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ABSTRACT In the bin-packing problem a list L of n numbers are to be packed into umt-capacity bins For any 
algonthm S, let r(S) be the maximum raUo S(L)/L* for large L*, where S(L) denotes the number of bins used 
by S and L* denotes the minimum number needed An on-line O(n log n)-tmae algonthra RFF with r(RFF) = 

and an off-hne polynomml-tune algorithm RFFD with r(RFFD) _< ~t _ E, for some fixed • > 0, are given 
These are stnctly better, respecUvely, than two prominent algorithms the FlrsbFit (FF), which is on-line with 
r(FF) = ~, and the Flrst-Flt-Decreasmg (FFD) with r(FFD) = ~ Furthermore, it is shown that any on-hne 

>_3 algorithm S must have r(S) _ 2 The quesuon, "How well can an o(n log n)-ttme algorithm performg" is also 
discussed It is shown that m the generalized d-dimensional bin packmg, any o(n log n)-time algorithm S must 
have r(S) >_ d 
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lme 
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1. Introductton 

Let L = (x~, x2 . . . . .  xn) be a given list o f  real numbers  in (0, 11, and BIN1, BIN2 . . . .  an  
infinite sequence o f  bins each o f  unit  capacity. The  bin-packing problem is to assign each 
x, into a umque  bin, with the sum o f  numbers  in each b m  not  exceeding one,  such that  the 
total number  o f  used bins is a m i n i m u m  (denoted by L*).  As this p rob lem is NP-comple te  
[9], efficient algori thms that always generate  packings using L*  bins are unl ikely to exist. 
In the literature, heuristic algori thms with guaranteed bounds  on per formance  have  been 
studied extensively [6, 7, 8]. Fo r  any (heuristic) b in-packing a lgor i thm S, let S(L) denote  
the number  o f  bins used for the input  list L, and Rs(k) the m a x i m u m  ratio S(L)/L* for 
a ~  list L with L*  = k. The  performance ratio of  S, denoted  by r(S), is def ined as 
lim~_~R~(k). Informally,  (r(S) - 1) x 100 percent is the percentage o f  excess bins used 
over  the opt imal  packing in the worst case, for large lists. T w o  prominen t  a lgor i thms are 
the First-Fit Algorithm (FF)  and the Ftrst-Ftt-Decreasmg Algorithm ( F F D )  (see Sect ion 2 
for definitions). It is known [8] that r (FF)  = ~ and r ( F F D )  = ~t. 

A natural quest ion is, " H o w  good can any polynomia l  a lgor i thm be?" In this regard, 
two specific questions were raised by Johnson  [7]: 

(1) Is there a polynomial  on-l ine a lgor i thm S better than Firs t -Fi t  (i.e., with r(S) < ~)? 
(2) Is there any polynomial  a lgori thm S better than Firs t -Fi t -Decreas ing (i.e., wi th  

r(S) < ~t)? 

We  call an algori thm on-hne i f  the numbers  in list L are available one  at a t ime and the 
algori thm has to assign each number  before the next one becomes avai lable  [6, 7]. In this 
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paper we resolve both questions in the affirmative. It is also shown that no on-line 
algorithm can have a performance ratio less than {. 

5 Section 4 explores Section 3 gives an O(n log n)-time on-line algorithm S with r(S) = ~. 
the limitation to on-line algorithms, showing that no such algorithm S (polynomial-time 

3 or not) can have r(S) < ~. In Section 5 a general approach for seeking improvements over 
known heuristic algorithms is suggested and illustrated with an example. On the basis of  
this idea, a heuristic polynomial-time algorithm better than FFD is constructed in Section 
6. We discuss in Section 7 the question, "How well can an o(n log n)-time algorithm 
perform?" It is shown that m a generalized version o f  bin packing, namely, the d- 
dimensional bin-packing problem of  [3], any o(n log n)-time algorithm S must have 
r(S) _> d. 

2. Terminology 

For standard definitions with regard to the bin-packing problem, the reader is referred to 
[81. We will mentton below only a few terms for use in the present paper. 

A hst Is a finite sequence of  real numbers. Some numbers may have identical values but 
are regarded as distinct items. A set of  real numbers in this paper is often in fact a multiset, 
m which some numbers may appear more than once (see [101). 

If  L1 = (xl, x2 . . . . .  xn) and L2 = (yl, y2 . . . . .  yz) are two lists, their concatenation L~L2 
is the hst L = (xl, x2 . . . .  xn, ya, y2 . . . . .  yt). Let X be a bin used in a packing; the content 
of X, cont(X), is the sum of  the numbers that are assigned to X. We shall say that a bin- 
packing algorithm S has running time O(p(n)) if, when implemented on a random access 
machine [1], S takes at most O(p(n)) steps to produce the packing for a list with n numbers. 
We describe the two algorithms FF and FFD for easy reference: 

FIRST-FIT (FF). Given a last L = (x~, x2 . . . . .  xn), the algorithm assigns xj sequentially, 
f o r j  = I, 2 . . . . .  n, to BIN, with the smallest i whose current content does not exceed 
l - -x~  

FIRST-FIT-DECREASING (FFD). Given a list L ffi (xb x2 . . . . .  xn), the algorithm first 
sorts the xfs into decreasing order, and then performs First-Fit. 

Both FF and FFD can be implemented to have a running time O(n log n); for details, 
see [7]. 

3. A New On-line Algorithm 

We will present an on-hne algorithm that processes a list o f  n numbers in O(n log n) time, 
and sho~, that its performance ratio is ~ = 1.666 . . . .  

Any element x~ in a hst L will be called an A-piece, Brpiece, B2-piece, or X-piece if xj 
is in the interval (½, 1], (-~, ½l, (-~, ~1, or (0, ~], respectively. 

ALGORITHM RFF (REFINED FIRST FIT). Before packing, we divide the set of  all bins 
into four infinite classes. The algorithm then proceeds as follows: Let m ~ (6, 7, 8, 9) be 
a fixed integer. Suppose the firstj  - 1 numbers in list L have been assigned; we process the 
next number xj according to the following rules. 

(a) We Rut xs by first-fit into a bm m 

Class 1, if xj is an A-ptece, 
Class 2, tf xj is a Brpiece, 
Class 3, if xj is a B2-piece, but not the (mOth 

B2-piece seen so far for any integer l _> 1, 
Class 4, If xj is an x-piece. 

(b) If  x: is the (mOth Bz-piece seen so far for some integer t _> 1, we put xj into the first- 
fitting bin containing an A-piece m class 1 if possible and put xj in a new bin of  class 1 
otherwise 
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ANALYSIS OF RFF. This algorithm can be implemented to run in O(n log n) time, as 
it essentially performs a first-fit within each class of  bins, which takes O(log n) time for 
each x~ (see [7]). 

We now analyze the performance ratio of  RFF. In general, the resulting packing of  a 
list L has the following structure (see Figure 1). There are three types of  bins in class 1. Let 
Zlt be the set of  class-1 bins containing a single A-piece, Z12 the set of  dass-I  bins 
containing a single Bz-piece, and Z~z the set of  class- 1 bins containing both an A-piece and 
a B2-piece. In class 2 every nonempty bin contains exactly two Bt-pieces, except possibly 
for the last one. Let Zz denote the set of  all (nonempty) class-2 bins. Let Z8 be the set of  
class-3 bins, each clearly containing two B2-pieces, except possibly for the last one. The set 
of  class-4 bins, denoted by Z4, is simply the FF-packing of  the sublist of  L consisting of  the 
X-pieces. We shall write I Z~ l, I Zt2 l, I Zt3l, I Z~l . . . .  as zn, z12, z~3, z2 . . . . .  etc. The numbers 
of  A-pieces, B~-pieces, B~-pieces, and X-pieces are denoted by a, b~, b2, and x, respectively. 

We first prove an upper bound on r(RFF). 

/ • J • / 

Zl l  Z12 Z13 

class 2 BB 
y 

z 2 

class 3 

• J y 

z 3 

FIG 

class 4 DD 
S 

z 4 
The structure of a packing usmg RFF The ordenng of bms and the relative posiUons of p,eces within 

a bin are not necessardy represented fatthfully. 
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LEMMA 1. For any list L, RFF(L) _< ~L * + 5. 

PROOF. Clearly 

ANDREW CHI-CHIH YAO 

RFF(L) ffi a + zn  + z2 + z3 + z4. (1) 

Every bin BINs in Z4, with the possible exception o f  two bins, has cont(BIN,) 

RFF(L) <_ ~L* + 5. 

Case 2:z~2 > 0. 

