Check for
Updates
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ABSTRACT In the bin-packing problem a hst L of n numbers are to be packed into umt-capacity bins For any
algorithm S, let 7(S) be the maximum ratio S(L)/L* for large L*, where S(L) denotes the number of bins used
by S and L* denotes the mmmum number needed An on-hne O(z log n)-tume algortthm RFF with r(RFF) =
2 and an off-line polynomial-ume algorithm RFFD with (RFFD) =< ¥ — ¢, for some fixed ¢ > 0, are given
These are strictly better, respectively, than two promnent algonthms the Farst-Fit (FF), which is on-line with
r(FF) = §, and the First-Fit-Decreasing (FFD) with r(FFD) = # Furthermore, 1t is shown that any on-hne
algorithm S must have r(S) = 3 The question, “How well can an o(n log n)-time algorithm perform®” is also
discussed It 1s shown that 1n the generalized d-dimensional bin packing, any o(n log n)-time algorthm S must
have (S)=d
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1. Introduction

Let L = (x1, X2, ..., X,) be a given list of real numbers in (0, 1], and BIN;, BINg, ... an
infinite sequence of bins each of unit capacity. The bin-packing problem is to assign each
x, nto a unique bin, with the sum of numbers in each bin not exceeding one, such that the
total number of used bins is a minimum (denoted by L*). As this problem is NP-complete
[9), efficient algorithms that always generate packings using L* bins are unlikely to exist.
In the literature, heuristic algorithms with guaranteed bounds on performance have been
studied extensively [6, 7, 8]. For any (heuristic) bin-packing algorithm S, let S(L) denote
the number of bins used for the input list L, and R,(k) the maximum ratio S(L)/L* for
any list L with L* = k. The performance ratio of S, denoted by r(S), is defined as
limj_.R.(k). Informally, (»(S) — 1) X 100 percent is the percentage of excess bins used
over the optimal packing in the worst case, for large lists. Two prominent algorithms are
the First-Fut Algorithm (FF) and the First-Fit-Decreasing Algorithm (FFD) (see Section 2
for definitions). It is known [8] that n(FF) = }J and (FFD) = 4.

A natural question is, “How good can any polynomial algorithm be?” In this regard,
two specific questions were raised by Johnson [7]:

(1) Is there a polynomial on-line algorithm S better than First-Fit (i.e., with 7(S) < })?
(2) Is there any polynomial algorithm S better than First-Fit-Decreasing (i.e., with
rS)<¥y?

We call an algorithm on-line if the numbers in list L are available one at a time and the
algorithm has to assign each number before the next one becomes available [6, 7). In this
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paper we resolve both questions in the affirmative. It is also shown that no on-line
algorithm can have a performance ratio less than 3.

Section 3 gives an O(n log n)-time on-line algorithm § with r(S) = 3. Section 4 explores
the limitation to on-line algorithms, showing that no such algorithm S (polynomial-time
or not) can have 7(S) < Z. In Section 5 a general approach for seeking improvements over
known heuristic algorithms is suggested and illustrated with an example. On the basis of
this idea, a heuristic polynomial-time algorithm better than FFD is constructed in Section
6. We discuss in Section 7 the question, “How well can an o(n log n)-time algorithm
perform?” It is shown that in a generalized version of bin packing, namely, the d-
dimensional bin-packing problem of [3], any o(n log n)-time algorithm S must have
nS)=d.

2. Terminology

For standard definitions with regard to the bin-packing problem, the reader is referred to
[8]. We will mention below only a few terms for use in the present paper.

A Iist 1s a finite sequence of real numbers. Some numbers may have identical values but
are regarded as distinct items. A set of real numbers in this paper is often in fact a multiset,
m which some numbers may appear more than once (see [10}).

If Ly = (x1, X2, . .., xp) and Ls = (y1, y2, . . . , yi) are two lists, their concatenation LiL,
is the ist L = (xy, X2, .., Xn, Y1, ¥2, - . . , ¥1)- Let X be a bin used in a packing; the content
of X, cont(X), 1s the sum of the numbers that are assigned to X. We shall say that a bin-
packing algorithm S has running time O(p(n)) if, when implemented on a random access
machine [1], S takes at most O( p(n)) steps to produce the packing for a list with » numbers.
We describe the two algorithms FF and FFD for easy reference:

First-Fit (FF). Given alist L = (x1, Xe, . . ., X»), the algorithm assigns x, sequentially,
forj=1,2,...,n to BIN, with the smallest i whose current content does not exceed
1-x

FIrsT-FIT-DECREASING (FFD). Given a list L = (x), X, . .., X»), the algorithm first
sorts the x,’s into decreasing order, and then performs First-Fit.

Both FF and FFD can be implemented to have a running time O(n log n); for details,
see [7].

3. A New On-line Algorithm

We will present an on-line algorithm that processes a list of n numbers in O(n log n) time,
and show that its performance ratio is § = 1.666- - -.

Any element x, in a list L will be called an A-piece, B,-piece, B:-piece, or X-piece if x,
1s in the interval (, 1], ¢, 31, 3, 3, or (0, 3], respectively.

ALGORITHM RFF (ReFINeD FirsT FiT). Before packing, we divide the set of all bins
into four infinite classes. The algorithm then proceeds as follows: Let m € {6, 7, 8, 9} be
a fixed integer. Suppose the first j — 1 numbers in list L have been assigned; we process the
next number x, according to the following rules.

(a) We put x, by first-fit into a bin

Class 1, if x, isanA-pece,
Class 2, if x, isa Bi-piece,
Class 3, if x, isa Bs-piece, but not the (mi)th
B:-piece seen so far for any integer 1= 1,
Class4, 1if x, isan x-piece.

(b) If x, is the (mi)th Bo-piece seen so far for some integer : = 1, we put x, into the first-
fitting bin containing an A-piece 1n class 1 if possible and put x; in a new bin of class 1
otherwise
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ANaLysis OF RFF. This algorithm can be implemented to run in O(n log n) time, as
it essentially performs a first-fit within each class of bins, which takes O(log n) time for
each x; (see [7]).

We now analyze the performance ratio of RFF. In general, the resulting packing of a
list L has the following structure (see Figure 1). There are three types of bins in class 1. Let
Z;; be the set of class-1 bins containing a single A4-piece, Z;» the set of class-1 bins
containing a single B»-piece, and Z); the set of class-1 bins containing both an 4-piece and
a Bs-piece. In class 2 every nonempty bin contains exactly two B;-pieces, except possibly
for the last one. Let Z; denote the set of all (nonempty) class-2 bins. Let Z3 be the set of
class-3 bins, each clearly containing two B-pieces, except possibly for the last one. The set
of class-4 bins, denoted by Zj, is simply the FF-packing of the sublist of L consisting of the
X-pieces. We shall write | Z11|, | Zi2|, | Z1sl, | Ze|, . . - as 211, 212, 213, 22, . . . , etc. The numbers
of A-pieces, Bi-pieces, B;-pieces, and X-pieces are denoted by a, by, b, and x, respectively.

