily obtain a recursive representation for the dual tree 7 from the
recursive representation of the mop G. We associate with each triangular face (vertex of
T') the highest label of the vertices which define the face. The dual tree T, therefore, will
have labels in the range 3 to m (cf. Figure 4). The recursive representation DUAL of T
(shown in Figure 4(d)) 1s the same as the array HIGH(I), I = 4, ..., M, of the recursive
representation of G (with all 2’s changed to 3’s). We can then determine the Jordan center
of T (cf. [11]) using an algorithm presented in [14]. The Jordan center of T will either be
one tree vertex, corresponding to three “central” vertices in G, or two tree vertices,
corresponding to two “central” vertices in G.

Two nonisomorphic mops which have somorphic unlabeled dual trees are presented in
Figure 5. If the dual trees are to be used directly in the isomorphic process, they must be
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appropriately labeled to reflect their orientation in the plane and a labeled tree isomorphism
algorithm must be used.

Appendix

We have seen that the exterior edges of a mop G define the Hamiltonian cycle; hence, to
find the Hamiltonian cycle it 1s sufficient to be able to distinguish between exterior and
interior edges. This 1s simple to do when G is described using the canonical recursive
representation HIGH and LOW. The interior edges of G are precisely the edges (HIGH(I),
LOwW(I))forI=3,..., M.

The algorithm iteratively removes 2-vertices by making one night-to-left pass over the
canonical recursive representation, exposing interior edges to the outer face. Let us denote
the two edges joining a 2-vertex to its adjacent vertices as pendant edges and the two
adjacent vertices as remote vertices. (w and x are remote vertices of # in Figure 1.) Each of
these interior edges can be marked so as to prohibit its addition to the set through the use
of an array CANT. A value of CANT(I) = 0 indicates that both of the pendant edges
incident to vertex [ are in the Hamiltonian cycle. A value of CANT(I) = —1 indicates that
neither of these pendant edges are in the cycle. Otherwise, only one pendant edge incident
to vertex I is on the Hamiltonian cycle and CANT(]) identifies the remote vertices of the
forbidden edge.
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