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ABSTRACT The problem of performing multtphcaUon of n-bit binary numbers on a chip is considered 
Let A denote the ch~p area and T the time reqmred to perform mult~phcation. By using a model of 
computation which is a realistic approx~mauon to current and anucipated LSI or VLSI technology, ~t is 
shown that 

A T 2. 

for all a ~ [0, 1], where A0 and To are posmve constants which depend on the technology but are 
mdependent of n. The exponent 1 + a is the best possible A consequence of this result is that binary 
multiphcatlon is "harder" than binary addmon More precisely, ff(AT2~)M(n) and (AT2~)A(n) denote the 
mmimum area-time complexity for n-b~t binary multiphcauon and addmon, respectively, then 

( A T 2 ~ ) M ( n )  _ 

1 
f~(nl-a) for 0 _< a --< 

na for ~ < a _ < l  

f o r ° > ,  

(= fi(nl/2) for all a _> 0). 
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1. Introduct ion 

W e  are  i n t e r e s t ed  in  t h e  des ign  o f  m u l t i p l i e r s  su i t ab le  fo r  i m p l e m e n t a t i o n  in  V L S I  

chips.  T h e  m u l t i p l i c a t i o n  p r o b l e m  has  b e e n  c o n s i d e r e d  by  seve ra l  a u t h o r s  (see, e.g.,  

[8, 10, 17, 19, 25, 27]). M u c h  a t t e n t i o n  has  b e e n  p a i d  to  t he  t r a d e - o f f  b e t w e e n  t i m e  

a n d  the  n u m b e r  o f  gates,  b u t  un t i l  r ecen t ly  l i t t le  a t t e n t i o n  has  b e e n  p a i d  to  t he  
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problem of connecting the gates in an economical and regular way to minimize chip 
area and design costs. In this paper we give lower and upper bounds on the area- 
time product for multiplication circuits, assuming a model of computation which is 
intended to approximate current and anticipated LSI or VLSI technology. Details of 
the model are given in Section 2. 

The lower bound on A T, where A is the chip area and T the time to perform n-bit 
binary multiplication on the chip, is the special case a = ½ of  a more general lower 
bound 

A T  2" = ~(na+~), (1.1) 

which is valid for all a ~ [0, 1]. We establish this general result in Section 3. The case 
a = 1 was established independently by Abelson and Andreae [1] using a more 
restrictive model than ours (see also [21]). In Section 4 we sketch a design for n-bit 
multiplication that gives the upper bound 

A T  2'~= O(nl+'qogl+~n), (1.2) 

for all a _> 0.1 Thus the exponent 1 + a o f n  in (1.1) and (1.2) is tight for a E [0, II. 
In [3] we give upper bounds on A and T for the problem of adding n-bit binary 

numbers. From (1.1) and the results of [3] we conclude in Section 5 that binary 
multiplication is harder than binary addition if the complexity measure is A T 2~, for 
any a _> 0 (see also [71). 

2. The Computational Model and Basic Assumptions 

We assume the existence of circuit elements or "gates" which compute a logical 
function of two inputs in constant time and occupy at least a constant minimum 
area. Gates are connected by wires which have constant minimum width (equiva- 
lently, the wires must be separated by at least some minimal spacing). Our measure 
of the cost of  a design is the area rather than the number of  gates required. This is 
an important difference between our model and earlier models of  [4, 26] and others. 
For motivation and discussion of models similar to ours, see [12, 23]. 

To prove the results of this paper, various subsets of  the following assumptions A 1 
through A8 are used. Comments and justification are given following the statement 
of each assumption. 

A 1. The computation is performed in a convex planar region R of  area A. 

Because of heat-dissipation, packing, and testing requirements, a two-dimen- 
sional planar model is reasonable. The convexity assumption is not restrictive in 
the sense that almost all existing chips or useful modular designs do have convex 
boundaries for packaging or modularity reasons. (The convexity assumption can 
be removed for part of  Theorem 3.1 below by using a different proof.) 

A2. Wires have minimal width X > 0. 

is assumed constant, but in applications of  our results it will of course depend 
on the technology. We also assume R has width at least X in every direction. 

A3. At most v _> 2 wires can overlap (or intersect) at any point in R. 

A chip may consist of  v layers. Wire crossings through different layers are 
allowed. In fact, transistors are typically formed by crossovers of wires. Since 

Log denotes log to the base 2 throughout. 
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v ~_ 2, the graph of wires (edges) and gates (nodes) need not be planar in a 
graph-theoretic sense. 

