
On J-maximal and J-minimal Flow-Shop Schedules

FRANCIS Y. C H I N A N D L O N G - L I E H TSAI

Umverslty of Alberta, Edmonton, Alberta, Canada

ABSTRACT. Scheduling problems are considered for a common kind of flow shop where the execuuon
Ume for certain tasks in each job is always longer or shorter than that for the other tasks NP-completeness
ts shown for some cases, stmple opttmal algorithms are found for the others, and bounds are gtven for the
worst cases.

KEY WORDS AND PHRASES Job schedulmg, flow-shop schedules, minimum fimshmg time, NP-complete,
optional schedules, heuristic schedules

CR CATEGORIES 4.32, 5.25, 5.30

1. Introduction

Aflow shop [4] consists of m _> 1 processors (P1 Pro} and n _> I jobs (J1
Jn}. Each processor Pj performs a different task, and each job J, has a chain of m
tasks. Tj,, is the j th task of J,; its execution time is denoted by G,,. Tj,, has to be
processed on Pj and can only be executed after Tj-x., is finished.

A schedule for a flow shop is defined as the sequence of tasks to be executed by
each processor. If we allow a task to be partitioned and done in several time intervals,
the schedule is called preemptive. A nonpreemptive schedule is one in which a
processor cannot be interrupted once it has begun execution of a task. The finish
time of a schedule, that is, the latest completion time of the individual processors, is
usually denoted by f and is also the time by which all the tasks are completed. An
optimalfinish time (OFT) schedule is one which has the shortest finish time, denoted
by f* , among all schedules. In this paper we are interested in nonpreemptive OFT
scheduling problems.

Flow-shop problems have long existed, and, despite the great effort devoted to
them [3, 4, 6], these problems, even those of a small practical size, still remain
difficult. An O(n log n) OFT algorithm for m = 2 was first proposed by Johnson [7],
but for m -> 3 the problem has been shown to be NP-complete [5]. In this paper a
restricted case of thts problem, called the J-maximal (J-minimal) flow-shop problem,
is studied)

A J-maximalflow shop is a particular kind of flow shop in which the J th task in
each job has the longest execution time of all tasks in that job. The J-maximal (J-

In [11], the authors define an ordered flow shop m a more restricted manner than our definmon They
assume additional relauonshlps among the execuuon times of the jobs

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distrtbuted for direct commercial advantage, the ACM copyright notice and the role of the pubhcaaon
and tts date appear, and notice ts gtven that copymg ts by permtsston of the AssoctaUon for Computing
Machinery To copy otherwise, or to republish, requires a fee and/or specific permlsston.

This research was supported m part by Natural Soences and Engmeenng Research Councd of Canada
Grant NSERC A4319.

Authors' present addresses' F Y Chin, Department of Computer Science, Umverslty of Alberta,
Edmonton, Alberta, Canada T6G 2HI, L.-L. Tsai, Burroughs Corporation, 16701 West Bernardo Drive,
San Dxego, CA 92127

© 1981 ACM 0004-5411/81/0700-0462 $00 75

Journal of the Assocumon for Computmg Machinery. Vol 28, No 3. July 1981. pp 462-470

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322261.322265&domain=pdf&date_stamp=1981-07-01

On J-Maximal and J-Minimal Flow-Shop Schedules 463

minimal) flow shop occurs often in real job-shop situations; an example of such a
shop is an assembly line, where the workers or work stations are the processors, and
it is usually true that a given task may take longer on one machine than on another.
Similarly, we have the J-minimalflow shop in which the J th task in each job has the
shortest execution time. Nevertheless, even with such a restriction on the flow shop,
the OFT problem remains very difficult.

Section 2 shows that both the J-maximal and J-minimal flow-shop problems are
NP-complete. In Section 3 the problem is further restricted by assuming that all the
other tasks in a job except the J-maximal or J-minimal one have the same execution
time. We have found efficient algorithms for some of these cases, while others remain
intrinsically difficult. Section 4 studies the ratio of the values of the worst possible
and best possible solutions for the problems. Tight bounds for the worst case ratio
are derived for the l-minimal flow shop; an O(log m) lower bound and an O(~m)
upper bound for the worst case ratio are obtained for the 1-maximal case. Particular
attention is paid to the special case when m = 3.

2. NP-Complete Cases

In this section the J-maximal and J-minimal flow-shop problems are shown to be
NP-complete. The J-maximal and J-minimal flow-shop problems can be defined
exactly as follows.

Definition. A J-maximal (J-minimal) flow shop is one which has the longest
(shortest) execution time on the J th task; that is, tj,, _< (_>) tj,~ for 1 _< i _< n and 1 _<
j_~ m.

In proving the NP-completeness results in this section we make use of the following
known NP-complete problem.

Partition. A multiset S = (a l an } is said to have a partition if there exists a
subset u of the indices {1 n} such that ~,cua, = (~-1a,)/2. The partition
problem [8] is that of determining for an arbitrary multiset S whether or not it has a
partition. The a, may be assumed to be integers.

