
New Algorithms for Bin Packing

ANDREW CHI-CHIH YAO

Stanford Umverstty, Stanford, Cahforma

ABSTRACT In the bin-packing problem a list L of n numbers are to be packed into umt-capacity bins For any
algonthm S, let r(S) be the maximum raUo S(L)/L* for large L*, where S(L) denotes the number of bins used
by S and L* denotes the minimum number needed An on-line O(n log n)-tmae algonthra RFF with r(RFF) =

and an off-hne polynomml-tune algorithm RFFD with r(RFFD) _< ~t _ E, for some fixed • > 0, are given
These are stnctly better, respecUvely, than two prominent algorithms the FlrsbFit (FF), which is on-line with
r(FF) = ~, and the Flrst-Flt-Decreasmg (FFD) with r(FFD) = ~ Furthermore, it is shown that any on-hne

>_3 algorithm S must have r(S) _ 2 The quesuon, "How well can an o(n log n)-ttme algorithm performg" is also
discussed It is shown that m the generalized d-dimensional bin packmg, any o(n log n)-time algorithm S must
have r(S) >_ d

KEY WORDS AND PHRASES bm packing, First-Fn, First-Fit-Decreasing, heurisUc algorithm, NP-complete, on-
lme

CR CATEGORIES 5 25, 5 3 0

1. Introductton

Let L = (x~, x2 xn) be a given list o f real numbers in (0, 11, and BIN1, BIN2 an
infinite sequence o f bins each o f unit capacity. The bin-packing problem is to assign each
x, into a umque bin, with the sum o f numbers in each b m not exceeding one, such that the
total number o f used bins is a m i n i m u m (denoted by L*). As this p rob lem is NP-comple te
[9], efficient algori thms that always generate packings using L* bins are unl ikely to exist.
In the literature, heuristic algori thms with guaranteed bounds on per formance have been
studied extensively [6, 7, 8]. Fo r any (heuristic) b in-packing a lgor i thm S, let S(L) denote
the number o f bins used for the input list L, and Rs(k) the m a x i m u m ratio S(L)/L* for
a ~ list L with L* = k. The performance ratio of S, denoted by r(S), is def ined as
lim~_~R~(k). Informally, (r(S) - 1) x 100 percent is the percentage o f excess bins used
over the opt imal packing in the worst case, for large lists. T w o prominen t a lgor i thms are
the First-Fit Algorithm (FF) and the Ftrst-Ftt-Decreasmg Algorithm (F F D) (see Sect ion 2
for definitions). It is known [8] that r (FF) = ~ and r (F F D) = ~t.

A natural quest ion is, " H o w good can any polynomia l a lgor i thm be?" In this regard,
two specific questions were raised by Johnson [7]:

(1) Is there a polynomial on-l ine a lgor i thm S better than Firs t -Fi t (i.e., with r(S) < ~)?
(2) Is there any polynomial a lgori thm S better than Firs t -Fi t -Decreas ing (i.e., wi th

r(S) < ~t)?

We call an algori thm on-hne i f the numbers in list L are available one at a t ime and the
algori thm has to assign each number before the next one becomes avai lable [6, 7]. In this

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the pubhcation and its
date appear, and notice is given that copying lS by permission of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specific permission
This research was supported in part by the National Science Foundation under Grants MCS-72-03752 A03 and
MCS-77-05313
Author's address Computer Science Department, Stanford Umversity, Stanford, CA 94305
© 1980 ACM 0004-5411/80/0400-0207 $00 75

Journal of the Association for Computing Machinery Vol 27, No 2, Apnt 1980, pp 207-227

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322186.322187&domain=pdf&date_stamp=1980-04-01

208 ANDREW C H I - C H I H YAO

paper we resolve both questions in the affirmative. It is also shown that no on-line
algorithm can have a performance ratio less than {.

5 Section 4 explores Section 3 gives an O(n log n)-time on-line algorithm S with r(S) = ~.
the limitation to on-line algorithms, showing that no such algorithm S (polynomial-time

3 or not) can have r(S) < ~. In Section 5 a general approach for seeking improvements over
known heuristic algorithms is suggested and illustrated with an example. On the basis of
this idea, a heuristic polynomial-time algorithm better than FFD is constructed in Section
6. We discuss in Section 7 the question, "How well can an o(n log n)-time algorithm
perform?" It is shown that m a generalized version o f bin packing, namely, the d-
dimensional bin-packing problem of [3], any o(n log n)-time algorithm S must have
r(S) _> d.

2. Terminology

For standard definitions with regard to the bin-packing problem, the reader is referred to
[81. We will mentton below only a few terms for use in the present paper.

A hst Is a finite sequence of real numbers. Some numbers may have identical values but
are regarded as distinct items. A set of real numbers in this paper is often in fact a multiset,
m which some numbers may appear more than once (see [101).

If L1 = (xl, x2 xn) and L2 = (yl, y2 yz) are two lists, their concatenation L~L2
is the hst L = (xl, x2 xn, ya, y2 yt). Let X be a bin used in a packing; the content
of X, cont(X), is the sum of the numbers that are assigned to X. We shall say that a bin-
packing algorithm S has running time O(p(n)) if, when implemented on a random access
machine [1], S takes at most O(p(n)) steps to produce the packing for a list with n numbers.
We describe the two algorithms FF and FFD for easy reference:

FIRST-FIT (FF). Given a last L = (x~, x2 xn), the algorithm assigns xj sequentially,
f o r j = I, 2 n, to BIN, with the smallest i whose current content does not exceed
l - -x~

FIRST-FIT-DECREASING (FFD). Given a list L ffi (xb x2 xn), the algorithm first
sorts the xfs into decreasing order, and then performs First-Fit.

Both FF and FFD can be implemented to have a running time O(n log n); for details,
see [7].

3. A New On-line Algorithm

We will present an on-hne algorithm that processes a list o f n numbers in O(n log n) time,
and sho~, that its performance ratio is ~ = 1.666

Any element x~ in a hst L will be called an A-piece, Brpiece, B2-piece, or X-piece if xj
is in the interval (½, 1], (-~, ½l, (-~, ~1, or (0, ~], respectively.

ALGORITHM RFF (REFINED FIRST FIT). Before packing, we divide the set of all bins
into four infinite classes. The algorithm then proceeds as follows: Let m ~ (6, 7, 8, 9) be
a fixed integer. Suppose the firstj - 1 numbers in list L have been assigned; we process the
next number xj according to the following rules.

(a) We Rut xs by first-fit into a bm m

Class 1, if xj is an A-ptece,
Class 2, tf xj is a Brpiece,
Class 3, if xj is a B2-piece, but not the (mOth

B2-piece seen so far for any integer l _> 1,
Class 4, If xj is an x-piece.

(b) If x: is the (mOth Bz-piece seen so far for some integer t _> 1, we put xj into the first-
fitting bin containing an A-piece m class 1 if possible and put xj in a new bin of class 1
otherwise

New Algorithms for Bin Packing 209

ANALYSIS OF RFF. This algorithm can be implemented to run in O(n log n) time, as
it essentially performs a first-fit within each class of bins, which takes O(log n) time for
each x~ (see [7]).

We now analyze the performance ratio of RFF. In general, the resulting packing of a
list L has the following structure (see Figure 1). There are three types of bins in class 1. Let
Zlt be the set of class-1 bins containing a single A-piece, Z12 the set of dass-I bins
containing a single Bz-piece, and Z~z the set of class- 1 bins containing both an A-piece and
a B2-piece. In class 2 every nonempty bin contains exactly two Bt-pieces, except possibly
for the last one. Let Zz denote the set of all (nonempty) class-2 bins. Let Z8 be the set of
class-3 bins, each clearly containing two B2-pieces, except possibly for the last one. The set
of class-4 bins, denoted by Z4, is simply the FF-packing of the sublist of L consisting of the
X-pieces. We shall write I Z~ l, I Zt2 l, I Zt3l, I Z~l as zn, z12, z~3, z2 etc. The numbers
of A-pieces, B~-pieces, B~-pieces, and X-pieces are denoted by a, b~, b2, and x, respectively.

We first prove an upper bound on r(RFF).

/ • J • /

Zl l Z12 Z13

class 2 BB
y

z 2

class 3

• J y

z 3

FIG

class 4 DD
S

z 4
The structure of a packing usmg RFF The ordenng of bms and the relative posiUons of p,eces within

a bin are not necessardy represented fatthfully.

210

LEMMA 1. For any list L, RFF(L) _< ~L * + 5.