A4. I /O ports each contain a ~ × ~ square and thus have area at least # _> X2. An 
I /O port can be multiplexed to handle more than one input or output variable. 

I f R  is a complete chip, p will be large compared to ~2. I f R  is only part of  a chip 
and I /O is to other regions on the chip, p could be of order ~2. We do not 
require each input (or output) variable to appear in a distinct input (or output) 
port, as required in [23]. I /O ports may be multiplexed as they often are in 
practice. 

A5. A bit requires minimal time ~- > 0 to propagate along a wire or to be transmitted 
through an I /O port. The time for one gate computation and an arbitrary fanout 
of the result is included in ~-. 

Since dimensions are limited by the minimal wire width ~ and minimal gate 
area, a minimal propagation time is reasonable. We do not need to assume that 
the propagation time increases with the length of the wire. With the (small) sizes 
of chips we now have or anticipate, the propagation time, which is the time 
needed to charge or discharge a wire, is limited by the wire capacitance rather 
than the velocity of light. A longer wire will generally have a larger capacitance 
and thus require a larger driver to maintain constant propagation time, but the 
driver area need not exceed a fixed percentage of the wire area and so can be 
ignored if ~ is increased slightly; see [15]. Although it would be reasonable to 
assume bounded fanout, we do not need this assumption for proving lower 
bounds. When proving upper bounds, we do assume bounded fanout. 

A6. The times and locations at which input and output bits are available are fixed 
and independent of the values of the input bits. 

When proving upper bounds in Section 4, we further assume that if a, and aj are 
any two bits in an operand such that a, is more significant than aj, then a~ is not 
input to (or output from) the chip before a~, but they are allowed to be input to 
(or output from) the chip in parallel. 

A7. Storage for one bit of information takes area at least fl > 0. 

fl is typically several times larger than ~2. 

A8. Each input bit is available only once. 

There is no free memory outside R. If  the same input bit is required at different 
times, it must be stored within R, taking area at least fl (see A7). 

3. Lower Bound Results 

Let p = p2, . . .  pl be the 2n-bit product of n-bit integers a ~- an " "  al and 
b = b n . . ,  bl. 

3.1 LOWER BOUNDS FOR SmFTING CIRCUITS. When b = 2 J, p is a shifted j bits 
to the left. Thus any multiplier circuit must also be a shifting circuit capable of  
performing j-bit shifts for all 0 _< j _< n - 1. 

THEOREM 3.1. Under assumptions A 1-A 6 of Section 2, any chip that is capable of 
performing the shifts described above must satisfy 

A T  2 _> Kin 2, (3.1) 
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and 

A T _  > K2Ln, (3.2) 

where 

K1 = . ( 9 -  • 

X~'(9 - 4.51/2) 
K 2  ~ 

~ v  

(3.3) 

and L is the pertmeter of  the chip. 

Before proving Theorem 3.1 we need two Lemmas. 

LEMMA 3.1. For any convex planar figure with area A, perimeter L, diameter D, 
and chord of length C perpendicular to a chord whose length is the diameter D, 

CD 
A > (3.4) 

I 2 ' 

and 

CL 
A > . (3.5) 

- 2~r 

PROOF. The results follow from well-known inequalities for convex figures. For  
a proof  (and a definition of  "diameter," etc.) see, for example, [281. [] 

LEMMA 3.2 

min max(2r, (1 -- r)2/8) = 2(9 -- 4.51/2). 
O-~__r<l 

PROOF. It is easy to verify that the minimum occurs when 16r -- (1 - r) 2, and the 
only root of  this equation in [0, 1] is r = 9 - 4.51/2. []  

PROOF OF THEOREM 3.1. Consider any chip that can perform j-bi t  shifts for all 
0 _< j _< n - 1. By assumption A 1, the chip forms a convex region R. Let D be the 
diameter of  R, and Y a chord of  length D. 

