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ABSTRACT  Numerous algonithms concerning relational databases use a cover for a set of functional dependencies
as all or part of thesr nput Examples are Beer1 and Bernstein’s synthesis algorsthm and the tableau modification
algorithm of Aho et al The performance of these algonthms may depend on both the number of functional
dependencies in the cover and the total size of the cover Starung with a smaller cover will make such algorithms
run faster After Bernstein, many researchers believe that the problem of finding a mmimum cover 1s NP-
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for nonredundant covers The kernel algorithm of Lewss, Sekino, and Ting ts improved using these results
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1. Introduction

Consider the following simple problem for databases. We are given a relation r and a set
of functional dependencies (FDs) F to enforce on r. After any update to r, we wish to
determine whether the relation satisfies the FDs in F. One way to proceed with the problem
is to take each FD X - Yin Fn turn, sort the relation to bring equal values of X together,
and check if these equal values of X correspond to equal values of Y. If not, r violates F.
If r is the relation

A B C
a b a
4] b2 Cy
a b ¢
a b o

we see that r satisfies the FD AB — C, since r is already sorted by 4 B-values. Testing r
against the FD B — C, we sort by B-values to get

A B C
a b oo

to see that r violates this FD.

The time required to check an FD X — Y against the relation r directly depends on the
number of attribute symbols in X and in Y. The sorting process is repeated as many times
as there are FDs 1n F. For any cover F’ of F, 1if r satisfies F”, then r satisfies F. To solve the
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satisfaction problem more quickly, we can seek covers for F with fewer attribute symbols
or fewer FDs. If Fis the set {(4B— C, A — B}, then F' = {4 — C, A — B} covers Fand
has one fewer attribute symbol. Or, given F = {4 — B, B— C, 4 — C}, we can use the
cover F' = {4 — B, B— ('}, which has fewer FDs.

The next section defines several kinds of mimimality for covers and presents some basic
results. Direct determination is introduced in Section 3 and 1s used there to elucidate the
structure of minimum covers. In Section 4 we show how to find minimum covers
polynomual time. Section 5 uses the results of Sections 3 and 4 to improve an algorithm of
Lewis, Sekino, and Ting {11}

2. Notions of Minimality

The reader should be familiar with the notation of the relational model and functional
dependencies. For an introduction, see Date [10], Beeri and Bernstein [5], Bernstein
[6, 7), or Ullman [17]. Throughout this paper we assume that all attributes are chosen from
some fixed universe U. Let F be a set of FDs. The closure of F, written F*, is the set of all
FDs that can be inferred from the FDs in F. The set F* can be computed by repeated
application of a complete set of inference axioms to F. The following set of inference
axioms can be proved complete using Armstrong’s axioms [4, 13, 14).
For V, W, X, Y, Z, subsets of U,

Al.  (reflexivity) X — X.
A2. (projectivity) X — YZ implies X — Y.
A3. (accumulation) X - YZ and Z — VWimply X — YZV.

The convention for attribute symbols above and elsewhere is that capital letters from the
beginning of the alphabet represent single attributes, capital letters from the end of the
alphabet stand for sets of attributes, and concatenation 1s used for union.

Definition. Given sets of FDs F and G, Fis a cover for G if F* = G*. That is, Fand G
imply the same set of FDs. We also say that F and G are equivalent, written F = G, if
F'=G".

Saying that F is a cover of G says nothing about the relative sizes of F and G. We now
define various restrictions of FDs that will guarantee different sorts of minimality.

Definition. A set of FDs F 1s nonredundant if there 1s no set of FDs G properly
contained in F with G* = F*. A nonredundant cover is also called a minimal cover (but
not here).

Definition. The sets of attributes X and Y are equivalent under a set of FDs F, written
Xeo Y ifX—> Yand Y— Xaremn F',

An important property of nonredundant covers is given by the following lemma of
Bernstein [7].

LemMMa 1. If G and F are equivalent, nonredundant sets of FDs and there is an FD
X — Win G, then there1s an FD Y — Z in F with X <> Y under F.