PROOF. Clearly

ANDREW CHI-CHIH YAO

RFF(L) ffi a + zn + z2 + z3 + z4. (1)

Every bin BINs in Z4, with the possible exception o f two bins, has cont(BIN,)

RFF(L) <_ ~L* + 5.

Case 2:z~2 > 0.

FACT 4. In this case, toni(BIN,) + cont(BIN~) > I for each BIN, ~ Zu, BINj ~ Z~2. In
partwular, cont(BIN,) > -~ for each BIN, ~ Zn.

PROOF. Otherwise, the A-piece in BIN, should have shared the same bin with some B2-
piece during the packing. []

Case 2. h z~ _> za2. The total sum of all A, B,-pieces is at least

z,2 + ~(zn - z,2) + ~z13 + ~(2zz - 1) + ~(2z3 - 1)
> ~a + ~z~ + ~z,~ + ~z2 + ~z~ - 1,

where we have used Fact 4 and the equation zn ffi a - z~3. From Fact 1 we obtain

4 . - ~ z 1 3 - + 1). (4) z 4 < 2 + ~ (L - 3 2 4 z ~za2

Combining (1) and (4) and noticing that z~3 -> 0 and z~ _> O, we obtain
1 1 RFF(L) _< ~L* + ~a + i~z12 + ~z~ + 4. (5)

Formula (3) then Implies

FACT 1.

-->3"

PROOF. The set of bins Z4 can be regarded as the first-fit packing of a list of pieces in
(0, ~]. Therefore every bin except the last one has at least three pieces. I f BINj is the first
bin with eont(BIN~) _< L then all the bins following it contain only pieces greater than ¼.
This means all bins following BINj except the last one have contents exceeding 3. []

Fact 1 has often been used in bin-packing arguments (see [8, proof of Theorem 2.3]). Its
proof is given here for convenience.

FACT 2. ZtZ + Zl3 = [bz/m], z2 = [bi/21, z3 <_ ½(1 - (l/m))b2 + 2.

PROOF. The first two equaUons are obvious from the algorithm. The last one follows
from z~ = [½(b2 - z12 - z13)]. []

FACT 3. a _< L*.

PROOF. No two A-pieces can be in the same bin in any packing. []

We shall find upper bounds on z4 and hence on RFF(L) via formula (l). There are
several cases to consider.

Case h z12 = O. The total contents of class-4 bins is at most L* - ~a -1 ggbl2 -- ~b2.1
Thus by Fact 1 we have

4 * - g b l ub2) . (2) z4 < 2 + ~(L 1 2 1 _ ~ a - -

C o m b i n i n g (1) and (2), one obtains

RFF(L) _< 4 . 1 ~L + ~a + (z 2 - ~b l) + (z 3 - ~b2) + 2. (3)

Making use of Fact 2, Fact 3, and the fact m _< 9, we have

z 2 - / ~ b l _ < 1,
z3 - ~ b~ _< 2,

a_< L*.

New Algorithms for Bin Packing 211

We now make use of Fact 2 to derive from (5)

RFF(L)<--~L*+~a+ + ~--~ re)b2 + 5. (6)

FACT 5. ' ga + (i~ + ~(l/m))b2 _< { L *.

PROOF. In an optimal packing of L, each bin with an A-piece can contain at most one
Bz-piece, and any other bin at most two B2-pieces. Thus b2 -< a + 2(L* - a) = 2L* - a.
Therefore

1 (~8 37 1 \ (~8 37 l ~ , (~ 1 37 1"~
~ a + +-S-din)b2< + ~-~m)2L + 18 9"0m) a"

As the second term on the right-hand side is nonnegatlve and a < L*, we have

l (~8 3 7 ~) (2 3 37 1"~ , 1 , ga+ +~6 b2_< V6+~g)L _<3L,

for m >_ ~. []

Formula (6) and Fact 5 lead to RFF(L) _< ~-L* + 5.

Case 2.2: zll < 212. The total sum of all A, B,-pieces is at least

Zll + ½(Zl2 -- Z11) + ~Z13 + ~(2Z2 -- 1) +](223 -- 1)
>] a + ½zl2 + ~z,3 + tz2 + ~z3 - 1.

By Fact 1,

It follows that

z4 _< 2 +](L* -] a - ½zx2 - ~z13 -]z2 -]za + 1).

RFF(L) = a + z12 + z2 + z3 + z4

_<]L* + ~a + ~z12 + ~z3 + 4.

Usmg Fact 2, we obtain

FACT 6.

PROOF

") R F F (L) < - 4 L * + I a + + 2 m b 2 + 5 .

~a + (t~ + ½(l/m))b2 _< ~L*.

Left-hand side _< ~a + + ~ (2L* - a)

(7)

The second term is never positive (as m _< 9); thus

left-hand side _< (~ + ~) L * _< ~L*,

as m_> 6. []

Formula (7) and Fact 6 lead to RFF(L) _< 2 L* + 5 for case 2.2. This completes the proof
of Lemma 1. []

Lemma 1 imphes that the performance ratio of RFF does not exceed 2. We shall show
that it is in fact exactly 2.

THEOREM 1. r(RFF) = 2.

212 ANDREW CHI-CHIH YAO

t 1

u 1

Pl
i
i

P2 i Pn

y

n

(a)

Y / / .

t 1

t3

t 2

u I

t 5 t2j+ [u 6 l e o 0 "n I 0 0 0

I "n-I u4
t4 t2l --'-!

u 3 u2j.1 Un.2 u 2
I I

i %

n-1
2

Ul; Un.1
e o ~

Ul (Un- 3

--t
u8 Un.5

I

n-1
~ + 1

6

b ' / p f / 1

i / p r / ~

i / p f / s

i / p f / s
f / ~ • • •
, / /

f / p
/ / /
i / /

i . . Pl P2 Pn u°]
/

y

n

(b)

FIG. 2 (a) An opUmal packing of L m the proof of Theorem 1; (b) the RFF packing of L

PROOF. W e need only exhibit lists L with arbitrary large L* such that RFF(L) =
~L* + O(1).

Let 8j = 4 -¢j+2) for j>_ 1, and n be an integer o f the form 6k + 1 for some k _> 1. Def ine
pj = ½ + 6~, uj = ¼ + 6~, tl = ¼ - 28j for 1 _< j _< n. Consider the hst L = L~L2, where

L1 = (ua, tz, t3, u3, t4, t5 u2j-1, t~, t~+l u,-2, tn-1, tn),

and

= (Uz, u, u,-1, p~, p2 p , , t~, u,).

Clearly L* = n (see Figure 2a). N o w , using the easily verified fact that (u2j-~ + t2~ + t2j+0
+ min{tk, u,} > 1 for every k > 2j + 1 and any i, the packing resulting from R F F is as
shown in Figure 2b. Thus RFF(L) = ~L* + O(1). This proves the theorem. []

4. A Lower Bound to r (S) f o r On-line Algori thms

In this section we show that one cannot expect to find on- l ine algorithms as good as, say,
FFD, even i f an arbitrary amount o f computat ion is allowed.

THEOREM 2. For any on-line bin-packing algorithm S, r (S) _> ~.

PROOF. Let 0 < e < 0.01 be a fixed number, and x = ~ - 2¢, y = ~ + ¢, z = ½ + E. For
any n = 12k (k a positive integer), define a list L ffi L~L2L3, where L~ consists o f n x's, L2
consists o f n y's, and L3 consists o f n z's.

Clearly

L f -- ~n, (L1L2)* = ½n, and (L1LzL3)* = n.

New A lgortthms fo r Bm Packing

x

x

x

x
m

~ 6

x

x

x

X

X

a 5

FIG

i i ¢ 1 a
i i ¢1.¢

r la
x ¢ 1 a

x X

X x

a 4 a 3 a 2

The packing of L~ by S

/ /
/ /

~4
~4
f4
/ /
/ /

~4

X

a I

213

i i J!IxXY Ill!
x

a 4 a 3

,¢ ~, ,¢

~ 2 al
FIG 4 The packing of LiL2 by S

Given any on-line algorithm S, let rl(n) = S(L1)/LI', r2(n) = S(LiL2)/(LiL2)*, and r3(n)
= S(L~LzLa)/(LiL2L3)*. We shall prove that

max{rl(n), r2(n), ra(n)} _> ~. (8)

This immediately implies that r(S) _> ~ and hence the theorem.
Consider the packing of L under algorithm S. We shall gather information about rv (n)

(1 _< j _< 3) by examining the resulting packing configurations at points when jn items have
been assigned.