Let S = {pzn-1 . . . . .  pn} and M be the maximum number  of  elements of  S sharing 
or multiplexing one output port of  the chip. By assumption A4, an I / O  port has area 
at least p _> X 2. We represent each I /O  port by an infinitesimal point on the port. On 
the basis of  these representatives of  I /O  ports, we partition the chip by a chord X 
perpendicular to Y as follows. The chord X divides S into two subsets $1 and $2 such 
that representatives of  the output ports for elements of  $1 lie on one side of  X and 
those for elements of  $2 lie on the other side of  X. (Since representatives of  I /O  ports 
are of  infmitesimal size, we can assume that by an infinitesimal perturbation from 
the perpendicular to Y, Xdoes  not intersect any of  them.) By "sliding" the intersection 
of  X and Y along Y, we can arrange that 

1 
for i ffi 1 and 2. For  notational convenience we use d to denote L(n + M)/2] .  
When the j-bit  shift is performed, p,÷j takes the value of  a,. For  d _~ i ~_ n, the ith 
row in Table I indicates the p,'s that take the value of  a, under j -bi t  shifts for all 
n - i _~j .~ n - 1. Note that in the table all thep, 's  belong to S, which is divided into 
two parts by the chord X. By (3.6), in the ith row of  the table there are at most d of  
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J 

a, 0 1 2 . . .  n - d - I  n - d  . . .  n - 2  n - I  

aa pn "'" pn+d-2 fin+d-1 

aa+l p .  . . .  pa+a-~ pn+d 

a.-i  p~ p.+l "'" p2.-3 pz . - z  

a. p~ p.+, p.+2 "'" p2.-2 p2.-1 

the p,'s for which the representatives of  the output ports lie on the same side of  X as 
the representative of the input port for a,. Consequently, in the ith row there are at 
least i - d of  the p,'s for which the representative of  the output ports do not lie on the 
same side of X as the representative of  the input port for a,. For all rows in the table, 
there are a total of  at least ~7-d (i -- d) _> (n - M ) 2 / 8  such p2s. This implies that one 
of  the n columns in the table, say the j t h  column, must have at least (n - M)2 /8n  
such p,'s. In other words, if 

1 = ( i l i  ~ {d, d + 1 . . . . .  n} and the representative of  the input port for a, 
does not lie on the same side of  X as that of  the output port forp,+j}, 

then 

( n  - -  M )  2 

I/l~- 8n 

For t E I, the input port for a, or the output port for p,+j may intersect the chord X, 
although their representatives do not. Define 

I ' =  {i l i  E I, and the chord X intersects the input port for as or the 
output port forp,+j, or both}. 

Then 

I -  I '  = (zli ~ (d, d + 1 . . . . .  n}, and the input port for a, and the 
output port for p,+j do not intersect X and they lie on different 
sides of  X).  

Consider the computation of  the j-bit  shift. Note that the j-bit  shift, which maps a, 
to p,+j for i = 1 . . . . .  n, is an identity mapping. Hence, before the shift is complete, at 
least 1 I  - I ' 1  bits of  information about a,, i ~ I - I ' ,  must cross X for computingp,÷j, 
i E I - I ' ,  and at least [ 1'1 bits of  information about a,, i E 1", must be input to or 
output from some I /O ports intersecting X for computing p,+j, i E I ' .  Suppose that 
the chord X is of  length C. Then by assumptions A2-A4, at most vC/2t wires or I /O  
ports cross X. Thus, by assumption A5, the time T to perform the j-bit shift must 
satisfy the inequality 

-X- -~ -> l I -  I ' l  + ]I'[ = l l l -> 8n ' 

o r  

T _> (h~'/t,C)n. (1 - r) 2 
8 ' (3.7) 

where r = M / n .  Since M outputs come through one output port, assumption A5 
gives 

T _> M~" = ~'nr. (3.8) 
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First suppose M < n. Then at least one wire or one I /O port crosses X, and 
assumptions A2 and A4 give 

C _> ~. (3.9) 

By assumption A3, z, -> 2. Combining this with (3.8) and (3.9) gives 

T_> cnr = ~ . - ~ - ) n r  _> n.2r.  (3.10) 

From (3.7) and (3.10) it follows by Lemma 3.2 that 

[2Ko~ 
T _> ~--~--)n, (3.11) 

where 
~-(9 - 4.51/2) 

Ko = 
p 

so by (3.4), 

A T  2 _> n 2 _> 2Ko2n 2, (3.12) 

since D _> C. Suppose on the other hand that M = n. Then r = 1. Since there is at 
least one output port, assumption A4 gives A _> O _> ~2, so by (3.8), 

A T  2 _> (~,rn) 2 > 2Ko2n 2. (3.13) 

Result 0.1)  follows from (3.12) and (3.13). 
Result (3.2) follows in a similar way. I f M  < n, combining (3.11) with (3.5) gives 

AT_> ~ n = K2Ln. (3.14) 

Suppose on the other hand that M = n. By assumption A2, R has width at least X in 
every direction, so we can choose a chord that is of length C _> X and is perpendicular 
to Y. By 0.5)  and (3.8) with r = l, we have 

which gives 

AT_> K2Ln. [] 

Since any circuit that performs integer multiplications must also be able to perform 
shifts, O. 1) and (3.2) hold for any n-bit multiplication chip. 