Lemma 1 implies that given a set of FDs G, if the FDs of any nonredundant cover F of
G are partitioned on the basis of equivalent left sides, the number of cells 1n the partition
is independent of the choice of F. In such a partition for a set of attributes X, let Er(X) be
the set of all FDs in F with left sides equivalent to X and let er(X) be the set of left sides
of FDs in Er(X). Let Er be the collection of all nonempty Er(X)’s. (That is, X is equivalent
to some left side of an FD in F.) For example, if F= {4 —» BC, B— A, AD —» E, BD —
C}, then Er = {Er(A), Er(AD)}, where

Er(A)={A— BC,B—> A} and Ex(AD)= {AD— E, BD— Cj}.
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optimal ¢= LR-mimmum 2 L-minumum & mimmum & nonredundant

FIGURE 1

Definition (Paredaens [15}). A set of FDs F is canonical if F 15 nonredundant and, for
every FD X— Yin F,

(1) Yis a single attribute, and
(2) there is no X’ properly contained in X with X’ — Y in F™.

Definition. A set of FDs F is minimum 1f there is no set G with fewer FDs than F such
that G = F.

Definition. A set of FDs F is L-minimum if

(1) Fis minimum, and
(2) for every FD X — Y in F, there is no X’ properly contained 1n X with X' — Yin F".

Definition. A set of FDs F is LR-mimimum if it is L-minimum and replacing FD X —
Y Fby X — Y’, with Y’ properly contained in Y, alters the closure of F.

Definition. A set of FDs F is optimal if there is no set of FDs G with fewer attribute
symbols such that G = F. Repeated symbols are counted as many times as they occur. For
example, F = {4 — BC, B— A, AD — C} uses eight symbols.

Canonical, L-mimmum, LR-mimmum and optimal sets have no unnecessary symbols
in the left sides of their FDs. Canonical, LR-minimum, and optimal sets have no
unnecessary symbols in the right sides as well. Figure 1 shows the relationship between the
definitions.

The implications come directly from the definitions. The following counterexamples
show the nonimplications.

(1) {4 = B, A — C} is nonredundant but not minimum; {4 — BC} has fewer FDs.

(2) {ABC — D, A — B} is minimum but not L-minimum; the B can be removed from
the left side of the first FD.

(3) {4 — AB} is L-minimum but not LR-minimum; the 4 can be removed from the
right side.

(4) {ABC — D, BC — E, E — BC} is LR-minimum but not optimal; {4E — D,
BC — E, E— BC} uses fewer attribute symbols.

The missing parts of the diagram are canonical sets and the implication or nonimplication
from optimal to LR-mimimum. Canonical sets are treated shortly; optimal sets are taken
up at the end of Section 3.

Beeri and Bernstein [5] introduce the notion of a G-based derivation tree for an FD
X — B, where G is a set of FDs and B 1s a single attribute. This tree 1s a chart of
applications of axiom A3 used to derive B from X using FDs from G. We extend the
notion to a G-based derivation DAG (G-based DDAG) for an FD X — Y, where Y is a set
of attributes. A G-based derivation DAG is defined constructively according to the
following rules:

R1. Any set of unconnected nodes labeled with attributes from U 1s a G-based DDAG.

R2. If H is a G-based DDAG, vy, v2, ..., v, are nodes in H labeled By, B,, ..., B,, and
B\B; -+ B,— CZis an FD in G, then the DAG H’ obtained from H by adding a
node u labeled C and edges (vi, u), (v2, u), ..., (v, u) is a G-based DDAG.

R3. Nothing else 1s a G-based DDAG.

Rule R2 ensures that the graphs constructed are actually DAGs. An initial node of a
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DDAG is a node with no incoming edges. A DDAG H represents a denivation for X — Y
if initial nodes have labels in X and every attribute of Y labels some node of H.

Figure 2 shows a G-based DDAG for AB — CF, where G= {AB—> CD, 4 — J,C—
E, DE — FJ}.

For any G-based DDAG H we want to know which FDs of G were used to construct H.
Call this set U(H), the use set of H. It contains all those FDs B, B; - -+ B, — CZ used in
applying R2 in the defimtion of a DDAG while constructing H. For the DDAG H 1
Figure 2, U(H) = {AB— CD, C — E, DE — FJ}. We should actually say a use set for
H, since there may be more than one, but we shall not. However, if G is mimimum, then
there is only one choice for U(H), since G cannot contain distinct FDs By B --- B, —» CZ
and B, B; .-+ B, — CW. Although axioms Al and A2 do not appear explicitly in the
definition of DDAGs, they are imphicitly incorporated. For example, Figure 3 is a G-based
DDAG for AB — AB for any attributes 4 and B in the universe U.