Consider the packing of the first n items (i.e., L~). Let a, (l <_ i _< 6) be the number of
bins containing i pieces of x (Figure 3). Then

S (L ,) = Y. ,~,,
,__.,___6 (9)

n - ~ ~ t o i l .

Next we examine the configuration after 2n items are packed (i.e., LiL2 has been
assigned). A bm is called type (i, 1) if there are i x's and I y's in the bin. Let ill, f12, al, cd',
aT', a[, a~', a~", c6, aft', a~, cd' be the number of bins of type (0, 1), (0, 2), (1, 0), (1, 1),
(1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (4, 0), (4, 1), respectively (see Figure 4). Clearly,

al = a~ + ai' + al",

a2 = a~ + a'2' + a~",
a 3 = ' " (1 0)

a3

It is easy to see that the only other possible types are (6, 0) and (5, 0) and there are,
respectively, ct6 and a~ such bros. The analog of (9) is

S(L1L2) = (at + a~' + a~") + (a[+ a~' + a~") + (a~ + a~') + (a~ + a~')
+ a~ + a6 + fll + f12, (11)

n = (ai ' + 2 a 7) + (a~' + 2a~") + a~' + a~' + fl~ + 2flz,

where the second equation counts the number ofy's.

214 ANDREW CHI-CHIH YAO

A lower bound to S(LiL2La) can be obtained by observing that no z-piece can go into
a bin of type (1, 2), (2, 1), (2, 2), O, 1), (4, 0), (4, 1), (5, 0), (6, 0), or (0, 2), and that no two
z-pieces can occupy the same bin. Thus

S(LJ.aL3) >-- cd" + ed" + cd" + cd' + a~ + ~ ' + ~5 + a6 + f12 + n. (12)

We now defme a new set o f variables:

21 ~ 0~ t ,

22 ffi a f ' + a f ' ,
23 = a~ + a~ + a~, (13)
24 ffi a~' + ~ ' + a / ,

~6 = ~ + a5 + a6.

Making use of (10) and the nonnegativity of all quantities involved, we obtain from (9),
(11), and (12) the following constraints.

S(L1)-~ 21 =0" 22 "~" 23 + 24 "b 26,
n _< 2ix + 222 + 323 + 424 + 626,

S(L1L2) = 21 + 22 + 2s + 24 + 26"~fll @ f12,
n ffi 21 -~- 222 + 24 + fll + 2fl2,

and

(9')

(l l ')

(12') S(LiL2L3)_> 22 + 24 + 26 + f l2+n.

In terms of r,(n), the above systems can be rewritten as follows.

~n.rl(n) = 21+ 22 + 23 + 24 + 26,
½n.r2(n) = 2~ + 22 + 23 + ~ + 26 + #1+ 132,

n .r3(n)~ 22 + 2, + 26 + f12 +n, (14)
--½n _> --½21 -- 22 -- ~23 -- 224 -- 326,
- n = -&1--222 - ~ - f l l - 2 f 1 2 .

We are now ready to prove (8). I f (8) is not true, then we have

¼n > ~n.rl(n),
]n > ½n.r2(n), (15)
~n > n.r3 (n).

Now adding up all the equations in (14) and (15), we obtain 0 > ½21 + ½23, a contradiction.
This completes the proof of (8) and hence Theorem 2. []

5. The Technique ore-Improvement

Given several simple heuristic algorithms in an optimization problem, a practical method
for obtaining a good solution is to run each algorithm and then select the best solution
produced. For example, in the traveling salesman problem one may produce tours using
several heuristic algorithms (see, e.g., [11]) and select the shortest tour. It is hoped that the
quality of the solution obtained will be much better than using a single fLxed algorithm.
Implicitly, the success of this idea depends on the hypothesis that different algorithms
"favor" different regions in the input space. An interesting research area, so far not much
explored, is to analyze the performance (worst case or average case) o f such "compound
algorithms." One example can be found in Frederickson, Hecht, and Kim [2]. Trying to
obtain a better heuristic algorithm than FFD, one possibility is to try such compound
algorithms.

There are two difficulties in a direct approach, however. First, there are many algorithms
sharing the same worst-case input (e.g., the almost-any-fit algorithms in [6, 7]. This
eliminates some natural compound algorithms (running F F D and BFD will not improve
the worst-case bound). Second, the ratio ~ ffi 1.2 . . . is very close to 1, and the analysis has
to be rather precise to beat this bound. As the analysis for a relatively simple FFD is

New A lgorithms for Bin Packing 215

already complicated, it is likely to be hard to analyze more sophisticated algorithms. We
will circumvent these difficulties by focusing on a specific goal-- to fred an algorithm with
bound ~t _ ~ for any positive E.

The idea is to locate the part of input space for which FFD may realize its worst-case
performance. If the characterization is simple enough, we may be able to design a heuristic
algorithm S that has a better performance in this bad region. The compound algorithm of
FFD and S then has a bound better than ~t _ ~. It turns out that for many bin-packing
algorithms, one can give simple descriptions of small regions covering all the "bad" inputs
as a result of the weight-function-type argument used. Thus the bin-packing problem
provides an ideal opportunity to try out this idea of "e-improvement."

In this section we illustrate the idea by proving a simpler result about FFD. Consider
the restricted problem of bm packing in which each number in list L is in the range
(0, ½1. It is known [8] that FFD has a performance ratio ~ for this restricted problem. We
shall show that there is a better heuristic algorithm.

We first state a useful lemma.

LEMMA 2. Let ~, h', ~t, v be constants such that 0 < ~, < ~,' _< 1, # _> (1 - ~)-~, and v >
1. Suppose there is a bin-packing algorithm S with running time O(p(n)) such that, for any
list L consisting of numbers in (~, ~'], S(L) _< #L * + v. I f p(n) is a nondecreasingfunction
of n, then there is an algorithm S' with running ttme O(p(n) + n log n) such that S ' (L) _<
I~L * + v for any list L consisting of numbers in (0, ~'].

PROOF. Given an arbitrary list L, the algorithm S ' works as follows. In O(n) time, one
divides the items into two lists L1 and L2, consisting of numbers in (2~, ~,'] and (0, ~,],
respectively. The algorithm S is applied to L~ to produce a packing using, say, N1 bins.
One finishes the packing by performing a first-fit algorithm on list L2. The algorithm
clearly works in time O(p(n) + n log n). We now show that S'(L) _< #L* + v. By
assumpUon, N1 --< ~L~' + v. If S'(L) _~ N~, then the result follows immediately, since
L~ _< L*. If S'(L) > Ni, then in the final packing all except possibly the last bin must
have content greater than 1 - ~. This implies that L* _~ (1 - X)(S'(L) - 1), and hence
S'(L) _< (1/(1 - X)) L* + 1 _< ~L* + v. []

The above line of argument appears often in bin-packing analysis (e.g., [8, Lemma
3.3]).

The rest of this section is devoted to proving the following result, based on the general
idea outhned earlier.

THEOREM 3. Let e = 10 -~. There is an O(n log n)-time algorithm S for bin packing such
that, t f a list L has all numbers m (0, ½], then S(L) _< (~ - ~)L * + 5.

PROOF. Let ~ = ~, 2,' = ½, # = ~ - E, and v = 5. By Lemma 2, we need only prove the
theorem assuming that the lists L have all numbers in (~, ½]. For the rest of this secaon we
restrict ourselves to such lists, although some statements also apply to general lists. The
first step is to locate the "bad" input lists.

A REVIEW OF THE PROOF FOR FFD(L) _< ~L* + 5. The proof [6, 8] proceeds by
defining a function W(S) ~_ 0 for any finite set S of numbers in (0, ½], such that the
following properties are satisfied.

W is subadditive--W(LI, S,) _< ~, W(S,).

If all elements m L are in (l /N , ½], N _> 4, then W(L) _> FFD(L) -

Property A 1.

Property A2.
N + 2 .

Property A3. If S = {xl, x2 xm} wRh x, E (~, ½] and ~, x, ~ 1, then W(S) _< ~.

Let X, be the ith bm m an optimal packing of L. ProperUes A I - A 3 imply the desired
result,

FFD(L) - 5 _< W(L) _< ~ W(X 0 _< ~ L *. (16)

216 ANDREW CHI-CHIH YAO

A STRENGTHENED ANALYSIS. W e have seen f rom (16) that

FFD(L) _< ~ L * + 5. (17)

Not ice that we would obtain a bound better than (17), except in the case when almost all
X, have W(X,) = ~. Actually, W(X,) = ~ only under very special conditions.

