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1. In l roduc twn 

Cons ide r  the  fol lowing s imple  p r o b l e m  for da tabases .  W e  are g iven  a re la t ion  r a n d  a set 
o f  func t iona l  dependenc ie s  (FDs)  F to enforce  o n  r. Af te r  any  u p d a t e  to r, we wish  to 
de t e rmine  w h e t h e r  the  re la t ion  saUsfies the  F D s  in F. One  way  to p roceed  wi th  the  p r o b l e m  
is to take  each  F D  X--~ Y i n  F i n  turn ,  sort  the  re la t ion  to b r ing  equa l  va lues  o f  X together ,  
a n d  check  i f  these  equa l  values  o f  X co r r e spond  to equa l  va lues  o f  Y. I f  not ,  r v iola tes  F. 

I f  r is the  re la t ion  

A B C 
a l  b l  c l  

al  b~ c~ 
as b~ c2 
as b2 Cl 

we see tha t  r satisfies the  F D  A B  ---~ C, smce r is a l ready  sor ted  by  AB-values .  Tes t ing  r 
agains t  the  F D  B ---> C, we sort  by  B-va lues  to get  

A B C 
a~ bl cl 

a2 b~ c2 
a~ b2 c~ 
a2 b2 cl 

to see tha t  r violates  this  FD.  
T h e  t ime requi red  to check  a n  F D  X--~ Y agains t  the  re la t ion  r d i rec t ly  d e p e n d s  o n  the  

n u m b e r  o f  a t t r ibu te  symbols  in  X a n d  m Y. T h e  sor t ing  process  is r epea ted  as m a n y  t imes  
as there  are F D s  m F. Fo r  any  cover  F '  o f  F, i f  r satisfies F ' ,  t h e n  r satisfies F. T o  solve the  
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satisfaction problem more quickly, we can seek covers for F with fewer attribute symbols 
or fewer FDs. If F is the set (A B --~ C, A ~ B }, then F '  = (A ~ C, A ~ B } covers F and 
has one fewer attribute symbol. Or, given F = {A ~ B, B ~ C, A ~ C}, we can use the 
cover F '  = {A ~ B, B ~ C}, which has fewer FDs. 

The next section defines several kinds of mimmahty for covers and presents some basic 
results. Direct determination is introduced in Section 3 and ~s used there to elucidate the 
structure of minimum covers. In Section 4 we show how to find minimum covers m 
polynomial time. Section 5 uses the results of Sections 3 and 4 to improve an algorithm of 
Lewis, Sekmo, and Tmg [11] 

2. Notions of  Mmimahty 

The reader should be famdlar with the notation of the relational model and functional 
dependencies. For an introduction, see Date [10], Beeri and Bernstein [5], Bernstein 
[6, 7], or Ullman [17]. Throughout this paper we assume that all attributes are chosen from 
some fixed universe U. Let F be a set of FDs. The closure of F, written F +, is the set of all 
FDs that can be inferred from the FDs in F. The set F ÷ can be computed by repeated 
application of a complete set of reference axioms to F. The following set of inference 
axioms can be proved complete using Armstrong's axioms [4, 13, 14]. 

For V, W, X, Y, Z, subsets of U, 

AI. (reflexivity) X---~ X. 
A2. (projectivlty) X---~ YZ implies X---~ Y. 
A3. (accumulation) X ~ YZ  and Z ~ V W  imply X ~ YZ V. 

The convention for attribute symbols above and elsewhere is that capital letters from the 
beginning of the alphabet represent single attributes, capital letters from the end of the 
alphabet stand for sets of attributes, and concatenation Is used for union. 

Definition. Given sets of FDs F and G, F is a cover for G if F ÷ -- G +. That is, F and G 
imply the same set of FDs. We also say that F and G are equtvalent, written F ~ G, if 
F + = G +. 

Saymg that F is a cover of G says nothing about the relative sizes of F and G. We now 
define various restrictions of FDs that will guarantee different sorts of minimality. 

Defimtton. A set of FDs F ts nonredundant if there ts no set of FDs G properly 
contained m F with G ÷ = F ÷. A nonredundant cover is also called a minimal cover (but 
not here). 

Definition. The sets of attributes X and Y are equivalent under a set of FDs F, written 
X ~ Y, if X ~ Y and Y--~ X are m F +. 

An important property of nonredundant covers is gwen by the following lemma of 
Bernstein [7]. 

LEMMA 1. I f  G and F are equivalent, nonredundant sets of  FDs and there is an FD 
X --, W in G, then there ts an FD Y ~ Z m F with X ~ Y under F. 