There is a direct correspondence between G-based DDAGs for an FD X— Yin G* and
derivations of X — Y 1 G using axioms Al1-A3. The DDAG is essentially a diagram
showing what applications of axiom A3 are used to derive Y from X. Given a derivation
of X — Y, we can use the applications of A3 to construct a DDAG for X — Y using rule
R2. The following lemma is similar to one Beeri and Bernstein present for G-based
derivation trees [5].

LemMma 2. If X — Y is in U(H) for some G-based DDAG H of V—> Z, then V— X is
in G*.

ProoF. If X— Yisin U(H), then all the attnibute symbols of X must appear as labels
of nodes of H. Thus H is also a G-based DDAG for V — X. For example, in Figure 2
DE — FG € U(H), and H 1s a G-based DDAG for AB— DE. []

LemMA 3. Take an LR-mimimum set F, and form F’ by splitting the right sides of
FDs into single attributes ({AB — CD, E — AD} becomes {AB — C, AB— D, E— A,
E — D}). F' is a canonical cover of F*.

Proor. Suppose XY — AZ1s1n F, and after splitting right sides, XY — A is redundant
m F’. Then F s not LR-minimum, since XY — Z can replace XY — AZ in F without
altering 1ts closure.

Suppose XY — A can be replaced by X — 4 in F’. Then X — A4 is in F*. The
dependency X — A cannot be derived from F — {XY — 4Z}, since otherwise 4 would not
appear in XY — AZ. So there is an F-based DDAG for X — A using XY — AZ. By
Lemma 2, X — XY must be in F*, and therefore X — Yisn F*. Thus XY — AZ cannot
be in F, since Y 1s superfluous. [0
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Observations. If H is a G-based DDAG for X — Y, then there is a G-based DDAG H’
for X — Y with every node having a distinct label. Suppose v and w are nodes in H both
labeled C. Assume v was added before w or at the same time, so there is no directed path
from w to v. Remove w and all 1ts incoming edges. Attach the outgoing edges of w to v.
Repeat the process for all pairs of same-labeled nodes to get H'. Note that U(H) 2 U(H").

If H and J are G-based DDAGs for FDs X — Y and Y — Z, we can construct a G-
based DDAG K for X — Z having no duphcate labels with U(K) contained 1n the union
of U(H) and U(J). Assume that H and J have no duplicate labels. K is formed by splicing
H and J together: Overlay H and J so the initial nodes in J coincide with the nodes labeled
Y n H. If the result has duplicate nodes, remove them as described above. The result 1s K.
In Figure 4, Gis (4 » C, C— D, BC— E, D FB, BE — G}, and the DDAG:s are for
AB— DE and DE — FG. The DDAGs are combined and excess nodes eliminated to form
a DDAG for AB — FG. Actually, Y — Z can be replaced with W — Z for any set W of
attributes labeling nodes in H, since H must also be a DDAG for X — W.

3. Direct Determination

Definition. Given a set of FDs G with X — Y in G*, X directly determines Y under G,
written X = 7, if there exists an F-based DDAG H for X — Y with U(H) N Ex(X) =
for some nonredundant cover F of G. That is, no FDs with left sides equivalent to X are
used in H.

Note. Ep(X) may itself be empty, and always X = X As an example, if F = G =
{A— B, C— D, AC— E}, then AC = BD under G.

As the definition stands it is not particularly useful, for the existence of a DDAG not
using FDs from Er(X) might depend on which cover F is chosen. Checking direct
determination could become computationally very hard. The next lemma proves that the
choice of a cover for G is immaterial.

LemMma 4. X directly determines Y under G if and only if for every nonredundant cover F
for G there exists an F-based DDAG H for X — Y with U(H) N Ep(X) = @.

