
Dynamic Programming as Graph Searching:
An Algebraic Approach

S T E F A N I A G N E S I A N D U G O M O N T A N A R I

Umverstty of Ptsa, Plsa, Italy

A N D

A L B E R T O M A R T E L L I

Isntuto dt Elaboraztone della Informazwne del C N R, Ptsa, Italy

ABSTRACT. Finding the solution of a dynamic programming problem m the form of polyadlc funcUonal
equatmns is shown to be equivalent to searching a mmmaal cost path in an AND/OR graph with
monotone cost functions The proof is given in an algebraic framework and is based on a commutaUvity
result between solutton and mterpretauon of a symbohc system This approach Is simdar to the one used
by some authors to prove the eqmvalence between the operaUonal and denotatmnal semantics of
programming languages

KEY WORDS AND PHRASES' dynamic programming, functional equations, AND/OR graph, graph search,
continuous algebras, algebraic semantics

CR CATEGORIES 3 64, 5 24, 5 42

1. Introduction

D y n a m i c p r o g r a m m i n g [2, 22] is a w e l l - k n o w n m e t h o d o l o g y fo r r e p r e s e n t i n g opt i -

m i z a t i o n p r o b l e m s in t e r m s o f e q u a t i o n s o n rea ls w h o s e lef t m e m b e r s a re u n k n o w n s

a n d r ight m e m b e r s a re express ions c o n t a i n i n g the m i n i m u m o p e r a t i o n a n d m o n o t o n e

f u n c t i o n s only . T h e s e e q u a t i o n s a re called functional equations a n d a re u sua l l y so lved

w i t h an i t e ra t ive m e t h o d .

Le t us cons ider , for ins tance , a t yp i ca l d y n a m i c p r o g r a m m i n g p r o b l e m , t he p r o b l e m

o f f i nd ing a shor tes t p a t h in a g raph . Le t G be a g r a p h w i t h n o d e s N = (l n}

a n d a pos i t ive rea l n u m b e r c v assoc ia t ed w i t h e v e r y a rc (i, j) . W e w a n t to d e t e r m i n e

a p a t h o f m i n i m u m l e n g t h f r o m n o d e 1 to n o d e n, w h e r e the l e n g t h o f a p a t h is the

s u m o f t he costs o f its arcs. T h e d y n a m i c p r o g r a m m i n g f o r m u l a t i o n o f this p r o b l e m

is t he fo l lowing . Le t x, be the l e n g t h o f the shor tes t p a t h f r o m n o d e 1 to n o d e i. T h e n

we can wr i t e the f o l l o w i n g sys tem o f functional equations:

Xl "~ O~

X~ = m I n (f~(x~)), i = 2 n,
J =1, ,n

Permlssmn to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commeroal advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Assooauon for Computing
Machinery To copy otherwise, or to repubhsh, requires a fee and/or specific permission.

Authors' addresses S Gnesl and U. Montanan, Istltuto dl Soenze dell'Informazione, University of Plsa,
C/so ltaha, 40, 1-56100 P~sa, Italy, A Martelh, lsututo dl Elaborazlone della Informazlone del C N R, Via
S Marta, 46, 1-56100 Pisa, Italy

© 1981 ACM 0004-5411/81/1000-0737 $00 75

Journal of the Association for Computing Machinery, Vol 28, No 4, October 1981, pp 737-751

http://crossmark.crossref.org/dialog/?doi=10.1145%2F322276.322285&domain=pdf&date_stamp=1981-10-01

738 s. GNESI, U. MONTANARI, AND A. MARTELLI

where cost functions fi~ have the additive formfj,(y) = y + cj,. Such a system can be
solved in many different ways [9].

In general, cost functions are neither restricted to be additive nor monadic. In fact,
interesting problems such as those of finding an optimal binary search tree [11, 13]
or optimal decision table conversion [17, 19] can be represented by systems of
functional equations with polyadic cost functions. The property of cost functions
which actually characterizes dynamic programming is monotonicity.

The above example shows the equivalence between the problem of determining a
shortest path in a graph and that of solving a system of functional equations with
additive monadic cost functions. The same equivalence result was shown to hold in
the more general case of monotone monadic cost functions by Karp and Held [10],
who introduced a formal model of dynamic programming, based on automata theory,
called sequential decision process. This model was further developed by Ibaraki
[7, 8]. A similar result was also proved by Martelli and Montanan [15].

The relationships between dynamic programming and graph search were further
extended by Martelli and Montanari [14], who showed that in the case of polyadic
cost functions, the solution of a dynamic programming problem can be obtained by
searching for a minimal cost solution tree in an AND/OR graph.

In this paper the equivalence between solving a system of monotone polyadic
functional equations and searching an AND/OR graph with monotone cost functions
is proved in an algebraic framework by using an approach simdar to the one recently
used in proving the equivalence between the operaUonal and denotational semantics
of programming languages [1, 4]. An advantage of such an approach is that we can
deal also with the case where the optimal cost is achieved as the limit of a sequence
of finite solution tree costs.