FACT 4. In this case, toni(BIN,) + cont(BIN~) > I for  each BIN, ~ Zu,  BINj ~ Z~2. In 
partwular, cont(BIN,) > -~ for  each BIN, ~ Zn.  

PROOF. Otherwise, the A-piece in BIN, should have shared the same bin with some B2- 
piece during the packing. []  

Case 2. h z~ _> za2. The total sum of  all A, B,-pieces is at least 

z,2 + ~(zn - z,2) + ~z13 + ~(2zz - 1) + ~(2z3 - 1) 
> ~a + ~z~ + ~z,~ + ~z2 + ~z~ - 1, 

where we have used Fact  4 and the equation zn ffi a - z~3. From Fact  1 we obtain 

4 . - ~ z 1 3  - + 1). ( 4 )  z 4 < 2 + ~ ( L  - 3 2 4 z ~za2 

Combining (1) and (4) and noticing that z~3 -> 0 and z~ _> O, we obtain 
1 1 RFF(L) _< ~L* + ~a + i~z12 + ~z~ + 4. (5) 

Formula (3) then Implies 

FACT 1. 

-->3" 

PROOF. The set of  bins Z4 can be regarded as the first-fit packing of  a list of  pieces in 
(0, ~]. Therefore every bin except the last one has at least three pieces. I f  BINj is the first 
bin with eont(BIN~) _< L then all the bins following it contain only pieces greater than ¼. 
This means all bins following BINj except the last one have contents exceeding 3. [ ]  

Fact  1 has often been used in bin-packing arguments (see [8, proof  of  Theorem 2.3]). Its 
proof  is given here for convenience. 

FACT 2. ZtZ + Zl3 = [bz/m], z2 = [bi/21, z3 <_ ½(1 - (l/m))b2 + 2. 

PROOF. The first two equaUons are obvious from the algorithm. The last one follows 
from z~ = [½(b2 - z12 - z13)]. []  

FACT 3. a _< L*. 

PROOF. No  two A-pieces can be in the same bin in any packing. [ ]  

We shall find upper bounds on z4 and hence on RFF(L) via formula (l).  There are 
several cases to consider. 

Case h z12 = O. The total contents of  class-4 bins is at most L* - ~a -1  ggbl2 -- ~b2.1 
Thus by Fact  1 we have 

4 * -  g b l  ub2) .  ( 2 )  z4 < 2 + ~(L 1 2 1 _ ~ a -  - 

C o m b i n i n g  (1) and (2), one obtains 

RFF(L) _< 4 . 1 ~L + ~a + ( z 2 -  ~b l )  + ( z 3 -  ~b2) + 2. (3) 

Making use of  Fact  2, Fact  3, and the fact m _< 9, we have 

z 2 - / ~ b l _  < 1, 
z3 - ~ b~ _< 2, 

a_< L*. 
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We now make use of  Fact 2 to derive from (5) 

RFF(L)<--~L*+~a+ + ~--~ re)b2 + 5. (6) 

FACT 5. ' ga + (i~ + ~(l/m))b2 _< { L  *. 

PROOF. In an optimal packing of  L, each bin with an A-piece can contain at most one 
Bz-piece, and any other bin at most two B2-pieces. Thus b2 -< a + 2(L* - a) = 2L* - a. 
Therefore 

1 (~8 37 1 \  (~8 37 l ~  , (~ 1 37 1"~ 
~ a +  +-S-din)b2< + ~-~m)2L + 18 9"0m) a" 

As the second term on the right-hand side is nonnegatlve and a < L*, we have 

l (~8 3 7 ~ ) ( 2 3  37 1"~ , 1 , ga+ +~6 b2_< V6+~g)L _<3L, 

for m >_ ~. [] 

Formula (6) and Fact 5 lead to RFF(L) _< ~-L* + 5. 

Case 2.2: zll < 212. The total sum of all A, B,-pieces is at least 

Zll + ½(Zl2 -- Z11) + ~Z13 + ~(2Z2 -- 1) + ](223 -- 1) 
> ] a  + ½zl2 + ~z,3 + tz2 + ~z3 - 1. 

By Fact 1, 

It follows that 

z4 _< 2 + ](L* - ] a  - ½zx2 - ~z13 - ]z2 - ]za + 1). 

RFF(L) = a + z12 + z2 + z3 + z4 

_< ]L* + ~a + ~z12 + ~z3 + 4. 

Usmg Fact 2, we obtain 

FACT 6. 

PROOF 

") R F F ( L ) < - 4 L * + I a +  + 2 m  b 2 + 5 .  

~a + (t~ + ½(l/m))b2 _< ~L*. 

Left-hand side _< ~a + + ~ (2L* - a) 

(7) 

The second term is never positive (as m _< 9); thus 

left-hand side _< (~  + ~ ) L *  _< ~L*, 

as m_> 6. [] 

Formula (7) and Fact 6 lead to RFF(L) _< 2 L* + 5 for case 2.2. This completes the proof  
of  Lemma 1. [] 

Lemma 1 imphes that the performance ratio of  RFF does not exceed 2. We shall show 
that it is in fact exactly 2. 

THEOREM 1. r(RFF) = 2. 
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FIG. 2 (a) An opUmal packing of L m the proof of Theorem 1; (b) the RFF packing of L 

PROOF. W e  need only  exhibit  lists L with arbitrary large L*  such that RFF(L)  = 
~L* + O(1). 

Let 8j = 4 -¢j+2) for j>_ 1, and n be an integer o f  the form 6k + 1 for some k _> 1. Def ine  
pj = ½ + 6~, uj = ¼ + 6~, tl = ¼ - 28j for 1 _< j _< n. Consider the hst L = L~L2, where 

L1 = (ua, tz, t3, u3, t4, t5 . . . . .  u2j-1, t~, t~+l . . . . .  u,-2, tn-1, tn), 

and 

= (Uz, u, . . . . .  u,-1, p~, p2 . . . . .  p , ,  t~, u,).  

Clearly L* = n (see Figure 2a). N o w ,  using the easily verified fact that (u2j-~ + t2~ + t2j+0 
+ min{tk, u,} > 1 for every k > 2j + 1 and any i, the packing resulting from R F F  is as 
shown in Figure 2b. Thus RFF(L)  = ~L* + O(1). This  proves the theorem. [ ]  

4. A Lower  Bound to r (S)  f o r  On-line Algori thms 

In this section we show that one cannot  expect to find on- l ine  algorithms as good as, say, 
FFD,  even i f  an arbitrary amount  o f  computat ion is allowed. 

THEOREM 2. For any on-line bin-packing algorithm S, r (S)  _> ~. 

PROOF. Let 0 < e < 0.01 be a fixed number,  and x = ~ - 2¢, y = ~ + ¢, z = ½ + E. For 
any n = 12k (k a positive integer), define a list L ffi L~L2L3, where L~ consists o f  n x's, L2 
consists o f  n y's, and L3 consists o f  n z's. 

Clearly 

L f  -- ~n, (L1L2)* = ½n, and (L1LzL3)* = n. 
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Given any on-line algorithm S, let rl(n) = S(L1)/LI', r2(n) = S(LiL2)/(LiL2)*,  and r3(n) 
= S(L~LzLa)/(LiL2L3)*. We shall prove that 

max{rl(n), r2(n), ra(n)} _> ~. (8) 

This immediately implies that r(S)  _> ~ and hence the theorem. 
Consider the packing of L under algorithm S. We shall gather information about rv (n) 

(1 _< j _< 3) by examining the resulting packing configurations at points when jn items have 
been assigned. 

Consider the packing of the first n items (i.e., L~). Let a, (l <_ i _< 6) be the number of 
bins containing i pieces of x (Figure 3). Then 

S ( L , )  = Y. ,~,, 
,__.,___6 (9) 

n - ~  ~ t o i l .  