The OFT problem can be treated as a language recognition problem [8, 12] and
restated as

FOFT. Given a flow shop of m processors and n jobs with task times t j , , 1 <_
j _< m and 1 _< i _< n, and a number ~-, does the shop have a schedule with finish time
y_<T?

The customary interpretation of a processing time t j., being zero is that job J, has
to spend an infinitesimally small amount of time on processor Pj. Under this
interpretation, part (2) of the proof of Lemma 1 below still implies NP-completeness
for the 2-maximal, 1- and 3-minimal FOFT. On the other hand, there exists an
O(n log n) algorithm for the 2-minimal FOFT [2]; more specifically, the flow-shop
problem FS 1 used in part (1) of the proof of Lemma 1 is an ordered flow shop in the
sense of [11] and hence solvable in polynomial time. However, it turns out that the
1- and 3-maximal FOFT remain NP-complete even under this interpretation of tj,~
being zero [1].

In the following, we assume that if the processing time G,, is zero, J, does not have
to visit Pj at all. As a result, the following theorem and lemma present a straightfor-
ward reduction, which is a slight variation on constructions given in [6, 9].

THEOREM 1. The J-maximal FOFT for m ~_ 3 is NP-complete.

464 F. Y. C H I N A N D L . - L . T S A I

U/½ r 2,. + i / / ~ [..\',~ r 2,. + 2 b.\'q
V / / I / I / / / / / A k \ \ \ \ \ \ \ \ \ \ \ ~ l

I ~ ' / / / / / / / / / / A x x x x x x 2 2 ~ \ \ \ \ \ \ \ \ \ N]
I b . , t , . o W ' ½ r 3 . + , P' /A~r3, ,I ,~4~\ \"~ r 3. . + 2 ~.."q
l t ~ ' / / - " H / / / / / / t - ' ~ , L , 2 , l , , \ \ \ \ ~ < \ x S \ \ \ ' q

0 T 2T 3T 4T 9T/2

Fm 1. Example FSI

PROOF. Obviously F O F T can be recognized in polynomial time by a nondeter-
ministic Turing machine [12]; therefore, so can the J-maximal FOFT. The Turing
machine guesses the optimal permutation on each of the processors and tests whether
the finish t imef i s less than or equal to ~-. The remaining part of the proof is presented
in the following lemma. It is sufficient to consider just the case m = 3.

LEMMA 1. I f the J -max imal F O F T with m = 3 is polynomially solvable, then so is
P A R T I T I O N .

PROOF. J-maximal flow-shop problems are constructed from the partition prob-
lem S = { a a an } so that for each problem there exists a schedule with a finish
time less than or equal to the assigned time z if and only if S has a partition. We
have to consider three different cases in which the resulting flow-shop problems are
1-, 2-, and 3-maximal FOFTs.

(1) 1- and 3-maximal FOFTs. Construct the flow-shop problem with n + 2 jobs
and m = 3 processors, as follows:

FSI:

where

J,:
Jn+l:
J,+2:

tl,~ = t3a = a,, t2,~ ---- 0

t l , n + l ~ t2 ,n+l = t 3 ,n+ l = T;
t l , n+2 = t2,n+2 "~ t3,n+2 = T ;

for 1 <_ i <_ n;

9T
T = a , a n d • = -~-.

Since tl,~ = tz,, --> t2,, for 1 _< i _< n + 2, FSI is dear ly a 1- or 3-maximal flow shop.
The optimal schedule is as shown in Figure 1. It can be shown easily that S has a
partition if and only if there is a nonpreemptive schedule with finish time 9 T/2. A
similar proof already appears in [9].

(2) 2-maximal FOFT. The flow-shop problem which serves our purpose involves
n + I jobs and is presented below.

FS2:

with

l,: h,, = t3,, = 0, t2,, = a~ for 1 _< i _< n;
T

J . + i : t l ,~+l = t 2 , . + 1 = t 3 , . + 1 = .~;

3T
T = a, and z = 2

FS2 is obviously a 2-maximal flow shop. If S has a partition, the optimal schedule
is shown as in Figure 2. It is also easy to show that the finish time of the schedule

On J-Maximal and J.Minimal Flow-Shop Schedules

L - " J '

0 T/2 T 3T/2

FIG. 2 Example FS2

465

must exceed 3 T/2 i f S does not have a partition, and the proof is similar to those for
the 1- and 3-maximal flow-shop problems. []

THEOREM 2. The J-minimal FOFT for m >_ 3 is NP-complete.