Our equivalence proof is based on a commutativity theorem for continuous
algebras. Such a theorem is given in Section 2.3, together with the algebraic
background; the definition of an AND/OR graph is given in Section 2.2. In Section
3 we give an algebraic definition of interpreted functional equations. In Section 4 we
introduce symbolic functional equations, that is, equations on sets of trees built with
uninterpreted function symbols, and we prove a theorem stating that the solution of
a system of symbolic functional equations gives all finite solution trees of a corre-
sponding AND/OR graph. Finally, in Section 5 we introduce a system of functional
equations S as a system of symbolic functional equations SS together with an
interpretation L In Section 6 we prove that to solve S we can either give the
interpretation I to the symbolic system SS, obtaining an interpreted system IS, and
solve it; or we can solve SS, obtaining a set of trees, and give to the resulting set of
trees the interpretation I. Here to give an interpretation to a set of trees means to
evaluate the costs of all trees and find the greatest lower bound of such costs. The
two theorems of Section 4 and 6 imply our main result: To solve a system of
functional equations S = (SS, I) by deriving the interpreted system IS and solving it
is equivalent to searching the AND/OR graph corresponding to SS for the cheapest
(according to 1) solution tree. If the minimum does not exist, we can take the greatest
lower bound of all solution tree costs.

AND/OR graphs and solution trees (i.e., generalized paths) are equivalent to
various well-known formalisms, as shown by Martelli and Montanari in [14]. For
instance, it is easy to interpret an AND/OR graph as the transition function of a tree
automaton [21]. The set of trees accepted by a top-down (or a bottom-up) nondeter-
ministic tree automaton is exactly the set of all finite solution trees of the correspond-
ing AND/OR graph. Another equivalent formahsm is that of regular tree grammars.

Dynamic Programming as Graph Searching

C

il

FmtmE 1

739

For instance, the systems of symbolic functional equations which are introduced in
Section 4 might be interpreted as regular tree grammars, and their solutions as the
equational languages of trees denoted by such grammars [3]. Theorem 4.1 proves
that these languages are the set of all finite solution trees of the corresponding A N D /
OR graphs. In this paper we choose A N D / O R graphs and solution trees, since they
are the most immediate generalization of (transition) graphs and paths.

The equivalence result proved in this paper has practical applications, since it
allows various graph searching techniques to be translated into techniques for solving
functional equations of dynamic programming, and vice versa.

2. Background

2.1 X-'I~EES. In this paper we use a tree domain which is based on CTx as
defmed in [4]. Let X be a ranked alphabet, that is, a family of disjoint alphabets X,
(i E to, to -- (0, l, 2 }) indexed by the natural numbers. The symbols of alphabet
Xk may be interpreted as k-adic function symbols.

A Z-tree is a partial tree labeled with symbols of ~, where partial means that some
of its leaves may be unlabeled. For instance, in Figure 1 we have a ~-tree, with
defined as follows:

~0 = {a} , Xl = {b, b'} ,]~2 = {c, c ') , Xa = X4 QS,

where a is a zeradic function (constant) symbol, b and b' are monadic function
symbols, c and c' are dyadic function symbols.

A Z-tree t may be defined formally as a partial function

t:to* © ~ ~,

where to* is the set of strings of natural numbers of length 0, 1, 2 In order to
represent a Z-tree, this function must satisfy the following conditions for all u E o~*
a n d i E to:

(a) ui E def(t) implies u E def(t);
(b) ui E def(t) implies t(u) E X, and i < n for some n > 0;

where def(t) is the defmition domain of partial function t.
The strings of natural numbers in the domain of t may be interpreted as encoding

of paths in the corresponding tree from the root to any labeled node, and function t
gives the label of this node. Thus condition (a) means that if path ui exists, then
certainly path u exists as well. Condition (b) means that if path ui exists, then the last

740

FIGURE 2

S. GNESI, U. MONTANARI, AND A. MARTELLI

CLJ b II

node of path u must be labeled with a correctly ranked symbol. For instance, the tree
in Figure 1 is represented by the function

t: (A, 0, 1, 00, 10) .--~ (a, b, b', c, c')

where A ~ c, 0 ~ b, 1 ~ b', O0 ~ a, 10 ~ c', and A is the empty string.
The set CTz of all such trees is ordered according to the standard order of partial

functions, namely, t' _< t" i f f def(t') C_ def(t"), and Vu ~ def(t ') we have t'(u) --
tO(u). If t' _< t", we say that t' approximates t".

According to the above definition, X-trees can be finite or infinite. A X-tree t is
finite if def(t) is finite and infinite otherwise. In this paper we use only finite X-trees.

2.2 A N D / O R GRAPHS. A N D / O R graphs are well known in artificial intelli-
gence as a model of problem reduction [18]. An AND~OR graph can be defined as
a hypergraph, that is, a graph where instead of arcs connecting pairs of nodes there
are hyperarcs connecting n-tuples of nodes (n = 1, 2, 3). Hyperarcs are called
connectors, and they must be considered as being directed from their first node to all
the others. Formally, an A N D / O R graph G [14, 17] is a pair (N, C), where N is a
finite set of nodes and C is a set of connectors

C C N x O N k.
k - O

Each k-connector (A, A1 , Ak) is an ordered (k + l)-tuple, where A is the input
node and A1 Ak are the output nodes. When C _C N 2, we have a usual graph
whose arcs are the 1-connectors. 0-connectors are connectors with one input and no
output node. Given a ranked alphabet X, a Z-labeled AND~OR graph is an A N D /
OR graph whose k-connectors are labeled with symbols in the alphabet Xk.