Next we examine the configuration after 2n items are packed (i.e., LiL2 has been 
assigned). A bm is called type (i, 1) if there are i x's and I y's in the bin. Let ill, f12, al, cd', 
aT', a[, a~', a~", c6, aft', a~, cd' be the number of bins of type (0, 1), (0, 2), (1, 0), (1, 1), 
(1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (4, 0), (4, 1), respectively (see Figure 4). Clearly, 

al = a~ + ai' + al", 

a2 = a~ + a'2' + a~", 
a 3  = ' " ( 1 0 )  

a3  

It is easy to see that the only other possible types are (6, 0) and (5, 0) and there are, 
respectively, ct6 and a~ such bros. The analog of (9) is 

S(L1L2) = (at + a~' + a~") + (a[ + a~' + a~") + (a~ + a~') + (a~ + a~') 
+ a~ + a6 + fll + f12, (11) 

n = (ai '  + 2 a 7 )  + (a~' + 2a~") + a~' + a~' + fl~ + 2flz, 

where the second equation counts the number ofy's.  
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A lower bound to S(LiL2La) can be obtained by observing that no z-piece can go into 
a bin of  type (1, 2), (2, 1), (2, 2), O, 1), (4, 0), (4, 1), (5, 0), (6, 0), or (0, 2), and that no two 
z-pieces can occupy the same bin. Thus 

S(LJ.aL3) >-- cd" + ed" + cd" + cd' + a~ + ~ '  + ~5 + a6 + f12 + n. (12) 

We now defme a new set o f  variables: 

21 ~ 0~ t , 

22 ffi a f '  + a f ' ,  
23 = a~ + a~ + a~, (13) 
24 ffi a~' + ~ '  + a / ,  

~6 = ~ + a5 + a6. 

Making use of  (10) and the nonnegativity of  all quantities involved, we obtain from (9), 
(11), and (12) the following constraints. 

S(L1)-~ 21 =0" 22 "~" 23 + 24 "b 26, 
n _< 2ix + 222 + 323 + 424 + 626, 

S(L1L2) = 21 + 22 + 2s + 24 + 26"~fll @ f12, 
n ffi 21 -~- 222 + 24 + fll + 2fl2, 

and 

(9') 

( l l ' )  

(12') S(LiL2L3)_> 22 + 24 + 26 + f l2+n. 

In terms of  r,(n), the above systems can be rewritten as follows. 

~n.rl(n) = 21+ 22 + 23 + 24 + 26, 
½n.r2(n) = 2~ + 22 + 23 + ~ + 26 + #1+ 132, 

n .r3(n)~ 22 + 2, + 26 + f12 +n,  (14) 
--½n _> --½21 -- 22 -- ~23 -- 224 -- 326, 
- n =  -&1--222  - ~ - f l l - 2 f 1 2 .  

We are now ready to prove (8). I f  (8) is not true, then we have 

¼n > ~n.rl(n), 
]n > ½n.r2(n), (15) 
~n > n.r3 (n). 

Now adding up all the equations in (14) and (15), we obtain 0 > ½21 + ½23, a contradiction. 
This completes the proof of  (8) and hence Theorem 2. [ ]  

5. The Technique ore-Improvement 

Given several simple heuristic algorithms in an optimization problem, a practical method 
for obtaining a good solution is to run each algorithm and then select the best solution 
produced. For example, in the traveling salesman problem one may produce tours using 
several heuristic algorithms (see, e.g., [11]) and select the shortest tour. It is hoped that the 
quality of  the solution obtained will be much better than using a single fLxed algorithm. 
Implicitly, the success of  this idea depends on the hypothesis that different algorithms 
"favor" different regions in the input space. An interesting research area, so far not much 
explored, is to analyze the performance (worst case or average case) o f  such "compound 
algorithms." One example can be found in Frederickson, Hecht, and Kim [2]. Trying to 
obtain a better heuristic algorithm than FFD,  one possibility is to try such compound 
algorithms. 

There are two difficulties in a direct approach, however. First, there are many  algorithms 
sharing the same worst-case input (e.g., the almost-any-fit algorithms in [6, 7]. This 
eliminates some natural compound algorithms (running F F D  and BFD will not improve 
the worst-case bound). Second, the ratio ~ ffi 1.2 . . .  is very close to 1, and the analysis has 
to be rather precise to beat this bound. As the analysis for a relatively simple FFD is 
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already complicated, it is likely to be hard to analyze more sophisticated algorithms. We 
will circumvent these difficulties by focusing on a specific goal-- to  fred an algorithm with 
bound ~t _ ~ for any positive E. 

The idea is to locate the part of  input space for which FFD may realize its worst-case 
performance. If  the characterization is simple enough, we may be able to design a heuristic 
algorithm S that has a better performance in this bad region. The compound algorithm of  
FFD and S then has a bound better than ~t _ ~. It turns out that for many bin-packing 
algorithms, one can give simple descriptions of  small regions covering all the "bad" inputs 
as a result of  the weight-function-type argument used. Thus the bin-packing problem 
provides an ideal opportunity to try out this idea of  "e-improvement." 

In this section we illustrate the idea by proving a simpler result about FFD. Consider 
the restricted problem of bm packing in which each number in list L is in the range 
(0, ½1. It is known [8] that FFD has a performance ratio ~ for this restricted problem. We 
shall show that there is a better heuristic algorithm. 

We first state a useful lemma. 

LEMMA 2. Let ~, h', ~t, v be constants such that 0 < ~, < ~,' _< 1, # _> (1 - ~)-~, and v > 
1. Suppose there is a bin-packing algorithm S with running time O(p(n)) such that, for  any 
list L consisting of  numbers in (~, ~'], S(L) _< #L * + v. I f  p(n) is a nondecreasingfunction 
of  n, then there is an algorithm S' with running ttme O(p(n) + n log n) such that S ' (L)  _< 
I~L * + v for  any list L consisting of  numbers in (0, ~']. 

PROOF. Given an arbitrary list L, the algorithm S '  works as follows. In O(n) time, one 
divides the items into two lists L1 and L2, consisting of  numbers in (2~, ~,'] and (0, ~,], 
respectively. The algorithm S is applied to L~ to produce a packing using, say, N1 bins. 
One finishes the packing by performing a first-fit algorithm on list L2. The algorithm 
clearly works in time O(p(n) + n log n). We now show that S'(L)  _< #L* + v. By 
assumpUon, N1 --< ~L~' + v. If  S'(L)  _~ N~, then the result follows immediately, since 
L~ _< L*. If  S'(L) > Ni, then in the final packing all except possibly the last bin must 
have content greater than 1 - ~. This implies that L* _~ (1 - X)(S'(L) - 1), and hence 
S'(L) _< (1/(1 - X)) L* + 1 _< ~L* + v. []  

The above line of  argument appears often in bin-packing analysis (e.g., [8, Lemma 
3.3]). 

The rest of  this section is devoted to proving the following result, based on the general 
idea outhned earlier. 

THEOREM 3. Let e = 10 -~. There is an O(n log n)-time algorithm S for  bin packing such 
that, t f  a list L has all numbers m (0, ½], then S(L) _< (~ - ~)L * + 5. 

PROOF. Let ~ = ~, 2,' = ½, # = ~ - E, and v = 5. By Lemma 2, we need only prove the 
theorem assuming that the lists L have all numbers in (~, ½]. For the rest of  this secaon we 
restrict ourselves to such lists, although some statements also apply to general lists. The 
first step is to locate the "bad" input lists. 

A REVIEW OF THE PROOF FOR FFD(L) _< ~L* + 5. The proof [6, 8] proceeds by 
defining a function W(S)  ~_ 0 for any finite set S of  numbers in (0, ½], such that the 
following properties are satisfied. 

W is subadditive--W(LI, S,) _< ~, W(S,). 

If  all elements m L are in ( l /N ,  ½], N _> 4, then W(L) _> FFD(L) - 

Property A 1. 

Property A2. 
N + 2 .  

Property A3. If  S = {xl, x2 . . . . .  xm} wRh x, E (~, ½] and ~, x, ~ 1, then W(S) _< ~. 

Let X, be the ith bm m an optimal packing of  L. ProperUes A I - A 3  imply the desired 
result, 

FFD(L) - 5 _< W(L) _< ~ W(X  0 _< ~ L  *. (16) 
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A STRENGTHENED ANALYSIS. W e  have  seen f rom (16) that  

FFD(L) _< ~ L *  + 5. (17) 

Not ice  that we would  obtain  a bound  better  than  (17), except  in the case when  almost  all 
X, have W(X,) = ~. Actually,  W(X,) = ~ only  under  very special  conditions.  

Definition. A n u m b e r  xj in L is called an  A-, B-, C-, D-, E-,  or  F-piece  i f  xj is in 
(½, 1], (½, ½], (¼, ~], (~, ¼], (~, ~], or  (~, ~]. W e  use the nota t ion  S = {CCDE} to express the 
situation S = {xb x~, xs, x4} with x~, x2, x3, x4 being a C-, C-, D-, and E-piece,  respectively. 
In a packing, a bin containing a set {CCDE} will be  cal led a CCDE-bin. The  nota t ion  
generalizes obviously to other  configurations.  

Property A Y  [6, 8]. I f  S = (xi,  x2 . . . . .  xm} wi th  x, ~ (~, ½] and ~,  x, _< 1, then  

W(S)_<~ i f  S =  {BBEF)  or (CDEEE},  
W( S ) _< ~ otherwise.  