PROOF. The argument is very similar to the proof presented in Theorem 1, except
that FSI is used for proving the 2-minimal FOFT and FS2 for proving the 1- and 3-
minimal FOFTs. [3

3. Optimal Cases

We have shown that the J-maximal and J-minimal flow-shop problems are NP-
complete for m _> 3. In this section we study a very restricted class of J-maximal
flow-shop problems, where the execution times of all the tasks in each job except the
J-maximal or J-minimal one are the same. We use notations L, S, and E to stand for
the tasks with the longest, shortest, and equal execution time. (L, E, E, E, E) stands
for a 1-maximal flow shop with m = 5. OFT algorithms are found for the
(L, E E), (S, E E), (E, E, L), and (E , E, S) cases. The more general
"mixed" case, that is, (- - , E, E) and (E, E, - -) , where - - is either L or S, is
also solved.

We first show that a very simple algorithm will guarantee the O F T for the case
(E, E). Let us assume that k is the index of the largest (E, . . . , E) job, that is,
tj,k ~ t~,, for all i andj . The following lemma gives a lower bound for the finish time
of the (E E) flow-shop problem.

LEMMA 2. Consider the f low shop (E, E) with m processors. I f tl,~ is the
execution time for every task in the ith job and n is the number of jobs, then

n

f * -> ~ tx,, + (m -- 1)tx,k.
z - - 1

PROOF. For any schedule let

S = { 1, . . . , n}, the set of all the indices of the jobs;
$1 = the set of indices of those jobs that precede Jk on P1;
$2 = the set of indices of those jobs that follow Jk on Pm;
$3 = S - S~ O $2 O {k}, that is, the set of indices of those jobs that do not precede

Jk on P~ or follow Jk on Pro.

Let h E Sz. It is clear that Jh must overtake Jk somewhere in between P~ and Pro, and
thus f * is at least

tl,, + mtl,k + ~ tl,, + ~ tl., = ~ tx,, + (m -- 1)tl,k. []
I E S 1 t E S 2 t ~ S 3 z-- 1

A permutation schedule [4] is simply a schedule with the same job order on all
processors, that is, a schedule that is completely characterized by a single permutation

466

I T1"1'1 I " ° "

I "~,1 [.

F. Y. CHIN AND L.-L. TSAI

l" A -I ~1 ...~,.~ dj ~..-

- - H - " , - ~ " - ~ , k • • •
I F / / / / / / / /] I%.\N.\N.NI

I l r / / / l / / / A \x

I" B "1
FIGURE 3

of the job indices 1 n. Permutation schedules have the feature that a processor
cannot be idle if there exists a task awaiting execution on it. Usually permu-
tation schedules do not give optimal finish times for the flow-shop problem with
m > 3 [4]. It turns out, however, that permutation schedules are sufficient to give an
optimal finish time for our problem.

LEMMA 3. Consider any permutation schedule. I f tj,~ _< tj-l,~ for all i and Tj,k starts
dj time units after the completion of Tj- l ,k , with dj > O, then there exists a Ju such that
Tj,, starts immediately after the completion of Ts_l,, and tj,~ >_ dj + tj-l,k.

PROOF. Let Ju be the last job executed before Jk which has its j t h task started
immediately after its (j - 1)st task. As indicated in Figure 3, A and B are the total
duration between Ju and Jk for P j-1 and Pj, respectively. Thus we have

tj,~ + B = A + t~-x,k + d s.

Pj will not be idle in B since u is the last job without a time gap between tasks. Since
ty,~ --~ t j- l ,~, A _~ B. Thus we have

G,u --> tj-x,k + d~. []

COROLLARY. Consider any permutation schedule for the (E, . . . , E)flow-shop
problem, l f J~ is the largest job, then Tj,k is always executed immediately after Tj-~,~ for
l < j_~m.

LEMMA 4. Consider any permutation schedule for the (E E) flow-shop problem.
Pj is always busy after the execution of Tj,k for 1 _< j _< m.

The proof for this lemma is trivial and is omitted here.

THEOREM 3. All permutation schedules give the optimal finish time for the
(E, . . . , E) flow-shop problem.

PROOF. The corollary to Lemma 3 shows that the difference dy between the
completion time of Tj-l,k and the starting time of Tj,k is zero. Lemma 4 states that Pj
is busy after the execution of Tj,k. Since Pm is busy all the time after the execution of
Tin,k, we can easily conclude that the finish time of the permutation schedule is

f = ~ tx,, + (m - l)tl,k,

which is the lower bound on f * given in Lemma 2. Thus we can conclude that this
is an optimal schedule. []

Instead of considering optimal schedules for cases (S, E, E), (L, E, E),
(E E, L), and (E E, S), we study the more general cases (- - , E E) and
(E E, - -) . We show that optimal schedules can be found easily as long as all the
tasks except the first or the last one in each job have the same execution time. The

On J-Maximal and J-Minimal Flow-Shop Schedules 467

following lemma shows that we can restrict our attention to permutation schedules
only.

LEMMA 5. Given any schedule S on m processors for the (-- , E, E) flow-shop
problem, we can always construct a permutation schedule no longer than S.