AS an example let us consider the X-labeled A N D / O R graph in Figure 2. The
nodes are denoted by capital letters, 0-connectors are represented as a line ending
with a square, and k-connectors (k > 0) as k directed lines connected together.
Alphabet X was given in the example of Section 2.1. For instance, node X is the
input node of a 0-connector (X) labeled a, a 1-connector (X, X) labeled b, and a 2-
connector (X, X, Y) labeled c.

A X-labeled A N D tree is a Z-labeled A N D / O R graph where every node is input
node of at most one connector and every node is output node of exactly one
connector, except for a node, the root, which is the output node of no connector. An
example is given in Figure 3, where Xx is the root and nodes V1 and Z1 are input
nodes of no connector.

It is easy to see that a X-labeled AND tree can properly represent a Z-tree, and
vice versa. For instance, the AND tree in Figure 3 corresponds to the tree given in
Section 2.1 and represented in Figure 1. Owing to this isomorphism, from now on we
will speak interchangeably of AND trees or X-trees.

Let H be a X-labeled A N D / O R graph, X a node of H, and T a fmite X-labeled
AND tree. Then we say that T is a solution tree o f H rooted at node X iff there exists

Dynamic Programming as Graph Searching

V, Z1

FIGURE 3

741

a homomorphism mapping T into H. More precisely, there must exist a function h
mapping nodes of T into nodes of H such that if a connector (A, A~, . . . , Ak) exists
in T and is labeled with a, then a connector (h(A), h(A 0 h(Ak)) labeled with a
must also exist in H. Furthermore, h must map the root of T into node X.

For instance, the AND tree in Figure 3 is a solution tree of the graph in Figure 2
rooted at node X. In fact, the following suitable function h exists:

h(X~) = h(X~) ffi h(X~) = X, h(V~) ffi V,

h(YO = h(Y2) = Y, h(Z 0 ffi Z.

The concept of a solution tree of an A N D / O R graph, together with the function
mapping it into the graph, can be seen as a generalization of the concept of path in
ordinary graphs (in fact it reduces to it i f the graph contains only l-connectors).

Finally we define the depth of an AND tree t as follows:

(a) if the root of t has no outgoing connector, then the depth of t is 0;
(b) if the root of t is input node of a 0-connector, then the depth of t is l;
(c) if the root of t is input node of a k-connector (k > 0), then the depth of t is

obtained by adding 1 to the maximum depth of all subtrees rooted at the output
nodes of the connector.

For instance, the depth of the AND tree in Figure 3 is 3.

2.3 CONTINUOUS ALGEBRAS. Let .4 be an algebra (a set with operations whose
names are taken from a ranked alphabet) and I be the set of its elements. Set I is
called the carrier of A [4]. Let us then assume a partial order ~_ over I. Algebra A is
called continuous if the following properties are satisfied:

(i) The carrier I of A is a complete partial order (cpo), namely, every chain Xo c
xl =- x2 ~ . - - , x, E I, i = 0, 1, 2 has a least upper bound 1.1~.0 x, -- £ E I;
and a bottom element ± exists, namely Vx ~ / , & ~_ x.

(ii) Every (elementary) operation of A is a monotone, continuous function, namely,
if OA is an n-adic operation of A, then

X p # P k = xk implies OA(Xl, ., Xk, ., Xn) = OA(Xl Xk," . . . , Xn)
(monotonicity),

and

f i oa(x~ x ~ x .) = o~(x~ f i x'k x .) , x°k =_ x ~ =_ . . .
, =o , =o (continuity).

7 4 2 S. GNESI , U. M O N T A N A R I , A N D A. M A R T E L L I

Given a continuous algebra A, it is possible to obtain its derived operations by
composing its elementary operations. It is easy to see also that derived operations are
monotone, continuous functions. Let us now write a system of equations in A

X l m TI(X1, X2, • • • , Xn),
X2 ffi "2 (Xl , X2, • . . , Xn) ,

(2.1)

x . ffi r . (X l , x2 x .) ,

where xi, i = 1 n, are variables over 1 and I-, are (derived) operations. I f we
define a partial order over tuples of L

(x~ x~ x~) =_ (xi' x~' , x,") iff x~ =_ xh', k = 1 n,

we can apply thefixpoint theorem [20], namely, that system (2.1) has a least solution
(~1 Yn) which is the least upper bound of the chain of n-tuples (x] , x~),
i = 0, I obtained by starting with x~ ffi .1., k ffi 1 n, and iteratively applying
the operators in the right member of the equations:

x'+l . xn), k = 1 n. k = l"~(x~ i

We now need to introduce some concepts concerning homomorphism between
continuous algebras.