A strengthened form o f  (17) can now be der ived as follows. Let  P *  be an opt imal  
packing of  L, and X, the ith bin in P*  (1 _< i_< L*) .  Assume that  there are a bins in P *  o f  
the form {BBEF)  or {CDEEE}. 

LEMMA 3. 

PROOF. 

Therefore,  

I f  c~ _< (1 - 60¢)L*, then FFD(L) _< (~ - ¢)L * + 5. 

F r o m  Properties A I ,  A2, and AY,  we have  

FFD(L) - 5 _< W(L) _< X W(X~) _< ~ a  + ~(L * - a). 
z 

FFD(L) _< ~ L* + ~a  + 5 
--< ( t$ - O L  * + 5. [ ]  

W e  shall call a list L severe i f  in every opt imal  packing P*  of  L there are more  than  
( 1  - 606)L* bins o f  the form {BBEF} or {CDEEE).  L e m m a  3 states that i f a  list L is not  
severe, then the packing produced by F F D  has a bound  at most  ~ - ¢, strictly less than ~. 
This  concludes the step of  identifying " b a d "  lists. W e  can finish the p roo f  o f  T h e o r e m  3 
i f  we can design a heuristic a lgor i thm S such that S(L) _< (~ - E)L * + 5 for all severe lists 
L. We now give an Algor i thm M with running  t ime O(n log n) and prove  that  S -- M has 
the desired proper ty  

Algorithm M. 
Step 1. Sort the input hst L, let (bl _< b~ _< ...), (cl _< c2 _< -..), (d~ _< d2 _< .. .),  (el --< e2 _< ...), and 

(j~ -<J~ _< . . . )  be the sublists of B-pieces, C-pieces, D-pieces, E-pieces, and F-pieces, respectively. 
Step 2 Forj  = 1, 2, . , put {cj, d~, e3j-2, eaj-~, e3j) into BINj, as long as such a set can fit into one bm and 

enough pieces are avadable. [We shall abbreviate the above constraints below as "as long as it is 
feasible "] Assume that m such bins are formed. 

Step 3 For j = l, 2, . , put {c=+~, din+j, e~m+2j-~, e3m+2j} into BIN,~+~, as long as there are enough pieces 
available. Assume that k such bins are formed [Note that a set {CDEE} has sum --<t + ¼ + ~ + ~ < I and 
thus can always fit into a bin ] 

Step 4. Suppose there are h Fop,eces Forj  = 1, 2, .. , put {b2~-~, b2j, fj,.A-~} into BINm+k+j, as long as it is 
feasible Assume that q such bins are formed. 

Step 5 Forj = I, 2, , put {b~q+2j-h b2q+21, e3m+2~+~} into BINm+k+q+j, as long as it is feasible Assume that 1 
such bins are formed. 

Step 6 Pack the remaining E-pieces and F-pieces, respectively, by themselves into new bins using first-fit Let 
p be the number of bins formed this way 

Step 7. Pack all the remaining pieces by themselves into new bins using first-fit. Suppose t new bins are used 

End of Algorithm M. 

Figure  5 shows a packing produced  by Algor i thm M. 
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ANALYSIS OF ALGORITHM M. It is easy to implement M so that it runs in O(n log n) 
time. To complete the proof  of  Theorem 3, it remains to prove the following result. 

LEMMA 4. I l L  is severe, then M(L) _< (~ - E)L * + 5. 

PROOF. Let P* be an optimal packing of  L. Assume that there are in P*  fl bins of  the 
type {BBEF} and "r bins of  the type {CDEEE}. As L is severe, we have 

fl + 3' > (1 - 60c)L*. (18) 

We wish to fred bounds on the various terms in 

M(L) = m + k + q + l + p  + t. (19) 

In step 2, for 1 _<j _< ['y/5J, 

cj + dj + eaj-2 + %-1 + eaj 
_< the (Sj - 4)th smallest content in all CDEEE-bins in P*. 

Thus at least [),/SJ bins are formed in this step; i.e., 

m _> ['g/5J. (20) 

Bounds on m + k can be obtained by considering the total available CD-pairs. This gives 

3 ' + 6 0 ¢ L * × 3 - - > m + k - - > Y .  (21) 

In the last formula the term 60eL* × 3 is an upper bound on the numbr  of  C-pieces not 
contained in CDEEE-bins. In step 4, for 1 _< j <_ LS/3J, 

b2j-1 + b2j + fj + fh-.l 
_< the ( 3 / -  2)nd smallest content in all BBEF-bins in P*. 

Therefore, 

q -> [B/3J. (22) 

By considering the number of  all F-pieces, we find the following upper  bound on q: 

(fl/2) + 60~L* x 3 _> q. (23) 

To derive bounds on l, we first observe that each B-piece in a BBEF-bin (in P*) is less 
than 1 - ~r - ~ - ~ = h. For  any two such B-pieces, one can add any E-piece to form a 
BBE-bin. Thus a lower bound to I is the minimum of  (#B) /2  and # E ,  where # B  and # E  
are the numbers of  such B-pieces and any E-pieces, respectively, at the start o f  step 5. As 
# B  _> 2fl - 2q, and # E  >_ (fl + 3-t) - 3(m + k) _>/3 - 540~L* using (21), we obtain 

1 _>/3 - q - 540~L*. (24) 

The total number of  B-pieces available gives an upper bound, 

fl - q + 60EL* _> I. (25) 

We now estimate p and t by calculating the number of  various pieces not contained 
in the first m + k + q + l bins. The total number of  B-pieces in L is at most 2fl + 
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(60eL* X 2); by (24), at least 2(fl - 540¢L*) o f  them are in the first m + k + q + ! bins. 
Thus, denoting by N [ Y ]  the number o f  Y-pieces in the lastp + t bins, we have 

Similarly, one can show that 

Also one has, using (22), 

The number N[E] satisfies 

N[ B ] _< 1200EL*. (26) 

N[ C] _< 180~L*, (27) 

N[ D ] .~ 24~L*. (28) 

N[ F] _~ ]fl + 360¢L* + 2. (29) 

N[E] _< ~ + 3y + 30(kL*) - (3m + 2k + l). (30) 

Now, using (20), (21), (23), and (24), one has 

3m + 2k + l ffi m + 2(m + k) + l 

-~-~fll + ~ y -  720~L* - 1. (31) 

From (30) and (31), we have 

N[E]  ~. ½fl + ~y + 1020¢L* + 1. (32) 

We can now estimate p and t. Using (29) and (32) 

p _< iN[E] + iN[F] + 2 _< ~fl  + ~y  + 264EL* + 3. (33) 

From (26), (27), and (28), 

t <_ N[B] + N[C] + N[D] <_ 1620¢L*. (34) 

Making use of  (21), (25), (33), and (34) in (19), we obtain 

M(L) _< ,~fl + ~y + 2124EL* + 3. 

As fl + y _< L*, we have 

M(L)  _< (~ + 2124~)L* + 3. 

Observing that ~ + 2124E < ~ - ~, we have finally, 

M(L)  _< (~ - e)L * + 5. 

This proves Lemma 4. []  

The proof of  Theorem 3 is now complete. []  

6. A Polynomial-Time Algorithm Better Than FFD 

This section is devoted to proving the following result. 

TI-IEOREM 4. Let E = 10 -7. There is a polynomial-time heuristzc algortthm RFFD for  bin 
packing such that, for  any list L, 

RFFD(L)  _< (~t - E)L* + 8. 

PROOf. We use the notation ~ = 10 -7, ~ -- 10 -4, ~ -- (226) -1, and X ~- 1 - (~t _ E) -1. 
Clearly, E < ] ~  and ~ < 2~ < •. 

Although more complicated, the proof of  Theorem 4 follows the same pattern as that of  
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Theorem 3. By Lemma 2, it suffices to show the theorem considering only lists L with all 
elements in (X, 1]. We will first prove that for all such lists, except those of  
a special type, FFD produces a packing within the desired ~t _ E bound. We then con- 
struct a heuristic algorithm EPSI that performs well (below ~t _ E) for the exceptional 
"critical" lists. The compound algorithm S of FFD and EPSI then clearly satisfies S(L) 
< (~t _ ¢)L* + 8 for any list with elements in (~, 1], completing the argument. 

A REVIEW OF THE ~t BOUND FOR FFD. We review below the proof  of  [6, 8] for FFD(L) 
_< ~tL* + 4, if L obeys the following Assumptions 1 and 2. As Assumption I can be 
justified by Lemma 2, and it can be shown directly [6, p. 277, Reduction 3] that any list L 
violating Assumption 2 has FFD(L) _< ~L* + 1, this would prove FFD(L) _< ~tL* + 4 for 
any list L. 