Lemma 1 implies that given a set of FDs G, if the FDs of any nonredundant  cover F of 
G are partitioned on the basis of equivalent left sides, the number of cells m the partition 
is independent of the choice of F. In such a partition for a set of attributes X, let Er(X)  be 
the set of all FDs in F with left sides equivalent to X and let eF(X) be the set of left sides 
of FDs in Ee(X). Let J~v be the collection of all nonempty EF(X)'s. (That is, X is equivalent 
to some left side of an FD in F.) For example, if F = (A ~ BC, B ~ A, AD ~ E, BD 
C}, then/~F = {EF(A), EF(AD)}, where 

EF(A) = {A ---~ BC, B---~ A } and Ee(AD) = (AD---~ E, BD--~ C}. 
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opUmal O LR-m,mmum ~ L-minimum ~= minimum ~= nonredundant 

FIGURE 1 

Definition (Paredaens [15]). A set of  FDs F is canonical if  F is nonredundant  and, for 
every F D  X---~ Yin F, 

( l )  Yis a single attribute, and 
(2) there is no X' properly contained in X with X' ~ Y in F +. 

Definition. A set of  FDs  F is minimum if there is no set G with fewer FDs than F such 
that G -= F. 

Definition. A set of  FDs F is L-minimum if 

( l )  F is minimum, and 
(2) for every F D  X---~ Yin F, there is no X'  properly contained m Xwi th  X'  -.~ Yin F +. 

Definition. A set of  FDs  F is LR-mimmum if  it is L-minimum and replacing F D  X 
Y in F by X ~ Y', with Y' properly contained in Y, alters the closure of  F. 

Definition. A set of  FDs  F is optimal if  there is no set of  FDs  G with fewer attribute 
symbols such that G -= F. Repeated symbols are counted as many times as they occur. For  
example, F = (A ~ BC, B ~ A, AD ~ C} uses eight symbols. 

Canonical, L-minimum, LR-minlmum and optimal sets have no unnecessary symbols 
in the left sides of  their FDs. Canonical, LR-mlnimum, and optimal sets have no 
unnecessary symbols in the right sides as well. Figure 1 shows the relationship between the 
definitions. 

The implications come directly from the defimtions. The following counterexamples 
show the nonimplications. 

(1) {A --~ B, A ~ C} is nonredundant  but not minimum; {A ~ BC} has fewer FDs. 
(2) ( A B C - ,  D, A ~ B} is minimum but not L-minimum; the B can be removed from 

the left side of  the first FD. 
(3) {A ~ AB} is L-minimum but not LR-minimum; the A can be removed from the 

right side. 
(4) (ABC -.o D, BC ~ E, E ~ BC} is LR-minimum but not optimal; {AE --~ D, 

BC ~ E, E ~ BC} uses fewer attribute symbols. 

The missing parts of  the diagram are canonical sets and the implication or nonimplication 
from optimal to LR-mmimum. Canonical  sets are treated shortly; optimal sets are taken 
up at the end of  Section 3. 

Beeri and Bernstein [5] introduce the notion of  a G-based derivation tree for an F D  
X ~ B, where G is a set of  FDs and B is a single attribute. This tree is a chart of  
applications of  axiom A3 used to derive B from X using FDs  from G. We extend the 
notion to a G-based derivation DAG (G-based D D A G )  for an F D  X---~ Y, where Y is a set 
of  attributes. A G-based derivation D A G  is defined constructively according to the 
following rules: 

RI .  Any set of  unconnected nodes labeled with attributes from U is a G-based D D A G .  
R2. I f  H is a G-based DDAG,  v~, v2 . . . . .  vn are nodes in H labeled B~, B2 . . . . .  Bn, and 

B1B2 . . .  Bn ~ CZ is an F D  in G, then the D A G  H' obtained from H by adding a 
node u labeled C and edges (v~, u), (v2, u) . . . . .  (vn, u) is a G-based DDAG.  

R3. Nothing else is a G-based DDAG.  

Rule R2 ensures that the graphs constructed are actually DAGs.  An initial node of  a 
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DDAG is a node with no incoming edges. A DDAG H represents a derivation for X ~ Y 
if initial nodes have labels m X and every attribute of Y labels some node of H. 

Figure 2 shows a G-based DDAG for A B  ~ CF, where G = {AB  ~ CD, A ~ J, C 
E, D E  ~ F J} .  

For any G-based DDAG H we want to know which FDs of G were used to construct H. 
Call this set U(H),  the use set o f  H.  It contains all those FDs BxB2 . . .  Bn ~ C Z  used in 
applying R2 in the definmon of a DDAG while constructing H. For the D D A G  H m 
Figure 2, U ( H )  = {AB  ~ CD, C ~ E, D E  ~ FJ} .  We should actually say a use set for 
H, since there may be more than one, but we shall not. However, if G is minimum, then 
there is only one choice for U(H),  since G cannot contain distinct FDs B1B2 . .  • Bn ~ C Z  
and B1B2 . . .  Bn --, C W .  Although axioms AI and A2 do not appear explicitly in the 
definition of DDAGs, they are imphcitly incorporated. For example, Figure 3 is a G-based 
DDAG for A B  ~ A B  for any attributes A and B in the universe U. 

