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1. Introduction 

D y n a m i c  p r o g r a m m i n g  [2, 22] is a w e l l - k n o w n  m e t h o d o l o g y  fo r  r e p r e s e n t i n g  opt i -  

m i z a t i o n  p r o b l e m s  in t e r m s  o f  e q u a t i o n s  o n  rea ls  w h o s e  lef t  m e m b e r s  a re  u n k n o w n s  

a n d  r ight  m e m b e r s  a re  express ions  c o n t a i n i n g  the  m i n i m u m  o p e r a t i o n  a n d  m o n o t o n e  

f u n c t i o n s  only .  T h e s e  e q u a t i o n s  a re  called functional equations a n d  a re  u sua l l y  so lved  

w i t h  an  i t e ra t ive  m e t h o d .  

Le t  us cons ider ,  for  ins tance ,  a t yp i ca l  d y n a m i c  p r o g r a m m i n g  p r o b l e m ,  t he  p r o b l e m  

o f  f i nd ing  a shor tes t  p a t h  in  a g raph .  Le t  G be  a g r a p h  w i t h  n o d e s  N = ( l  . . . . .  n} 

a n d  a pos i t ive  rea l  n u m b e r  c v assoc ia t ed  w i t h  e v e r y  a rc  (i, j ) .  W e  w a n t  to d e t e r m i n e  

a p a t h  o f  m i n i m u m  l e n g t h  f r o m  n o d e  1 to n o d e  n, w h e r e  the  l e n g t h  o f  a p a t h  is the  

s u m  o f  t he  costs o f  its arcs. T h e  d y n a m i c  p r o g r a m m i n g  f o r m u l a t i o n  o f  this  p r o b l e m  

is t he  fo l lowing .  Le t  x, be  the  l e n g t h  o f  the  shor tes t  p a t h  f r o m  n o d e  1 to n o d e  i. T h e n  

we  can  wr i t e  the  f o l l o w i n g  sys tem o f  functional equations: 

Xl "~ O~ 

X~ = m I n  (f~(x~)),  i = 2 . . . . .  n, 
J =1, ,n 
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where cost functions fi~ have the additive formfj,(y) = y + cj,. Such a system can be 
solved in many different ways [9]. 

In general, cost functions are neither restricted to be additive nor monadic. In fact, 
interesting problems such as those of finding an optimal binary search tree [11, 13] 
or optimal decision table conversion [17, 19] can be represented by systems of 
functional equations with polyadic cost functions. The property of cost functions 
which actually characterizes dynamic programming is monotonicity. 

The above example shows the equivalence between the problem of determining a 
shortest path in a graph and that of solving a system of functional equations with 
additive monadic cost functions. The same equivalence result was shown to hold in 
the more general case of monotone monadic cost functions by Karp and Held [10], 
who introduced a formal model of dynamic programming, based on automata theory, 
called sequential decision process. This model was further developed by Ibaraki 
[7, 8]. A similar result was also proved by Martelli and Montanan [15]. 

The relationships between dynamic programming and graph search were further 
extended by Martelli and Montanari [14], who showed that in the case of polyadic 
cost functions, the solution of a dynamic programming problem can be obtained by 
searching for a minimal cost solution tree in an AND/OR graph. 

In this paper the equivalence between solving a system of monotone polyadic 
functional equations and searching an AND/OR graph with monotone cost functions 
is proved in an algebraic framework by using an approach simdar to the one recently 
used in proving the equivalence between the operaUonal and denotational semantics 
of programming languages [1, 4]. An advantage of such an approach is that we can 
deal also with the case where the optimal cost is achieved as the limit of a sequence 
of finite solution tree costs. 

Our equivalence proof is based on a commutativity theorem for continuous 
algebras. Such a theorem is given in Section 2.3, together with the algebraic 
background; the definition of an AND/OR graph is given in Section 2.2. In Section 
3 we give an algebraic definition of interpreted functional equations. In Section 4 we 
introduce symbolic functional equations, that is, equations on sets of trees built with 
uninterpreted function symbols, and we prove a theorem stating that the solution of 
a system of symbolic functional equations gives all finite solution trees of a corre- 
sponding AND/OR graph. Finally, in Section 5 we introduce a system of functional 
equations S as a system of symbolic functional equations SS together with an 
interpretation L In Section 6 we prove that to solve S we can either give the 
interpretation I to the symbolic system SS, obtaining an interpreted system IS, and 
solve it; or we can solve SS, obtaining a set of trees, and give to the resulting set of 
trees the interpretation I. Here to give an interpretation to a set of trees means to 
evaluate the costs of all trees and find the greatest lower bound of such costs. The 
two theorems of Section 4 and 6 imply our main result: To solve a system of 
functional equations S = (SS, I) by deriving the interpreted system IS and solving it 
is equivalent to searching the AND/OR graph corresponding to SS for the cheapest 
(according to 1) solution tree. If the minimum does not exist, we can take the greatest 
lower bound of all solution tree costs. 