Definition. A n u m b e r xj in L is called an A-, B-, C-, D-, E-, or F-piece i f xj is in
(½, 1], (½, ½], (¼, ~], (~, ¼], (~, ~], or (~, ~]. W e use the nota t ion S = {CCDE} to express the
situation S = {xb x~, xs, x4} with x~, x2, x3, x4 being a C-, C-, D-, and E-piece, respectively.
In a packing, a bin containing a set {CCDE} will be cal led a CCDE-bin. The nota t ion
generalizes obviously to other configurations.

Property A Y [6, 8]. I f S = (xi, x2 xm} wi th x, ~ (~, ½] and ~, x, _< 1, then

W(S)_<~ i f S = {BBEF) or (CDEEE},
W(S) _< ~ otherwise.

A strengthened form o f (17) can now be der ived as follows. Let P * be an opt imal
packing of L, and X, the ith bin in P* (1 _< i_< L*) . Assume that there are a bins in P * o f
the form {BBEF) or {CDEEE}.

LEMMA 3.

PROOF.

Therefore,

I f c~ _< (1 - 60¢)L*, then FFD(L) _< (~ - ¢)L * + 5.

F r o m Properties A I , A2, and AY, we have

FFD(L) - 5 _< W(L) _< X W(X~) _< ~ a + ~(L * - a).
z

FFD(L) _< ~ L* + ~a + 5
--< (t$ - O L * + 5. []

W e shall call a list L severe i f in every opt imal packing P* of L there are more than
(1 - 606)L* bins o f the form {BBEF} or {CDEEE). L e m m a 3 states that i f a list L is not
severe, then the packing produced by F F D has a bound at most ~ - ¢, strictly less than ~.
This concludes the step of identifying " b a d " lists. W e can finish the p roo f o f T h e o r e m 3
i f we can design a heuristic a lgor i thm S such that S(L) _< (~ - E)L * + 5 for all severe lists
L. We now give an Algor i thm M with running t ime O(n log n) and prove that S -- M has
the desired proper ty

Algorithm M.
Step 1. Sort the input hst L, let (bl _< b~ _< ...), (cl _< c2 _< -..), (d~ _< d2 _< .. .), (el --< e2 _< ...), and

(j~ -<J~ _< . . .) be the sublists of B-pieces, C-pieces, D-pieces, E-pieces, and F-pieces, respectively.
Step 2 Forj = 1, 2, . , put {cj, d~, e3j-2, eaj-~, e3j) into BINj, as long as such a set can fit into one bm and

enough pieces are avadable. [We shall abbreviate the above constraints below as "as long as it is
feasible "] Assume that m such bins are formed.

Step 3 For j = l, 2, . , put {c=+~, din+j, e~m+2j-~, e3m+2j} into BIN,~+~, as long as there are enough pieces
available. Assume that k such bins are formed [Note that a set {CDEE} has sum --<t + ¼ + ~ + ~ < I and
thus can always fit into a bin]

Step 4. Suppose there are h Fop,eces Forj = 1, 2, .. , put {b2~-~, b2j, fj,.A-~} into BINm+k+j, as long as it is
feasible Assume that q such bins are formed.

Step 5 Forj = I, 2, , put {b~q+2j-h b2q+21, e3m+2~+~} into BINm+k+q+j, as long as it is feasible Assume that 1
such bins are formed.

Step 6 Pack the remaining E-pieces and F-pieces, respectively, by themselves into new bins using first-fit Let
p be the number of bins formed this way

Step 7. Pack all the remaining pieces by themselves into new bins using first-fit. Suppose t new bins are used

End of Algorithm M.

Figure 5 shows a packing produced by Algor i thm M.

E E "~"

E T - - B

C I C B

k

New Algorithms for Bin Packing

2Z

FIG 5

E

B E

E'
B '7

k
q l

"7
"7
"7
"7"
"7
J

P

The packing produced by Algorithm M.

m

I

217

ANALYSIS OF ALGORITHM M. It is easy to implement M so that it runs in O(n log n)
time. To complete the proof of Theorem 3, it remains to prove the following result.

LEMMA 4. I l L is severe, then M(L) _< (~ - E)L * + 5.

PROOF. Let P* be an optimal packing of L. Assume that there are in P* fl bins of the
type {BBEF} and "r bins of the type {CDEEE}. As L is severe, we have

fl + 3' > (1 - 60c)L*. (18)

We wish to fred bounds on the various terms in

M(L) = m + k + q + l + p + t. (19)

In step 2, for 1 _<j _< ['y/5J,

cj + dj + eaj-2 + %-1 + eaj
_< the (Sj - 4)th smallest content in all CDEEE-bins in P*.

Thus at least [),/SJ bins are formed in this step; i.e.,

m _> ['g/5J. (20)

Bounds on m + k can be obtained by considering the total available CD-pairs. This gives

3 ' + 6 0 ¢ L * × 3 - - > m + k - - > Y . (21)

In the last formula the term 60eL* × 3 is an upper bound on the numbr of C-pieces not
contained in CDEEE-bins. In step 4, for 1 _< j <_ LS/3J,

b2j-1 + b2j + fj + fh-.l
_< the (3 / - 2)nd smallest content in all BBEF-bins in P*.

Therefore,

q -> [B/3J. (22)

By considering the number of all F-pieces, we find the following upper bound on q:

(fl/2) + 60~L* x 3 _> q. (23)

To derive bounds on l, we first observe that each B-piece in a BBEF-bin (in P*) is less
than 1 - ~r - ~ - ~ = h. For any two such B-pieces, one can add any E-piece to form a
BBE-bin. Thus a lower bound to I is the minimum of (#B) /2 and # E , where # B and # E
are the numbers of such B-pieces and any E-pieces, respectively, at the start o f step 5. As
B _> 2fl - 2q, and # E >_ (fl + 3-t) - 3(m + k) _>/3 - 540~L* using (21), we obtain

1 _>/3 - q - 540~L*. (24)

The total number of B-pieces available gives an upper bound,

fl - q + 60EL* _> I. (25)

We now estimate p and t by calculating the number of various pieces not contained
in the first m + k + q + l bins. The total number of B-pieces in L is at most 2fl +

218 ANDREW CHI-CHIH YAO

(60eL* X 2); by (24), at least 2(fl - 540¢L*) o f them are in the first m + k + q + ! bins.
Thus, denoting by N [Y] the number o f Y-pieces in the lastp + t bins, we have

Similarly, one can show that

Also one has, using (22),

The number N[E] satisfies

N[B] _< 1200EL*. (26)

N[C] _< 180~L*, (27)

N[D] .~ 24~L*. (28)

N[F] _~]fl + 360¢L* + 2. (29)

N[E] _< ~ + 3y + 30(kL*) - (3m + 2k + l). (30)

Now, using (20), (21), (23), and (24), one has

3m + 2k + l ffi m + 2(m + k) + l

-~-~fll + ~ y - 720~L* - 1. (31)

From (30) and (31), we have

N[E] ~. ½fl + ~y + 1020¢L* + 1. (32)

We can now estimate p and t. Using (29) and (32)

p _< iN[E] + iN[F] + 2 _< ~fl + ~y + 264EL* + 3. (33)

From (26), (27), and (28),

t <_ N[B] + N[C] + N[D] <_ 1620¢L*. (34)

Making use of (21), (25), (33), and (34) in (19), we obtain

M(L) _< ,~fl + ~y + 2124EL* + 3.

As fl + y _< L*, we have

M(L) _< (~ + 2124~)L* + 3.

Observing that ~ + 2124E < ~ - ~, we have finally,

M(L) _< (~ - e)L * + 5.

This proves Lemma 4. []

The proof of Theorem 3 is now complete. []

6. A Polynomial-Time Algorithm Better Than FFD

This section is devoted to proving the following result.

TI-IEOREM 4. Let E = 10 -7. There is a polynomial-time heuristzc algortthm RFFD for bin
packing such that, for any list L,

RFFD(L) _< (~t - E)L* + 8.

PROOf. We use the notation ~ = 10 -7, ~ -- 10 -4, ~ -- (226) -1, and X ~- 1 - (~t _ E) -1.
Clearly, E <] ~ and ~ < 2~ < •.

Although more complicated, the proof of Theorem 4 follows the same pattern as that of

New Algorithms for Bin Packing 219

Theorem 3. By Lemma 2, it suffices to show the theorem considering only lists L with all
elements in (X, 1]. We will first prove that for all such lists, except those of
a special type, FFD produces a packing within the desired ~t _ E bound. We then con-
struct a heuristic algorithm EPSI that performs well (below ~t _ E) for the exceptional
"critical" lists. The compound algorithm S of FFD and EPSI then clearly satisfies S(L)
< (~t _ ¢)L* + 8 for any list with elements in (~, 1], completing the argument.