ProoF. Let F be a nonredundant cover for G for which there 1s an F-based DDAG H
of X — Y using no FDs in Ex(X). For every FD Z — W in U(H), Lemma 2 states that
X — Z. Let F’ be another nonredundant cover for G. Suppose some F’-based DDAG for
Z — Wuses an FD in ER(X), say T— S. By Lemma 2, Z — T. But 7 1s equivalent to X,
so Z — X, and hence Z is equivalent to X, which contradicts the assumption about H.
Therefore every Z — W in U(H) has a F'-based DDAG that does not use FDs from
Er(X). We obtain the required F’-based DDAG for X — Y by splicing together the
DDAGSs foreach Z— Win U(H). O

COROLLARY. X - Y under G if and only if for every cover F for G there exists an F-
based DDAG H for X — Y with U(H) N Er(X) = 2.

Proor. Every cover F for G contains a nonredundant cover as a subset. [J
The next lemma gives a himited transitivity rule for a direct determination
LemMa S. If X5 Y, Y Z, and Y — X under G, then X > Z under G.

Proor. Let F be a nonredundant cover for G, and let H and J be DDAGs for X —» Y
and Y — Z such that U(H) and U(J) contain no FDs from Ep(X) (= Er(Y), since X «
Y). Splicing H and J will form an F-based DDAG K for X — Z that uses no FDs
Er(X), by the observation at the end of the last section. [

LEMMA 6. Let F be nonredundant. Pick an X that 1s a left side m F and any set Y
equivalent to X. There is some Z in ep(X) such that Y > Z.

PrROOF. Assume Y is not in ep(X). Otherwise ¥ = Y, and the lemma is proved. Since
X & Y, for every Z in ep(X) there must be a denvation in F for Y — Z and hence an F-
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based DDAG for Y — Z. Choose the Z in ex(X) with a DDAG H for Y — Z with the
least number of nodes. Suppose there is an FD T'— S in Ex(X) used in H. Then H is a
DDAG for Y — T, and furthermore, there 1s some node 1n H labeled by an attribute of S
that can be removed and still leave a DDAG for Y — T. If H’ 1s H with this node removed,
the minmmality of H 1s contradicted, since T € ex(X). Thus there are no FDs from Er(X)
mUH)and Y= Z. [

LemMMA 7. If F i1s minimum, there are no distinct FDs Y — Q and Z - R in Ep(X) such
that Y - Z.

ProOF. Suppose H is an F-based DDAG for Y — Z using no FDs in Er(X). Form F’
by replacing the two FDs ¥ — Q and Z — R by Z — QR. The FD Y — Z can still be
denived in F’, since none of the FDs in U(H) have been altered. However, F’ has one
fewer FD than F but the same closure, a contradiction. ]

Lemmas 6 and 7 are the tools needed to show the following property of minimum
covers. Let | S| denote the cardmality of a set S.

THEOREM L. Given equivalent mimimum sets of FDs F and G, | En(X)| = | E¢(X)| for any
X. Thus the size of the equivalence classes in Ep 1s the same for all munimum F with the same
closure.

PROOF Let m < n, and let Ex(X) and Eg(X) be composed as shown below.
Er(X) Ec(X)

X—-X 1-7
XQ—-) Xz Yz—) )—/2

Xm—)Xm Yn—') )—,n

Some Y, is not the same as some X,, or two Y;’s would be equal, contradicting Lemma 7.

Thus there exists a j such that Y, ¢ X,, | <i=m. By Lemma 6 there exists a k such that
Y, - X, Renumber the FDs in the two equivalence classes so that Y; <> X,. In E¢(X)
(and G itself) replace Y; — ¥; with X; — ). Note that Y, — ¥, can still be derived from
G,since ¥, — X,and X, = T, can both still be denved. If X, = ¥, for some j > 1, X; —
Y, can be combined with Y, — Y, to form X; — Y, Y,, which shows that G is not minimum.
If X, # Y, for all y > 1, the number of left sides of FDs 1n Eg(X) that match left sides of
FDs in Er(X) has increased. (We removed Y; and added X,.) By the remarks at the
beginning of the proof, there is still a j such that ¥, # X,, | <1 =< m, and a k such that
Y, 5 X.. Repeat the preceding process from where the renumbering took place.