Assumption 1. Let L be a list of  numbers in (4, 1]. 

Let P* be any optimal packing and PF the packing produced by FFD. We use X, to 
denote the ith bm in P*, 1 _< i _< L*. In any packing, a bin containing an A-piece is called 
an A-bin, otherwise it is a non-A-bin. The number of  A-bins in any packing of L is equal 
to the number of  A-pieces in L, which we denote as [AL[. Let ~ =  {x[x ~ L, x is m a non- 
A-bin in PF}. 

Assumption 2. ~conta ins  at least a C-piece or a D-piece. 

Let the function W be defined as in Section 5. The analysis proceeds to define two 
func t ionsfand  g, based on PF and P*, 

f :  L ~ 2 ~ a n d  g :  L ~ rational numbers. 

For any subset T_C L, we wri tef(T)  for t.Jx,erf(x,) and g(T) for ~x, e r  g(x~). The definitions 
o f f  and g are complicated [6] and were shown to possess the following properties. 

Property BI. ~:= UxEL f(X), IALI --> ~ L  g(x). 

Property B2. W(f(X,)) + g(X,) _< ~(y(X,) + g(X,)), 1 _< i _< L*, where 

(10 if X, i s a n A  -bin, 
y( X, ) ffi otherwise. 

Also, the following are true from properties of  W (see Properties A 1 and A2). 

Property B3. W(UxeL f(x)) --< ~ L  W(f(x)). 

Property B4. W(~)  _> FFD(L) - [ALl -- 4. 

Summing over X, in the formula of  Property B2, and using Properties BI, B3, and B4, 
one obtains FFD(L) _< ~tL* + 4 for any list under AssumpUons 1 and 2. 

The above is an outline of  proof  for the bound ~. For our purpose, a strengthened 
analysis for FFD is needed. 

A STRENGTHENED FFD ANALYSIS. We shall work under a weaker form of  Assump- 
tion 1. 

Assumption 1'. Let L be a list of  numbers in (X, 1]. 

Let PF, P*, X,, ~,  and Whave the same meaning as before. We shall say a bin X~ in P* 
is regular if X~ is not of  one of the following configurations: an A-bin with three pieces, 
BBC, BCC, CCCD, or CCDD. Otherwise X, is irregular. 

For any list L satisfying Assumption 1' and Assumption 2, one can d e f m e f  and g such 
that the following properties are true, in addition to Properties B I-B4. 

Property B5. W(f(X,)) + g(X,) ~ (~ - 8)(y(X~) + g(X,)) if X~ is regular. 

Property B6. I f  X, is a regular A-bin, then g(X,) _> ~. 



220 ANDREW CHI-CHIH YAO 

The proofs of  Properties B I-B6 under Assumptions 1' and 2 follow closely the original 
analysis [6]. A description of  the necessary modifications is given in the appendix. 

We can now give a characterization of  lists L for which FFD may have a bad 
performance. 

THEOREM 5. Let L be a list satisfying Assumption 1', and P* an optimal packing o f  L. 
I f  there are more than ~L * regular bins in P*, then FFD(L) _< (~t - ~)L * + 4. 

PROOf. I f  Assumption 2 is not true for L, it can be shown [6, p. 277, Reduction 3] that 
FFD(L) _< ~L* + 1, and the theorem is true. We cart therefore suppose that Assumption 
2 holds. 

Take the formulas in Properties B2 and B5 and sum over all X,. We have 

Y. W(f (X, ) )  + g(L) <_ ~ ~ (y(X,) + g(X,)) - ~ Y. (y(X,) + g(X,)). (35) 
~ x ,  ~ x ,  regdarX, 

Using Properties B 1, B3, and B4, we see that the left-hand side of  (35) is at least 

left-hand side _> FFD(L) - IALI -- 4 + g(L). (36) 

Now, to estimate the right-hand side of  (35), we note that 

(y(X,) + g(X,)) = L* - IALI + g(L). (37) 
aux, 

Also, because of  Property B6 and the fact that there are at least 7/L* regular bins X,, we 
have 

(y(XJ + g(X,)) _> (number of  regular non-A-bins) 
~ x ,  + ~(number of  regular A-bins) 

_> ~(number of  regular X,) (38) 

_> ~ L * .  

From (37) and (38), the right-hand side of  (35) is at most 

right-hand side _< ~(L*  - [ALl + g(L)) - 6-~t~L*. (39) 

Formulas (35), (36), and (39) lead to 

FFD(L) _< (~t _ ~6~)L* - ~([AL [ -- g(L)) + 4. 

Noting that e < ~&/and that [ALl -- g(L) _> 0 by Property Bl, the theorem follows. []  

THE EPSI ALGORITHMS. For the rest of  Section 6, all lists are assumed to satisfy 
Assumption l'. We shall describe a family o f  algorithins EPSI[a], a2, an, a4, as, ill, f12, T1, 
y2] with nonnegative integer parameters ai, ~2 . . . . .  ~,2. Given a list L with n items, we 
perform EPSI[~x], ~2 . . . . .  3'2] on L for each possible 0 _< a~, a2 . . . . .  72 <- n and pick 
the best packing. We call this procedure the EPSI algorithm. It will be seen that each 
EPSI[~i, c~2 . . . . .  T2] works in O(n log n) time; thus EPSI works in time O(n ]o log n). 

We call a list L of  type (cq, a2 . . . . .  y2) if there is an optimal packing of  L with a], 
~x2 . . . . .  ~,2 bins of  type ACD, ADD, ADE, AEE,  ACE, BBC, BCC, CCCD, CCDD, respec- 
tively. Note that a list can be o f  several types. A list L is critical o f  type (cq, c~2 . . . . .  y2) 
if it is of  type (cq, a2 . . . . .  y2) and a] + ct2 + . - .  + T2 -> (1 - 7/)L*. The aim of  
EPSI[a], ~2 . . . . .  T2] is to produce a packing using less than ~ - e times the minimum bins 
needed, for any critical list of  type (ab a2 . . . . .  V2). This ensures that EPSI has a bound 
better than ~ - E for any critical list. Together with Theorem 5, which ensures an 
~t _ ¢ bound for noncritical lists, it completes the proof of  Theorem 4 as stated at the 
beginning of  this section. 

Given a list L and parameters a], a2 . . . . .  T2, we shall now describe the action of  
EPSI[ab a2 . . . . .  72]. I f  any of  the described steps cannot be accomplished, it is understood 
that the packing of  list L may then proceed arbitrarily. 
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Fi rs t ,  L is s o r t e d  i n  a s c e n d i n g  o rde r .  T h e n  we  p a c k  v a r i o u s  p ieces  i n t o  f o u r  c lasses  o f  
b i n s  a c c o r d i n g  to  t h e  f o l l o w i n g  ru les .  

Le t  a l  _< a~ _< a~ _< . . . ,  b~ _< b2 -< b~ _< • • . ,  ci _< c2 -< c3 -< • • . , .  • • b e  t h e  l is ts  o f  A-p ieces ,  
B-p ieces ,  C-p ieces  . . . . .  etc. 

Step I 

Step 2 

Step 3 

Step 4 

Class-I bins First put {b2~,-l, b2j} into BINj, 1 _<j _< fl~ + Lfl2/2J Then, for j  = 1, 2 . . . . .  [fl~/2J, put the 
largest available fitting C-piece into BINj 
Class-2 bins' Let cl _< c~ _< . . .  be the remaining C-pieces Put {c;j-2, c;~-l, c~} into BINs, I _<j ..~ T~ For 
j = !, 2, , [y~/3J, put the largest fitting D-piece into BINs 
Class-3 bros. 
(a) Let dl _< d~ <_ . - .  be the remaining D-pteces Define m = [a~/2J + [a#2].  For 1 _< j _< m, put 

{d~-l, d~} into BINs Then, for j  = 1, 2,. , m, put the largest fitting a, into BINs. 
(b) Define m' = a~ + a2 + a~ + oa + a~ - m Let a~ _< a~ ~ . . .  ~ a~ _< . - .  be the list of A-pieces 

remaining. Put a total of [a~/2] + a~ C-pieces, [a2/2] + a~ D-pieces, and a4 E-pieces into BINm+~ to 
BINm+m', one piece m each bin Now put a[ into BINm+, for 1 _< t _< m'. 

Class-4 bins: For each Y ~ {A, B, C, D, E}, pack all the Y-pteces first-fit by themselves. 