Let A and B be two continuous algebras, la and la be their carriers, and A and B
have the same signature (i.e., the same operation names). A function h:Ia ~ IB
defines a homomorphism from A to B iff for every zeradic function (i.e., for every
constant) name a, we have

h(aa) = an, (2.2)

and for every n-adic function name o, n = 1, 2 m, we have

h(OA(Xx, x2 xn)) = oB(h(x1), h(x2) h(xn)). (2.3)

Given a derived operation ~'a in algebra A, it is possible to define a corresponding
derived operation ~'B in algebra B. It is sufficient to consider any expression in terms
of primitive operations of A denoting l"a and evaluate it in terms of the homonymous
operations of B. It is easy to see that ~'n does not depend on the particular chosen
expression and that the commutative property holds for derived operations as well:

h(Ta(Xl, X2 Xn)) = I"B(h(x1), h (x 2) h(xn)).

A homomorphism is called strict i f it maps bottom into bottom,

h(-l-a) ffi -I-B, (2.4)

and it is called monotone i f it preserves the partial orders of A and B,

x ~a y implies h(x) EB h(y). (2.5)

A monotone homomorphism is called continuous iff it preserves the limits of
chains,

h(iUoAXI) " iUoBh(Xt), XO -~- Xa ~- (2 . 6 '

We can now prove the following theorem, which is a generalization of [4, Prop.
5.1].

Dynamic Programming as Graph Searching

System of equatmns m A ~'-

Fixed point m A ~ h

/

h

FIGURE 4

System of equations in B

Fixed point in B

XB

743

THEOREM 2.1. Let A and B be continuous algebras and h be a strict, continuous
homomorphism f r o m A to B. Le t

xk = ~'kA(xi, X2 , X,), k = 1 n,

be a system o f equations in algebra A and £ k A be its least solution. Let

Xk = V~(Xl, X2 , Xn), k = 1, . . . , n,

be the corresponding system o f equations in algebra B, obtained by replacing in the
right members o f equations the derived operations o f A with the corresponding derived
operations orB , and let Y ~ be its least solution. We have

h(~) ~ = k, k = 1 , . . . , n .

PROOF. Let ((xl A'°, x~'°), (x~ '1, .. x a'la ,) a n d ((x ~ '°, . , x ~ ' °) ,
(x~ 't, . . . , x , n'I)) be the approximating chains for £A and ~ obtained in A and
B by applying the fixpoint theorem. We will prove inductively that

A t x B , t h (x k ') = k , k = l ,n , i = 0 , 1

In fact, we have

X Bo h(x~ t'°) = h (. L A) = -LB = k ' , k = 1 , n,

since h is strict. Let us assume

A t k , k = 1, . . . , n . h(xk ') = x n''

We have also

h t x A , t + l ~ ~,~ A I x A t A,t , rBehZx A tx A,t ~. k) = n t r k t 1', X ,)) = ht ~. 1 ') h(xn))
T B / x B't . x B ' t ~ ~ X B t + l = kK 1 , . . , n J k' , k = 1, . . . , n .

Finally, since h is continuous, it also preserves the limits of the approximating chains,
namely,

h [L I x A ' t~ oo x A , t
= L-V } = Yo)

~t B,t ~ B = ~ B X k = k, k = l , . . . , n . []

We can represent the result of this theorem with the commutativity of the diagram
in Figure 4.

3. Interpreted Functional Equations

In this section we introduce the concept of interpreted functional equations by
defining a suitable algebra AR. The relation with functional equations of dynamic
programming is explained m Section 5.

744 S. G N E S I , U . M O N T A N A R I , A N D A. M A R T E L L I

Algebra AR has one carrier, IR, defined as the real numbers with an ordering
which is the reciprocal of the usual ordering _< plus a "bottom" element +oo and a
"top" element -oo, to obtain a complete partial order.

The elementary operations on AR (the cost functions) are denoted by the symbols
of a given ranked alphabet E. As we mentioned before, the property of cost functions
which characterizes dynamic programming is monotonicity. Thus, given a function
OR : 12 ~ IR, where o E En, we must have

x ' _ x[' . ' " • Xn). k > implies OR(X1 X k X n) ~ f iR(X1 Xk

Furthermore, we require these functions to be continuous from above; that is,

lira OR(X1, . . . , Xk X,~) = OR(X1 2k Xn).
X k---~ ~k
xk>~k

This property is required to guarantee the convergence of the iterative algorithm for
solving a system of equations.

Besides these functions, algebra AR possesses a minimum operation. Since we have

x ' -> x " implies min(x', y) _> min(x ", y)

and

limmin(x, y) = rain(a?, y),
x--~x

min is a monotone continuous function as well. Therefore we can conclude that AR
is a continuous algebra.

A system o f interpreted functional equations is a finite system of equations in the
algebra AR.

4. Symbohc Functional EquaUons and A N D ~ O R Graphs

We introduce here symbolic functional equations, that is, equations in an algebra AL
defined as follows.