We first prove an upper bound on r(RFF).

class 1
L XN ]

(

%
class 2 H

class 3

class 4

Fic 1. The structure of a packing using RFF The ordering of bins and the relative positions of preces within
a bin are not necessanly represented faithfully.
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LemMa 1. For any list L, RFF(L) < 3L* + 5.
Proor. Clearly
RFFLYy=a+ ziu+ 22+ 23 + 24 1)

Facr 1. Every bin BIN, in Z,, with the possible exception of two bins, has cont(BIN,)
=4

Proor. The set of bins Z, can be regarded as the first-fit packing of a list of pieces in
(0, 1. Therefore every bin except the last one has at least three pieces. If BIN, is the first
bin with cont(BIN,) < 4, then all the bins following it contain only pieces greater than }.
This means all bins following BIN, except the last one have contents exceeding §. [

Fact 1 has often been used in bin-packing arguments (see [8, proof of Theorem 2.3)). Its
proof is given here for convenience.

FACT 2. zu+ zi5=bo/m), 22 = [b1/2], zs = (1 — (1/m))b + 2.

ProoF. The first two equations are obvious from the algorithm. The last one follows
from zg = [4(b2 — 212 — z13)}. O

Facr 3. a=L*
ProoF. No two A-pieces can be in the same bin in any packing. O

We shall find upper bounds on z, and hence on RFF(L) via formula (1). There are
several cases to consider.

Case 1: z;z = 0. The total contents of class-4 bins is at most L* — 1a — £b; — 3b..
Thus by Fact | we have

=2+ %(L‘ - za- §b1 - %bz). )
Combining (1) and (2), one obtains
RFF(L) = §L* +za+ (22— b)) + (25— b)) + 2. 3)
Making use of Fact 2, Fact 3, and the fact m < 9, we have
29 — ﬁb] = 1,
z3—$be <2,
a< L*

Formula (3) then implies
RFF(L) < 3L* + 5.
Case 2: 212> 0.

Facr 4. In this case, cont(BIN;) + cont(BIN,) > 1 for each BIN, € Zy,, BIN, € Zys. In
particular, cont(BIN,) > £ for each BIN, € Z;:.

Proor. Otherwise, the 4-piece in BIN, should have shared the same bin with some B.-
piece during the packing. I

Case 2.1: z11 = zi2.  The total sum of all 4, B,-pieces is at least

e+ 8(zn — zi2) + 23 +3Qz — D+ 32z — 1)
>ia+izie+Hris+iza+izn—1,

where we have used Fact 4 and the equation z); = a — z13. From Fact 1 we obtain
=2+ 4*—-fa-Zzn—Frs— i —2z+ 1) o)
Combining (1) and (4) and noticing that 213 = 0 and z; = 0, we obtain
RFF(L)<*L*+la+ gz + bz, + 4. )
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We now make use of Fact 2 to derive from (5)

4 1 1 371
L —_—
RFFL)=zL +5a+(18+90 m)b2+5. ()
Fact 5. za+ (& + §(1/m)b. < 3L*.

ProOF. In an optimal packing of L, each bin with an 4-piece can contain at most one
B;-piece, and any other bin at most two B-pieces. Thus by < a + 2(L* — a) =2L* — a.

Therefore
1 (1 371 1371\, (1 1 371

As the second term on the right-hand side is nonnegative and a < L*, we have
1 1 371 23 371\, 1,
ga + <ﬁ+9—0;)b2$ (%4'9—0';)14 S§L s
form=3% [0

Formula (6) and Fact 5 lead to RFF(L) < 3L* + 5.
Case 2.2: z11 < zi3. The total sum of all 4, B.-pieces is at least

n+ 3 —z) + 82+ 3Q22 - 1D+ 12z~ 1)
>ta+izotizstizn+ iz — L

By Fact 1,
4 =<2+ g(L* - §a - -}212 - %213 - g22 - %Za + l)
It follows that

RFFLy=a+ zip+zo+ 23+ 24
<iL*+la+ 3z —fzs— Rz + 2z + 4
<{L*+la+8z2+ )z + 4.

Using Fact 2, we obtain

4 1 1 11
] * — J— pup—
RFF(L)S zL* +ga + <18 + 2m)b2 +5. %)

FaCT 6. }a+ (+ 3(1/m))bo < $L*.

PROOF

The second term is never positive (as m < 9); thus
1 1 1
left-hand side < [ =+ — |L* <= =L*,
9 m 3

asm=6. [

Formula (7) and Fact 6 lead to RFF(L) < §L* + 5 for case 2.2. This completes the proof
of Lemmal. O

Lemma 1 imphes that the performance ratio of RFF does not exceed §. We shall show
that it is in fact exactly 3.

THEOREM 1. r(RFF) =34
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Fic. 2 (a) An optimal packing of L mn the proof of Theorem 1; (b) the RFF packing of L

Proor. We need only exhibit lists L with arbitrary large L* such that RFF(L) =
§L* + O().

Let § = 47"*? for j = 1, and n be an integer of the form 6k + 1 for some k = 1. Define
p=1+8,u,=1+38, t,=1%—2§ for 1 <j=<n. Consider the hst L = L,L,, where

L= (U, to, B3, Us, Uy, 15, . . ., Uzy-1, B35, 82541, « + « 5 Un—2, In—1, tn),

and

L/2 = (u2, Ug, .. s Un—1, D3, P2, .+ 5 Pns f, un)-

Clearly L* = n (see Figure 2a). Now, using the easily verified fact that (uy—1 + 3 + fy41)
+ min{t, u,} > 1 for every k > 2j + 1 and any i, the packing resulting from RFF is as
shown in Figure 2b. Thus RFF(L) = §L* + O(1). This proves the theorem. [1

4. A Lower Bound to r(S) for On-line Algorithms

In this section we show that one cannot expect to find on-line algorithms as good as, say,
FFD, even if an arbitrary amount of computation is allowed.

THEOREM 2. For any on-line bin-packing algorithm S, r(S) = .

PrOOF. Let 0 < € <0.01 be a fixed number,and x =} —2¢, y=31+¢z=1 + ¢ For
any n = 12k (k a positive integer), define a list L = L,L;Ls, where L, consists of n x’s, L,
consists of n y’s, and Ls consists of n z’s.

Clearly

Ail)*=14n, and  (Lil:L)*=n.
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Fic 4 The packing of L,L, by S

Given any on-line algorithm S, let ri(n) = S(L.)/L¥, ro(n) = S(LiL2)/(Li1Ls)*, and ra(n)
= S(L1L2L3)/(L1LyLs)*. We shall prove that

max{ri(n), ro(n), rs(n)} = 3. ®

This immediately imphes that 7(S) = § and hence the theorem.

Consider the packing of L under algorithm S. We shall gather information about r,(r)
(1 = = 3) by examuning the resulting packing configurations at points when jn items have
been assigned.