If we never encounter a contradiction to the minimality of G, eventually all the X,’s
must become left sides of FDs in E¢(X), contradicting our opening remark. Therefore the
assumption that m < n must be incorrect, and 1n fact m =n. O

Lemma 1 implies that for any equivalent nonredundant sets F and G, | Er| = | Eg|.
Theorem 1 goes a step further and shows that if F and G are minimum, not only is the
number of classes of FDs with equivalent left sides the same in each set, but the sizes of
corresponding classes are the same. The correspondence goes one step further. Let F and
G both be minimum, and look at Ex(X) and Eg(X).

Ep(X) Ea(X)
Xi— X, Y.— Y,
X2-—) /?2 Y2 b 72

Xn— Xn Yo — Ym
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Every X, directly determines some Y, and this ¥, directly determines some X, by Lemma
6 (recalling that Lemma 4 states direct determination is independent of the choice of
nonredundant cover). If i # k, since X, — Y, ¥,— X;, and Y, — X,, we can apply Lemma
5 to get X, = X, which contradicts Lemma 7. Hence i = k. It follows that for every X, in
er(X) there is exactly one Y, in eq(X) such that X, > Y, and Y, -5 X,. Ths relationship
allows X, to be substituted for ¥, without changing the closure of G, and ¥, for X in F,
since one left side can still be derived from the other after the substitution. For example,
if 4 is social security number and B is student number, then 4 < B. Whenever we have
a left side of the form AX we can replace it with BX, and vice versa, since AX - BX and
BX = AX, provided 4 does not determine X.

The observations above show how to combine two equivalent mmimum sets F and G to
get possibly a new minimum cover for both wath fewer attrnibute symbols than either.
Suppose G has no more attribute symbols than F. Start with a pair of corresponding
equivalence classes, Er(X) = {X; » X, Xo » X, ..., X > X.} and Eg(X) =
{(Yy> Y, Yo > Ys ..., Y» = ¥,), and number the FDs so that X, and ¥, directly
determine each other Modify Eq(X) by substituting X, for Y, whenever X, is smaller than
Y.. The new G will have no more attrnibute symbols than the old G, and possibly fewer.
The next section demonstrates that this combination can be done in polynomial time.

Suppose now that G is only nonredundant, but F 1s still minimum, and that | Er(X)| <
| Ec(X)| for some X. Say the FDs in Eg(X) go up to Y, — ¥,, n > m. There must be ¥,
and Y, j # k, in eg(X) such that ¥, 5 X, and Y, 5 X, for some X, mn er(X). In turn,
X, = Y, for some Y, in eq(X). Either h 5 j or h % k. Assume the first case, and apply
Lemma 5 to get Y, = Y,, j # h. In the second case, Y — Y, k # h. We have proved the
following result

THEOREM 2. Let F be minimum and G be nonredundant, with F = G. For any Eg(X) with
more FDs than Ep(X), there are Y, and Y, in ec(X) belonging to different FDs, with Y, = Y.

The existence of Y, and Y, means that G can be improved by replacing ¥, — ¥, and
Y, —» Y, with Y, > Y.Y,. Furthermore, we need not know F to make this improvement.
This result is very important in the next section.

COROLLARY. An optimal set of FDs is LR-minimum.

Proor. If a set of FDs G were optimal but not minimum, it could be shortened as
described in the preceding paragraph, since G must be nonredundant. If G has superfluous
attribute symbols on the right or left sides of its FDs, it is not optimal. Hence G 1s LR-
minimuom. (]

4. Complexity Results

Beeri and Bernstein [5] present a membership algorithm that determines 1n linear time if
X — Yisin G7, given a set of FDs G and an FD X — Y. (All complexity results are for
the RAM model [3].) The algorithm actually finds all FDs W — Z such that X — W and
all attributes A such that X — 4 is in G*. The set of all such A4’s is called the closure of X
and written X . Beeri and Bernstein also give an O(np) algorithm for finding a nonredun-
dant cover for G, where n 1s the length of G (in attribute symbols) and p is the number of
FDs in G.