There is a direct correspondence between G-based DDAGs for an FD X---~ Yin G ÷ and 
derivations of X ~ Y m G using axioms AI-A3.  The DDAG is essentially a diagram 
showing what apphcations of axiom A3 are used to derive Y from X. Given a derivation 
of X ~ Y, we can use the applications of A3 to construct a DDAG for X ~ Y using rule 
R2. The following lemma is simdar to one Beeri and Bernstein present for G-based 
derivauon trees [5]. 

LEMMA 2. I f  X--~ Y is in U ( H )  fo r  some G-based D D A G  H of V ~ Z, then V---~ X is 
in G +. 

PROOF. If X--~ Y Is in U(H),  then all the attribute symbols of X must appear as labels 
of nodes of H. Thus H is also a G-based DDAG for V ~ X. For example, in Figure 2 
D E  ~ FG E U(H),  and H is a G-based DDAG for A B  ~ DE. [] 

LEMMA 3. Take an L R - m i m m u m  set F, and f o r m  F'  by sphtting the right sides o f  
FDs into smgle attributes ( { A B  ~ CD, E ~ A D }  becomes {AB  ---> C, A B  ~ D, E ~ A,  
E ~ D}). F'  is a canomcal cover o f f  +. 

PROOF. Suppose XY--~  ,4 Z Js m F, and after splitting right szdes, XY---~ ,4 is redundant 
m F'. Then F is not LR-mimmum, since X Y  ~ Z can replace XY---> A Z  in F without 
altering its closure. 

Suppose X Y  ~ A can be replaced by X ~ A in F' .  Then X ~ A is in F +. The 
dependency X---~ A cannot be derived from F - {XY---~ A Z } ,  since otherwise A would not 
appear in X Y  ~ A Z .  So there is an F-based DDAG for X ~ A using X Y  ~ A Z .  By 
Lemma 2, X---~ X Y  must be in F +, and therefore X---~ Y is m F +. Thus XY.--> A Z  cannot 
be in F, since Y Is superfluous. [] 
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Observations. I f H  is a G-based DDAG for X---~ Y, then there is a G-based DDAG H'  
for X ~ Y with every node having a distinct label. Suppose v and w are nodes in H both 
labeled C. Assume v was added before w or at the same time, so there is no directed path 
from w to v. Remove w and all its incoming edges. Attach the outgoing edges of w to v. 
Repeat the process for all pairs of same-labeled nodes to get H'. Note that U(H) D_ U(H'). 

If H and J are G-based DDAGs for FDs X ~ Y and Y ~ Z, we can construct a G- 
based DDAG K for X ~ Z having no duphcate labels with U(K) contained in the union 
of U(H) and U(J). Assume that H and J have no duplicate labels. K is formed by splicing 
H and J together: Overlay H and J so the initial nodes in J coincide with the nodes labeled 
Y in H. If the result has duplicate nodes, remove them as described above. The result is K. 
In Figure 4, Gis  {A ~ C, C---~ D, BC---~ E, D--~ FB, BE---~ G}, and the DDAGs are for 
A B  ~ DE and DE ~ FG. The DDAGs are combined and excess nodes eliminated to form 
a DDAG for A B  --, FG. Actually, Y--~ Z can be replaced with W----~ Z for any set W o f  
attributes labeling nodes in H, since H must also be a DDAG for X ~ W. 

3. Direct Determination 

Definition. Given a set of FDs G with X ~ Y m G +, X directly determines Y under G, 
written X--~ Y, if there exists an F-based DDAG H for X ~ Y with U(H) tq EF(X) = 0 
for some nonredundant  cover F of G. That is, no FDs with left sides equivalent to X are 
used in H. 

Note. Er(X)  may itself be empty, and always X --~ X As an example, if F = G = 
{A ~ B, C---~ D, AC--~ E},  then AC--~ BD under G. 

As the definition stands it is not particularly useful, for the existence of a D D A G  not 
using FDs from EF(X) might depend on which cover F is chosen. Checking direct 
determination could become computationally very hard. The next lemma proves that the 
choice of a cover for G is immaterial. 

LEMMA 4. X directly determines Y under G if and only i f  for  every nonredundant cover F 
for  G there exists an F-based DDAG H for  X---~ Y with U(H) N EF(X) = 0 .  