Result (3.2) can sometimes give useful lower bounds which are based on the I /O 
characteristics of a multiplication or shifting chip. If at one time the chip inputs or 
outputs a total of z bits along its boundary, then by assumptions A3 and A4, L _> 
zX/p, and (3.2) gives A T  -> K2Q~z/p)n. Thus for any multiplication scheme that 
accepts, say f~(n ~/2) input bits simultaneously along the chip boundary, we know 
immediately that A T ffi f~(n a/2) (of. the multiplication scheme in Section 4). 

Result (3.1) (with a smaller constant for K1) could have been established by a 
proof parallel to that used by Thompson [23] for the discrete Fourier transform 
problem. In fact, using his result that relates the area of a graph to its minimum 
bisection width, one can derive (3.1) without the convexity assumption in AI. Our 
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proof above represents a new approach that incorporates geometric ~oper t ies  of  the 
chip boundary in the lower bound proof. We feel that the extra convexity assumption 
we make is not restrictive, since most existing chips do have convex boundaries for 
packaging reasons. Furthermore, we note that the convexity assumption is needed 
for establishing results such as (3.2) that relate A T to the perimeter L. In [6], under 
a similar convexity assumption, tight lower bounds on the minimum area required 
to layout complete binary (or t-ary) trees are obtained. 

An interesting corollary of  Theorem 3.1 is that lower bounds in (3.1) and (3.2) 
hold for chips that perform floating-point additions, for which shifts are needed to 
equalize exponents. This explains why the area-time requirements for floating-point 
addition are much higher than those for integer addition, as observed in practical 
implementations. (Charles Leiserson at C M U  first pointed out to one o f  the authors 
the application of  Theorem 3.1 to floating-point addition.) 

3.2 A LOWER BOUND ON THE AREA FOR MULTIPLIER CIRCUITS. In Theorem 3.1 
we gave lower bounds on A T 2 and A T for shifting circuits. Now, using different 
techniques, we give a lower bound on A for multiplier circuits. 

Under assumptions A4 and A6-A8, any n-bit multiplication must THEOREM 3.2. 
satisfy 

where 

A ~_ Aon, 

,3,,> Ao ffi ~ 

Let ON ---- {ijl0 -- i < N, O <--j < N} be the set of  all integers which can be written 
as a product of  two factors, each less than N, and let/z(N) ffi I(I)N] be the cardinality 
of  ON. For example, (I)4 = {0, 1, 2, 3, 4, 6, 9} and #(4) = 7. Before proving Theorem 
3.2 we need lower bounds on #(N) and a related function, 

8(n) = flog #(2 n) + 1 - n] (3.16) 
n 

LEMMA 3.3 

#(N) >_ o(N), 

where a(N) = ~P~PN-, P and PN-1 is the set of prime numbers smaller than N. 

PROOF. The numbersp j  are distinct i f p  ~ PN-1 and 1 _<j _<p. Thus the result 
follows from the definition of/x(N). []  

LEMMA 3.4. For all N _> 4, 
N 2 

tx(N) >-- 21n N" 

PROOV. Using a slight modification of  Theorem 1 and eq. (4.13) of  [18], we can 
show that for all N >_ 348, 

N 2 

a(N) > 2 In-'---N" 

Thus the result for N _> 348 follows from Lemma 3.3. For 4 _< N <_ 347 the result 
may be verified by a straightforward computation. [] 
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TABLE II. #(2 n) AND 
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RELATED FUNCTIONS FOR 
l ~ n ~ 1 7  

n ~(2~ p ~ ) / p * ~ )  8~) 

1 2 0.355000 1 
2 7 0.748125 1 
3 26 0 932329 1 
4 90 0 952734 1 
5 340 1.006695 1 
6 1,238 0 995890 1 
7 4,647 0.997629 I 
8 17,578 0.995092 1 
9 67,592 1.000412 1 

10 259,768 0.998846 9/10 
11 |,004,348 0.998392 10/11 
12 3,902,357 0.999002 11/12 
13 15,202,050 0.999089 12/13 
14 59,410,557 0999788 13/14 
15 232,483,840 0.999637 14/15 
16 911,689,012 0.999788 15/16 
17 3,581,049,040 1.000005 16/17 