Consider the packing of the first n items (i.e., L;). Let a, (1 < i =< 6) be the number of
bins containing i pieces of x (Figure 3). Then

SLy= ¥ a,
1=1=6
n= 3y ia. ©)

1l=1=<6

Next we examine the configuration after 2n items are packed (i.e., L;L, has been
assigned). A bin is called type (i, 1) if there are 1 x’s and / y’s 1n the bin. Let 8, £, ai, of,
af’, ab, 03, a8, oh, af, ai, af be the number of bins of type (0, 1), (0, 2), (1, 0), (1, 1),
(1,2),(2,0,2,1),2,2),3,0), (3, 1), 4, 0), (4, 1), respectively (see Figure 4). Clearly,

o = ai + af + af’,

az = a5 + of + af’, (10)
az = a3 + af,

ag = oy + af

It is easy to see that the only other possible types are (6, 0) and (5, 0) and there are,
respectively, as and a5 such bins. The analog of (9) is
S(LiLs) = (o} + of + ai”) + (a2 + o3 + af’) + (a5 + a5) + (a2 + af)
+as+ac+ B+ B, (1
n=(af +2a") + (af +2a¥) + of + af + B + 282,

where the second equation counts the number of y’s.
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A lower bound to S(L1L.L3) can be obtained by observing that no z-piece can go into
a bin of type (1, 2), (2, 1), (2, 2), (3, 1), (4, 0), (4, 1), (5, 0), (6, 0), or (0, 2), and that no two
z-pieces can occupy the same bin. Thus

S(ILil:Lyyz o +of +of +of +as+af +as+ as+ fo+n. (12)

We now define a new set of variables:

a = af,

&2 = a{” + aé//’

@ =ai + az+ aj, 13)
ay = of + a5 + af,

as = oy + a5 + 6.

Making use of (10) and the nonnegativity of all quantities involved, we obtain from (9),
(11), and (12) the following constraints.

S(L1)=&1+ &2+ (_¥3+ &4+ ae,

R @)
n< a +2a; + 3az + da, + 64ds,
Salyy=oa+ 2+ a3+ au+ as+pfi+ S (1)
n= a;+ 2 + a, + B + 28,
and
S(LiL2Ls) = az + a4+ ag + B2+n. (12)
In terms of r.(n), the above systems can be rewritten as follows.
én-rl(n) = (-11 + (_Xz + (_13 + 54 + Zis,
tnrf(n)= @+ G +@Gt Wt At+Pit P
n-ra(n) = Qs + a + as + Bz + n, (14)
—én = —%Zh - (_!2 - 31—13 - 2&4 - 3&6,
- n= —(-!1"2(—12 - &4 —B1—2ﬂ2.

We are now ready to prove (8). If (8) is not true, then we have

in > in-r(n),
{n > 4n-ryn), 15)

in > n-rs (n).

Now adding up all the equations in (14) and (15), we obtain 0 > }a; + }as, a contradiction.
This completes the proof of (8) and hence Theorem 2. O

5. The Technigue of e-Improvement

Given several simple heuristic algorithms in an optimization problem, a practical method
for obtaining a good solution is to run each algorithm and then select the best solution
produced. For example, in the traveling salesman problem one may produce tours using
several heuristic algorithms (see, e.g., [11]) and select the shortest tour. It is hoped that the
quality of the solution obtained will be much better than using a single fixed algorithm.
Implicitly, the success of this idea depends on the hypothesis that different algorithms
“favor” different regions in the input space. An interesting research area, so far not much
explored, is to analyze the performance (worst case or average case) of such “compound
algorithms.” One example can be found in Frederickson, Hecht, and Kim [2]. Trying to
obtain a better heuristic algorithm than FFD, one possibility is to try such compound
algorithms.

There are two difficulties in a direct approach, however. First, there are many algorithms
sharing the same worst-case input (e.g., the almost-any-fit algorithms in [6, 7]. This
eliminates some natural compound algorithms (running FFD and BFD will not improve
the worst-case bound). Second, the ratio ¥ = 1.2 - - - is very close to 1, and the analysis has
to be rather precise to beat this bound. As the analysis for a relatively simple FFD 1s
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already complicated, it is likely to be hard to analyze more sophisticated algorithms. We
will circumvent these difficulties by focusing on a specific goal—to find an algorithm with
bound ¥ — € for any positive e.

The idea is to locate the part of input space for which FFD may realize its worst-case
performance. If the charactenzation is simple enough, we may be able to design a heuristic
algorithm § that has a better performance in this bad region. The compound algorithm of
FFD and S then has a bound better than 4} — e. It turns out that for many bin-packing
algorithms, one can give simple descriptions of small regions covering all the “bad” inputs
as a result of the weight-function-type argument used. Thus the bin-packing problem
provides an ideal opportunity to try out this idea of “e-improvement.”

In this section we illustrate the idea by proving a simpler result about FFD. Consider
the restricted problem of bin packing in which each number in list L is in the range
(0, 4]. It 1s known [8] that FFD has a performance ratio g for this restricted problem. We
shall show that there is a better heuristic algorithm.

We first state a useful lemma.

LEMMA 2. Let A\, X, p, v be constants such that 0 <A <X <1, p=2 (1 =N, and v >
1. Suppose there is a bin-packing algorithm S with running time O(p(n)) such that, for any
list L consisting of numbers in (\, X'}, S(L) < pL* + v. If p(n) is a nondecreasing function
of n, then there is an algorithm S’ with running ime O(p(n) + n log n) such that S'(L) <
uL* + v for any list L consisting of numbers in (0, X'].

ProoF. Given an arbitrary list L, the algorithm S’ works as follows. In O(n) time, one
divides the items into two lists L; and L,, consisting of numbers in (A, A’] and (0, A},
respectively. The algonthm S is applied to L; to produce a packing using, say, N bins.
One finishes the packing by performing a first-fit algorithm on list L,. The algorithm
clearly works in time O(p(n) + n log n). We now show that S'(L) = ul* + ». By
assumption, N; < pLf + ». If (L) < N,, then the result follows immediately, since
Lt = L*. If S’(L) > N,, then in the final packing all except possibly the last bin must
have content greater than 1 — A. This implies that L* = (1 — A)(S’(L) — 1), and hence
SL)sA/A=A)L*+1=<pL*+» O

The above line of argument appears often in bin-packing analysis (e.g., [8, Lemma
3.3)).

The rest of this section is devoted to proving the following result, based on the general
1dea outlined earlier.

THEOREM 3. Let € = 107°. There is an O(n log n)-time algorithm S for bin packing such
that, of a list L has all numbers in (0, 4], then S(L) < (B —e)L* + 5.

PrOOF. LetA=14 N =14, p=% — ¢ and » = 5. By Lemma 2, we need only prove the
theorem assuming that the lists L have all numbers in (3, 4]. For the rest of this section we
restrict ourselves to such lists, although some statements also apply to general lists. The
first step is to locate the “bad” mput lists.

A REVIEW OF THE PROOF FOR FFD(L) < JL* + 5. The proof [6, 8] proceeds by
defining a function W(S) = O for any finite set S of numbers in (0, 4], such that the
following properties are satisfied.

Property Al. W is subadditive—W(U, S.) < ¥, W(S).

Property A2. If all elements in L are in (1/N, 4], N = 4, then W(L) = FFD(L) —
N+2

Property A3. If S = {x1, X2, ..., Xm} With x, € (3, 4] and J, x, < 1, then W(S) = }.

Let X, be the ith bin 1n an optimal packing of L. Properties A1-A3 imply the desired
result,

FFD(L) - 5= W(L)< Y, W(X)) < BL*. (16)
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A STRENGTHENED ANALYSIS. We have seen from (16) that
FFD(L)<RL* + 5. a7

Notice that we would obtain a bound better than (17), except in the case when almost all
X, have W(X,) = §. Actually, W(X,) = § only under very special conditions.