PROOF. Given the schedule S, we first rearrange the tasks on P1 according to the
sequence on P2 (it is well known that this will not increase the completion time C2,,
of any T2,,) and left-justify the schedule. The schedule on P2 has now been fixed; it
consists of subsets of tasks separated by idle time periods. We next rearrange the
tasks on P3 Pm according to the sequence on P2. If the idle periods on P2 are
sufficiently large, each of the subsets will generate a permutation schedule as
characterized in Theorem 3. Otherwise these schedules will interfere in an obvious
way, but there will still exist a Jx such that the permutation schedule is completed at
time C2,x + (m - 2)t2,x + ~ , ~ s t2,t, where S indicates all the jobs following Jx on P2. As
in the proof of Lemma 2, it can easily be argued that this expression is a lower bound
on the completion time of every schedule, given the sequence on P2. E3

Johnson [7] found the OFT algorithm for the two-processor flow-shop problem.
An optimal permutation schedule can be constructed by having Ju executed before
Jv if min(tl,u, t2,o) _< min(t2,u, h,o). The following theorem shows that by apply-
ing Johnson's condition on the first two processors, the optimal sequence for the
(- - , E, E) flow-shop schedule will be achieved.

THEOREM 4. For the (--, E E) flow-shop problem, the permutation schedule
which has the same sequence as the optimal sequence for the first two processors is the
optimal finish-time schedule for the problem.

PROOF. Let S be an optimal finish-time schedule for the problem. From Lemma
5 we can assume, without loss of generality, that all tasks on each processor are
executed in the same order.

As pointed out in McMahon's thesis [10], the relative order (Ju, Jr) of two adjacent
jobs in a permutation flow-shop schedule is optimal if Johnson's condition holds for
all processor pairs, that is, i fmin{t G,v} -< min{t~,u, is, o} for 1 _< i < j _< m.

Since t,,o = t~,o for 2 _< i _< j _< m, it is sufficient to have Johnson's condition hold
for the case i = 1,j = 2. The condition then follows immediately for all other machine
pairs. []

COROLLARY. The optimal permutation schedule for the (-- , E, E) flow-shop
problem can be found in O(nlogn) time, where n is the number of jobs.

LEMMA 6. Given any schedule S on m processors for (E, . . . , E, - -) , we can always
construct a permutation schedule no longer than S.

PROOF. The proof is similar to that of Lemma 5. []

THEOREM 5. The optimal permutation schedule for the (E E, ~) flow-shop
problem, which has the same optimal job sequence as the last two processors, can be
found in O(n log n) time, where n is the number of jobs.

PROOF. By Lemma 6, the proof is similar to that of Theorem 4 and its corollary.

In fact, the following theorem states a more general result than Theorems 4 and 5.

THEOREM 6. The optimal permutation schedule for the (El El, E2 E2)
flow-shop problem can be found in O(n log n) time, where n is the number of jobs.

468 F. Y. CHIN AND L.-L. TSAI

PROOF. Assume that the first r tasks of each job have the same execution time
while the other task execution times have a second value. Using similar arguments
[10] as before, it can be shown that the optimal permutation schedule has the same
optimal job sequence as the two-processor problem on Pr and Pr+l. By applying
Johnson's algorithm on Pr and P~+~, the optimal job sequence can be found in
O(n log n) time. What remains to be proved in this theorem is that any schedule for
this flow shop can be rearranged into a permutation schedule no longer than the
original schedule. This can be done by rearranging all tasks on P1, . . . , P~,
Pr+2 P , according to the sequence on P~+i. By Lemma 6, the completion time
Cr+l,, of any T,.+i,, will not be increased, and the remaining part of the proof is similar
to Lemma 5. []

4. Bounds on Arbitrary Permutation Schedules

In Section 2 we showed NP-completeness for the J-maximal and J-minimal flow-
shop problems. Only in very special situations, however, can efficient optimal
algorithms be found for these problems. In this section, therefore, we investigate the
bounds on the ratio of the values of the worst possible and the best possible situations.
In what follows, permutation schedules are assumed in all cases.

It is a well-known fact that a permutation schedule for the general flow-shop
problem can have a bound for f / f * as bad as m [6]. However, we have derived better
bounds on f / f * for the 1-maximal and 1-minimal problems. The J-maximal and J-
minimal problems with J not equal to 1 can be solved similarly. Since tight bounds
can be derived for the l-minimal flow-shop problems, we consider these first.

Before we proceed, we need to introduce a process called right-shift. In this process,
the tasks on P2, . . . , Pm are shifted to later initiation times, the shifts being the
minimum necessary in order to eliminate the interior idle times in all the processors.

LEMMA 7. After the tasks in a 1-minimal f low shop are right-shifted, P2 always
starts no later than maxl~_,~_, {tl,,} time units after the beginning of P1.

PROOF. We can make use of the result in Lemma 3 to prove this lemma. Consider
Tj-l,k in Lemma 3 as the second task in this lemma and Tj,k as the first; in addition,
the last job becomes the first and the first becomes the last. Then it is obvious that
dj + 6-1,k becomes the difference between the start times of P1 and P2. It follows
directly from Lemma 3 that the time difference is no more than maxL<,_<n {6,,}. []

We shall make use of the previous lemma to prove the following theorems.