W e  n e e d  s o m e  p r e l i m i n a r y  re su l t s  b e f o r e  a n a l y z i n g  E P S I .  

Definition. L e t  Y = (y l ,  y2 . . . . .  ym) a n d  Z = (z~, z2 . . . . .  z . )  b e  t w o  l is ts  o f  r ea l  n u m b e r s .  
T h e  Cartesian product o f  Y a n d  Z is Y × Z ffi {(y,,  zj) I 1 _< t _< m, 1 _< j _< p} .  A partial 
match b e t w e e n  Y a n d  Z is a s u b s e t  4 C Y × Z s u c h  t h a t  (i) y,  + zj _< 1 fo r  a l l  (y, ,  zj) E 
4 ,  a n d  (n )  a n y  t w o  d i s t i nc t  (y, ,  zj) a n d  (y,., zs) i n  4 h a v e  i # i '  a n d j  # j ' .  Le t  ~ Y ,  Z )  
d e n o t e  t h e  m a x i m u m  p o s s i b l e  s ize  o f  1 4  }. A p a r t i a l  m a t c h  4 is a max imum partial  match 
i f  l 4 1  = ~p(Y, Z ) .  F o r  a n y  p a r t i a l  m a t c h  4 b e t w e e n  Y a n d  Z ,  t he  range Z .  is t h e  m u l t i s e t  

{z , l (y , ,  zj) E 4 for  s o m e y ,  ~ Y}. ( T h u s  I Z ,  I = 141.) Let  2 .  = Z - Z . .  

T h e  f o l l o w i n g  p r o c e d u r e  c l ea r ly  g e n e r a t e s  a p a r t i a l  m a t c h .  

Algorithm PM(Y, Z) 

Sort Ymtoy~ <_y2_< - . .  --<y~,, sort Z into z~ <_ z2--< . . .  --< zp, keep the elements o f Z  m an array T 
(Tit] *- z,, I _< t _<p), 

~ ~--~k, k ~--p, 
for i ffi ! until m do 

begin Search T[k ], T[k - 1], to find the largest j _< k satisfying y, + z~ _< 1; ff j  does not exist, halt; 
~ el, u {(y,, z,)), 

k * - j  - 1, 
end 

END of AIgortthm PM 

LEMMA 5. Algorithm P M ( Y ,  Z )  works in time O(n log n),  where n = I YI + IzI. 
Furthermore, the partial match 4 generated is a max imum parttal match between Y and Z. 

PROOF. T h e  O(n log  n ) - t l m e  b o u n d  is o b v i o u s .  T o  p r o v e  t h e  o t h e r  a s se r t i on ,  s u p p o s e  
P M ( Y ,  Z )  sor ts  Y a n d  Z i n t o  y l  --< y2 <- • • • -< ym a n d  zl --< z2 --< . . .  --< Zp a n d  p r o d u c e s  
4 = { ( y l ,  z~,),  ( y2 ,  z ~ )  . . . . .  ( y s ,  z ,8 ) } .  C l e a r l y  il > / 2  > . . .  > ts. 

N o w  a s s u m e  t h a t  t h e r e  exis ts  a p a r t i a l  m a t c h  4 '  = {(yj , ,  zki ), (YJ2, zk2) . . . . .  (yj , ,  zk,))  
w i t h  t > s. W e  wi l l  s h o w  t h a t  it l e ads  to  a c o n t r a d i c t i o n .  W i t h  n o  loss  o f  g e n e r a l i t y ,  a s s u m e  

t h a t  f i  < J2 < • • • < Jr. T h i s  i m p h e s  t h a t  y i  -< YJi, y2 -< YJ2, - • • ,  etc.,  a n d  t h e r e f o r e  4 "  = 
{(y t ,  zk,), (y2, z ~ )  . . . . .  (yt ,  Zk,)} is a l so  a p a r t i a l  m a t c h .  A m o m e n t ' s  t h o u g h t  r e v e a l s  t h a t  
4 "  = {(y l ,  Zk~), (y2, Zk~) . . . . .  (yt,  Zk;)} m u s t  a l so  b e  a p a r U a l  m a t c h ,  w h e r e  k l  > k~ > 
• . .  > k~ is t h e  s o r t e d  s e q u e n c e  o f  (kl ,  k2 . . . . .  kt). B a s e d  o n  t h e  d e s c r i p t i o n  o f  P M ,  a 
s i m p l e  i n d u c t i o n  a r g u m e n t  g ives  il _> k~, i2 -> k~ . . . . .  is -> k~. B u t  th i s  i m p l i e s  t h a t  P M  
s h o u l d  h a v e  f o u n d  a z,.+, w i t h  z,,+, + y,+l  -< 1 (zk:+, is a c a n d i d a t e ) .  T h i s  is a c o n t r a d i c -  
t ion .  [ ]  

Definiuon. Let  X a n d  Y b e  t w o  m u l t i s e t s  o f  r ea l  n u m b e r s .  W e  say  t h a t  X is dominated 
b y  Y i f  t h e  a h  s m a l l e s t  e l e m e n t  in  X is n o  g r e a t e r  t h a n  t he  i t h  s m a l l e s t  e l e m e n t  in  Y, fo r  
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all 1 ~_ i _< I X [ _< I Y I. A list X'  is dominated by a list Y'  i f  the corresponding multisets X 
and Y satisfy this relation. 

LEMMA 6. Let X, Y, and Z be finite lists with X dominated by Y. Then 
(a) ~ X ,  Z )  _> min{[X[, ~ Y ,  Z)}; 
(b) let • be a partiai match ~generated by PM(X,  Z) ,  and ~ '  any partial match between Y 

and Z with [~ ' [  ffi [~  [. Then Z® is dominated by Zo,. 

PROOF. Let the sorted lists o f  X, Y, Z be xl _< x2 --< . . .  _< xm, yl _< y2 -< • • • -< y, ,  
Zl _< zz --< . . .  --< Zp, respectively. 

(a) Let ( (yb z,l), (y2, z,2) . . . . .  (ys, z,,)} be the maximum partial match generated by 
PM(Y,  Z) (Lemma 5). Let l ffi min{IXI, s}. Then {(Xl, z,1), (x2, z, 2) . . . . .  (xt, z,z) } is a 
partial match between X and Z, as xj _< y~ by assumption. This proves that ~X ,  Z) _> 
min{[ X], ~(Y, Z)}. 

(b) Let • ffi {(xl, z,l), (x2, z,2) . . . . .  (xt, z,~)} with il > /2 > . - .  > it, and ~ '  = 
{(yj~, zk~), (Y~2, z~2) . . . . .  (y~,Zkt)} withj~ < j2  < " ' "  <ft .  As in the proof of  Lemma 5, it 
can be shown that ~"  ffi {(Xl, zk~ ), (x2, zk~) . . . . .  (xl, zk~ )} is a partial match between X and 
Z when kl  > k[ > . . .  > k~ is the sorted sequence o f  (k~, k2 . . . . .  k~). A simple induction 
argument then shows that il >- kl,/2 -> k ~ , . . . ,  i~ _> k~. This implies that for each I _< q 
<-- p, [ {it[ it > q} I >-- [ {k;I k~ > q} l" Hence, we have 

FACT 7. For each 1 _< q _< p, I {itlit -< q} I -< I {k[lk[  -< q} I. 

Now the multisets Z@ and Z,,  are obtained from Z by deleting (z, z, z, t_ . . . . . .  z,~ ) 
and (zk~, zk~_l . . . . .  zk,~), respectively. Write Z .  = {z~, z . . . . . . .  zu, } and g®, = 
{zoo, zo2 . . . . .  zo¢}, where ul < u2 < - - .  < u~ and v~ < Ve < .- • < v~. Then for each 1 _< s 
_< c, us = s + I {it l it _< u~} I and (the number of  vb _< u~) ffi u, - [ {k~l k~ _< u,} I. Using Fact 
7, we have, for each 1 _< s _< c, (the number o f  Vb --< U,) --< U, -- I {h [ it -< u~} I = s and thus 
v, _> u,. We have shown that z~, _< zo. for each 1 _< s _< c, completing the proof that Z® is 
dominated by Z.,. []  

We now analyze the algorithm EPSI. 

LEMMA 7. For a list L of  type (a~, a2 . . . . .  y2), every step of  EPSl[a~, a2 . . . . .  y2] can be 
carried out. 

PROOF. Let P* be an optimal packing of  L with cz~, a2, a3, aa, a~, ~ ,  t82, T~, T~ bins of  
types ACD, ADD, ADE,  AEE, ACE,  BBC, BCC, CCCD, CCDD, respecttvely. 