Definition. A number x, in L is called an 4-, B-, C-, D-, E-, or F-piece if x, is in
G 1L, 44 G 3 G 41 G 3D, or (4 3] We use the notation § = {CCDE} to express the
situation S = {x1, Xz, X3, x4} With x,, x2, x3, x4 being a C-, C-, D-, and E-piece, respectively.
In a packing, a bin containing a set {CCDE} will be called a CCDE-bin. The notation
generalizes obviously to other configurations.

Property A3 [6,8]. If S = (x4, %, ..., xn} withx, € }, $] and T, x, < 1, then

W)=Y if S={BBEF} or {CDEEE},
wWS)=<i otherwise.

A strengthened form of (17) can now be derived as follows. Let P* be an optimal
packing of L, and X, the ith bin in P* (1 </=< L*). Assume that there are a bins in P* of
the form {BBEF} or {CDEEE}.

Lemma 3. Ifa < (1 — 60e)L*, then FFD(L) < (3 — e)L* + 5.

ProofF. From Properties Al, A2, and A3, we have
FFD(L)-5=WL)=Y WX)=<=Ha+L* - a).

Therefore,

FFD(Ly=}L*+ 4a+5
=@ -eL*+5. d

We shall call a hst L severe if mm every optimal packing P* of L there are more than
(1 — 60¢e)L * bins of the form {BBEF)} or {CDEEE}. Lemma 3 states that if a list L is not
severe, then the packing produced by FFD has a bound at most § — e, strictly less than 3.
This concludes the step of identifying “bad” lists. We can finish the proof of Theorem 3
if we can design a heuristic algorithm S such that S(L) = (8 — €)L* + 5 for all severe lists
L. We now give an Algorithm M with runming time O(n log n) and prove that § = M has
the desired property

Algorithm M.

Step 1. Sort the mput hist L let (hh <= b < ...), (=< -.), (disd=--.),(ea=<e=..) and
(fi=f2 = +.-) be the sublists of B-pieces, C-pieces, D-pieces, E-picces, and F-pieces, respectively.

Step 2 Fory=1,2, . , put {c, d, €,-2, €31, €s,;} into BIN,, as long as such a set can fit mnto one bin and
enough pieces are available. {(We shall abbreviate the above constramnts below as “as long as 1t 1s
feasible ) Assume that m such bins are formed.

Step 3 Forj= 1,2, ., put {Cmsy, dnsy €mr2-1, €amsz,} Mto BIN,.., as long as there are enough pieces
avatlable. Assume that k such bins are formed [Note that aset {CDEE} hassum <} + 1 +}+}<1and
thus can always fit into a bin ]

Step 4. Suppose there are i F-pieces For j = 1,2, .. , put {by-1, b, fi, fs~;} into BINprsy, as long as it 1s
feasible Assame that ¢ such bins are formed.

Step S Fory=1,2, . put {bagras-1. bagees €amszasy} N0 BINpsgigq,, as long as 1t 1s feasible Assume that /
such bins are formed.

Step 6 Pack the remaining E-pieces and F-pieces, respectively, by themselves into new bins using first-fit Let
p be the number of bins formed this way

Step 7. Pack all the remaiming preces by themselves into new bins using first-fit. Suppose ¢ new bins are used

End of Algorithm M.

Figure 5 shows a packing produced by Algorithm M.
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Fic 5 The packing produced by Algonthm M.

ANALYSIS OF ALGORITHM M. It is easy to implement M so that it runs in O(» log n)
time. To complete the proof of Theorem 3, it remains to prove the following result.

LeMMA 4. If L is severe, then M(L) < (# — e)L* + 5.

Proor. Let P* be an optimal packing of L. Assume that there are in P* f bins of the
type {BBEF} and v bins of the type {CDEEE}. As L is severe, we have

B+vy>(1—60eL*. (18)
We wish to find bounds on the various terms in
MLy=m+k+qg+I1+p+rt 19)

In step 2, for 1 < j =< |y/5),

¢+ d] + ey + e3-1+ ey
< the (5§ — 4)th smallest content in all CDEEE-bins in P*.

Thus at least [ y/5] bins are formed in this step; i.e.,

m=ly/5). (20)
Bounds on m + k can be obtained by considering the total available CD-pairs. This gives
Y+ 60eL*X3=m+k=y. 21

In the last formula the term 60eL* X 3 is an upper bound on the numbr of C-pieces not
contained in CDEEE-bins. In step 4, for 1 = j < |8/3),

by + by +f, +f},_1
=< the (37 — 2)nd smallest content in all BBEF-bins in P*.

Therefore,
q=B/3). 22
By considering the number of all F-pieces, we find the following upper bound on ¢:
(B/2) + 60eL* x 3 =gq. 23)

To derive bounds on /, we first observe that each B-piece in a BBEF-bin (in P*) is less
than 1 — 4 —} — } = & For any two such B-pieces, one can add any E-piece to form a
BBE-bin. Thus a lower bound to / is the minimum of (#B)/2 and #E, where #B and #E
are the numbers of such B-pieces and any E-pieces, respectively, at the start of step 5. As
#B 2= 28 — 2q, and #E = (8 + 3y) — 3(m + k) = B — 540¢L* using (21), we obtain

=B — g — 540eL*. (24)
The total number of B-pieces available gives an upper bound,
B— g+ 60eL*=1 (25)

We now estimate p and ¢ by calculating the number of various pieces not contained
in the first m + k + ¢ + I bins. The total number of B-pieces in L is at most 283 +
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(60eL* X 2); by (24), at least 2(8 — 540¢L*) of them are in the first m + k + ¢ + ! bins.

Thus, denoting by N[Y] the number of Y-pieces in the last p + ¢ bins, we have

N[B] =< 1200¢L*.
Similarly, one can show that
N{[C] = 180eL*,
N[D] = 240eL*.
Also one has, using (22),
N[F] = 4B + 360eL* + 2.
The number N[E] satisfies
N[E)= (B + 3y + 300eL*) — 3m + 2k + ).
Now, using (20), (21), (23), and (24), one has
Im+2k+l=m+2m+k)+1

Y B _ 120eL*
2[5J+2y+2 720eL

111
> f+-—vy—T20eL*— 1.
5B+ 5y =120

From (30) and (31), we have
N{E]= 18 + 4y + 1020eL* + 1.
We can now estimate p and ¢. Using (29) and (32)

P=IN[E] +iN[F]+2={B + Ay + 264¢L* + 3.

From (26), (27), and (28),
t < N[B] + N[C] + N[ D] = 1620<L*.
Making use of (21), (25), (33), and (34) in (19), we obtain
M(L) < %B + %y + 2124eL* + 3,
As B+ y= L* we have
M(L)= # + 2124¢)L* + 3.
Qbserving that 8 + 2124e < — ¢, we have finally,
MUIL)=@H—-eL* +5.
This proves Lemma 4. J

The proof of Theorem 3 is now complete. [1

6. A Polynomial-Time Algorithm Better Than FFD
Thus section is devoted 1o proving the following result.

(26)

@n
(28)

(29

(30)

G

(32)

(33)

(34)

THEOREM 4. Let € = 1077, There is a polynomial-time heuristic algorithm RFFD for bin

packing such that, for any list L,
RFFD(Ly= (4§ —e)L* + 8.

PrROOF. We use the notation € = 1077, 8 = 107, 9 = (226) ", and A =1 - (# - ¢7".