The membership and nonredundant cover algorithms can be used to decide direct
determination: Given a set of FDs G and an FD X — Y, does X Y? Direct determination
can be tested in O(np) time:

DIRECT(G, X— Y)
1. Find a nonredundant cover for G [O(np)]

2 Determine ex(X). First find X* [O(m)]. Then for every FD 1n F with left size Z contaned n X*, determne 1f
Z— X F*. If 50, Z 15 1n ex(X) [O(np))
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3 Run the membership algonthm on F — Ep(X), X— Y The FDs in Ef(X) can be marked while finding er(X)
in step 2 If X — Y 1s n the closure of F — Er(X), output “yes” and stop, otherwise output “no” and stop

[om)]

A test can be incorporated before step 1 to determine if X — Y is in G™. If not, output
“no” and ignore the rest of the procedure.

THEOREM 3. Guven a set of FDs G, finding a minimum cover F for G can be done in
O(np) time.

Proor. Lemma 7 and Theorem 2 together say that a nonredundant cover F is minimum
if and only 1f there are no FDs X — X and ¥ — ¥ in Fsuch that X & Yand X 5 Y.
Furthermore, if such a pair of FDs exists in F, we can reduce the size of F by replacing the
pair with Y — X ¥. Thus the minimum cover algorithm proceeds by finding such pairs of
FDs in G and replacing them with a single FD until no more pairs remain.

MINIMIZE(G)
1 Find a nonredundant cover F for G
2 Determine all the classes in Ex

3 For each class E/(X) i Ep,
for each Y — ¥ mn Er(X),
compute Y* under F — Ep(X) If there1sa Z— Z n E(X) with Z in Y*, remove Y — ¥ from F
and add ¥ to the nght side of Z — Z

4 Output F

Finding F takes O(np) time. Finding the equivalence classes in £r might seem to require
O(np®) time, since for each pair of FDs X — X and Y— Yin Fwe need to test if X <> ¥
under F. However, 1n one run of Beeri and Bernstein’s membership algorithm, for a given
X, we can mark every FD Y — ¥ in F such that X — Y. In O(np) time we can run the
membership algorithm on the left side of every FD in F to produce a p X p (at most)
Boolean matnx M with rows and columns indexed by FDs in F. The entry M[X — X,
Y — Y]equals | if X — Yisin F*; it equals O otherwise. From M it is possible to find all
the sets in Er in O(p?) time.

For step 3, for each Y — ¥ 1n Er(X), a similar use of the membership algorithm can
mark every FD Z — Z such that Y — Z is in (F — Ep(X))*. That is, Y = Z. The
membership algorithm 1s run at most once for each FD in F, giving O(np) time complexity
for step 3. Since no step of MINIMIZE takes more than O(np) time, the complexity of the
entire algorithm is O(np). [

COROLLARY. Given a set of FDs G, L-mimimum and LR-mimimum covers for G can be
found in O(n®) time.

Proor. First find a minimum cover F for G in O(np) time. Beeri and Bernstein give an
O(n®) procedure for removing extraneous attributes from left sides of FDs [5]. Applying
this procedure makes F L-minimum. To make F LR-mimmum, remove extraneous
attributes from right sides, as follows:

Take X — Y in F Suppose Y = BBy --- B, Let F' be F with X — Y replaced by X — (Y — {B1}) Testaf
X - Y 15 1n the closure of F’ If so, let F = F’ Repeat this process for each B, in ¥ and all FDs n F [O(n?%)].

To see that the above process works correctly, we must prove that after removing
extraneous attributes from right sides of FDs, no new attributes are made extraneous on
left sides.

Suppose after eliminating extraneous attributes from night sides there is an FD X — Y
in F with extraneous attribute 4 in X. Let F’ be the version of F immediately after
removing extraneous attributes from left sides of FDs. Assume that X — Y comes from
X— YZin F'.Let X’ = X — A. Since 4 is extraneous in X, F— {X— Y} U {X' - Y}
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= F,50 X’ — Yisin F* Let H be an F-based DDAG for X’ — Y. If X — Y is not in
U(H), X — Y is redundant in F, contradicting the minimality of F. Therefore X — Yis in
U(H) and X’ = X is in F* by Lemma 2. Since F' = F, X’ — X is in (F")*. Clearly,
X’ — X can be derived from F’ without using X — YZ. It follows that F' — {X — YZ}
U {X'— YZ} = F'. We see that F’ is not L-minimum, a contradiction. [J

The yes/no minimum cover problem 1s: Given a set of FDs G and an integer &, is there
a cover F for G with no more than k FDs? A theorem of Bernstein [6] states that the above
problem is NP-complete. However, we have not shown that P = NP. What Bernstein
actually proved is that the yes/no contained cover problem is NP-complete. The contained
cover problem is the minimum cover problem with the added restriction that F'is contained
in G.