A REVIEW OF THE ~t BOUND FOR FFD. We review below the proof of [6, 8] for FFD(L)
_< ~tL* + 4, if L obeys the following Assumptions 1 and 2. As Assumption I can be
justified by Lemma 2, and it can be shown directly [6, p. 277, Reduction 3] that any list L
violating Assumption 2 has FFD(L) _< ~L* + 1, this would prove FFD(L) _< ~tL* + 4 for
any list L.

Assumption 1. Let L be a list of numbers in (4, 1].

Let P* be any optimal packing and PF the packing produced by FFD. We use X, to
denote the ith bm in P*, 1 _< i _< L*. In any packing, a bin containing an A-piece is called
an A-bin, otherwise it is a non-A-bin. The number of A-bins in any packing of L is equal
to the number of A-pieces in L, which we denote as [AL[. Let ~ = {x[x ~ L, x is m a non-
A-bin in PF}.

Assumption 2. ~conta ins at least a C-piece or a D-piece.

Let the function W be defined as in Section 5. The analysis proceeds to define two
func t ionsfand g, based on PF and P*,

f : L ~ 2 ~ a n d g : L ~ rational numbers.

For any subset T_C L, we wri tef(T) for t.Jx,erf(x,) and g(T) for ~x, e r g(x~). The definitions
o f f and g are complicated [6] and were shown to possess the following properties.

Property BI. ~:= UxEL f(X), IALI --> ~ L g(x).

Property B2. W(f(X,)) + g(X,) _< ~(y(X,) + g(X,)), 1 _< i _< L*, where

(10 if X, i s a n A -bin,
y(X,) ffi otherwise.

Also, the following are true from properties of W (see Properties A 1 and A2).

Property B3. W(UxeL f(x)) --< ~ L W(f(x)).

Property B4. W(~) _> FFD(L) - [ALl -- 4.

Summing over X, in the formula of Property B2, and using Properties BI, B3, and B4,
one obtains FFD(L) _< ~tL* + 4 for any list under AssumpUons 1 and 2.

The above is an outline of proof for the bound ~. For our purpose, a strengthened
analysis for FFD is needed.

A STRENGTHENED FFD ANALYSIS. We shall work under a weaker form of Assump-
tion 1.

Assumption 1'. Let L be a list of numbers in (X, 1].

Let PF, P*, X,, ~, and Whave the same meaning as before. We shall say a bin X~ in P*
is regular if X~ is not of one of the following configurations: an A-bin with three pieces,
BBC, BCC, CCCD, or CCDD. Otherwise X, is irregular.

For any list L satisfying Assumption 1' and Assumption 2, one can d e f m e f and g such
that the following properties are true, in addition to Properties B I-B4.

Property B5. W(f(X,)) + g(X,) ~ (~ - 8)(y(X~) + g(X,)) if X~ is regular.

Property B6. I f X, is a regular A-bin, then g(X,) _> ~.

220 ANDREW CHI-CHIH YAO

The proofs of Properties B I-B6 under Assumptions 1' and 2 follow closely the original
analysis [6]. A description of the necessary modifications is given in the appendix.

We can now give a characterization of lists L for which FFD may have a bad
performance.

THEOREM 5. Let L be a list satisfying Assumption 1', and P* an optimal packing o f L.
I f there are more than ~L * regular bins in P*, then FFD(L) _< (~t - ~)L * + 4.

PROOf. I f Assumption 2 is not true for L, it can be shown [6, p. 277, Reduction 3] that
FFD(L) _< ~L* + 1, and the theorem is true. We cart therefore suppose that Assumption
2 holds.

Take the formulas in Properties B2 and B5 and sum over all X,. We have

Y. W(f (X,)) + g(L) <_ ~ ~ (y(X,) + g(X,)) - ~ Y. (y(X,) + g(X,)). (35)
~ x , ~ x , regdarX,

Using Properties B 1, B3, and B4, we see that the left-hand side of (35) is at least

left-hand side _> FFD(L) - IALI -- 4 + g(L). (36)

Now, to estimate the right-hand side of (35), we note that

(y(X,) + g(X,)) = L* - IALI + g(L). (37)
aux,

Also, because of Property B6 and the fact that there are at least 7/L* regular bins X,, we
have

(y(XJ + g(X,)) _> (number of regular non-A-bins)
~ x , + ~(number of regular A-bins)

_> ~(number of regular X,) (38)

_> ~ L * .

From (37) and (38), the right-hand side of (35) is at most

right-hand side _< ~(L* - [ALl + g(L)) - 6-~t~L*. (39)

Formulas (35), (36), and (39) lead to

FFD(L) _< (~t _ ~6~)L* - ~([AL [-- g(L)) + 4.

Noting that e < ~&/and that [ALl -- g(L) _> 0 by Property Bl, the theorem follows. []

THE EPSI ALGORITHMS. For the rest of Section 6, all lists are assumed to satisfy
Assumption l'. We shall describe a family o f algorithins EPSI[a], a2, an, a4, as, ill, f12, T1,
y2] with nonnegative integer parameters ai, ~2 ~,2. Given a list L with n items, we
perform EPSI[~x], ~2 3'2] on L for each possible 0 _< a~, a2 72 <- n and pick
the best packing. We call this procedure the EPSI algorithm. It will be seen that each
EPSI[~i, c~2 T2] works in O(n log n) time; thus EPSI works in time O(n]o log n).

We call a list L of type (cq, a2 y2) if there is an optimal packing of L with a],
~x2 ~,2 bins of type ACD, ADD, ADE, AEE, ACE, BBC, BCC, CCCD, CCDD, respec-
tively. Note that a list can be o f several types. A list L is critical o f type (cq, c~2 y2)
if it is of type (cq, a2 y2) and a] + ct2 + . - . + T2 -> (1 - 7/)L*. The aim of
EPSI[a], ~2 T2] is to produce a packing using less than ~ - e times the minimum bins
needed, for any critical list of type (ab a2 V2). This ensures that EPSI has a bound
better than ~ - E for any critical list. Together with Theorem 5, which ensures an
~t _ ¢ bound for noncritical lists, it completes the proof of Theorem 4 as stated at the
beginning of this section.

Given a list L and parameters a], a2 T2, we shall now describe the action of
EPSI[ab a2 72]. I f any of the described steps cannot be accomplished, it is understood
that the packing of list L may then proceed arbitrarily.

New Algorithms f o r Bin Packing 221

Fi rs t , L is s o r t e d i n a s c e n d i n g o rde r . T h e n we p a c k v a r i o u s p ieces i n t o f o u r c lasses o f
b i n s a c c o r d i n g to t h e f o l l o w i n g ru les .

Le t a l _< a~ _< a~ _< . . . , b~ _< b2 -< b~ _< • • . , ci _< c2 -< c3 -< • • . , . • • b e t h e l is ts o f A-p ieces ,
B-p ieces , C-p ieces etc.

Step I

Step 2

Step 3

Step 4

Class-I bins First put {b2~,-l, b2j} into BINj, 1 _<j _< fl~ + Lfl2/2J Then, for j = 1, 2 [fl~/2J, put the
largest available fitting C-piece into BINj
Class-2 bins' Let cl _< c~ _< . . . be the remaining C-pieces Put {c;j-2, c;~-l, c~} into BINs, I _<j ..~ T~ For
j = !, 2, , [y~/3J, put the largest fitting D-piece into BINs
Class-3 bros.
(a) Let dl _< d~ <_ . - . be the remaining D-pteces Define m = [a~/2J + [a#2]. For 1 _< j _< m, put

{d~-l, d~} into BINs Then, for j = 1, 2,. , m, put the largest fitting a, into BINs.
(b) Define m' = a~ + a2 + a~ + oa + a~ - m Let a~ _< a~ ~ . . . ~ a~ _< . - . be the list of A-pieces

remaining. Put a total of [a~/2] + a~ C-pieces, [a2/2] + a~ D-pieces, and a4 E-pieces into BINm+~ to
BINm+m', one piece m each bin Now put a[into BINm+, for 1 _< t _< m'.

Class-4 bins: For each Y ~ {A, B, C, D, E}, pack all the Y-pteces first-fit by themselves.

W e n e e d s o m e p r e l i m i n a r y re su l t s b e f o r e a n a l y z i n g E P S I .