Clearly, e < $nand 5 <A < £.

Although more complicated, the proof of Theorem 4 follows the same pattern as that of
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Theorem 3. By Lemma 2, 1t suffices to show the theorem considering only lists L with all
elements in (A, 1. We will first prove that for all such lists, except those of
a special type, FFD produces a packing within the desired 4} — ¢ bound. We then con-
struct a heuristic algorithm EPSI that performs well (below ¥} — ¢) for the exceptional
“critical” lists. The compound algorithm S of FFD and EPSI then clearly satisfies S(L)
< (4 — ¢)L* + 8 for any list with elements in (A, 1], completing the argument.

A ReviEw OF THE ¥ BounD FOR FFD. We review below the proof of [6, 8] for FFD(L)
=< YL* + 4, if L obeys the following Assumptions | and 2. As Assumption ! can be
justified by Lemma 2, and it can be shown directly {6, p. 277, Reduction 3] that any list L
violating Assumption 2 has FFD(L) < §L* + 1, this would prove FFD(L) < %L* + 4 for
any list L.

Assumption 1. Let L be a list of numbers in (£, 1).

Let P* be any optimal packing and Pr the packing produced by FFD. We use X; to
denote the ith bin in P*, 1 =<i= L*. Inany packing, a bin containing an A-piece is called
an A-bin, otherwise it is a non-A-bin. The number of A-bins in any packing of L is equal
to the number of 4-pieces in L, which we denote as | 4. |. Let #= {x|x € L, x is1n a non-
A-bin in Pr}.

Assumption 2. % contains at least a C-piece or a D-piece.

Let the function W be defined as in Section 5. The analysis proceeds to define two
functions f'and g, based on Pr and P¥,

fiL—2% and  g:L — rational numbers.

For any subset T C L, we write f(T) for Uxer f(x.) and g(T) for 3x er g(x.). The definitions
of fand g are complicated [6] and were shown to possess the following properties.

Property Bl. F= UL f(x), |AL] = YxeL g(X).
Property B2. W(f(X)) + g(X) < ¥(¥(X) + g(X))), | =i= L*, where

0 if X, is an A-bin,
X = {l otherwise.

Also, the following are true from properties of W (see Properties Al and A2).

Property B3. W(UxcL f(x)) < Yz W(f(x)).

Property B4. W(F) = FFD(L) — [AL]| — 4.

Summing over X, in the formula of Property B2, and using Properties B1, B3, and B4,
one obtains FFD(L) < %}L* + 4 for any list under Assumptions 1 and 2.

The above is an outline of proof for the bound ¥. For our purpose, a strengthened
analysis for FFD is needed.

A STRENGTHENED FFD ANaLvsis. We shall work under a weaker form of Assump-
tion 1.

Assumption 1'. Let L be a list of numbers in (A, 1].

Let Pr, P*, X,, &% and W have the same meaning as before. We shall say a bin X, in P*
is regular if X, is not of one of the following configurations: an 4-bin with three pieces,
BBC, BCC, CCCD, or CCDD. Otherwise X, is irregular.

For any list L satisfying Assumption 1’ and Assumption 2, one can define f and g such
that the following properties are true, in addition to Properties B1-B4.

Property BS. W(f(X)) + g(X)) < (# — §)((X,) + g(X)) if X, is regular.
Property B6. If X, is a regular A-bin, then g(X;) = 4.
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The proofs of Properties B1-B6 under Assumptions 1" and 2 follow closely the original
analysis [6]. A description of the necessary modifications is given in the appendix.

We can now give a characterization of lists L for which FFD may have a bad
performance.

THEOREM 5. Let L be a list satisfying Assumption 1', and P* an optimal packing of L.
If there are more than nL* regular bins in P*, then FFD(L) < (% —e)L* + 4.

Proor. If Assumption 2 is not true for L, it can be shown [6, p. 277, Reduction 3] that
FFD(L) < §L* + 1, and the theorem is trae. We can therefore suppose that Assumption
2 holds.

Take the formulas in Properties B2 and B5 and sum over all X,. We have

L W) +eg)=% 3 (X)) +gX) -8 3 (X)) +g(X) (9
allX, all X, regular X,

Using Properties B1, B3, and B4, we see that the left-hand side of (35) is at least

left-hand side = FFD(L) — |A.| — 4 + g(L). 36)
Now, to estimate the right-hand side of (35), we note that
QE: (X)) + g(X)) = L* — |AL| + g(L). (37

Also, because of Property B6 and the fact that there are at least 5l * regular bins X,, we
have

E ( X)) + g(X))) = (number of regular non-A4-bins)
+ 4(number of regular 4-bins)

= {(number of regular X,) (38)
= inl*.
From (37) and (38), the right-hand side of (35) is at most
right-hand side < ¥(L* — |A4.| + g(L)) — 8-4yL*. 39

Formulas (35), (36), and (39) lead to
FFD(L) = (% — 48n)L* — §(4L] — g(L)) + 4.
Noting that € < 187 and that |4.| — g(L) = 0 by Property Bl, the theorem follows. [

THE EPSI ALGorITHMS. For the rest of Section 6, all lists are assumed to satisfy
Assumption 1. We shall describe a family of algorithms EPSHau, o, as, a4, as, B1, B2, 1,
y2] with nonnegative integer parameters a1, az, ..., y2. Given a list L with n items, we
perform EPSIfou, as, ..., y2] on L for each possible 0 =< oy, az, ..., y2 =< n and pick
the best packing. We call this procedure the EPSI algorithm. It will be seen that each
EPSI[ay, @z, . . ., 2] works in O(n log n) time; thus EPSI works in time O(n"° log n).

We call a list L of type (o, a2, ... , y2) if there is an optimal packing of L with ay,
az, ..., y: bins of type ACD, ADD, ADE, AEE, ACE, BBC, BCC, CCCD, CCDD, respec-
tively. Note that a list can be of several types. A list L is critical of type (a1, az, .. . , v2)
if it is of type (a1, @z, ..., y2) and oy + az + -+« + y2 = (1 — n)L* The aim of
EPSIfay, az, . . ., v2} is to produce a packing using less than ¥ — € times the minimum bins
needed, for any critical list of type (au, az, . .., y2). This ensures that EPSI has a bound
better than ¥ — € for any critical list. Together with Theorem 5, which ensures an
¥ — € bound for noncritical lists, it completes the proof of Theorem 4 as stated at the
beginning of this section.

Given a list L and parameters ai, az, ..., y2, we shall now describe the action of
EPSI[ay, a3, . . ., yo]. If any of the described steps cannot be accomplished, it 15 understood
that the packing of list L may then proceed arbitrarily.
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First, L is sorted in ascending order. Then we pack various pieces into four classes of
bins according to the following rules.

Letaisasas=---,bisbhsb<...,c0<cas<c3<-.-,...bethelists of 4-pieces,
B-pieces, C-pieces, .. ., etc.