PROOF. Let F be a nonredundant  cover for G for which there is an F-based DDAG H 
of X ~ Y using no FDs in Er(X).  For every FD Z ~ W in U(H), Lemma 2 states that 
X ~ Z. Let F '  be another nonredundant  cover for G. Suppose some F -based  DDAG for 
Z---~ Wuses an FD in E~(X), say T---~ S. By Lemma 2, Z---~ T. But Tis  equivalent to X, 
so Z ~ X, and hence Z is equivalent to X, which contradicts the assumption about H. 
Therefore every Z ~ W in U(H) has a F'-based D D A G  that does not use FDs from 
EF,(X). We obtain the required F-based  DDAG for X ~ Y by splicing together the 
DDAGs for each Z ~ W i n  U(H). [] 

COROLLARY. X --~ Y under G if  and only if for  every cover F for  G there exists an F- 
based DDAG H for  X- - ,  Y with U(H) N EF(X) ---- 0 .  

PROOF. Every cover F for G contains a nonredundant  cover as a subset. [] 

The next lemma gives a hmited transitivity rule for a direct determination 

LEMMA 5. I f  X--~ Y, Y--~ Z, and Y ~ X under G, then X--~ 'Z under G. 

PROOf. Let F be a nonredundant  cover for G, and let H and J be DDAGs for X ~ Y 
and Y ~ Z such that U(H) and U(J) contain no FDs from EF(X) (= EF(Y), since X 
Y). Splicing H and J will form an F-based DDAG K for X ~ Z that uses no FDs m 
EF(X), by the observation at the end of the last section. [] 

LEMMA 6. Let F be nonredundant. Pick an X that is a left side m F and any set Y 
equivalent to X. There is some Z in er(X) such that Y--~ Z. 

PROOF. Assume Y is not in eF(X). Otherwise Y--~ Y, and the lemma is proved. Since 
X ~ Y, for every Z in eF(X) there must be a denvation in F for Y ~ Z and hence an F- 
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based DDAG for Y ~ Z. Choose the Z m eF(X) with a DDAG H for Y ~ Z with the 
least number of nodes. Suppose there is an FD T ~ S in EF(X) used in H. Then H is a 
DDAG for Y ~ T, and furthermore, there is some node m H labeled by an attribute of S 
that can be removed and still leave a DDAG for Y---~ T. I f H '  ts H with this node removed, 
the mm~mality of H is contradicted, since T E er(X).  Thus there are no FDs from EF(X) 
in U(H)and  Y-:-~ Z. [] 

LEMMA 7. I f  F ts mmimum, there are no distinct FDs Y ~ Q and Z ~ R m EF(X) such 
that Y--~ Z. 

PROOF. Suppose H is an F-based DDAG for Y ~ Z using no FDs in EF(X). Form F '  
by replacing the two FDs Y ~ Q and Z ~ R by Z ~ QR. The FD Y---, Z can still be 
denved in F',  since none of the FDs in U(H) have been altered. However, F '  has one 
fewer FD than F but the same closure, a contradiction. [] 

Lemmas 6 and 7 are the tools needed to show the following property of minimum 
covers. Let I SI denote the cardmahty of a set S. 

THEOREM 1. Gtven equivalent mintmum sets o f  FDs F and G, IEF(X) I = I EG(X)I  for any 
X. Thus the size o f  the equivalence classes m I~F tS the same fo r  all mmimum F with the same 
closure. 

PROOF Let m < n, and let EF(X) and EG(X) be composed as shown below. 

Er(X)  Ec(X)  

X1 ---~' g l  Y3 ---~ 71 

X ~ £ m  ~ 

Some 16 is not the same as some X,, or two Yfs would be equal, contradicting Lemma 7. 
Thus there exists a j  such that Yj # X,, 1 _< i <_ m. By Lemma 6 there exists a k such that 

16 ~ X~. Renumber the FDs in the two equivalence classes so that Y1 ~ Xi. In EG(X) 
(and G itself) replace Y~ --~ Y~ with X~ ~ Y~. Note that Y1 ~ Y1 can still be derived from 
G, since Yi ~ X~ and Xi ~ Y~ can both still be derived. If X~ = 16 for some j > 1, X1 
Yi can be combined with 16 ~ ~ to form X~ ~ Y~ 16, which shows that G is not minimum. 
If S~ # 16 for a l l . />  1, the number of left sides of FDs m EG(X) that match left sides of 
FDs in EF(X) has increased. (We removed Y~ and added Xi.) By the remarks at the 
beginning of the proof, there is stall a j such that 16 # X,, 1 _< t _< m, and a k such that 
16 ~ X~. Repeat the preceding process from where the renumbermg took place. 