Definition. L e t Y = (y l , y2 ym) a n d Z = (z~, z2 z .) b e t w o l is ts o f r ea l n u m b e r s .
T h e Cartesian product o f Y a n d Z is Y × Z ffi {(y,, zj) I 1 _< t _< m, 1 _< j _< p} . A partial
match b e t w e e n Y a n d Z is a s u b s e t 4 C Y × Z s u c h t h a t (i) y, + zj _< 1 fo r a l l (y, , zj) E
4 , a n d (n) a n y t w o d i s t i nc t (y, , zj) a n d (y,., zs) i n 4 h a v e i # i ' a n d j # j ' . Le t ~ Y , Z)
d e n o t e t h e m a x i m u m p o s s i b l e s ize o f 1 4 }. A p a r t i a l m a t c h 4 is a max imum partial match
i f l 4 1 = ~p(Y, Z) . F o r a n y p a r t i a l m a t c h 4 b e t w e e n Y a n d Z , t he range Z . is t h e m u l t i s e t

{z , l (y , , zj) E 4 for s o m e y , ~ Y}. (T h u s I Z , I = 141.) Let 2 . = Z - Z . .

T h e f o l l o w i n g p r o c e d u r e c l ea r ly g e n e r a t e s a p a r t i a l m a t c h .

Algorithm PM(Y, Z)

Sort Ymtoy~ <_y2_< - . . --<y~,, sort Z into z~ <_ z2--< . . . --< zp, keep the elements o f Z m an array T
(Tit] *- z,, I _< t _<p),

~ ~--~k, k ~--p,
for i ffi ! until m do

begin Search T[k], T[k - 1], to find the largest j _< k satisfying y, + z~ _< 1; ff j does not exist, halt;
~ el, u {(y,, z,)),

k * - j - 1,
end

END of AIgortthm PM

LEMMA 5. Algorithm P M (Y , Z) works in time O(n log n), where n = I YI + IzI.
Furthermore, the partial match 4 generated is a max imum parttal match between Y and Z.

PROOF. T h e O(n log n) - t l m e b o u n d is o b v i o u s . T o p r o v e t h e o t h e r a s se r t i on , s u p p o s e
P M (Y , Z) sor ts Y a n d Z i n t o y l --< y2 <- • • • -< ym a n d zl --< z2 --< . . . --< Zp a n d p r o d u c e s
4 = { (y l , z~,), (y2 , z ~) (y s , z ,8) } . C l e a r l y il > / 2 > . . . > ts.

N o w a s s u m e t h a t t h e r e exis ts a p a r t i a l m a t c h 4 ' = {(yj , , zki), (YJ2, zk2) (yj , , zk,))
w i t h t > s. W e wi l l s h o w t h a t it l e ads to a c o n t r a d i c t i o n . W i t h n o loss o f g e n e r a l i t y , a s s u m e

t h a t f i < J2 < • • • < Jr. T h i s i m p h e s t h a t y i -< YJi, y2 -< YJ2, - • • , etc., a n d t h e r e f o r e 4 " =
{(y t , zk,), (y2, z ~) (yt , Zk,)} is a l so a p a r t i a l m a t c h . A m o m e n t ' s t h o u g h t r e v e a l s t h a t
4 " = {(y l , Zk~), (y2, Zk~) (yt, Zk;)} m u s t a l so b e a p a r U a l m a t c h , w h e r e k l > k~ >
• . . > k~ is t h e s o r t e d s e q u e n c e o f (kl , k2 kt). B a s e d o n t h e d e s c r i p t i o n o f P M , a
s i m p l e i n d u c t i o n a r g u m e n t g ives il _> k~, i2 -> k~ is -> k~. B u t th i s i m p l i e s t h a t P M
s h o u l d h a v e f o u n d a z,.+, w i t h z,,+, + y,+l -< 1 (zk:+, is a c a n d i d a t e) . T h i s is a c o n t r a d i c -
t ion . []

Definiuon. Let X a n d Y b e t w o m u l t i s e t s o f r ea l n u m b e r s . W e say t h a t X is dominated
b y Y i f t h e a h s m a l l e s t e l e m e n t in X is n o g r e a t e r t h a n t he i t h s m a l l e s t e l e m e n t in Y, fo r

222 ANDREW CHI-CHIH YAO

all 1 ~_ i _< I X [_< I Y I. A list X' is dominated by a list Y' i f the corresponding multisets X
and Y satisfy this relation.

LEMMA 6. Let X, Y, and Z be finite lists with X dominated by Y. Then
(a) ~ X , Z) _> min{[X[, ~ Y , Z)};
(b) let • be a partiai match ~generated by PM(X, Z) , and ~ ' any partial match between Y

and Z with [~ ' [ffi [~ [. Then Z® is dominated by Zo,.

PROOF. Let the sorted lists o f X, Y, Z be xl _< x2 --< . . . _< xm, yl _< y2 -< • • • -< y, ,
Zl _< zz --< . . . --< Zp, respectively.

(a) Let ((yb z,l), (y2, z,2) (ys, z,,)} be the maximum partial match generated by
PM(Y, Z) (Lemma 5). Let l ffi min{IXI, s}. Then {(Xl, z,1), (x2, z, 2) (xt, z,z) } is a
partial match between X and Z, as xj _< y~ by assumption. This proves that ~X , Z) _>
min{[X], ~(Y, Z)}.

(b) Let • ffi {(xl, z,l), (x2, z,2) (xt, z,~)} with il > /2 > . - . > it, and ~ ' =
{(yj~, zk~), (Y~2, z~2) (y~,Zkt)} withj~ < j2 < " ' " <ft . As in the proof of Lemma 5, it
can be shown that ~" ffi {(Xl, zk~), (x2, zk~) (xl, zk~)} is a partial match between X and
Z when kl > k[> . . . > k~ is the sorted sequence o f (k~, k2 k~). A simple induction
argument then shows that il >- kl,/2 -> k ~ , . . . , i~ _> k~. This implies that for each I _< q
<-- p, [{it[it > q} I >-- [{k;I k~ > q} l" Hence, we have

FACT 7. For each 1 _< q _< p, I {itlit -< q} I -< I {k[lk[-< q} I.

Now the multisets Z@ and Z,, are obtained from Z by deleting (z, z, z, t_ z,~)
and (zk~, zk~_l zk,~), respectively. Write Z . = {z~, z zu, } and g®, =
{zoo, zo2 zo¢}, where ul < u2 < - - . < u~ and v~ < Ve < .- • < v~. Then for each 1 _< s
_< c, us = s + I {it l it _< u~} I and (the number of vb _< u~) ffi u, - [{k~l k~ _< u,} I. Using Fact
7, we have, for each 1 _< s _< c, (the number o f Vb --< U,) --< U, -- I {h [it -< u~} I = s and thus
v, _> u,. We have shown that z~, _< zo. for each 1 _< s _< c, completing the proof that Z® is
dominated by Z.,. []

We now analyze the algorithm EPSI.

LEMMA 7. For a list L of type (a~, a2 y2), every step of EPSl[a~, a2 y2] can be
carried out.

PROOF. Let P* be an optimal packing of L with cz~, a2, a3, aa, a~, ~ , t82, T~, T~ bins of
types ACD, ADD, ADE, AEE, ACE, BBC, BCC, CCCD, CCDD, respecttvely.

(i) Step I can be done. As there are enough (2~81 + ~82) B-pieces in L, we need only
show that the procedure can put tfll/2J C-pieces into dass-I bins. We define the following
multisets: X = {b~,-~ + b2~l I _<j _< L81/2J}, Y1 ffi {b' + b" l {b ' , b", c} is a BBC-bin
in P*}, Y = {YlY is the (2j - l)st smallest of Yx for some 1 _< j _< LS~/2J}, and Z =
{all C-pieces in L}. As b~-I + b2j is no greater than the (2j - l)st element in Y1, it follows
that Xis dominated by Y. Also ~ Y , Z) ffi 1fl~/2J. It follows from Lemma 6(a) that ~X , Z)
= LBd2] ffi I XI. As step 1 is essentially the execution of PM(X, Z) , that it can be
accomplished is guaranteed by Lemma 5. Finally we notice an important property
following from Lemma 6(b).

Let ~ ' be the partial match between Y and Z, defined by {(b' + b", c) [{b', b", c} has
the (2j - l)st smallest b ' + b" among BBC-bins in P* for some 1 _<j_< [/h/2J}. According
to Lemma 6(b), Z®, the set o f remaining C-pieces cl --< c~ _< , . . , is dominated by Z.,. It
follows that the set o f tbe first 3-¢~ pieces in c~ <_ c[<_ . . . is dominated by the set o f 33q C-
pieces in the CCCD-bins in P*.