Step 1 Class-1 bins Furst put {by,—1, by} into BIN,, I < ;=< B, + |B2/2] Then, forj=1,2,...,1B:/2}, put the
largest available fitting C-piece into BIN;
Step 2 Class-2 bins' Let ¢ < ¢ << - - - be the remamng C-pieces Put {c3-z, ¢§-1, ¢3} mto BIN,, 1 ;< y, For
J=12, ,Lyi/3), put the largest fitting D-piece mnto BIN,
Step 3 Class-3 bns.
(a) Let d] = dj < --- be the remaining D-pieces Define m = |a1/2) + |0e/2). For 1 < ;= m, put
{d%-1, d%} mto BIN, Then, forj=1,2,. ,m, put the largest fitung a, mnto BIN,.
(b) Definem’ =y + g+ as+as+a;—m Letai <ab< ... <ap < .- be the list of A-pieces
remaining. Put a total of [a1/2] + as C-pieces, [as/2] + a3 D-pieces, and a4 E-pieces into BIN,..1 to
BIN,.+m, 0ne piece in each bin Now put a; into BIN,,, for l =1 =m’.
Step 4 Class-4 bins: For each Y € {4, B, C, D, E}, pack all the Y-pieces first-fit by themselves.

We need some preliminary results before analyzing EPSI.

Definition. LetY={(yy, y2,...,ym)and Z= (21, 23, . . . , Zp) be two lists of real numbers.
The Cartesian product of Y and Zis Y X Z = {(y,, z)|1 s 1 =m, | = j = p}. A partial
match between Y and Z is a subset ® C ¥ X Z such that (i) y. + z, < 1forall (y, z) €
®, and (u) any two distinct (., z,) and (v, z;) in ® have i % i and j 5% j'. Let Y(Y, Z)
denote the maximum possible size of |®|. A partial match ® 1s a maximum partial match
if |®] = Y(Y, Z). For any partial match ® between Y and Z, the range Zy is the multiset
{1 ) € @ for some y, € Y}. (Thus | Zo| = |®|.) Let Zp = Z — Zs.

The following procedure clearly generates a partial match.

Algorithm PM(Y, Z)
Sort Yinto y1 < yp < -++ < yp, 501t Z to 2y < 2o < ... < z,,, keep the elements of Z m an array T
(T ez, t=1=p),
P ¢, k<p,
for ; = 1 until m do
begin Search T{k), T7{k — 1},  to find the largest y < k satisfying y. + z, < 1; 1f y does not exist, halt;
® DU (O 2)),
kej—1,
end

END of Algorithm PM

Lemma 5. Algorithm PM(Y, Z) works in time O(n log n), where n = | Y| + | Z|.
Furthermore, the partial match ® generated 1s a maximum partial match between Y and Z.

Proor. The O(n log n)-ime bound is obvious. To prove the other assertion, suppose
PM(Y, Z)sorts Yand Zinto y; < yp, < +.- <y and z; < 2, < - -+ =< z, and produces
P={(y,z)(rz,)...,(¥ss2,)}. Clearlyiy > io > -+ > 1,

Now assume that there exists a partial match @ = {(y,, z&,), %> 280+« v s O 21,)}
with ¢ > 5. We will show that it leads to a contradiction. With no loss of generality, assume
that j, < jo < -+ < j. This imphes that y; < y,,, y» =< y,, ..., etc., and therefore ®” =
{31, 21,), (¥2. 28,), - - - » (1, 28,)} is also a partial match. A moment’s thought reveals that
D = {(y, z1), (¥ Zwy)s - - - » (s 21;)} must also be a partial match, where k1 > k2 >

- > ki is the sorted sequence of (k;, ks, ..., k). Based on the description of PM, a
simple induction argument gives iy = ki, iz = k3, ..., Is = k.. But this implies that PM
should have found a z,, with z,,, + y.1 < 1 (21, is a candidate). This is a contradic-
tion. OO

541

Definition. Let X and Y be two multisets of real numbers. We say that X is dominated
by Y if the ith smallest element in X is no greater than the ith smallest element in ¥, for
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alll =i=|X|=<]Y| Alist X" is dominated by a list Y” if the corresponding multisets X
and Y satisfy this relation.

LEMMA 6. Let X, Y, and Z be finite lists with X dominated by Y. Then

(@) UX, Z) = min{| X|, WY, Z)};

(b) let @ be a partial match generated by PM(X, Z), and ®' any partial match between Y
and Z with |¥'| = |®|. Then Zy is dominated by Zy.

ProoF. Letthesortedlists of X, ¥, Zbe xi <X S «++ S X, <) = ++o Sy,
21 =29 = <o+ Xz, respectively.

(@) Let {(», z,), (¥ 2,), .. - » (s, 2,,)} be the maximum partial match generated by
PM(Y, Z) (Lemma 5). Let I = min{] X|, s}. Then {(x1, z,,), (x2,2,,), ..., (X5 2,)} is a
partial match between X and Z, as x, < y, by assumption. This proves that (X, Z) =
min{] X}, ¥(¥, Z)).

(b) Let @ = {(x1, z,,), (x2, 2,,), ..., (x5 2,)} with i > &p > -+ > @, and @ =
s 20 (s 2,)s -+« 5 (5 28,)} With ji < jo < -+« < ji. As in the proof of Lemma 5, it
can be shown that ®” = {(x), zx,), (%2, 28;), . . . , (x5, 28;)} is a partial match between X and
Z when ki > ki > -+ > ki is the sorted sequence of (ki, k2, . . . , ki). A simple induction
argument then shows that i)y = k1, &2 = k3, ..., i = ki. This implies that for each 1 < ¢
=p, |{i}ie > ¢} } = | {ki| ki > g} |. Hence, we have

Facr 7. Foreachl < g=<p, |{i)i.< q}| = |{ki| ki < q}|.

Now the multisets Z and Zy are obtained from Z by deleting (., 2, ,, ... , z,)
and (Zx, Zr.,, ... » Zw), Tespectively. Write Zy = {zu,, Zup, ... , 24} and Zy =
{Zop 2ops -5 2o}, Where g < se < -+ <gcand v < v < ... <v. Thenforeach 1 <
=<e¢, u; = s + | {i]ir < u;} | and (the number of v, < u) = u, — | {ki| ki < u;}|. Using Fact
7, we have, for each 1 < s < ¢, (the number of vy < ;) < 4, — | {i¢|i; < u,}| = s and thus
vs = ;. We have shown that z,, < z,, for each 1 < 5 = ¢, completing the proof that Zo is
dominated by Zo. O

We now analyze the algorithm EPSI.

LeMMA 7. For alist L of type (o, az, . . ., ¥2), every step of EPSI[an, oz, . . ., y2] can be
carried out.

ProoF. Let P* be an optimal packing of L with a1, az, as, as, as, B1, B2, v1, 2 bins of
types ACD, ADD, ADE, AEE, ACE, BBC, BCC, CCCD, CCDD, respectively.

(i) Step I can be done. As there are enough (283; + f2) B-pieces in L, we need only
show that the procedure can put | 81/2] C-pieces into class-1 bins. We define the following
multisets: X = {by-y + by|l = j = [81/2]), Y1 = {b' + b"|{b’, b", ¢} is a BBC-bin
in P*}, Y = {y|yis the (2j — 1)st smallest of ¥, for some | < j < [8:/2]}, and Z =
{all C-pieces in L}. As by + by, is no greater than the (2j — 1)st element in Y3, it follows
that X is dominated by Y. Also (Y, Z) = [ 8:/2]. It follows from Lemma 6(a) that (X, Z)
= [81/2] = | X]. As step 1 is essentially the execution of PM(X, Z), that it can be
accomplished is guaranteed by Lemma 5. Finally we notice an important property
following from Lemma 6(b).