If we never encounter a contradwtlon to the minimality of G, eventually all the X,'s 
must become left sides of FDs in Ec(X),  contradicting our opening remark. Therefore the 
assumption that m < n must be incorrect, and m fact m = n. [] 

Lemma 1 implies that for any equivalent nonredundant sets F and G, I/~FI = I EGI. 
Theorem i goes a step further and shows that ff F and G are minimum, not only is the 
number of classes of FDs with eqmvalent left sides the same in each set, but the sizes of 
corresponding classes are the same. The correspondence goes one step further. Let F and 
G both be minimum, and look at EF(X) and Ea(X). 

EF(X) Eo(X) 

X2 ~ X~ Y~ ~ ~2 

Xm----~ Xm Yrn--~ Ym 
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Every X, directly determines some Yj, and this Y~ directly determines some Xk by Lemma 
6 (recalling that Lemma 4 states direct determination is independent of  the choice of  
nonredundant cover). I f  i # k, since X, ~ Yj, Y~ ~ Xk, and Yj ~ X,, we can apply Lemma 
5 to get X, ~ Xk, which contradicts Lemma 7. Hence i = k. It follows that for every X, in 
eF(X) there is exactly one Yj in e~(X) such that X, ~ Yj and Yj ~ X~. This relationship 
allows X, to be substituted for Y~ without changing the closure of  G, and Yj for X, in F, 
since one left side can still be derived from the other after the substitution. For  example, 
if.4 is social security number and B is student number, then .4 ~ B. Whenever  we have 
a left side of  the form .4X we can replace it with BX, and vice versa, since .4X ~ BX  and 
BX ~ .4 X, provided ,4 does not determine X. 

The observations above show how to combine two equivalent minimum sets F and G to 
get possibly a new minimum cover for both with fewer attribute symbols than either. 
Suppose G has no more attribute symbols than F. Start with a pair of  corresponding 
equivalence classes, EF(X) = {Xl ~ Xl, X2 ~ X2 . . . . .  Xm ~ Xrn} and EG(X) = 
{ Y1 ---> Y1, Y2 ~ Y2 . . . . .  Ym ~ Ym}, and number the FDs so that X, and Y, directly 
determine each other Modify EG(X) by substituting X, for Y, whenever X, is smaller than 
Y,. The new G will have no more attribute symbols than the old G, and possibly fewer. 
The next section demonstrates that this combination can be done in polynomial  time. 

Suppose now that G is only nonredundant,  but F is still minimum, and that I EF(X) I < 
lEG(X)[ for some X. Say the FDs  in EG(X) go up to Yn ---~ Yn, n > m. There must be Y~ 
and Yk, j # k, in eG(X) such that l,~ ~ X, and Yk ~ X, for some X, in eF(X). In turn, 
X, ~ Yh for some Yh in eG(X). Either h # j or h # k. Assume the first case, and apply 
Lemma 5 to get Yj --~ Yh, J # h. In the second case, Yk "-~ Yh, k # h. We have proved the 
following result 

THEOREM 2. Let F be mmimum and G be nonredundant, with F--- G. For any EG( X) with 
more FDs than EF(X), there are Y, and Y~ in eG(X) belonging to different FDs, with Y, --> Yj. 

The existence of  Y, and Yj means that G can be improved by replacing Y, ~ Y, and 
Yj ~ ~ with Y~ ~ Y, ~ .  Furthermore, we need not know F to make this improvement. 
This result is very important in the next section. 

COROLLARY. An optimal set of FDs is LR-minimum. 

PROOF. If  a set of  FDs G were optimal but not minimum, it could be shortened as 
described in the preceding paragraph, since G must be nonredundant.  I f  G has superfluous 
attribute symbols on the right or left sides of  its FDs, it is not optimal. Hence G is LR- 
minimum. []  

4. Complex:ty Results 

Beeri and Bernstein [5] present a membership algorithm that determines in linear time if  
X ~ Y is in G ÷, given a set of  FDs G and an F D  X ~ Y. (All complexity results are for 
the RAM model [3].) The algorithm actually finds all FDs  W---~ Z such that X---~ W a n d  
all attributes A such that X---, A is in G +. The set of  all such A ' s  is called the closure of  X 
and written X +. Beeri and Bernstein also give an O(np) algorithm for finding a nonredun- 
dant cover for G, where n is the length of  G (in attribute symbols) and p is the number  of  
FDs in G. 

The membership and nonredundant  cover algorithms can be used to decide direct 
determination: Given a set o f F D s  G and an F D  X---> Y, does X-z-> Y? Direct determination 
can be tested in O(np) time: 

DIRECT(G, X--~ Y) 
I. Find a nonredundant cover for G [O(np)] 
2 Determine eF(X). First find X + [O(n)], Then for every FD m Fwnh left raze Z contained m X +, determine if 

Z ~ X is m F +. If so, Z Is m ep(X) [O(np)] 
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3 Run the membership algorithm on F - E F ( X ) ,  X----) Y The FDs i n  EF(X) can be marked while finding eF(X) 
m step 2 If X ~ Y is in the closure of F - EF(X), output "yes" and stop, otherwise output "no" and stop 
[O(n)] 

A test can be incorporated before step 1 to determine  i f  X ~ Y is in G ÷. I f  not, output  
" n o "  and ignore the rest o f  the procedure.  