(ii) Step 2 can be carried out. By the preceding remark, we have for 1 _< j _~
[-y~/3J, c~-2 + c~-~ + c~2 is no greater than the (3 j - 2)nd smallest element of the multiset
{c + c ' + c" I {c, c' , c", d} is a CCCD-bin in P*). An argument similar to that in (i) shows
that step 2 can be accomplished as specified, and that the first a~ + 2a~ + a, in the

New Algorithms fo r Bin Packing 223

remaining D-pieces d~ <_ d[_< . . . are dominated by the set of D-pieces in the A'CD, ADD,
and ADE-bins in P*.

(iii) Step 3 can be carried out.
Step 3(a): The preceding statement implies that for 1 _< j _< m, d~-i + d~ _<

the (2j - l)st smallest in the multiset {c + d l {c, d, a} is an ACD-bin in P*} U
{d + d ' l {a, d, d'} is an ADD-bin in P*}. As in (i) and (ii), this fact together with Lemmas
5 and 6 can be used to prove that step 3(a) can be done.

Step 3(b): As each A-piece in an ACD-, ADD-, ADE-, AEE-, or ACE-bin is less than
1 - ~ - ~ =], there are at least al + or2 + ol3 + or4 + or5 A-pieces in L that are less than].
At most m of these A-pieces are packed in step 3(a). Therefore, at --< a~ '~ . . . _< ag, _< ~.
Since each a[can fit with any C-piece (or D-piece or E-piece) m a bin, step 3(b) can be
done provided the specified number of C-, D-, E-pieces exist. This latter fact can be easily
verified.

(iv) Step 4 can always be done. This proves Lemma 7. []

LEMMA 8. Let L be a critical list satisfying Assumption 1' and o f type (~ , a2 y2) and
NL the number o f bins used by EPSI[al , a2 y2] on L. Then

NL _< (~ + 5n)L * + 8.

PROOf. To begin with, we note that

NL = al + a2 + aa + a4 + a5 + fl l + [f12 /2J + "tl + (number o f class-4 bins). (40)

We now bound the number of class-4 bins. The total number of C-pieces in L is at most
O~1 + OL5 + fl l + 2fl2 + 3T1 + 2"y2 + 3rlL*. AS there are [al /2] + a5 + 1fll/2] + 3y1 C-pieces
in class- 1-3 bins, the number of C-pieces packed in class-4 bins is at most [al /2j + [fl~/2]
+ 2fl2 + 2y2 + 3rlL*. A similar counting gives the following upper bounds on the numbers
of A-pieces, B-pieces in class-4 bins.

#A _< ~L*,
B _< 2 ~ L * + 1,

C _< 3~/L* + ta, /2J + r#d21 + 2flu + 2y2, (41)
D _< 4~L* + 1 + ra /21 + I't-vd + 2y2,
E _< 5~L* + az + o~ + az.

Clearly

the number of class-4 bins _< #A + ½(#B) +] (# C) + ¼(#D) +] (#E) + 5. (42)

From (40), (41), and (42), we obtain

NL ~- ~al + ~a2 + ~(Ota + a4 + Or5) + ~(fll + f12 + T1 + T2) + 5nL* + 8. (43)

AS L * __> a~ + a2 + " '" + y2, we obtain from (43),

NL --< ~L * + 5~iL * + 8. El

LEMMA 9. The algorithm EPSI[ab a2 y2] can be implemented to run in time
O(n log n) f o r list L with n numbers and parameters al, e~2, . . . , y2 ~- n.

PROOF. Steps 1, 2, and 3(a) are executions of Algorithm PM, which runs in time
O(n log n). The other steps involve sorting and first-fit, and all can be done m

O(n log n) time. []

THEOREM 6. The algorithm E P S I runs in polynomial time. For any critical list L
sattsfying Assumption 1', EPSI(L) _< (~t _ ~)L * + 8.

PROOV. From Lemma 9 and the definition of EPSI, the algorithm runs in O(n ~o log n)
t~me. The rest of the theorem follows from the definition of EPSI, Lemma 8, and the fact

+ 5~ < ~t _ E for rl = (226) -1 and E = 10 -7. []

224 ANDREW CHI-CHIH YAO

Theorem 5 and Theorem 6 imply Theorem 4; hence the existence of a heuristic better
than FFD. []

7. How Well Can an o(n log n)-Time Algorithm Perform?

We have shown that ~t is not the limit on the performance ratio of polynomial-time bin-
packing algorithms. A most interesting open question is whether there exists such a limit
to r(S). Garey and Johnson [4] showed that unless P ffi NP, no polynomial heuristic
algorithm for graph coloring can have performance ratio less than 2. A similar result for
bin packing would be especially interesting, since the known achievable bound on the
performance ratio is already close to 1. A more modest question along this line was raised
in [8], namely, how well can an O(n)-time algorithm perform? A natural computation
model is the decision-tree model, counting only branching operations [7, 10]. It would be
interesting to prove the existence o f an ¢ > 0 such that for any O(n)-time bin-packing
algorithm $, one must have r(S) _> 1 + ¢. We have not succeeded in proving such an
assertion. However, a result o f this spirit can be shown for a closely related problem, and
it may throw some light on the present bin-packing problem.

Consider the generalized bin-packing problem discussed in [3]. Let L = (~ , :f2, . . . , £n)
be a list of d-dimensional vectors (d _> 1), with each componem of the vectors in the
intervals (0, 1]. The problem is to pack these vectors into a minimum number of bins, such
that the sum ~ of vectors in any bin has vi -< 1 for all 1 _< i _< d. (When d ffi 1, this is just
the bin-packing problem we have discussed.) The problem is clearly NP-complete for any
fixed d >_ 1. For any heuristic algorithm, let r(S) denote the performance ratio as before.
A simple extension S of the O(n)-time Next-Fit Algorithm [6, 7] gives r(S) ffi 2d. We are
interested in a universal lower bound to r(S) for any o(n log n)-time algorithm.

We consider the following decision-tree model. Let S be an algorithm for the general-
ized d-dimensional bin packing. For each n > 0, the action of S on lists of n items L =
(£1, £2 £~) can be represented by a ternary tree Tn($). Each internal node of T~(S)
contains a test "h(Afb Afz Afn):0," where h is a rational function. For any input L the
algorithm moves down the tree, testing and branching according to the result (h < 0, h =
0, or h > 0), until a leaf is reached. At the leaf, a packing valid for all lists that lead to this
leaf is produced. The cost of S for input o f size n Cn(S) is defined to be the number of tests
made in the worst case, i.e., the height of Tn(S).

THEOREM 7. Let S be an algorithm for the generalized d-dimensional bin packing. I f
Cn(S) = o(n log n) as n ~ o% then r(S) _> d.

PROOF. The case d = 1 is trivial. We therefore assume that d > 1. Let n > 0 be any
integer. Define a sequence ¢o, e~, ¢2 ¢~ such that

¢o ffi l / d ~,
• , > (d - l)¢,÷x, 0 _< l < n 1. (44)

Let ./t,,Jl be the vector

(E,, ~, a,, I -(d- I)E,, E. ~),

Ik, J k J v

j - I d - j
for each 1 .~ i <_ n, l_<j_<d.

Consider the list Ln ffi (Aftl,x], -ftL2] Aft~,d], Aft2,q Aftn,'q), with dn vectors. Clearly
L ~* ffi n, as ~L<j ~_d Aft,,~ 1 ffi (1, 1 1) for each 1 _< i _< n. Let I'n be the set of permutations
of the dn elements in E~ ffi {[i,j] [1 _< i_< n, 1 _<j_< d}. For each o E F~, denote by Ln(o)
the list (~o~1~, :¢o~ :¢o~d,~b- Obviously Ln(o)* ffi Ln* ffi n. We shall prove that for any
fixed 8 > 0, if n is large enough, then there exists a o ~ I'~ such that S(Ln(o)) >
(d - 6)L~(o)*. This would imply the theorem.

I f the above assertion is false, then there exists a 6 > 0 such that S(Ln(o)) _< (d - 8)n for
all sufficiently large n. We will derive a contradiction.

New Algorithms for Bin Packing 225

FACT 8. In anypacking, -ft,,J] and :ft,',J'] cannot be in the same bin i f i S i'.

PROOF. It follows immediately from the definition of.ft~,jl. []

FACT 9. Let l be any leaf o f Tn(S) and ~(1) be the set o f lists Ln(o) that will lead to I.
Then IZ(I)I _< (dn)!(cn)-gn/d for some f ixed constant c.