Let @' be the partial match between Y and Z, defined by {(b’ + b”, ¢)| {b’, b”, ¢} has
the (2j — 1)st smallest »’ + b” among BBC-bins in P* for some 1 < j={f1/2]}. According
to Lemma 6(b), Zs, the set of remaining C-pieces ¢} < ¢4 < » -+, is dominated by Zy. It
follows that the set of the first 3y, pieces in ¢1 < ¢3 < ... is dominated by the set of 3y, C-
pieces in the CCCD-bins in P*.

(ii) Step 2 can be carried out. By the preceding remark, we have for | = j =<
Ly1/3), €3-2 + c4-1 + c3 is no greater than the (3j — 2)nd smallest element of the multiset
fe+c’ +c"|{c, ¢, ¢”, d} isa CCCD-bin in P*}. An argument similar to that in (i) shows
that step 2 can be accomplished as specified, and that the first ou + 22 + a3 in the
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remaining D-pieces d1 = d5 < - - - are dominated by the set of D-pieces ini the 4CD, ADD,
and ADE-bins in P*.

(iii) Step 3 can be carried out.

Step 3(a): The preceding statement implies that for 1 < j = m, dfy + db <
the (2j — 1)st smallest in the multiset {¢ + d|{c, d, a} is an ACD-bin in P*} U
{d+ d’|{a, d, d’} is an ADD-bin in P*}. As in (i) and (ii), this fact together with Lemmas
5 and 6 can be used to prove that step 3(a) can be done.

Step 3(b): As each A-piece in an ACD-, ADD-, ADE-, AEE-, or ACE-bin is less than
I — 3 — } =4, there are at least au + a2 + as + a4 + a5 A-pieces in L that are less than §.
At most m of these A-pieces are packed in step 3(a). Therefore, g < at < ... <ap <4%.
Since each a; can fit with any C-piece (or D-piece or E-piece) 1n a bin, step 3(b) can be
done provided the specified number of C-, D-, E-pieces exist. This latter fact can be easily
verified.

(iv) Step 4 can always be done. This proves Lemma 7. O

LeMMa 8. Let L be a critical list satisfying Assumption 1’ and of type (a1, a3, . . ., v2) and
Ny the number of bins used by EPSI[ou, a3, . . ., y2) on L. Then

Ne=(@+5qL*+8.
Proor. To begin with, we note that
No=ay+az + az + as + a5 + B1 + [ B2/2] + y1 + (number of class-4 bins). (40)

We now bound the number of class-4 bins. The total number of C-pieces in L is at most
o) + as + ,31 + 2ﬁ2 + 371 + 272 + 3'!1L*. As there are [a1/2'| + a5 + '_ﬁx/ZJ + 3‘Y1 C-pieces
in class-1-3 bins, the number of C-pieces packed in class-4 bins is at most {@1/2] + [8:/2]
+ 28: + 2y2 + 3nL*. A similar counting gives the following upper bounds on the numbers
of A-pieces, B-pieces, ... in class-4 bins.

#A < yL*,

#B < 2nL* + 1,

#C < 3nL* + Lar/2) + [B1/2] + 2Bz + 27, @“1n
#D < dgL* + 1 + [az/2] + [$71] + 272

#E < 5nL* + a3 + a4 + as.

Clearly
the number of class-4 bins < #4 + $(#B) + }(#FC) + }#F#D) +I(FE)+ 5. 42)
From (40), (41), and (42), we obtain

Ne<la+ 32+ %oz + au+ as) + 4(Br + B2 + y1 + y2) + SyL* + 8. (43)
As L* = oy + as + --- + v, we obtain from (43),
Ny <§L* + SqL* + 8. (]
LeEMMA 9. The algorithm EPSK{ai, aq, ..., y2] can be implemented to run in time
O(n log n) for list L with n numbers and parameters oy, az, . . . , Y2 < n.

ProoF. Steps 1, 2, and 3(a) are executions of Algorithm PM, which runs in time
O(n log n). The other steps involve sorting and first-fit, and all can be done
O(n log n) time. O

THEOREM 6. The algorithm EPSI runs in polynomial time. For any critical list L
satisfying Assumption ', EPSI(L) < (4 — ¢)L* + 8.

ProOOF. From Lemma 9 and the definition of EPSI, the algorithm runs in O(n'® log n)
time. The rest of the theorem follows from the definition of EPSI, Lemma 8, and the fact
§+5n<Y—cforn=(226"ande=10". 0O
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Theorem 5 and Theorem 6 imply Theorem 4; hence the existence of a heuristic better
than FFD. 0O

7. How Well Can an o(n log n)-Time Algorithm Perform?

We have shown that ¥ is not the limit on the performance ratio of polynomial-time bin-
packing algorithms. A most interesting open question is whether there exists such a limit
to n(S). Garey and Johnson [4] showed that unless P = NP, no polynomial heuristic
algorithm for graph coloring can have performance ratio less than 2. A similar result for
bin packing would be especially interesting, since the known achievable bound on the
performance ratio is already close to 1. A more modest question along this line was raised
in [8], namely, how well can an O(n)-time algorithm perform? A natural computation
model 1s the decision-tree model, counting only branching operations [7, 10]. It would be
interesting to prove the existence of an € > 0 such that for any O(n)-time bin-packing
algorithm §, one must have /(S) = 1 + e We have not succeeded in proving such an
assertion. However, a result of this spirit can be shown for a closely related problem, and
it may throw some light on the present bin-packing problem.

Consider the generalized bin-packing problem discussed in [3]. Let L = (X3, %3, ..., X»)
be a list of d-dimensional vectors (d = 1), with each component of the vectors in the
intervals (0, 1]. The problem is to pack these vectors into a minimum number of bins, such
that the sum v of vectors in any bin has v; < 1 for all 1 < i< d. (When d = 1, this is just
the bin-packing problem we have discussed.) The problem is clearly NP-complete for any
fixed d = 1. For any heuristic algorithm, let 7(S) denote the performance ratio as before.
A simple extension S of the O(n)-time Next-Fit Algorithm [6, 7] gives r(S) = 2d. We are
interested in a universal lower bound to r(S) for any o(n log n)-time algorithm.

We consider the following decision-tree model. Let § be an algorithm for the general-
ized d-dimensional bin packing. For each n > 0, the action of § on lists of » jtems L =
(X1, X2, ..., Xn) can be represented by a ternary tree To(S). Each internal node of T(S)
contains a test “h(®1, Xz, . . . , ¥n):0,” where h 15 a rational function. For any input L the
algorithm moves down the tree, testmg and branching according to the result (h <0, h =
0, or k > 0), until a leaf is reached. At the leaf, a packing valid for all lists that lead to this
leaf is produced. The cost of S for input of size n Cu(S) is defined to be the number of tests
made in the worst case, i.c., the height of T.(S).

TurorREM 7. Let S be an algorithm for the generalized d-dimensional bin packing. If
Cn(S) = o(nlog n) as n — », then (S) = d.