THEOREM 7. For the 1-minimal f low shop with m = 2 , f / f * _< 3/2, and this bound
is the best possible.

PROOF. Let 8j be the start time of Pj+i minus the start time of Pj. From Lemma
7, 81 ~ maxl~L<, {tl,,). Since f* _> ~ -1 t2,, and f* _> 2 maxl~_z~_,{6,,}, we have

f ~,%1 t2,, + 81 3 m < _

f* f* - 2"

The worst case is illustrated in the following example.

Example. Let the schedule have two jobs, J1 and Jz:

J l : t1 ,1 "~ t2,1 = 1;
J2: tl,2 = E, /2 ,2 = 1 .

The worst and optimal schedules are shown in Figure 4a and b, respectively, and
the ra t io f* / f = 3/(2 + e) ~ 3/2 as e ~ 0. []

On J - M a x i m a l and J-Minimal Flow-Shop Schedules

(a) I

Fm. 4.

469

,., I ,.,

l-mmlrnal flow shop for m = 2,f / f* ~ 3/2. (a) A bad schedule. (b) An optmaal schedule

t~ d2 ~ ~ d3 ~1
• • •

Ill I Ill ii-'?.
Y I I / H/A

I, .I I l l ' III
0 r I r 2 r 3 f'

(a)

" " ' " I I I I g"'(4

II " "

0 (b) f'
Fm 5 l-mmlmal flow shop for m = 3,f/f* _< 2.

LEMMA 8. For the 1-minimal f l o w shop with m = 3 , f / f * _< 2.

PROOF. Consider the schedule in Figure 5a; let f ' be the finish time of this
schedule after it is right-shifted. Obvious ly f ' > _ f , f ' = 81 + ~?-1 t2,~ + d3 (refer to
Figure 5a), and f * _> ~?-a t2,~. It is sufficient if we can show that f * _> 81 + d3. Let
tl., = maxl<,<n(tl,,}, and from Lemma 7 we have 81 _< tl,k. NOW let us consider the
following cases.

(l) Ta, k does not start immediately after T2,k (Figure 5a). Obviously P3 will be
busy at least for t2,k time units between r2 and ra, where r2 is the starting time for P3
and ra the finishing time of P2. Since t2,k ~. ta,, _> 81 (by Lemma 7) , f* >_ ~ . 1 t3#
t2,k + d3 --> 81 + da.

(2) Ta, k starts immediately after Tzk and thus T3,k must not start after ra. I f Ta,k
finishes before za, we have ~7-1 ta,, _> t3,k + d3 _> 61 + da, and obviously f * _> ~1 + da.
So we can assume T3,k starts before ra and finishes after ra. In this case, if we further
assume that TLk starts after rt, the total execution time of the tasks executed before
T3,, (i.e., between r2 and ra) must be longer than & from the l-minimal property of
the jobs, and so we have f * ~_ ~7-1 t3,~ _> & + da.

Now consider the case when Tl,k starts before rl. Since tl,k is the largest task on P1,
as a consequence T2,k must start immediately after Tl,k. Thus we have (Figure 5b)
f * -> h,, + t2,k + t3,k; and because of the property of 1-minimality of the jobs, e _> ~i
(refer to Figure 5b); and as f * _> e + ta, k + d~ > 6~ + d~, we have

< ~ 1 + (6~ + d3) ~ 2. []

THEOREM 8. For the 1-minimal f l o w shop with m ~_ 3, f / f * ~_ m - 1, and this
bound is the best possible.

470

(a)

I:11 L I:I H 74,3

F. Y. CHIN AND L.-L. TSAI

(b) --~,-] (m-1)e

T2,1

%.2

~m, 1.1.1-1

FIG 6

-q b-
l-minimal flow shop for m _> 3 , f / f * ~ m - 1. (a) A bad schedule (b) An

optimal schedule.

PROOF. Letf i be the finish time of P,; we then h a v e f = j ~ + (f - f 3) . By Lemma
8, f3 -< 2f*, and so (f - f3) -< ~ ,%1 ~j"L4 t~,, _< (m - 3)f*. Thus we have f / f* _<
m - - 1 .

The bound is seen to be the best possible by considering the following example
with m - I jobs.

Example. L e t t j , ~ f c f o r a l l j # t + 1 andt ,+a, ,= 1, where l _ < i _ < m - 1. The
schedule in Figure 6a gives f = (m - 1)(1 + e), and the one in Figure 6b gives f * =
1 + (2 m - 3) e . T h u s f / f * ~ m - 1 a s E ~ 0 . []

For the 1-maximal flow-shop problem, the bound on f / f* for an arbitrary
permutation schedule is rather difficult to derive. We show in Lemma 9 that the
bound is always less than 1/2 + x/~. However, the worst example we can construct
has the bound 1/2(1 + l /m)(l + log m) or O(log m).