An analogous situation to the mimimum cover and contained cover problems arises with
a pair of graph problems. A transitive reduction of a directed graph H 15 a graph J with
fewest nodes that has the same transitive closure as H. This problem is solvable in
polynomial time [2]. A minimum equivalent graph of a directed graph H is a subgraph J of
H with fewest nodes that has the same transitive closure as H. Sahni shows that finding
the size of a minimum equivalent graph is NP-complete {16]. The analogy is not surprising,
for the transitive reduction and minimum equivalent graph problems are special cases of
the minimum cover and contained cover problems. (All FDs have single attributes on both
the right and left sides.) Indeed, Bernstein uses the minimum equivalent graph problem to
obtain his result.

The optimal cover problem 1s the same as the minimum cover problem, except that F
must have fewer than k attribute symbols (rather than FDs) This 1s most likely a much
harder problem.

THEOREM 4. The optimal cover problem is NP-complete.

Proor. Given a set of FDs G and a set of attributes X, a key for X is a subset Y of X
such that Y — X1sin G*, but not Y’ — X, for any Y’ properly contained in Y. Simply, a
key is a minimal subset of X that functionally determines X. Lucches: and Osborn [12]
show that the following key of cardinality k problem is NP-complete. Given a set of FDs
G and an mteger k, let X be the set of all attribute symbols 1n G. Does X have a key of
cardinality no larger than k?

We can solve the key of cardinality & problem 1n polynomial time using a polynomial-
time algorithm for the optimal cover problem. First we need to prove two claims.

Definition. An FD X — Y G is reduced if X N Y = & and for no proper subset X’
of Xis X’ — Yin G*. Let RED(G) be the set of reduced FDs in G*.

CiLaM 1. Let G be a set of FDs with attribute symbols X, and let A and B be attribute
symbols not n X. Let G' = GU {AX — B)}. Then

RED(G’) = RED(G) U {AY — BZ|Yisakey of Xand Y N Z = O},

ProOF. Let T— S € RED(G"), and let H be the smallest G’-based DDAG for T— S.
Consider the following two cases:

(1) AX— Bisnotin U(H). If 4isn H it can have no incoming or outgoing edges.
Therefore 4 must belong to T. Since T— S is reduced, 4 is not in S, so0 4 can be removed
from both H and T, contradicting the assumption that T — S is reduced. Hence 4 must
not be n H or T — S. Neither is B, by a similar argument, so 7— S is in RED(G).

(2) AX— Bisin U(H). Once again 4 can have no incoming edges, so 4 1s in 7. The
labeled B has no outgoing edges, so it must be in S or it could be erased from H, which is
supposed to be minimal. Let ¥ be the set of nodes with no incoming edges, except for 4.
Then T— S is actually AY — BZ for some Z, Z —» Y = . Removing A and B from H
yields a DDAG with all the attnbutes of X. From Lemma 2 we have ¥ — X. Since Y —
X is reduced, Y must be a key of X.
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This argument shows containment in one direction. Containment in the other direction
1s simple. O

Note that any LR-minimum cover contains only reduced FDs.

CrLamM 2. Let G and G’ be as in Claim 1. Then F’ 1s an LR-minimum cover for G’ if and
only if F' = FU {AY — B}, where F is an LR-minimum cover of G and Y is a key of X.

Proor. We show only the only if condition. Let F’ be given, and let F = F' N RED(G).
We must show that F1s a cover of G. Let T — S be in G*, and let H be an F’-based
DDAG for it. Suppose U(H) contains an FD of the form 4Y — BZ. Since A has no
incoming edges (no reduced FD has 4 on the right), 4 15 1n 7, a contradiction to T— S
being in G*. Hence H is also an F-based DDAG for T— S, and it follows that F1s a cover
of G. F1s easily seen to be LR-mimmmum by the LR-minimality of F”.