Let E be the same ranked alphabet of the previous section. The carrier lc of AL
consists of all sets of fimte E-trees, with the following restricuons:

(i) Prefix property: I f a set contains a E-tree t, then it must also contain all ~-trees
t ' such that t ' ~_ t.

(i0 All sets must contain the empty E-tree 3_ = {). In particular, the empty set does
not belong to IL.

Algebra AL has as many elementary operations as there are symbols in the ranked
alphabet E, plus the union operation, which corresponds to the min operation of
algebra A R.

The result of applying the operation oz(o E Era), m = 0, 1 to the m elements
L1, L2 Lm E IL is defined as follows:

oL(L1, Lz Lm) = (o(xl , xz x,~)[x~ ~ L , i = 1 m} U (_1_}, (4.1)

where o(xl, x2 , Xm) is a E-tree whose root is labeled with o and has the E-trees
Xl, x2 xm as sons. Notice that the resulting set satisfies restrictions (i) and (ii).
Notice also that the union operaUon commutes with any operation or, namely,

or(L1 L'k CJ Lf f L m) = o L (L 1 L'k Lm) t.J OL(L~, . . . , L~' Lm).

As a consequence we can denote any derived operation with an expression having
the union operations (if any) at the outermost level. Furthermore, it is easy to see
that any derived operation can be represented as the union of a unique standard set

Dynamic Programming as Graph Searching 745

of terms. A set of terms is standard if no term contains the union operation and if,
whenever a term of type tl(tz) appears in it, the term/l(.J.-) does not. In fact, the sets
{tl(t2)} and {ta(t2), tl(±)} would represent the same derived operation in algebra AL,
owing to the presence of {±} in (4.1). In the following, we will often represent a
derived operation in AL by its standard set of terms.

Algebra AL can now be given an ordering relation, that is, simply set inclusion
among sets of Z-trees. Thus the set {±} is the bottom element of the partial order,
and since every chain has a least upper bound (just the set union of all sets o f Z-trees
in the chain), then the carrier I r is a complete partial order. Furthermore, It is easy
to see that all elementary operations defined above are monotone, continuous
functions. Therefore algebra AL is a continuous algebra.

As an example, let us consider the following system of symbolic functional
equations:

x = aL L) bL(X) U CL(X, y),
y = bE(y) t_J c~(v, z),
z = bL(U), (4.2)
u = (± } ,

v = (± } .

As a consequence of the fixpoint theorem, such a system can be solved lteratively.
The solutions for z, u, and v are clearly {b(i) ; ±}, {±}, and {Z}, respectively. Let us
apply the iterative algorithm to the two first equations. We start with a pair of bottom
elements,

xo = (±) , yo = (±) ,

and at the first and second iteration we get

x, = {a; b(±); e(±, ±); ±) ,
yl = {b'(±); c '(±, 1); l) ,

xz = {a; b(a); b(i) ; b(e(±, l)) ; b(b(±)); e(a, b'(±)); ¢(a, c'(.l., &));
c(a, ±); e(b(l) , b'(±)); c(b(±), c'(L, ±)); c(b(_l_), l) ;
c(e(l , l) , b'(±)); e(c(±, ±), c ' (i , _k)); c(c(l , l) , l) ;
c(±, b'(±)); c(±, c '(±, l)) ; c(±, ±); ±},

y2 = {b'(b'(±)); b ' (c ' (l , l)) ; b'(±); c ' (l , b(l)) ; c '(L, ±); .l_}.

Given a system of symbohc functional equations, it is very easy to put it in
correspondence with a labeled A N D / O R graph. Before doing this, we give the
following definition.

Definition. A derived operation of algebra AL is called normal iff its standard set
of terms is either {L} or a set of terms of the f o r m f L (x l Xn), w h e r e f E Zn and
x~ x , are variables. A system of symbolic functional equations is in normal f o r m
ff all its derived operations are normal.

For instance, system (4.2) is in normal form.
Any system can be easily transformed into an equwalent system in normal form

by applying well-known techniques for obtaining regular grammars from equivalent
formalisms [6]. For instance, the system

x = y U f (g(x, y)) , y = c U h(x),

can be transformed into the system

x = c U h(x) Of(z), y = c U h(x), z = g(x, y) ,

whmh is in normal form.

746 s . G N E S I , U . M O N T A N A R I , A N D A. M A R T E L L I

Given a system of symbolic functional equations in normal form, the corresponding
AND~OR graph has as many nodes as there are variables of the system. Furthermore,
every term 6 = fL(Xl Xn) contained in an equation x = tl O . . . U 6 0 . . .
corresponds to an n-connector (X, X1 Xn) labeled with f , where X Is the node
corresponding to variable x and X,, 1 _< i _< n, is the node corresponding to x~. The
bottom element (£} does not correspond to any connector. For instance, the labeled
A N D / O R graph corresponding to system (4.2) is given in Figure 2.

We can now prove the important result that, given a system of symbolic functional
equations in normal form and its corresponding A N D / O R graph, the minimal
solution of the system coincides with the set of all finite solution trees of the A N D /
OR graph. (Recall that solution trees are X-trees.)

Let us first prove the following lemma.