LEMMA 9. For the l-maximal flow-shop problem, f / f* _< 1/2 + ~m.

PROOF. It is easy to see that for any permutation schedule, there always exists a
chain of tasks starting from the first task initiated to the last task completed in the
schedule such that there is no idle time or overlap between any two adjacent tasks in

On J -Max imal and J-Minimal Flow-Shop Schedules 471

(a) T1,4 T1,3

(b) T1,2 I T1,3
i

i

T2,1 i T2, 2

T3,1

T4,1

T5:

I T1,2 IT1,11
T2,3 T2,2 IT2.1]

1'3, I'q
! H

T1.4

T2.3
i

"1"3, 2

'h,2

T6:

r7.1

FIG. 77.

T8,1

N
l -mmunal flow shop for m = 9,f/f* = 21/9 (a) A bad schedu le , f= 21. (b) An opt~nal

schedule, f * ffi 9

the chain. For example, in the schedule given in Figure 7a, T1,4, Tl,a, T2,3, T2,z T3,z,
T4,2, T4a, T~a, T6a, T7,1, T8,1, T9,1 is such a chain.

Let L, and k, be the total execution time and the total number, respectively, of
those tasks in the chain which belong to the ith job; for example, L2 = t2,3 + t2,2 and
k2 = 2. Since the flow shop is 1-maximal, the first task of the ith job takes at least
l, = L , / k , time units. Obviously we have

f * _> max 1,, max (k,l,) and f = ~ L, = k,l,,
t ~ l l~_t~n J t--1 t * l

and so we have

f < ~,%1 kJ,
f* - max {~,~., l,, maxl~_,~_,{k,l,}) = r,

(l)

and ~,%1 k, = n + m - 1 (chain length in number of tasks).
We want to show that under the above conditions, r _< (1 + 4 ~ m - 3) /2 , by

showing that r _< n and the equality r = n only holds when ~ - 1 lj = k,i, for all i.
Let kxlx = max,{k, l ,) . First we must observe the fact that no matter whether

~ .] 1, or kxl~ is used for r in eq. (1), r is maximal only if all the ki are greater
than 1.

Let us assume that kxl~ > ~ ,%1 l,. Then from eq. (1), we have

~,%x.,~x k,l,
r = l +

kxlx '

472 F. Y. CHIN AND L.-L. TSAI

~ n and r can be increased by decreasing lx as long as kxlx ~,-1L. Thus we can conclude
that r will be maximal only if kxlx _~ ~,%~ l,, in which case

~,~.~ k,l,
rffi ~.n, l l ' _<n,

and the maximal value of r is n and is achieved when k,l, = ~ - ~ lj for all i. So r will
be maximal with respect to m when n is maximal with respect to m, given the
condition

and
n

k,l, = Y, b or
J = l

From the above equations, we have

~,"=l k ,= n + m - 1

1 n
for all i.

n 1 (~ , is) (n~=a~)(~ 1~) n + m - - l = 2 ~ = .
t e l J m l 1

Since it is easy to show that (~,%a (1 / / ,)) (~ -1 l~) >_ n 2, we have

n _ > l - m + n 2 or n _ < ½ (l + 4 ~ m - 3) .

Thus we obtain the result that

r_<½(1 + 4 ~ / - - ' m - 3) < ½ + ~m. []

Consider the following example of a l-maximal flow shop with m = 9 where

Jl: ty,a = 1 for 1 _<j _< m;

I2fi for l < j < 4 ,
J2: 6,2 -- t v otherwise;

J3: 6,3 = t v otherwise;

J4: t].4 = [~ 3 for j - - I ,
to otherwise.

The worst and optimal schedules are given as in Figure 7, and they give the ratio
f / f * = 21/9. By considering just J2, J3, and J4 in the example, we can derive the
worst ratio 1.875 for m = 4, and similarly, Ja and J4 give 1.5 for m = 2. Basically, the
worst example can be constructed recursively. Let f * (S) and f (S) be the finishing
times of the optimal and worst schedules for a set of jobs with the index set S.
Consider our example for m = 9 , f* ({ l , 2, 3, 4}) = 9, and f*({2, 3, 4}) = 8. Let F(m)
be the worst ratio of f i r . for m processors. Since J2, J3, J4 only take four processors,
f ({2, 3, 4}) = 8F(4). In the worst schedule, J1 is the last job to be executed, as given
in Figure 7a. It will take at least six more time units than f ((2 , 3, 4}). Thus we have

8F(4) + 6 21
F(9) = 9 9

and similarly,

3F(2) + 3
F (4) - 4 - 1.875,

F(I) + 2
F (2) - 2 - 1.5,

F(I) = 1.