ProOF. The case d = 1 is trivial. We therefore assume that d > 1. Let n > 0 be any
integer. Define a sequence €o, €, €, . . . , € such that

= 1/d%

&>d—-Den, O0<i=n-1. @4

Let xi,, ;; be the vector

(eney...,6, 1—(d—De,6,...,6a)
S ——
j=1 d-j
foreachl=i<sn l=j=d.

Consider the list Ln = (.f[l,]], .fll,z], ey -f[l,d], flz,ll, ey -f[n,d]), with dn vectors. Clearly
LY=nas 1<, =a T, ;3= (1, 1,..., 1) foreach 1 <i<n. Let T, be the set of permutations
of the dn elements in E, = {[i, j]]|1 <i<n, 1 <j=d}. For each ¢ € I, denote by L.(¢)
the list (X,q), ®o2); - - « » Xotam). Obviously La(o)* = L} = n. We shall prove that for any
fixed § > 0, if n is large enough, then there exists a 6 € I', such that S(L.(0)) >
(d — 8)Ln(0)*. This would imply the theorem.

If the above assertion is false, then there exists a § > 0 such that S(L.(0)) < (d — 8)n for
all sufficiently large n. We will derive a contradiction.
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Fact 8. In any packing, X.,,) and X, ') cannot be in the same bin if i % i'.
Proor. It follows immediately from the definition of %y,,,;. [

Fact 9. Let | be any leaf of T.(S) and Z(l) be the set of lists Ln(o) that will lead to I.
Then |Z(1)| < (dn)l(cn)™? for some fixed constant c.

Proor. In the packing produced at /, there must be at least p = dn/d bins contain-
ing two items or more, because S(L.(y)) = (d — S)n. In other words, any input list
(4 V2 . - . » Yan) Teaching I must satisfy a set of inequalities of the following form.

fk1+)}‘k2 =(L...,1),
ve. + Ve, <(1,1,...,1),
Vhy :y’% ( ) (45)
}-;kZp—l +)-;kZp =(LL..., 1

where < means componentwise inequalities and all %, are distinct.
An upper bound to |2(/)| is given by the number of Ln(o) satisfying (45). Taking Fact
8 into consideration, we have

|=(1)] =< (nd(d — 1))* X (dn - 2p)!
= n?d® X (dn — 2p). (46)
We now show that nd® X (dn — 2p)! = (dn)! X O((n/(4€%))™?). There are two cases. If 2p
< dn/2, then
(dn)!

P 12p - 1 P2 s NS
nPd® X (dn — 2p)t = n°d x(dn—2p+1)2”

nPd® n\”

If 2p > dn/2, then

nPd?® 1 n*d®
n?d® X (dn — 2p)! < (dn)! X o & = (dn) % @p)
d\* ’
. 0(<e21': ) ) = (dn)! ¥ 0<(I"e—2) )

We have used Stirling’s approximation [10] in the last derivation. This proves Fact9.

As there are at most 3% leaves, the total number of lists L,(c) reaching leaves of 7,.(S)
is at most (dn)!(cn) ¢ x 35 = (dn)! X exp(o(n log n) — (8n/d) logs n) < (dn)! for all
sufficiently large n. This contradicts the fact that there are (dn)! possible lists L.(s). This
proves Theorem 7. [

8. Concluding Remarks
We hist some problems for further research.

(1) The e-improvement technique may be useful in other NP-complete problems, for
example, in the scheduling of tasks on a multiprocessor system [5]. This technique seems
to be particularly suitable for scheduling-type problems when the set of possible worst-
case inputs can be identified. For instance, 1t can be used to show that r(S) < 2 for the
Next-2-fit bin packing [6, 7]. It may be of interest to mention that, although the Algorithm
RFF was presented and analyzed in a more conventional way in Section 3, it was first
obtained in a fashion very similar to the process for Algorithms M and RFFD in Sections
5 and 6. Thus the e-improvement viewpoint can provide a starting point for substantially
improved algorithms.

(2) Let r(on-line) be inf{r(S)} over all on-line algorithms S. We have shown that 1.5
= r(on-line) =< 1.66 - - - . It 1s of interest to determine it more precisely. Very recently
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(private communication), Donna Brown (University of Illinois) and Frank Liang (Stanford
University) have both obtained improved lower bounds for r(on-line).

(3) Find and analyze off-line algorithms S with /(S) “substantially” better than ¥.

(4) Is there an € > 0 such that finding a packing of L using less than (1 + €)L* bins is
NP-complete? Is there an € > 0 such that every O(n)-time algorithm S (say, in the decision-
tree model described in Section 7) has (S) =1 + €?

Appendix. The Strengthened FFD Analysis in Section 6.

At the beginning of Section 6, we list some facts (Properties B1-B6) which lead to the
proof of Theorem 5. In this appendix we give more details on how these facts can be
obtained from the original analysis of FFD in [6, 8].

In [6], Properties B1-B4 are proved under the following assumptions on the list L: Let
Pr be an FFD packing and P’ an optimal packing of L. Write the items in L as x; = x;
= ¢+ 2 x5 Let F= {x:]|x, is not in an 4-bin in Py},

Assumption 1. All x, are in (f, 1].

Assumption 2. Fcontains at least a C-piece or a D-piece.

Assumption 3. The smallest piece x, goes into a non-4-bin in Pr; i.e., x, € £
We make the following observations. Let A be any number in (3, &].

Observation 1. One can replace Assumption 1 by a weaker constraint, Assumption 1’,
that x, € (A, 1].

Observation 2.  One can replace P’ by any packing of L.
Observation 3. Property B2 comes from the following facts.
W(f(X)) = §g(X) if X isanA-binin P,
W(f(X)) —ig(Xx) = § if X is a non-4-bin in P’.
One can make stronger statements for regular bins X..

W(f(X)) = f4g(X) if X, is a regular 4-bin in P’,
W((X))—g(X) =B if X, is a regular non-4-bin in P’.

Observation 4. g(X,) = 50 for any bin X, in P’.
Observation 5. g(X,) = 4 if X; is a regular A-bin in P’

Observations 3 and 4 lead to Property B5, and Observation 5 is Property B6. Therefore,
if L satisfies Assumptions 1’, 2, and 3, and P’ is any packing of L, then one can define f
and g such that Properties B1-B6 are true.

It remains to show that Assumption 3 can be dropped. Let L = (x; = x2= --- = x,) be
a list satisfying Assumptions 1’ and 2, Pr the FFD-packing of L, P* an optimal packing
of L, and #= {x,|x, is in a non-4-bin in Pr}. Suppose x, is the smallest non-4-piece in
Z. We consider the list L = (x3, x2, . . . , xm) and let P’ be the packing of L', obtained from
P* by deleting pieces Xm+1, Xms2, ... , Xo. Then L’ satisfies Assumptions 1’, 2, and 3.
Applying the previous results, we can define functions f’, g’ satisfying B1-B6 for the list
L’. Now, we define functions f and g for the list L by

Fony = {{;’(x,) if xeL,

otherwise,

and

- g'(x) if x.,.€L’,
8x) {0 otherwise.

Clearly, FFD(L) = FFD(L"), |AL| = |A;-|, and the set Fis the same for both L and L’.
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Also notice that a regular bin in P* must also be regular in P, and a bin in P* is an 4-bin
if and only if it is an A-bin in P’. With these facts it is straightforward to verify that
Properties B1-B6 are satisfied for L with this choice of fand g.
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