LEMMA 4.1. Let S be a system of symbolic functional equations in normal form with
a set of variables V and G be the labeled AND ~O R graph corresponding to S.
Furthermore, let x~ be the set of Z-trees which ts the value of varlable x (x ~ V) at the
ith step of the iterative algorithm apphed to system S and T(x), be the set o f all solution
trees of depth at most i rooted at the node corresponding to x m the graph G. Then

x , - - T(x)~, i=O, 1 , x U V.

PRoof. By induction. We have x0 = T(x)o = {±). Let us now assume that x~ =
T(x), for every x ~ V.

Let b =fL(yl , . . . , ym) be the j th term of the equation whose left member is x in the
system S. By applying such an operation in step t of the iterative algorithm we get
the set

sj = fL((y ,) (fro),) = {f(zl, . . . , Zm) lZk ~ (yk)~, k = 1 m} t3 (±) .

Let us now consider the node corresponding to x in G, and let sj be the set of
solution trees of depth _<i + 1 obtained through the connector corresponding to the
above term 6- We have

s~ = (f(z l Zm) IZk ~ T(yk),, k = 1 m) O {±}.

Thus, since (yk), = T(yk),, k = 1 m, by our induction hypothesis, we have sj =
sj. But

x,+l = Usj and T(x),+l = Us~,
J J

and thus

x,+l = T(x),+i. []

For instance, the value x2 m the iterative solution of system (4.2) given above
coincides with the set of all solution trees of depth _<2 rooted at node X in the A N D /
OR graph of Figure 2.

Now we can prove

THEOREM 4.1. Let S be a system of symbolic functional equations in normal form
with a set of variables V and G be the labeled AND ~O R graph corresponding to S.
Furthermore, let Y be the minimal solution of system S for variable x (x ~ V) and T(x)
be the set of all finite solution trees rooted at the node corresponding to x in G. Then we
have

= T(x), x ~ E

Dynamic Programming as Graph Searching 747

PROOF. This result follows directly from Lemma 4.1, if we notice that the solution
is given by

t--O

and that the set of all solution trees is given by

T(x) = U T(x),. []
z--O

5. Functional Equations of Dynamic Programming

A system of functional equations of dynamic programming S is a symbolic system SS,
as defined in the previous section, together with an interpretation/, which associates
with each elementary operation OfAL a monotone function on R t.J {+~) O {-o0}.
In particular it maps the union operation in the min operation. Given an interpre-
tation L we thus obtain an algebra An having such functions as elementary operations.

We can now define a homomorphism between AL and An through the function h
computed as follows. Let T be a set of ~-trees belonging to IL.

(i) For every tree in T, interpret every symbol o on the nodes as the operation OR
and evaluate the tree. The empty tree evaluates to +~. Let us call g this function
which given a T returns a set of values belonging to In, namely, the set of"costs"
of every tree.

(ii) Take the greatest lower bound of all values obtained in (i). Thus h(T) ffi
glb(g(T)).

Notice that for the operation symbols belonging to ~, AL acts as the initial algebra
and h as the evaluation homomorphism [4]. Thus for such operations conditions (2.2)
and (2.3) are clearly satisfied. For the union-rain operation (2.3) is also valid:

h(T1 t.J T2) = glb(g(T1 t.J T2)) = glb(g(t0 LI g(T2))
ffi min(glb(g(T1)), glb(g(T2)))
-- min(h(T1), h(T2)).

Thus h is a homomorphism.
Given a system S -- (SS, I), its solution is obtained, by definition, as follows. One

derives from the symbolic system SS an interpreted system IS using homomorphism
h and solves it.

For instance, let us consider again system (4.2):

x = aL LI bL(X) t.) CL(X, y),
y ---- bE(y) t.I c~(v, z),
Z = bL(U),

u = {±},
v = (±},

together with the interpretation

aR = 5 ,
X

bR(X) = i + 2 ,

bE(x)

CR(X, y)

1
- - i f x_< l t h e n l e l s e 2 - - ,

X
X

= ~ + Y ,

c~(x , y) = x + y.

748 s. GNESI, U. MONTANARI, AND A. MARTELLI

The interpreted system IS is (x x)
x = m i n 5 , ~ + 2 , ~ + y

1
y = if y:_< 1 t h e n 1 e l s e 2 - - ,

Y

Z .=. U ~ . V ..~. + o o .

It is well known in the context of dynamic programming that functional equations
are a means for describing the class of optimization problems characterized by the
so-called "Bellman's principle of optimality" [2, 22]. According to this principle, the
solution of an optimization problem can be reduced to the solution of several
subproblems, whose solution, in turn, can be reduced to the solution of other
subproblems. In the example of Section 1 the problem of finding a minimum length
path from node 1 to node n is reduced to the subproblems of finding the minimum
length path from node 1 to every node adjacent to node n, and similarly for all other
nodes. Functional equations express the optimal solution of a problem in terms of
the optimal solutions of its subproblems.