LEMMA 3.5. l f  S(n) is defined by (3.16), then for all n _> 1, 

8(n) _> L 

[ n - l o g ( n l n 2 ) ]  
6(n)>_ , (3.17) 

n 

PROOF. From Lemma  3.4, 

and it is easy to verify that the right side of  (3.17) is at least ] for all n _> 18. (There 
is equality for n = 18 and n -- 24.) For  1 _< n <_ 17, direct computat ion shows that 
8(n) >_ ~. [] 

Table I I  gives/L(2n), #(2n)//X*(2n), and d(n) for n = 1, 2 . . . . .  17, where 

N 2 

/~*(N) = 0.71 + l o g l o g N  

is an empirical approximation to/L(N). For  5 <_ n <_ 17, the approximation error is 
less than 1 percent. I f  this remained true for n > 17, it would follow that 8(n) _> ~, 
and the constant ~ in Lemma  3.5 and Theorem 3.2 could be increased. On the basis 
o f  the empirical evidence we conjecture that 

. /~ (N) log  log N'~ 9 
lm |- ~ l = 1 and 8(n) _> -~ 

for all n _> 1. 

PROOF OF THEOREM 3.2. I f  n = 1, there is at least one output port, so A _> p, and 
the result holds. Hence, suppose that n >_ 2. 

Consider the state of  the computat ion just before the last input bit(s) is accepted. 
Let m be the number  of  input bits still to be accepted, so 1 _< m _< 2n. 

It is easy to show that there are some inputs a and b such that the output bits 
1o2 . . . . .  , pn are not determined by the 2n - rn input bits already accepted. Thus, by 
assumption A6, at most n - 1 bits, pn-x . . . . .  px, have been output. 
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Suppose that s bits of information are stored in R at this instant. Then we must 
have, by assumption A8, 

p~2nj I y+(n-l)+s, 

or the circuit could not produce all ~(2”) possible outputs and would fail for certain 
inputs. Thus 

m + s I [logp(2n) + 1 - n] = n&(n), 

and, from Lemma 3.5, 
5n 

m+sZ-. 
6 

(3.18) 

By assumption A7, 

A 2 bs. (3.19) 

Since a port can accept only one bit at a time, the last m bits must be input through 
m different ports; so assumption A4 gives 

Arpm. (3.20) 

The result follows easily from (3.18)-(3.20). Cl 

3.3 GENERAL LOWER BOUNDS FOR MULTIPLIER CIRCUITS. Theorems 3.1 and 3.2 
are the extreme cases (Y = 1 and (Y = 0 of the following result. 

THEOREM 3.3. Under assumptions A l-A8, any n-bit multiplication chip must satisfy 

1+0 
>n , (3.21) 

for all a E (0, 1). Here A0 is given by (3.15), 

& 1’2 
TO=- , 

0 Ao 

and Kl is given by (3.3). 

PROOF. From Theorem 3.1, 

so 

(3.22) 

From Theorem 3.2, since (Y E [0, 11, 

A 
1-a 

0 
1--ar 

A0 In * 
(3.23) 

Multiplying (3.22) and (3.23) gives the result. Cl 

The following corollary of Theorem 3.3 seems worth stating separately, for AT is 
often used as a complexity measure (see, e.g., [ 161). 
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COROLLARY 3.1. 
satisfy 

where 
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Under assumptions A I-A8, any n-bit multiplication chip must 

A T >_ Ka n 3/2, 

K3 ffi Ao To ffi (AoKa) 1/2. 

4. Upper Bound Results for  Multiplication 

It is easy to design practical n-bit multipliers with area A -- O(n) and time T = O(n), 
s o  

A T  ~ff i  0(n1+2"). (4.1) 

For example, the "serial pipeline multipliers" typically used in the  implementa- 
tion of  digital filters and signal processors achieve these area and time bounds (see 
[9, 14]). In this section we sketch the design of a multiplier with A = O(n log n) and 
T ffi O(n 1/21og n), giving 

A T ~' = O(nl+"log~+~n), (4.2) 

which is asymptotically better than (4.1). The design uses the Convolution Theorem 
to compute the product of two integers in a complex way, and consequently its 
implementation appears to be difficult. Nevertheless, the design is theoretically 
interesting because it shows that the exponent 1 + a of n in Theorem 3.3 is tight. We 
do not know if  there is any practical design having A T  2a -- o(n 1+2~) for a E [0, 1]. 
Straightforward implementations of "fast" algorithms, for example, the Schonhage- 
Strassen algorithm [22] or the "3-2 reduction" algorithm [17, 25], seem to require 
area at least order n 2. 