PROOF. In the packing produced a t / , there must be at least p ffi 8n/d bins contain-
ing two items or more, because S(Ln(y)) -< (d - 8)n. In other words, any input list
(yl, .~2 ydn) reaching l must satisfy a set of inequalities of the following form.

)7kl +)Th 2 ~_(1, l l),

Yk3 +Yk, _<(l, l 1),
: (45)

)Tk2p_l +)Tk2p _~ (1, 1 1),

where _< means componentwise inequalities and all k~ are distinct.
An upper bound to I~(l) I is given by the number of Ln(o) satisfying (45). T~tking Fact

8 into consideration, we have

I~ (l) l -< (nd(d - 1)) p x (d n - 2p)!
_< nPd 2" × (dn - 2p)!. (46)

We now show that nPd 2p x (dn - 2p)! ffi (dn)! x O((n/(4e2))-P). There are two cases. I f 2p
_< dn/2, then

(dn)!
nPd 2p X (dn - 2p)! <_ nPd 2p X

(d n - 2p + 1) 2p

_< (dn)! (dn/2)~p =(dn)! X

If 2p > dn/2, then

nPd 2p 1 nPd 2p
nPd ~ X (tin - 2p)! _< (dn)! X (2p)'------T (~ -< (dn)! X (2e)----y

o ((e ~ n d ~ 2 P ~ f f i (d n) ! x o ((n) - ")
= (dn)! x \ \ 2? / / T : "

We have used Stirling's approximation [10] in the last derivation. This proves Fact 9. []

As there are at most 3 c~ts) leaves, the total number of lists L~(a) reaching leaves of Tn(S)
is at most (dn)!(cn) -~"/d x 3 c~ts) = (dn)! x exp(o(n log n) - (~n/d) log3 n) <(dn) ! for all
sufficiently large n. This contradicts the fact that there are (dn)! possible lists Ln(a). This
proves Theorem 7. []

8. Concluding Remarks

We hst some problems for further research.

(1) The E-improvement technique may be useful in other NP-complete problems, for
example, in the scheduling of tasks on a multiprocessor system [5]. This technique seems
to be particularly suitable for scheduling-type problems when the set o f possible worst-
case inputs can be identified. For instance, it can be used to show that r(S) < 2 for the
Next-2-fit bin packing [6, 7]. It may be of interest to mention that, although the Algorithm
RFF was presented and analyzed in a more conventional way in Section 3, it was first
obtained in a fashion very similar to the process for Algorithms M and R F F D in Sections
5 and 6. Thus the t- improvement viewpoint can provide a starting point for substantially
improved algorithms.

(2) Let r(on-line) be inf{r(S)} over all on-line algorithms S. We have shown that 1.5
_~ r(on-line) _< 1.66 It Is of interest to determine it more precisely. Very recently

226 A N D R E W C H I - C H I H YAO

(private communication), Donna Brown (University of Illinois) and Frank Liang (Stanford
University) have both obtained improved lower bounds for r(on-line).

(3) Find and analyze off-line algorithms S with r(S) "substantially" better than ~.
(4) Is there an • > 0 such that finding a packing of L using less than (1 + E)L* bins is

NP-complete? Is there an • > 0 such that every O(n)-time algorithm S (say, in the decision-
tree model described in Section 7) has r(S) __ 1 + E?

Assumption 1.

Assumption 2,

Assumption 3.

We make the

Observation 1.
that x, E (~, 1].

Observation 2.

Observation 3.

Appendix. The Strengthened FFD Analysis in Section 6.

At the beginning of Section 6, we list some facts (Properties B I-B6) which lead to the
proof of Theorem 5. In this appendix we give more details on how these facts can be
obtained from the original analysis of FFD in [6, 8].

In [6], Properties B1-B4 are proved under the following assumptions on the list L: Let
PF be an FFD packing and P ' an optimal packing of L. Write the items in L as xl .~ x~
_> . . . -~ xn. Let ~ffi {x,I x, is not in an A-bin in PF}.

All x, are in (~, 11.

~contains at least a C-piece or a D-piece.

The smallest piece xn goes into a non-A-bin in PF; i.e., xn E ~.

following observations. Let h be any number in (4, ~].

One can replace Assumption 1 by a weaker constraint, Assumption 1',

One can replace P ' by any packing of L.

Property B2 comes from the following facts.

W(f(X,)) _< ~g(X,) if X, is an A-bin in P' ,
W(f(XJ) - ~g(X,) _~ ~t if X, is a non-A-bin in P' .

One can make stronger statements for regular bins X,.

W(f(X,)) _< ~g(X,) if X, is a regular A-bin in P' ,
W(f(X,)) - ~g(XJ _< ~ if X, is a regular non-A-bin in P'.

Observation 4. g(X,) _< 50 for any bin X, in P'.

Observation 5. g(X,) >_ ~ if X, is a regular A-bin in P'.

Observations 3 and 4 lead to Property B5, and Observation 5 is Property B6. Therefore,
if L satisfies Assumptions 1', 2, and 3, and P ' is any packing of L, then one can define f
and g such that Properties B l-B6 are true.

It remains to show that Assumption 3 can be dropped. Let L = (xl _> x2 _> . . . >- xn) be
a list satisfying Assumptions 1' and 2, PF the FFD-packing of L, P* an optimal packing
of L, and ~ffi {x, lx, is in a non-A-bin in PF). Suppose Xm is the smallest non-A-piece in

We consider the list L ' ffi (xt, x2 x~) and let P ' be the packing of L ' , obtained from
P* by deleting pieces xm+x, xm+2 xn. Then L ' satisfies Assumptions 1', 2, and 3.
Applying the previous results, we can define functionsf ' , g ' satisfying B1-B6 for the list
L'. Now, we defme functionsfand g for the list L by

{f '(x,) if x, E L',
f (x j ffi otherwise,

and

0g'(x,) if x, E L',
g(xJ ffi otherwise.

Clearly, FFD(L) = FFD(L'), IALI ffi IAL'I, and the set ~ i s the same for both L and L' .

New Algorithms for Bin Packing 227

Also notice that a regular bin in P* must also be regular in P', and a bin in P* is an A-bin
if and only if it is an A-bin in P'. With these facts it is straightforward to verify that
Properties B I-B6 are satisfied for L with this choice o f f and g.

ACKNOWLEDGMENT. I wish to thank David Johnson for a careful reading of the manu-
script and many valuable suggestions. I am particularly grateful for his verifying all the
facts from reference [6] that are needed in Sections 5 and 6 of the present paper.

REFERENCES

1 AHO, A.V, HOPCROFT, J.E, AND ULLMAN, J.D The Design andAnalyszs of ComputerAIgorithms Addison-
Wesley, Reading, Mass, 1974.

2 FREDERICKSON, G N, HECHT, M S., AND KIM, C E Approximate algorithms for some routing problems.
SIAMJ Comptg. 7(1978), 178-193

3. GAREY, M R, GRAHAM, R L., JOHNSON, D S, AND YAO, A C Multtprocessor scheduling as generalized bin-
packing J Combinatorial Theory A 21 (1976), 257-298.

4 GAREY, M.R., AND JOHNSON, D S The complexity of near-optimal graph coloring. J. ACM 23, 1 (Jan. 1976),
43-49

5 GRAHAM, R L Bounds on the performance of scheduling algorithms. In Computer and Job/Shop Scheduhng
Theory, E G. Coffman, Jr , Ed, Wiley, New York, 1976, pp 165-227.

6 JOHNSON, D S Near optimal bm packing algontima Ph D. Th., M I.T, Cambridge, Mass., June 1973
7 JOHNSON, D S Fast algonthms for bm packing J. Comptr. Syst Sct 8 (1974), 272-314.
8. JOHNSON, D.S, DEMERS, A., ULLMAN, J D, GAREY, M.R, AND GRAHAM, R.L. Worst-case performance

bounds for simple one-dimensional packing algorithms SIAMJ. Comptg. 3 (1974), 299-325.
9 KARP, R M Reducibility among combinatorial problems. In Complemty of Computer Computations, R.E

Miller and J W. Thatcher, Eds, Plenum Press, New York, 1972, pp 85-t03
l0 KNUTH, D.E The Art of Computer Programming, Vol 3, Sorting and Searching Addison-Wesley, Reading,

Mass, 1973
11. ROSENKRANTZ, D J, STEARNS, g E., AND LEWIS, P.M An analysis of several heuristics for the traveling

salesman problem SIAM J. Comptg 6 (1977), 563-581.

RECEIVED MAY 1978, REVISED MAY 1979, ACCEPTED MAY 1979

Journal of the Association for Computing Machmel'y, Vol 27, No 2, April 1980