THEOREM 3. Gtven a set o f  FDs G, finding a mmimum cover F for  G can be done in 
O(np) time. 

PRoov. L e m m a  7 and T h e o r e m  2 to_gether say that  a nonredundan t  cover  F i s  m i n i m u m  
if  and only if  there are no FDs  X ~ X and Y ~ Y in F such that X <-~ Y and X --~ Y. 
Fur thermore ,  i f  such a pair  o f  F D s  exists in F, we can reduce the size o f  F by replacing the 
pair with Y ~ X Y. Thus  the m i n i m u m  cover a lgor i thm proceeds by f inding such pairs of  
FDs  in G and replacing them with a single F D  until  no more pairs remain.  

MINIMIZE(G) 
I Fred a nonredundant cover F for G 
2 Determine all the classes m/~F 
3 For each class EF(X) m Er, 

for each Y--~ Ym EF(X), 
compute Y+ under F - EF(X) If there is a Z ~ 2 in EF(X) with Z m Y+, remove Y ~ Y from F 
and add Y to the right side of Z ~ 2 

4 Output F 

Finding F takes O(np) time. F inding the equivalence  classes m/~F  might  seem to reqmre  
O(np 2) time, since for each pair o f F D s  X---~ .~and  Y--~ Y i n  F w e  need to test i f  X<--~ Y 
under  F. However ,  m one run o f  Beeri and Bernstein's membersh ip  algori thm, for a given 
X, we can mark every F D  Y ~ Y in F such that X---, Y. In O(np) t ime we can run the 
membership  algori thm on the left side o f  every F D  in F to produce a p × p (at most)  
Boolean matr ix M with rows and columns indexed by FDs  in F. The  ent ry  M [ X  ~ :~, 
Y---~ Y] equals 1 i f  X---~ Y is in F+; it equals 0 otherwise. F r o m  M it is possible to f ind all 
the sets in/~F in O(p 2) time. 

For  step 3, for each Y ~ Y in EF(X), a s imdar  use o f  the membersh ip  a lgor i thm can 
mark  every F D  Z ~  2 s u c h  that Y ~  Z i s  in ( F -  EF(X)) ÷. That  is, Y ~  Z. The  
membersh ip  algori thm is run at most once for each F D  in F, giving O(np) t ime complexi ty  
for step 3. Since no step o f  M I N I M I Z E  takes more than O(np) time, the complexi ty  o f  the 
entire a lgori thm is O(np). [] 

COROLLARY. Given a set o f  FDs G, L-mimmum and LR-mmtmum covers for  G can be 
found in O(n 2) time. 

PROOF. First find a m i n i m u m  cover  F for G m O(np) time. Beeri  and Bernstein give an 
O(n 2) procedure for removing extraneous attributes f rom left sides o f  F D s  [5]. Apply ing  
this procedure makes F L-min imum.  To  make  F L R - m i m m u m ,  remove  extraneous 
attrtbutes from right sides, as follows: 

Take X---~ Yln F Suppose Y= BiB2 ... Bm Let F' be Fwlth X--~ Y replaced by X--~, ( Y -  {B~}) Test if 
X ~ Y is m the closure of F' If so, let F = F' Repeat this process for each B, m Y and all FDs m F [O(n 2)]. 

To  see that the above process works correctly, we must  prove that  after removing  
extraneous attributes f rom right sides o f  FDs, no new attributes are made  extraneous on 

left sides. 
Suppose after el iminat ing extraneous attributes f rom right sides there is an F D  X ~ Y 

in F with extraneous attr ibute A in X. Let F '  be the version o f  F immedia te ly  after 
removing  extraneous attributes f rom left sides o f  FDs.  Assume that X ~ Y comes  f rom 
X---~ YZ  in F ' .  Let X '  = X - A. Since A is extraneous in X, F - (X--~ Y} t.J {X'  ~ Y} 
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E F, so X'  --~ Y is in F +. Let H be an F-based D D A G  for X'  ~ Y. If  X ~ Y is not in 
U(H),  X---, Yis redundant in F, contradicting the minimality o f F .  Therefore X ~  Yis in 
U(tt) and X' .-~ X is in F + by Lemma 2. Since F '  E F, X '  --~ X is in (F ' )  +. Clearly, 
X'  ~ X c a n  be derived from F '  without using X.-~ YZ. It follows that F '  - {X-- ,  YZ} 
U {X' --~ YZ} ~ F'. We see that F '  is not L-minimum, a contradiction. [ ]  

The yes~no minimum cover problem Is: Given a set of  FDs  G and an integer k, is there 
a cover F for G with no more than k FDs? A theorem of  Bernstein [6] states that the above 
problem is NP-complete. However, we have not shown that P ffi NP. What  Bernstein 
actually proved is that the yes~no contained cover problem is NP-complete. The contained 
cover problem is the minimum cover problem with the added restriction that F i s  contained 
in G. 