In the remainder of  this section we assume that 

(a) n ffi k 2 is a perfect square, and 
(b) aj = bj = 0 i f j  > n/2. 

(If not, n may be increased sufficiently without affecting the asymptotic results.) Let 
p be the smallest prime of  the form nq + 1, q _> 1, Fp the finite field of  integers modp. 
It is known that logp ffi O(log n) (see [13, 24]) and that Fp has an nth root of unity 
u (see [2]). Let w = u k, so w is a kth root of unity. Note that in any circuit n is fixed, 
so we are not concerned with the complexity of finding p, u, w, etc; they will be 
encoded into the circuit. For facilitating arithmetic in Fp we assume that a 2[logp'l- 
bit approximation to l ip  is encoded into the circuit. 

In steps 1-5 below, all arithmetic is done in Fp. In steps 1-3 we compute the 
discrete Fourier transform a '  of  (al . . . . .  an) and b' of  (b~, . . . ,  bn) over Fp; that is, 

n - - 1  

a;+l = ~ a,+lu ̀ J 
t--O 

for j = 0 . . . . .  n - 1, etc. In step 4 we multiply the Fourier transforms. In step 5 we 
take the inverse transform, and in step 6 the final result is computed. 

Step 1. Let A, B, U, and W be k by k matrices with elements 

h v  ~" a(~-l)k+y, U v = u (t-1)(j-1), 

B,j -- b(,-~)k+j, Wv ffi w (t-~)(J-~). 

Perform k by k matrix multiplications to compute 

A' f f i  WA and B ' =  WB, 
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using a "systolic array" [11]. All computations are performed in Fp, so each processing 
element of  the systolic array needs to perform multiplication and addition in Fp. 
Using a serial pipeline multiplier and a serial adder, a multiplication and addition 
step in F, requires no more than area O(logp) and time O(logp). Thus, step 1 can be 
done with area O(n log n) and time O(n~/21og n). 

Step 2. Compute A"  = A '  o U and B"  = B'  o U, where o denotes componentwlse 
multiplication. 

Step 3. Compute A " = A" W and B "  = B" W using the same method as for step 
1. It may be shown that A " and B "  contain the Fourier transforms of  (al . . . . .  an) 
and (bx . . . .  , bn); in fact, for 1 <_ i , j  <_ k, 

a ~ ] =  ' a(:-x)k+t,  B,'f = b~:-l)k+~. 

Step 4. Compute C "  = A " o B " .  

Step 5. Compute C = W - X ( U  ' o ( C " W - 1 ) )  as in steps 1-3. Here U~: = 
u -"-a)ts-~). The matrix C represents the inverse Fourier transform of  C ' .  Define the 
c,'s by 

Cry = C(t-1)k+j. 

Then by the Convolution Theorem and assumptions (a) and (b) above, 

cj -- aabj + a2bj-1 + • • • + ajb~ for 1 _< j _< n. 

Thus, 
2n n 

= c , 2  . 2 P ,  2'-1 2 ,-a 
t e l  I = l  

Grouping the terms on the right-hand side into k = n 1/2 groups so that the c2s in 
each row of  the matrix C belong to one group, we obtain 

2n k 

~ p , 2  '-1 = £ R,2 ('-~)k, (4.3) 
t ~ l  t s l  

where 
k 

R~ = ~ C(t-1)k+j2 J-1. 
j-1 

Gwen that the c~'s are outputs of  the systolic array that computes the matrix C, all 
the R,'s can be formed in area O(nlogn)  and time O(nl/Zlogn), using the result of  
Theorem 5.1 of  Section 5 regarding addition circuits. Thus the problem of  computing 
p2 . . . . . .  pl has been reduced to the problem of  summing k -- n x/2 terms in the right- 
hand side of  eq. (4.3). Hence, the final step in the computation is 

Step 6. Compute p2 . . . . . .  p~ from the R~'s. Note that each R, has at most 
n 1/2 + log n bits. Using (4.3), the p,'s can be computed, n 1/2 of  them at a time, with an 
(n ~/z + log n)-bit adder. This is depicted in Figure 1. At the end of  the ith addition, 
the first n ~/z low order bits in the output are output a s  p~k, p~k-1 . . . . .  p(~-l)k+l, and the 
remaining bits in the output are fed back to the adder to be added to the arriving R, 
in the (i + 1)st addition. With the result of  Theorem 5.1 one can easily see that all the 
p,'s can be computed in area O(n log n) and time O(n'/210gn). 