Let F” be F' — F. F” consists of FDs of the form AY — BZ. Since F 1s a cover of G,
Claim 1 tells us that Y is a key of X, and hence ¥ — Z m F*. Since F’ is LR-minimum,
Z = 2, so all the FDs of F” have the form AY — B, Y a key of X. Suppose F” contains
AYi—> Band AY;— B, Y1 # Y;. AY; — Bisredundant in F',since Y1 - Xand X— Y»
in F*, so AY, — B can be derived from F’' — {4Y, — B}. Thus F” contains a single
FD. O

PRrOOF OF THEOREM 4 (CONT.). We want to find if X has a key of cardinality no greater
than k under G. Let G’ = GU {4X — B} for 4, B not in X. Use repeated applications of
the optimal cover algorithm to find the size s of an optimal cover for G. Now find the size
t of an optimal cover for G'. The sizes of the two covers differ by the number of symbols
mm AY — B, where Y is a smallest key of X. Hence | Y| = ¢ — (s + 2).

The argument above shows that the optimal cover problem 1s NP-hard. It is in NP, since
a cover for G can be guessed and checked in polynomial time. [

5. The Kernel Algorithm

Lewis et al. [11] have proposed a representation for a set of FDs G that they term the
kernel. The kernel is a unique canonical form and embodies all nonredundant covers of G.
The kernel consists of sets of equivalent left sides that may appear in a nonredundant
cover of G, together with a list of possible right-side attributes for each set. The algorithm
they present for finding the kernel of G takes exponential time—O(n") at least, on inputs
of size n®logzn. Such a ime complexity hampers the usefulness of the kernel.

The algorithm begins by finding a nonredundant cover for G with no extraneous
attributes on left or right sides. The authors use the term minimal for redundant, but they
blur the distinction between minimal and minimum. To find the nonredundant cover, the
algorithm generates G*, which can be huge compared to G itself. This step is totally
unnecessary, since the LR-minimum cover algorithm can replace the part of the kernel
algorithm that finds the nonredundant cover. This change reduces the time complexity of
this portion of the algorithm to be polynomial and throws in a minimum rather than
nonredundant cover as part of the bargain.

Unfortunately, this change does not create a polynomial-time algorithm. The next part
of the kernel algorithm starts by finding all left sides equivalent to left sides in the
nonredundant cover for G and leaves all those in the kernel that cannot be derived by
augmentation from any of the others. The number of such left sides can be much larger
than the number of FDs in G. For example let G = {4, > B, B. > A|l <i=m} U
{4142 --+ A, > C}. The set of G is LR-minimum and has 2m + 1 FDs The set of left
sides equivalent to 414 - -+ Am1s {D1Ds - .- Dn| D, = A, or B,}. Thus set has 2™ elements.
Examples exist where G has m” FDs and there are m™ equivalent left sides.

Thus the kernel inherently takes long to compute, since 1t can be more than exponentially
larger than its input G. The kernel algorithm may not even be polynomial 1n the size of its
output because of other steps in the algonthm. Although the kernel is a unique represen-
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tation of a set G, we maintain it is not a very useful one, since it can take so long to
comptute and is not necessarily a very succinct representation.

6. Summary and Further Questions

We have compared and related different notions of minimality of covers for sets of FDs.
Using direct determination, we showed it is possible to find covers with the smallest
number of FDs in polynomial time. We also demonstrated that it is unlikely that covers
with the smallest number of attribute symbols can be found in polynomial time.

One question, raised in the abstract, 1s how much the use of a minimum cover improves
the run time of vanious algonthms that use a set of FDs as an input. In the case of
relational synthesis algorithms, the use of minimum covers instead of nonredundant covers
can improve the database scheme synthesized [13, 14]. The use of minimum covers in
connection with the tableau modification algorithm of Aho et al. [1] should also be
investigated. Finding optimal covers 1s NP-complete, but LR-minimality takes us part of
the way there by giving a necessary condition for optimality. What bound can be placed
on the ratio of the size of an optimal cover to the size of a LR-minimum cover? This paper
mainly deals with equivalence and transformations of left sides of FDs. What sort of
transformations can be found for right sides?
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