An analogous situation to the m~mmum cover and contained cover problems arises with 
a pair of  graph problems. A transnive reduction of  a directed graph H is a graph J with 
fewest nodes that has the same transitive closure as H. This problem is solvable in 
polynomial  time [2]. A minimum equivalent graph of  a directed graph H is a subgraph J of  
H with fewest nodes that has the same transitive closure as H. Sahni shows that finding 
the size of  a minimum equivalent graph is NP-complete [ 16]. The analogy is not surprising, 
for the transRive reduction and minimum equivalent graph problems are special cases of  
the mimmum cover and contained cover problems. (All FDs  have single attributes on both 
the right and left sides.) Indeed, Bernstein uses the minimum equivalent graph problem to 
obtain his result. 

The optimal cover problem Is the same as the minimum cover problem, except that F 
must have fewer than k attribute symbols (rather than FDs) This is most likely a much 
harder problem. 

THEOREM 4. The optimal cover problem is NP-complete. 

PROOF. Given a set of  FDs G and a set of  attributes X, a key for X i~s a subset Y of  X 
such that Y--~ Xl s  in G +, but not Y' ~ X, for any Y' properly contained in Y. Simply, a 
key is a minimal subset of  X that functionally determines X. Lucchesl and Osborn [12] 
show that the following key of cardinality k problem is NP-complet¢. Given a set of  FDs  
G and an integer k, let X be the set of  all attribute symbols m G. Does X have a key of  
cardinality no larger than k? 

We can solve the key of  cardinality k problem In polynomial  time using a polynomial-  
time algorithm for the optimal cover problem. First we need to prove two claims. 

Definition. An F D  X---~ Y m  G + is reducedi fXN Y =  0 and for no proper  subset X '  
of  X is X '  ---~ Y in G +. Let RED(G) be the set of  reduced FDs in G +. 

CLAIM 1. Let G be a set of FDs with attribute symbols X, and let A and B be attribute 
symbols not m X. Let G' = G U {AX---> B). Then 

RED(G') -- RED(G) U {AY--~ BZ I Y is a key of X and Y N Z = ~}. 

PROOF. Let T---~ S ~ RED(G') ,  and let H be the smallest G'-based D D A G  for T--~ S. 
Consider the following two cases: 

(1) AX---~ B is not in U(H). I f A  is m H it can have no incoming or outgoing edges. 
Therefore A must belong to T. Since T ~ S is reduced, A is not in S, so A can be removed 
from both H and T, contradicting the assumption that T ~ S is reduced. Hence A must 
not be m H or T ~ S. Neither is B, by a similar argument, so T--~ S is in RED(G).  

(2) AX---~ B is in U(H). Once a g a m a  can have no incoming edges, soA is in T. The 
labeled B has no outgoing edges, so it must be in S or it could be erased from H, which is 
supposed to be minimal. Let Y be the set of  nodes with no incoming edges, except for A. 
Then T ~ S is actually A Y ~ BZ for some Z, Z ---~ Y = ~ .  Removing A and B from H 
yields a D D A G  with all the attributes of  X. From Lemma 2 we have Y ~ X. Since Y 
X is reduced, Y must be a key of  X. 



M m t m u m  Covers in the Relational Database Model  673 

This argument shows containment in one direction. Containment in the other direction 
is simple. []  

Note that any LR-mimmum cover contains only reduced FDs. 

CLAIM 2. Let  G and G' be as in Claim 1. Then F'  ts an L R - m i m m u m  cover f o r  G' zf and 
only i f  F '  = F t 3  {A Y---~ B} ,  where F is an LR-min imum cover o f  G and Y is a key o f  X. 

PROOF. We show only the only if  condition. Let F '  be given, and let F =  F '  N RED(G).  
We must show that F is a cover of  G. Let T ~ S be in G ÷, and let H be an F - b a s e d  
D D A G  for it. Suppose U ( H )  contains an F D  of  the form A Y ~ BZ .  Since A has no 
incoming edges (no reduced FD has A on the right), A is in T, a contradiction to T ~ S 
being in G ÷. Hence H is also an F-based D D A G  for T---~ S, and it follows that F l s  a cover 
of  G. F is easily seen to be LR-mimmum by the LR-mimmali ty  of  F ' .  