On J-Maximal and J-Minimal Flow-Shop Schedules

I" A "1

.

rg//~////A III Ill

FIGURE 8

• 111

• . . I11
1" 8 .I

473

We conjecture that the worst example for different m is constructed recursively by a
similar technique, and F(m) will give the worst ratio of f / f* for the l-maximal flow-
shop problem. Thus we can deduce from the above example a general formula for
F(m), namely,

F(m) = max [(m -1)F(k) + m - k + l]
- - - o

l ~ k .~..m m

If, instead of finding the maximum k for F(m), we choose k = m/2, then we have
the following inequality for F(m):

F(m) >- l - - m] \ 2] + g + - m"

Assume that m = 2'; we have (see the appendix)

' (' t
F(m)_>~ 1 + ~ (1 + logm) .

We can conclude that for the l-maximal flow shop, the worst ratio o f f / f * is
~(log m).

We have demonstrated that an upper bound on the ratio f / f * for the J-maximal
flow-shop problem is rather difficult to derive. In the following we try to concentrate
on the approximate solution for m = 3.

LEICaVtA 10. For m = 3, any schedule for the l-maximal flow shop has the property
that f - f * ~_ t3,~ + t2,u for some J~ and J..

PROOF. Consider the generalized schedule given in Figure 8. Let J~ be the last
job such that Ta,~ executes immediately after T2,~ and let d2 be the time duration
between the finish time of T1,8 and the start time of T2,8.

Obviously P1 and Pa are not idle during the periods A and B. Since f * _~ ~ - 1 tl,,,
we have

f - f * _< B + ta,~ + t2,~ + d2 - A.

As the flow shop is l-maximal, from Lemma 3 there exists a J . such that

t2,u --> tl,~ + d2 >- t2,, + d2. (2)

From the l-maximal property, A _> B; thus we have

f - f * -< t3,~ + t2.u. []

THEOREM 9. For m = 3, any schedule for the 1- and 3-maximal flow-shop problems
gives f / f * < 5/3, and the bound is the best posstble.

PROOF. The proofs for the 1- and 3-maximal flow-shop problems are so similar

474

/ / / / ~ / ~ N \ \ \ Tl1~ T12

I x \ \ N \ \ \ \ X l

~ T3.z ~..',I
I ' x \ \ \ \ \ \ \ ' l

(a)

F. Y. C H I N A N D L.-L. TSAI

(b)

FIG. 9. l - m a x i m a l f low shop for m = 3, f / f* --~ 5 /3 (a) A bad schedu le (b) A n o p t i m a l schedule.

that only the 1-maximal flow-shop problem is considered. From eq. (2), since t2,u ->
tl,s (footnote 2), it is easy to argue that f * _> tl,u + t2,u + t3,s (footnote 2), and thus from
Lemma 10 we have

_f < t3,s + t2,u
f . _ 1-+ h,u + t2,u + t3,s

As tl,~ --> t2,. and h,~ -> tz,., it can be shown easily that

__ 2 5 f < l + -
f * - - 3 3"

The following example, with the schedules given in Figure 9, shows that this bound
is the best possible.

Example. Let the flow shop have two jobs. They are

J l : t1,1 = 2, t2,1 -~ t3,1 = E;

J2: tl ,2 ~" t2,2 m t3,2 • 1.

The heuristic and optimal schedules are illustrated in Figure 9a and b, respectively,
and the ratio f i r . ~ 5 /3 is achieved. []

THEOREM 10. For m = 3, any schedule for the 2-maximal flow-shop problem gives
f / f * _< 2, and this bound is the best possible.

PROOF. Consider any schedule, and after the tasks are right-shifted (see Figure
5a), l e t f ' be the finish time o f this modif ied schedule. O b v i o u s l y f ' _> f . Referring to
Figure 5a, Lemma 7 shows that there exists a tl,o such that tl,v _> 81, and Lemma 3
shows that there also exists a t3,u such that t3,~, >- d3. Then

f - f * --< f ' - f * --< 61 "~ d3 < h,o + t3,~. (3)

Clearly, if u = v, then f * _> tl,v + t3,u. However, if u # v, we still have

f * >- tZ,v + t2,u ~- h,v + ta,u,

so we have

-~- __< 2.
f *

The example which can achieve this bound as closely as possible is the following.

Example. Let the flow shop have two jobs. They are

J l : t lA = t2,1 -~ 1, t3,1 ~ E;

J2: tl,2 = ¢, t2,2 = ta,2 = 1;

and the optimal and worst schedules are shown in Figure 10. []

zt2.u > tl,. ts on ly t rue w h e n u # s; tha t is, d2 > 0. However , l f u = s or d2 = 0 , f * >_ h. . + t2.. + is,. ,s
s tdl true.