This completes our outline of  the multiplier with area A = O(n log n) and time 
T = O(nl/210gn), giving , ' IT 2'~= O(nl+"log~+2"n). 
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PIkPIk-I " " " Pli-l)k*l /N 

I ~  iv/"n÷ log n)- bit odder 

; I'1TI 
I11 l i, 

v 
Rl+l 

FIG 1. Computing the p,'s from the R,'s. 

For ot E [0, 1], the exponent 1 + 2or of  log n can be reduced by using a more 
complicated design than the one outlined above, but we do not know what its 
minimal value is. For a > 1, a design based on the "3-2 reduction" algorithm gives 
A T  2~ = O(n21og~n) for some 8 > 0, which is a better upper bound than (4.2). 

5. Concluding Remarks 

In [3] we demonstrate a regular layout for look-ahead adders, giving the following 
result. 

THEOREM 5.1. Let 1 _< w _< n. Then all the carries in an n-bit addition can be 
computed in time proportional to (n/w) + logw and in area proportional to wlogw + 
1, and so can the addition. 

Let (AT2'*)M(n) and (AT2'*)A(n) be the area-time complexity for n-bit 
integer multiplication and addition, respectively. Note that the serial adder gives 
(A T2~)A(n) = O(n2~), and that for ct > l, (A T2~)M(n) ---- ~2(n2), since for multiplication, 
by (3. l), A(T/~') 2~ > A(T / z )  2 >_ K~(n/~') 2. These observations together with Theorems 
3.3 and 5.1 establish the following result. 

THEOREM 5.2 Under assumptions A I - A 8  of  Section 2, 

(A T2~)M(n) 

(AT2")a(n) 

~(n ~-~) 

- o(+) 
a n 

1 
fo r  O ~  ot_<~ 

1 
for  ~ < o t < _  1 

for  a > l  

.(-- f~(n 1/2) for  all et _> 0). 

Thus for  any a _> 0, the area-time product for  multiplication is asymptotically larger 
than that for  addition. We can say that multiplication is harder than addition as far  as 
the area-time complexity is concerned. 

For binary division it is easy to deduce a lower bound of  the same form as (3.21), 
using the method of  [5], and an upper bound A T 2~ = O(n 1+~ logl+2'*n), using Newton's 
method. 
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I n  Sec t ion  3 we de r ived  lower  b o u n d s  o n  A T 2'~, a ~ [0, 1 ], for  b i n a r y  m u l t i p l i c a t i o n .  
S im i l a r  lower  b o u n d s  o n  A T 2 have  b e e n  o b t a i n e d  for c o m p u t a t i o n  o f  the  d iscre te  
F o u r i e r  t r a n s f o r m  b y  T h o m p s o n  [23], and ,  for m a t r i x  m u l t i p l i c a t i o n  b y  Savage  [20]. 
I t  seems tha t  a r e a - t i m e  c o m p l e x i t y  is, i n  genera l ,  a u se fu l  m e a s u r e  for  e s t a b l i s h i n g  
the  c o m p l e x i t y  h i e r a r ch y  o f  m a n y  classes o f  p r o b l e m s  because  it c ap tu re s  i m p o r t a n t  
a t t r ibu te s  o f  a c o m p u t a t i o n  such  as t ime  a n d  space,  as wel l  as c o m m u n i c a t i o n .  O n e  
s h o u l d  expect  tha t  m o r e  resul ts  a l o n g  this  l ine  wil l  be  o b t a i n e d  in  the  n e a r  fu ture .  

REFERENCES 

!. ABELSON, H., AND ANDREAE, P Information transfer and area-time trade-offs for VLSI mult,ph- 
cation Commun ACM 23, 1 (Jan 1980), 20-23 

2. BONNEAU, R.J. A class of finite computation structures supporting the fast Fourier transform. Tech 
Rep MAC Tech Memo 31, Project MAC, Massachusetts Institute of Technology, Cambridge, Mass, 
March 1973 

3 BRENT, R P, AND KUNG, H T A regular layout for parallel adders. Tech. Rep CMU-CS-79-131, 
Dep of Computer Science, Carnegie-Mellon Univ, Pittsburgh, Pa, June, 1979 (to appear in IEEE 
Trans. Comput.). 