In practice, the problem-subproblem relations often give rise to a partial ordering
among problems. In this case functional equations can be solved efficiently using the
technique, known as the "dynamic programming technique," of finding the optimal
solution of all subproblems of a given problem before finding the optimal solution of
the problem itself. In the general case, when cyclic relations among problems exist,
a system of functional equations can be solved iteratively starting from an initial
value of +oo for the variables. Of course, in our framework this is a consequence of
the fixpoint theorem, since, as we showed, algebra An is continuous. In our example
we have z = u = v = +oo, and for the remaining variables we get

Xo ---- +o% ..Vo ~" +oo ,

Xl = 5 , y l = 2,
x2 = 4.5, y2 = 1.5,

---2, fi = l .

6. A Commutativity Result

Let us now apply Theorem 2.1 to algebras AL and AR introduced in Sections 3 and
4. In order to do this we have to prove that the homomorphism h introduced in
Section 5 is strict and continuous. In fact, (2.4) is satisfied, since

h(.l-L) ---- glb(g(ZL)) ---- glb({+oo}) = +oo = ±n-

Therefore h is strict. Moreover, (2.5) is satisfied, since

Ti EL T2 implies T1 ~ T2 implies g(T1) C g(T2)
implies glb(g(T~)) _> glb(g(T2)) implies h(T~) -=R h(T2).

Thus h is monotone. Finally, (2.6) is satisfied, since

o0 oo

= glb (glb(g(T,))) -- Us h(T,), To -= T1 -=
t ~ 0 ~--0

Dynamic Programming as Graph Searching 749

System of symbolic t
functional equations /

Least soluUon l

Set of all solution _1
trees of AND/OR
graph correspondmg
to the system

Interpretauon

Interpretation

System of interpreted
funcuonal equations
Least solution

Minimal cost

FIGtrRE 5

Therefore h defines a strict, continuous homomorphism, and Theorem 2.1 can be
applied. Thus the solution of a system of functional equations S = (SS, I) can be
obtained either by solving in algebra AR the interpreted system derived from the
symbolic system SS using h or by solving in algebra AL the symbolic system SS and
then interpreting the solution.

A system of equations in algebra AL corresponds to an A N D / O R graph, and its
solution for the variable x, by Theorem 4.1, is exactly the set of all solution trees
rooted at the node corresponding to x. Applying function h to such a set means
evaluating the "cost" of every solution tree and taking the cost of the "cheapest"
solution tree (or the glb of the costs of all solution trees, if no cheapest solution tree
exists). Alternatively, as defmed in Section 5, the same value can be obtained by first
applying function h to the symbolic system, thus getting a system of interpreted
functional equations, and then solving the system for variable x. In short, we can
state our main result as the commutativity of the diagram in Figure 5.

Since the diagram commutes not only for the fixpoint but also for all elements in
the chains, the value obtained at the ith step of the iterative solution of the interpreted
system is the minimum cost of all solution trees of depth at most i in the corresponding
A N D / O R graph. For instance, for the system of functional equations given in the
previous section we have,

h(x~) = glb(g(xlz)) = glb(5, ~) = 5 = x~,

h(yl L) = glb(g(y~)) = glb(2, o¢) = 2 = y~,

h(x~) = glb(5, 4.5, oo) = 4.5 = x~,
h(y~) = glb(l.5, 2, oo) = 1.5 = y2 R,

where x~ and y n are the values of x and y at the ith step of the iterative solution of
the symbolic system, that is, by Lemma 4.1, the sets of solution trees of depth at most
i in the A N D / O R graph of Figure 2.

The minimal cost ~ = 2 is achieved by the infinite tree,

c(c(c(...), b'(b'(...))), b'(b'(...))),

which does not belong to the solution of system (4.2), since the elements of algebra
AL are only sets of finite I-trees. In general, however, the glb may be not even
achievable by an infinite tree. For instance, given the functional equation

x -- min(4,f(x)) with f (x) = ½x + 1,

the minimal solution .~ = 2 is achieved as the limit of the costs 4, f(4), f (f (4)) ,
whereas the cost of the infinite t reef(f (f (. . .))) is ~.

750 S. GNESI, U. MONTANARI, AND A. MARTELLI

7. Conclusions

The commutativity result stated in Section 6 has already been mentioned in the
literature, to our knowledge, only for special cases. In [10] Karp and Held proved the
result for monadic cost functions under the restriction that a cheapest finite path
exists. In [15] Martelli and Montanari eliminated this restriction, but required that all
functions be infinite-preserving (namely, o(+ao) = +oo; notice that b~(x) in our
example is not infinite preserving). In [14] they extended the result to polyadic cost
functions, still in the infinite-preserving case. The general case has been achieved in
this paper by a suitable definition of algebra AL, which guarantees the prefix property
and the nonemptyness of its elements.

There are interesting computational applications based on the main result of this
and of our previous papers [14, 15, 16], namely, that the solution of a system of
functional equations can always be reduced to the problem of searching a minimal
cost solution tree in an A N D / O R graph. For instance, the iterative algorithm for
solving a system of functional equations can be immediately applied to an A N D / O R
graph for finding a minimal cost solution tree. In fact, the kth step of this algorithm
corresponds to finding for every node the minimal cost of all solution trees of depth
at most k, knowing the minimal cost of all solution trees of depth at most k - 1 of
all adjacent nodes. The most interesting results from a computational viewpoint are
achieved, however, by applying algorithms for searching A N D / O R graphs to the
solution of systems of functional equations, since efficient algorithms are known in
important special cases, such as, for instance, acyclic graphs [8] or positively monotone
cost functions, that is, functions such that

f (x l xn) --> x , l _< i_< n.