Let F" be F '  - F. F "  consists of  FDs of  the form A Y ~ BZ .  Since F is a cover of  G, 
Claim 1 tells us that Y is a key of  X, and hence Y ~ Z m F ÷. Since F '  is LR-minimum, 
Z = O, so all the FDs of  F" have the form A Y ~ B, Y a key of  X. Suppose F"  contains 
A Y1 ~ B and A Y2 ~ B, Y1 # Y2. A Y1 --o B is redundant m F ' ,  since Y~ ~ X and X ~ Y2 
in F ÷, so A Y~ ~ B can be derived from F '  - {A Y~ ~ B}. Thus F "  contains a single 
FD. []  

PROOF OF TrIEOREM 4 (CONT.). We want to find if  X has a key of  cardinality no greater 
than k under G. Let G' = G U {AX---~ B}  for A, B not in X. Use repeated applications of  
the optimal cover algorithm to fred the size s of  an opUmal cover for G. Now find the size 
t of  an opumal  cover for G'. The sizes of  the two covers differ by the number of  symbols 
m A Y--,, B, where Y is a smallest key of  X. Hence I YI = t - (s + 2). 

The argument above shows that the opumal  cover problem Is NP-hard.  It is in NP, since 
a cover for G can be guessed and checked in polynomial  time. []  

5. The Kernel Algorithm 

Lewis et al. [11] have proposed a representation for a set of  FDs  G that they term the 
kernel. The kernel is a unique canonical form and embodies all nonredundant  covers of  G. 
The kernel consists of  sets of  equivalent left sides that may appear in a nonredundant  
cover of  G, together with a list of  possible right-side attributes for each set. The algorithm 
they present for finding the kernel of  G takes exponential t ime- -O(n  n) at least, on inputs 
of  size n21og2n. Such a time complexity hampers the usefulness of  the kernel. 

The algorithm begins by finding a nonredundant  cover for G with no extraneous 
attributes on left or right sides. The authors use the term minimal for redundant,  but they 
blur the distinction between minimal and minimum. To find the nonredundant  cover, the 
algorithm generates G ÷, which can be huge compared to G itself. This step is totally 
unnecessary, since the LR-minimum cover algorithm can replace the part of  the kernel 
algorithm that finds the nonredundant  cover. This change reduces the time complexity of  
this portion of  the algorithm to be polynomial  and throws in a minimum rather than 
nonredundant cover as part of  the bargain. 

Unfortunately, this change does not create a polynomial-t ime algorithm. The next part 
of  the kernel algorithm starts by finding all left sides equivalent to left sides in the 
nonredundant cover for G and leaves all those in the kernel that cannot be derived by 
augmentauon from any of  the others. The number of  such left sides can be much larger 
than the number of  FDs in G. For  example let G = {A, ~ B ,  B, ~ A,[ 1 _< i _< m}  t.J 
{A1A2 • . .  Am ~ C}.  The set of  G is LR-minimum and has 2m + 1 FDs The set of  left 
sides equivalent to A 1A2 . . .  Am IS ( D1 D2 . . .  Dm I D, = A,  or B,). This set has 2 m elements. 
Examples exist where G has m 2 FDs and there are m m equivalent left sides. 

Thus the kernel inherently takes long to compute, since it can be more than exponentially 
larger than its input G. The kernel algorithm may not even be polynomial  m the size of  its 
output because of  other steps in the algorithm. Although the kernel is a unique represen- 
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tation of  a set G, we maintain it is not a very useful one, since it can take so long to 
compute and is not necessarily a very succinct representation. 

6. Summary and Further Questions 

We have compared and related different notions of  minimahty of  covers for sets of  FDs. 
Using direct determination, we showed it is possible to find covers with the smallest 
number of  FDs in polynomial time. We also demonstrated that it is unlikely that covers 
with the smallest number of  attribute symbols can be found in polynomial time. 

One question, raised in the abstract, is how much the use of  a minimum cover improves 
the run time of  various algorithms that use a set of  FDs as an input. In the case of  
relational synthesis algorithms, the use of  minimum covers instead of  nonredundant covers 
can improve the database scheme synthesized [13, 14]. The use of  minimum covers in 
connection with the tableau modification algorithm of  Aho et al. [1] should also be 
investigated. Finding optimal covers Is NP-complete,  but LR-minimality takes us part of  
the way there by giving a necessary condition for optimality. What bound can be placed 
on the ratio of  the size of  an optimal cover to the size of  a LR-minimum cover? This paper 
mainly deals with equivalence and transformations of  left sides of  FDs. What sort of  
transformations can be found for right sides? 
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