4. BRENT, R P On the addition of binary numbers IEEE Trans. Comput C-19 (1970), 758-759. 
5 BRENT, R P The complexity of multlple-preosion arithmetic In The Complexity of Computatwnal " 

Problem Solving, R.S Anderssen and R P Brent, Eds, University of Queensland Press, Brisbane, 
Australia, 1976, pp. 126-165. 

6 BRENT, R.P., AND KUNG, H T On the area of binary tree layouts. Inf Proc Letters 11, (1980), 46- 
48 

7. BRENT, R P, AND KUNG, H T. The chip complexity of binary anthmeUc Proc 12th Ann ACM 
Symp on Theory of Computing, Los Angeles, Cahf., April 1980, pp 190-200 

8 GARNER, H.L A survey of some recent comnbutions to computer anthmeUc IEEE Trans Comput. 
C-25 (1976), 1277-1282. 

9 JACKSON, L.B., KAISER, S F ,  AND McDONALD, H S An approach to the implementation of digital 
filters. IEEE Tram Audzo Electroacoust. A U-16 (Sept 1968), 413-421. 

10. KOCK, D.J. The Structure of Computers and Computatwns. John Wiley & Sons, New York, 1978. 
11. KUNG, H.T., AND LEISERSON, C E Systolic arrays (for VLSI). Sparse Matrix Proceedings 1978, 

Knoxvdle, Tenn., Society for Industrial and Applied Mathematics, 1979, pp 256-282 (a slightly 
different version appears m [15, Sec 8 3]) 

12. LEISERSON, C E. Area-effioent graph layouts (for VLSI) Carnegie-Mellon Univ., Pittsburgh, Pa., 
Feb. 1980 

13 LINNIK, U V On the least prime in an arithmetic progression. I The basic theorem. Rec. Math 15 
(1944), 139-178 

14 LYON, R.F Two's complement p,peline multipliers" 1EEE Trans Commun. COM-24, 4 (April 
! 976), 418-425. 

15 MEAD, C.A., AND CONWAY, L A lntroductwn to VLSI Systems Addison-Wesley, Reading, Mass, 
1980. 

16 MEAD, C A,  AND REM, M. Cost and performance of VLSI computing structures 1EEE J Solid 
State Czrcutts SC-14, 2 (April 1979), 455-462. 

17 OFMAN, Y On the algorithm complexity of discrete functions. Dokl..4 kad. Nauk SSSR 145 (1962), 
48-5 ! (in Russian) 

18 ROSSER, J B, AND SCHOENFELD, L. Approximate formulas for some funcUons of prime numbers. 
llhnots J Math. 6 (1962), 64-94 

19 SAVAGE, J E The Complexity of Computing John Wiley & Sons, New York, 1976 
20. SAVAGE, J E. Area-time tradeoffs for matrix multiplication and related problems in VLSI models 

Tech. Rep. CS-50, Brown Umv, Prov,dence, R I ,  Aug 1979 
21 SAVAGE, J E,  AND SWAMY, S Space-tmae tradeoffs for obhv,ous sorting and Integer multiplication 

Tech Rep CS-37, Brown Untv, Providence, R 1, 1978 
22 SCHONHAGE A., AND STRASSEN, V. Schnelle Multiphkatlon grosser Zahlen Comput. 7 (1971), 281- 

292 
23 THOMPSON, C D Area-time complexity for VLSI Proc 1 lth Ann ACM Symp. on Theory of 

Computing, Atlanta, Ga, May 1979, pp 81-88. 
24 WAGSTAFF, S S. JR Greatest of the least primes in arithmetic progressions having a given modulus 

Math Comp. 33 (1979), 1073-1083. 



534 R. P. BRENT AND H. T. KUNG 

25. WALLACE, C,S. A suggestion for a fast multiplier. IEEE Trans. Elec. Comput. EC-13 (1964), 14--17. 
26. W1NOGRAD, S. On the time required to perform addttion. J, ACM 12, 2 (April 1965), 277-285. 
27 WnqOGRAD, S. On the time reqmred to perform multiphcation. J. ACM 14, 4 (Oct. 1967), 793-802. 
28. YAGLOM, I.M., AND BOLTYANSlOI, V.G. Convex Figures. Holt, Rinehart and Winston, New York, 

1961 (translated by P.J. Kelly and L F Walton). 

RECEIVED AUGUST 1979; REVISED MARCH 1980, ACCEPTED APRIL 1980 

Journal of the Assocmtton for Computm$ Machinery, Vol 28, No 3, JuLy t981 