On J-Maximal and J-Minimal Flow-Shop Schedules

T i , i I
T2'1 / T2'2 T2'2

U T3"2 I

(a) (b)

FIG. 10

475

T3, 2 e I

2-maximal flow shop for m -- 3 , f / f * ~ 2. (a) A bad schedule (b) An optimal schedule

5. Conclusion

Much effort has been devoted to flow-shop problems because of their importance,
but the problem remains intrinsically difficult for m > 2. Since the sizes of the tasks
are usually known beforehand, it is worthwhile to study those problems with known
task sizes. Similarly, assumptions about the lengths of execution time are often made
in flow-shop problems [4, 11] such as I /O-bound systems, bat they are usually too
restricted.

In this paper we have considered a practical flow-shop model (J-maximal and J-
minimal) in which certain tasks are larger or smaller than the others. We have shown
that J -maximal and J-minimal flow-shop problems for m > 2 are still NP-complete
if it is assumed that J, can skip Pj if b,~ = 0. Efficient optimal algortithms can be
found only for some particular cases, such as J = 1 (or m) and all the other tasks in
the same job are equal. Bounds for the worst ratio f / f * have been derived. We have
obtained a tight bound of m - 1 for the J -minimal flow shop with m >_ 3 and ~ for
m = 2. As for the J -maximal flow-shop problem, we can show only that the bound
is always less than O(x /~) and greater than O(log m) for a l -maximal flow shop
with m > 3, and we can show tight bounds for m = 3. The tight bound for J -maximal
flow-shop problems is still unsolved, but we can conjecture that the bound F(m) is
given recursively by

F(m) = max 1 - F(k) - + 1 + - - ,
l_<k<_m L \ m

with F (l) = 1.

Appendix

LEMMA

PROOF.

(l + 2-')(t + l)
F(2 ') _>

2

The proof is by induction on i. For i = 0, F(1) = 1, and for i -- 1,
F(2) = 1.5. Assume the lemma is true for i = k. Then

F(2 k÷l) = (1 - 2-k-1)F(2 k) + ½ + 2 -k-1

_> ½(1 -- 2-k-1)(1 + 2-k)(k + 1) + ½ + 2 -k-1

= ½(1 + 2 -k-1 -- 2-2k-1)(k + 1) + ½(1 + 2 -k-l) + 2 -k-2

= ½(1 + 2-k-~)(k + 2) -- ½(k + 1)2 -2k-~ + 2 -k-2
= ½(1 + 2-k-1)(k + 2) + 2-k-2(1 -- (k + l)2-k).

AS (k + 1)2 -~ is always _<l, we have proved the lemma. []

ACKNOWLEDGMENTS. The authors are very much indebted to Anne Brindle for her
careful reading of, and helpful comments on this paper, and to an anonymous referee

476 e . Y . CHIN AND L.-L. TSAI

for no t ing two ser ious p r o b l e m s wi th the or ig ina l manusc r ip t a n d offer ing va luab l e
suggest ions in improv ing this paper .

REFERENCES

1. ACHUGBUE, LO., AND CHIN, F.Y. Complexity and solutions of some three-stage flow-shop sched-
uling problems. Tech. Rcp., Univ. of Alberta, Edmonton, Alberta, Canada, 1980.

2. BURNS, F., AND ROOKER, J. Three-stage flow shops with recessive second stage. Oper. Res 26, 1
(Jan-Feb 1978), 207-208.

3. COFFMAN, E.G. JR., ED. Computer and Job~Shop Scheduhng Theory. Wiley, New York, 1976.
4. CONWA¥, R.W., MAXWELL, W.L., AND MILLER, L.W. Theory of Scheduling. Addison-Wesley,

Readmg, Mass., 1967.
5. GAREY, M.R., JOHNSON, D.S., AND SETm, R. The complexity of flowshop and jobshop scheduling.

Math. Oper Res. 1 (1976), 117-129.
6. GONZALEZ, T., AND SAHNI, S. On flowshop andjobshop schedules. Oper Res. 26 (1978), 36-52.
7. JOHNSOlq, S.M Optimal two- and three-stage production schedules with setup tmaes included. Nay.

lies. Log. Q. 1 (1954), 61-68.
8 KARP, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations,

R.E Miller and J W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-103
9. LENSTRA, J.K., RINNOOY KAN, A H.G., AND BRUCKER, P. Complexity of machine scheduling

problems. Ann. Discrete Math. 1 (1977), 3,43-362.
10. MCMAHON, G.B A study of algorithms for industrial scheduling problems. Ph D. Dissertation,

Univ. of New South Wales, Kensington, New South Wales, Austraha, 1971.
11 SMITH, M.L., PANWALKAR, S.S., AND DUDEK, R.A Flow sequencmg wRh ordered processing time

matncs. Manage. Sci. 21 (1975), 544..-549.
12. ULLMAN, J.D. Complexity of scheduling problems. In Computer & Job~Shop Scheduhng Theory,

E.G Coffman, Jr., Ed., Wiley, 1976, pp. 139-164.

RECEIVED OCTOBER 1977, REVISED APRIL 1980; ACCEPTED MAY 1980

Journal of the Assoclanon for Computing Machinery, Vol 28. No 3, July 1981