(i) Step I can be done. As there are enough (2~81 + ~82) B-pieces in L, we need only 
show that the procedure can put tfll/2J C-pieces into dass-I bins. We define the following 
multisets: X = {b~,-~ + b2~l I _<j _< L81/2J}, Y1 ffi {b' + b" l {b ' ,  b", c} is a BBC-bin 
in P*}, Y = {YlY  is the (2j - l)st smallest of  Yx for some 1 _< j _< LS~/2J}, and Z = 
{all C-pieces in L}. As b~-I + b2j is no greater than the (2j - l)st element in Y1, it follows 
that Xis dominated by Y. Also ~ Y ,  Z)  ffi 1fl~/2J. It follows from Lemma 6(a) that ~X ,  Z) 
= LBd2] ffi I XI.  As step 1 is essentially the execution of  PM(X,  Z) ,  that it can be 
accomplished is guaranteed by Lemma 5. Finally we notice an important property 
following from Lemma 6(b). 

Let ~ '  be the partial match between Y and Z, defined by {(b' + b", c) [ {b', b", c} has 
the (2j - l)st smallest b '  + b"  among BBC-bins in P* for some 1 _<j_< [/h/2J}. According 
to Lemma 6(b), Z®, the set o f  remaining C-pieces cl --< c~ _< , . . ,  is dominated by Z.,. It 
follows that the set o f tbe  first 3-¢~ pieces in c~ <_ c[ <_ . . .  is dominated by the set o f  33q C- 
pieces in the CCCD-bins in P*. 

(ii) Step 2 can be carried out. By the preceding remark, we have for 1 _< j _~ 
[-y~/3J, c~-2 + c~-~ + c~2 is no greater than the ( 3 j -  2)nd smallest element of  the multiset 
{c + c '  + c" I {c, c' ,  c", d} is a CCCD-bin in P*).  An argument similar to that in (i) shows 
that step 2 can be accomplished as specified, and that the first a~ + 2a~ + a,  in the 
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remaining D-pieces d~ <_ d[ _< . . .  are dominated by the set of  D-pieces in the A'CD, ADD,  
and ADE-bins in P*. 

(iii) Step 3 can be carried out. 
Step 3(a): The preceding statement implies that for 1 _< j _< m, d~-i  + d~ _< 

the (2j - l)st smallest in the multiset {c + d l  {c, d, a} is an ACD-bin in P*} U 
{d + d ' l  {a, d, d'} is an ADD-bin in P*}. As in (i) and (ii), this fact together with Lemmas 
5 and 6 can be used to prove that step 3(a) can be done. 

Step 3(b): As each A-piece in an ACD-, ADD-, ADE-,  AEE-,  or ACE-bin  is less than 
1 - ~ - ~ = ], there are at least al + or2 + ol3 + or4 + or5 A-pieces in L that are less than ]. 
At most m of  these A-pieces are packed in step 3(a). Therefore, at  --< a~ '~ . . .  _< ag, _< ~. 
Since each a[ can fit with any C-piece (or D-piece or E-piece) m a bin, step 3(b) can be 
done provided the specified number of  C-, D-, E-pieces exist. This latter fact can be easily 
verified. 

(iv) Step 4 can always be done. This proves Lemma 7. []  

LEMMA 8. Let L be a critical list satisfying Assumption 1' and o f  type (~ ,  a2 . . . . .  y2) and 
NL the number o f  bins used by EPSI[al ,  a2 . . . . .  y2] on L. Then 

NL _< (~ + 5n)L * + 8. 

PROOf. To begin with, we note that 

NL = al + a2 + aa + a4 + a5 + fl l  + [ f12 /2J  + "tl + (number o f  class-4 bins). (40) 

We now bound the number of  class-4 bins. The total number of  C-pieces in L is at most 
O~1 + OL5 + fl l  + 2fl2 + 3T1 + 2"y2 + 3rlL*. AS there are [al /2]  + a5 + 1fll/2] + 3y1 C-pieces 
in class- 1-3 bins, the number of  C-pieces packed in class-4 bins is at most [al /2j  + [fl~/2] 
+ 2fl2 + 2y2 + 3rlL*. A similar counting gives the following upper bounds on the numbers 
of  A-pieces, B-pieces . . . .  in class-4 bins. 

#A _< ~L*, 
# B  _< 2 ~ L *  + 1, 

# C  _< 3~/L* + ta, /2J + r#d21 + 2flu + 2y2, (41) 
# D  _< 4~L* + 1 + ra /21 + I't-vd + 2y2, 
# E  _< 5~L* + az + o~ + az. 

Clearly 

the number of  class-4 bins _< #A + ½(#B) + ] ( # C )  + ¼(#D) + ] (#E)  + 5. (42) 

From (40), (41), and (42), we obtain 

NL ~- ~al + ~a2 + ~(Ota + a4 + Or5) + ~(fll + f12 + T1 + T2) + 5nL* + 8. (43) 

AS L *  __> a~ + a2 + " '"  + y2, we obtain from (43), 

NL --< ~L * + 5~iL * + 8. El 

LEMMA 9. The algorithm EPSI[ab  a2 . . . . .  y2] can be implemented to run in time 
O(n log n) f o r  list L with n numbers and parameters al, e~2, . . . ,  y2 ~- n. 

PROOF. Steps 1, 2, and 3(a) are executions of  Algorithm PM, which runs in time 
O(n log n). The other steps involve sorting and first-fit, and all can be done m 

O(n log n) time. []  

THEOREM 6. The algorithm E P S I  runs in polynomial time. For any critical list L 
sattsfying Assumption 1', EPSI(L)  _< (~t _ ~)L * + 8. 

PROOV. From Lemma 9 and the definition of  EPSI, the algorithm runs in O(n ~o log n) 
t~me. The rest of  the theorem follows from the definition of  EPSI, Lemma 8, and the fact 

+ 5~ < ~t _ E for rl = (226) -1 and E = 10 -7. []  
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Theorem 5 and Theorem 6 imply Theorem 4; hence the existence of  a heuristic better 
than FFD. []  

7. How Well Can an o(n log n)-Time Algorithm Perform? 

We have shown that ~t is not the limit on the performance ratio of  polynomial-time bin- 
packing algorithms. A most interesting open question is whether there exists such a limit 
to r(S). Garey and Johnson [4] showed that unless P ffi NP, no polynomial heuristic 
algorithm for graph coloring can have performance ratio less than 2. A similar result for 
bin packing would be especially interesting, since the known achievable bound on the 
performance ratio is already close to 1. A more modest question along this line was raised 
in [8], namely, how well can an O(n)-time algorithm perform? A natural computation 
model is the decision-tree model, counting only branching operations [7, 10]. It would be 
interesting to prove the existence o f  an ¢ > 0 such that for any O(n)-time bin-packing 
algorithm $, one must have r(S) _> 1 + ¢. We have not succeeded in proving such an 
assertion. However, a result o f  this spirit can be shown for a closely related problem, and 
it may throw some light on the present bin-packing problem. 

Consider the generalized bin-packing problem discussed in [3]. Let L = (~ ,  :f2, . . . ,  £n) 
be a list of  d-dimensional vectors (d _> 1), with each componem of  the vectors in the 
intervals (0, 1]. The problem is to pack these vectors into a minimum number of  bins, such 
that the sum ~ of  vectors in any bin has vi -< 1 for all 1 _< i _< d. (When d ffi 1, this is just 
the bin-packing problem we have discussed.) The problem is clearly NP-complete for any 
fixed d >_ 1. For any heuristic algorithm, let r(S) denote the performance ratio as before. 
A simple extension S of  the O(n)-time Next-Fit Algorithm [6, 7] gives r(S) ffi 2d. We are 
interested in a universal lower bound to r(S) for any o(n log n)-time algorithm. 

We consider the following decision-tree model. Let S be an algorithm for the general- 
ized d-dimensional bin packing. For  each n > 0, the action of  S on lists of  n items L = 
(£1, £2 . . . . .  £~) can be represented by a ternary tree Tn($). Each internal node of  T~(S) 
contains a test "h(Afb Afz . . . . .  Afn):0," where h is a rational function. For any input L the 
algorithm moves down the tree, testing and branching according to the result (h < 0, h = 
0, or h > 0), until a leaf is reached. At the leaf, a packing valid for all lists that lead to this 
leaf is produced. The cost of  S for input o f  size n Cn(S) is defined to be the number of  tests 
made in the worst case, i.e., the height of  Tn(S). 

THEOREM 7. Let S be an algorithm for the generalized d-dimensional bin packing. I f  
Cn(S) = o(n log n) as n ~ o% then r(S) _> d. 