In the latter case a solution can be found efficiently by applying the Dijkstra-Knuth
algorithm [12].

The most important cases in practice are those in which an estimate of the cost of
the minimal solution is provided for every node of the graph. In these cases, the so-
called heuristic search algorithms can be used, such as the well-known algorithm by
Hart, Nilsson, and Raphael [5], which can be applied to graphs with monadic and
additive cost functions.

Martelli and Montanari developed heuristic search algorithms for the general case
of monadic cost functions [16] and the case of positively monotone polyadic cost
functions [13, 17]. In [17] we have an example of an important practical problem,
optimal decision table conversion, which has been solved more efficiently using
heuristically guided search than using standard dynamic programming techniques.

REFERENCES
I. ARNOLD, A., AND NIVAT, M. Nondetermlmstic recursive program schemes. In Fundamentals of

Computauon Theory 1977, Lecture Notes in Computer Science 56, M. Karpinskl, Ed., Springer Verlag,
Berlin, Heidelberg, 1977, pp. 12-21.

2. BELLMAN, R.E. Dynamic Programming Princeton University Press, Princeton, N J, 1957
3. BLIKLi~, A. Equational languages. Inf. Control 21 0972), 134-147
4. GOGUEN, J A., THATCHER, LW., WAGNER, E.G, AWO WRiGrrr, J.B. Initial algebra semanucs and

continuous algebras. J. ACM 24, l (Jan. 1977), 68-95.
5. HART, P., NItSSON, N., AND RAPHAEL, B A formal basis for the heuristic determinaOon of minimum

cost paths. IEEE Trans. Syst. Scl. Cybern. SSC-4, 2 (July 1968), 100-107.
6. HOPCROFT, J.E., AND ULLMAr~, J.D Formal Languages and Their Relation to Automata. Addison-

Wesley, Reading, Mass, 1969.
7. InARara, T. Classes of discrete optimizaUon problems and their decision problems..L Comput. Syst.

Set. 8 0974), 84-116.

Dynamic Programmi n g as Graph Searching 751

8 IBARAKI, T On the optimality of algorithms for finite state sequential deoslon processes. J Math.
Anal Appl 53, 3 (March 1976), 618-643

9 JOHNSON, D B Algorithms for shortest paths Ph D Dissertation, Cornell Unlv, Ithaca, N.Y., May
1973

10 KARP, R.M, AND HELD, M. Finite-state processes and dynamic programming SIAM J. Appl Math,
15 (1967), 693-718

l l KNUTH, D.E Opumum binary search trees Acta Inf I (1971), 14-25
12 KNUTH, D E A generahzation of Dijkstra's algorithm Inf Proc Lett 6 (Feb 1977), 1-4
13 MARTELLI, A., AND MONTANARI, U Additive AND/OR graphs Proc 3rd Int. Joint Conf on

Artificial Intelligence, Stanford, Cahf, 1973, pp 1-11
14 MARTELLI, A, AND MONTANARI, U Programmazione dlnamlca e punto fisso Proc Convegno dl

Informatlca Teonca, Mantova, Italy, Nov 1974, pp 1-19
15 MARTELLI, A, AND MONTANARI, U On the foundaUons of dynamic programming In Topws m

Combinatorial Optlmtzanon, S. Rmaldl, Ed., Springer Verlag, Vienna, New York, 1975, pp 145-163
16 MARTELEI, A, AND MONTANARI, U From dynamic programming to search algorithms with func-

tional costs Proc 4th Int. Joint Conf on Artificial Intelhgence, Tblhsi, USSR, Sept. 1975, pp 345-
350

17 MARTELL1, A, AND MONTANARI, U Optimizing deOslon trees through heuristically graded search
Commun ACM 21, 12 (Dec. 1978), 1025-1039

18 NILSSON, N J Problem Solving Methods m Arty%tal lntelhgence McGraw-Hill, N Y., 1971
19 SCHUMACHER, H , AND SEVCIK, K C The synthetic approach to decision table conversion. Commun

ACM 19, 6 (June 1976), 343-351
20 TARSKI, A A lattice-theoretical fixpomt theorem and its apphcations Pacific £ Math 5 (1955), 285-

309.
21 THATCHER, J W Tree automata An informal survey In Currents in the Theory of Computing, A V

Aho, Ed, Prentice Hall, Englewood Chffs, N.J, 1973, pp 143-172
22 W~ITE, D J Dynamw Programmmg Ohver & Boyd, Edinburgh, 1969

RECEIVED JUNE 1979, REVISED FEBRUARY 1980, ACCEPTED JUNE 1980

Journal of the Association for Computing Machinery, Vol 28, No 4, October 1981