PROOF. The case d = 1 is trivial. We therefore assume that d > 1. Let n > 0 be any 
integer. Define a sequence ¢o, e~, ¢2 . . . . .  ¢~ such that 

¢o ffi l / d  ~, 
• , > (d - l)¢,÷x, 0 _< l < n 1. (44) 

Let ./t,,Jl be the vector 

(E,, ~, ..... a,, I -(d- I)E,, E. ..... ~), 

Ik, J k J v 

j - I  d - j  
for each 1 .~ i <_ n, l_<j_<d. 

Consider the list Ln ffi (Aftl,x], -ftL2] . . . . .  Aft~,d], Aft2,q . . . . .  Aftn,'q), with dn vectors. Clearly 
L ~* ffi n, as ~L<j ~_d Aft,,~ 1 ffi (1, 1 . . . . .  1 ) for each 1 _< i _< n. Let I'n be the set of  permutations 
of  the dn elements in E~ ffi {[i,j] [ 1 _< i_< n, 1 _<j_< d}. For  each o E F~, denote by Ln(o) 
the list (~o~1~, :¢o~ . . . . .  :¢o~d,~b- Obviously Ln(o)* ffi Ln* ffi n. We shall prove that for any 
fixed 8 > 0, if n is large enough, then there exists a o ~ I'~ such that S(Ln(o)) > 
(d - 6)L~(o)*. This would imply the theorem. 

I f  the above assertion is false, then there exists a 6 > 0 such that S(Ln(o)) _< (d - 8)n for 
all sufficiently large n. We will derive a contradiction. 
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FACT 8. In anypacking, -ft,,J] and :ft,',J'] cannot be in the same bin i f  i S  i'. 

PROOF. It follows immediately from the definition of.ft~,jl. []  

FACT 9. Let l be any leaf o f  Tn(S) and ~(1) be the set o f  lists Ln(o) that will lead to I. 
Then IZ(I)I _< (dn)!(cn)-gn/d for  some f ixed  constant c. 

PROOF. In the packing produced a t / ,  there must be at least p ffi 8n/d  bins contain- 
ing two items or more, because S(Ln(y)) -< (d - 8)n. In other words, any input list 
(yl,  .~2 . . . . .  ydn) reaching l must satisfy a set of  inequalities of  the following form. 

)7kl +)Th 2 ~_(1, l . . . . .  l), 

Yk3 +Yk, _<(l, l . . . . .  1), 
: (45) 

)Tk2p_l + )Tk2p _~ (1, 1 . . . . .  1), 

where _< means componentwise inequalities and all k~ are distinct. 
An upper bound to I~(l) I is given by the number of  Ln(o) satisfying (45). T~tking Fact 

8 into consideration, we have 

I~ ( l ) l -<  (nd(d - 1)) p x ( d n -  2p)! 
_< nPd 2" × (dn - 2p)!. (46) 

We now show that nPd 2p x (dn - 2p)! ffi (dn)! x O((n/(4e2))-P). There are two cases. I f  2p 
_< dn/2, then 

(dn)! 
nPd 2p X (dn - 2p)! <_ nPd 2p X 

( d n -  2p + 1) 2p 

_< (dn)! (dn/2)~p =(dn)! X 

If  2p > dn/2, then 

nPd 2p 1 nPd 2p 
nPd ~ X (tin - 2p)! _< (dn)! X (2p)'------T ( ~  -< (dn)! X (2e)----y 

o ( ( e ~ n d ~ 2 P ~ f f i ( d n ) ! x o ( ( n ) - "  ) 
= (dn)! x \ \  2? / / T :  " 

We have used Stirling's approximation [10] in the last derivation. This proves Fact 9. []  

As there are at most 3 c~ts) leaves, the total number of  lists L~(a) reaching leaves of  Tn(S) 
is at most (dn)!(cn) -~"/d x 3 c~ts) = (dn)! x exp(o(n log n) - (~n/d) log3 n) <(dn) !  for all 
sufficiently large n. This contradicts the fact that there are (dn)! possible lists Ln(a). This 
proves Theorem 7. [] 

8. Concluding Remarks 

We hst some problems for further research. 

(1) The E-improvement technique may be useful in other NP-complete problems, for 
example, in the scheduling of  tasks on a multiprocessor system [5]. This technique seems 
to be particularly suitable for scheduling-type problems when the set o f  possible worst- 
case inputs can be identified. For instance, it can be used to show that r(S) < 2 for the 
Next-2-fit bin packing [6, 7]. It may be of  interest to mention that, although the Algorithm 
RFF was presented and analyzed in a more conventional way in Section 3, it was first 
obtained in a fashion very similar to the process for Algorithms M and R F F D  in Sections 
5 and 6. Thus the t- improvement viewpoint can provide a starting point for substantially 
improved algorithms. 

(2) Let r(on-line) be inf{r(S)} over all on-line algorithms S. We have shown that 1.5 
_~ r(on-line) _< 1.66 . . . .  It Is of  interest to determine it more precisely. Very recently 
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(private communication), Donna Brown (University of  Illinois) and Frank Liang (Stanford 
University) have both obtained improved lower bounds for r(on-line). 

(3) Find and analyze off-line algorithms S with r(S) "substantially" better than ~. 
(4) Is there an • > 0 such that finding a packing of L using less than (1 + E)L* bins is 

NP-complete? Is there an • > 0 such that every O(n)-time algorithm S (say, in the decision- 
tree model described in Section 7) has r(S) __ 1 + E? 

Assumption 1. 

Assumption 2, 

Assumption 3. 

We make the 

Observation 1. 
that x, E (~, 1]. 

Observation 2. 

Observation 3. 

Appendix. The Strengthened FFD Analysis in Section 6. 

At the beginning of Section 6, we list some facts (Properties B I-B6) which lead to the 
proof of Theorem 5. In this appendix we give more details on how these facts can be 
obtained from the original analysis of FFD in [6, 8]. 

In [6], Properties B1-B4 are proved under the following assumptions on the list L: Let 
PF be an FFD packing and P '  an optimal packing of L. Write the items in L as xl .~ x~ 
_> . . .  -~ xn. Let ~ffi {x,I x, is not in an A-bin in PF}. 

All x, are in (~, 11. 

~contains at least a C-piece or a D-piece. 

The smallest piece xn goes into a non-A-bin in PF; i.e., xn E ~. 

following observations. Let h be any number in (4, ~]. 

One can replace Assumption 1 by a weaker constraint, Assumption 1', 

One can replace P '  by any packing of L. 

Property B2 comes from the following facts. 

W(f(X,)) _< ~g(X,) if X, is an A-bin in P' ,  
W(f(XJ) - ~g(X,) _~ ~t if X, is a non-A-bin in P' .  

One can make stronger statements for regular bins X,. 

W(f(X,)) _< ~g(X,) if X, is a regular A-bin in P' ,  
W(f(X,)) - ~g(XJ _< ~ if X, is a regular non-A-bin in P'. 

Observation 4. g(X,) _< 50 for any bin X, in P'. 

Observation 5. g(X,) >_ ~ if X, is a regular A-bin in P'.  

Observations 3 and 4 lead to Property B5, and Observation 5 is Property B6. Therefore, 
if L satisfies Assumptions 1', 2, and 3, and P '  is any packing of L, then one can define f 
and g such that Properties B l-B6 are true. 

It remains to show that Assumption 3 can be dropped. Let L = (xl _> x2 _> . . .  >- xn) be 
a list satisfying Assumptions 1' and 2, PF the FFD-packing of L, P* an optimal packing 
of L, and ~ffi {x, lx, is in a non-A-bin in PF). Suppose Xm is the smallest non-A-piece in 

We consider the list L '  ffi (xt, x2 . . . . .  x~) and let P '  be the packing of L ' ,  obtained from 
P* by deleting pieces xm+x, xm+2 . . . . .  xn. Then L '  satisfies Assumptions 1', 2, and 3. 
Applying the previous results, we can define functionsf ' ,  g '  satisfying B1-B6 for the list 
L'.  Now, we defme functionsfand g for the list L by 

{f '(x,) if x, E L', 
f ( x j  ffi otherwise, 

and 

0g'(x,) if x, E L', 
g(xJ ffi otherwise. 

Clearly, FFD(L) = FFD(L'), IALI ffi IAL'I, and the set ~ i s  the same for both L and L' .  
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Also notice that a regular bin in P* must also be regular in P', and a bin in P* is an A-bin 
if and only if it is an A-bin in P'. With these facts it is straightforward to verify that 
Properties B I-B6 are satisfied for L with this choice o f f  and g. 
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