AND/OR graphs and solution trees (i.e., generalized paths) are equivalent to 
various well-known formalisms, as shown by Martelli and Montanari in [14]. For 
instance, it is easy to interpret an AND/OR graph as the transition function of a tree 
automaton [21]. The set of trees accepted by a top-down (or a bottom-up) nondeter- 
ministic tree automaton is exactly the set of all finite solution trees of the correspond- 
ing AND/OR graph. Another equivalent formahsm is that of regular tree grammars. 
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For instance, the systems of  symbolic functional equations which are introduced in 
Section 4 might be interpreted as regular tree grammars, and their solutions as the 
equational languages of  trees denoted by such grammars [3]. Theorem 4.1 proves 
that these languages are the set of  all finite solution trees of  the corresponding A N D /  
OR graphs. In this paper we choose A N D / O R  graphs and solution trees, since they 
are the most immediate generalization of (transition) graphs and paths. 

The equivalence result proved in this paper has practical applications, since it 
allows various graph searching techniques to be translated into techniques for solving 
functional equations of dynamic programming, and vice versa. 

2. Background 

2.1 X-'I~EES. In this paper we use a tree domain which is based on CTx as 
defmed in [4]. Let X be a ranked alphabet, that is, a family of  disjoint alphabets X, 
(i E to, to -- (0, l, 2 . . . .  }) indexed by the natural numbers. The symbols of  alphabet 
Xk may be interpreted as k-adic function symbols. 

A Z-tree is a partial tree labeled with symbols of ~, where partial means that some 
of its leaves may be unlabeled. For instance, in Figure 1 we have a ~-tree, with 
defined as follows: 

~0 = {a} ,  Xl  = {b, b'} ,  ]~2 = {c, c ' ) ,  Xa = X4 . . . . .  QS, 

where a is a zeradic function (constant) symbol, b and b' are monadic function 
symbols, c and c' are dyadic function symbols. 

A Z-tree t may be defined formally as a partial function 

t:to* © ~ ~, 

where to* is the set of  strings of  natural numbers of  length 0, 1, 2 . . . . .  In order to 
represent a Z-tree, this function must satisfy the following conditions for all u E o~* 
a n d i E  to: 

(a) ui E def(t) implies u E def(t); 
(b) ui E def(t) implies t(u) E X, and i < n for some n > 0; 

where def(t) is the defmition domain of partial function t. 
The strings of natural numbers in the domain of  t may be interpreted as encoding 

of  paths in the corresponding tree from the root to any labeled node, and function t 
gives the label of  this node. Thus condition (a) means that if  path ui exists, then 
certainly path u exists as well. Condition (b) means that if path ui exists, then the last 
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node of path u must be labeled with a correctly ranked symbol. For instance, the tree 
in Figure 1 is represented by the function 

t: (A, 0, 1, 00, 10) .--~ (a, b, b', c, c') 

where A ~ c, 0 ~ b, 1 ~ b', O0 ~ a, 10 ~ c', and A is the empty string. 
The set CTz of all such trees is ordered according to the standard order of partial 

functions, namely, t' _< t" i f f  def(t') C_ def(t"), and Vu ~ def(t ') we have t'(u) -- 
tO(u). If  t' _< t", we say that t' approximates t". 

According to the above definition, X-trees can be finite or infinite. A X-tree t is 
finite if def(t) is finite and infinite otherwise. In this paper we use only finite X-trees. 

2.2 A N D / O R  GRAPHS. A N D / O R  graphs are well known in artificial intelli- 
gence as a model of problem reduction [18]. An AND~OR graph can be defined as 
a hypergraph, that is, a graph where instead of  arcs connecting pairs of nodes there 
are hyperarcs connecting n-tuples of  nodes (n = 1, 2, 3 . . . .  ). Hyperarcs are called 
connectors, and they must be considered as being directed from their first node to all 
the others. Formally, an A N D / O R  graph G [14, 17] is a pair (N, C), where N is a 
finite set of  nodes and C is a set of  connectors 

C C N x  O N  k. 
k - O  

Each k-connector (A, A1 . . . .  , Ak) is an ordered (k + l)-tuple, where A is the input 
node and A1 . . . . .  Ak are the output nodes. When C _C N 2, we have a usual graph 
whose arcs are the 1-connectors. 0-connectors are connectors with one input and no 
output node. Given a ranked alphabet X, a Z-labeled AND~OR graph is an A N D /  
OR graph whose k-connectors are labeled with symbols in the alphabet Xk. 

AS an example let us consider the X-labeled A N D / O R  graph in Figure 2. The 
nodes are denoted by capital letters, 0-connectors are represented as a line ending 
with a square, and k-connectors (k > 0) as k directed lines connected together. 
Alphabet X was given in the example of  Section 2.1. For instance, node X is the 
input node of a 0-connector (X) labeled a, a 1-connector (X, X) labeled b, and a 2- 
connector (X, X, Y) labeled c. 

A X-labeled A N D  tree is a Z-labeled A N D / O R  graph where every node is input 
node of at most one connector and every node is output node of  exactly one 
connector, except for a node, the root, which is the output node of  no connector. An 
example is given in Figure 3, where Xx is the root and nodes V1 and Z1 are input 
nodes of  no connector. 

It is easy to see that a X-labeled AND tree can properly represent a Z-tree, and 
vice versa. For instance, the AND tree in Figure 3 corresponds to the tree given in 
Section 2.1 and represented in Figure 1. Owing to this isomorphism, from now on we 
will speak interchangeably of  AND trees or X-trees. 

Let H be a X-labeled A N D / O R  graph, X a node of  H, and T a fmite X-labeled 
AND tree. Then we say that T is a solution tree o f  H rooted at node X iff there exists 
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a homomorphism mapping T into H. More precisely, there must exist a function h 
mapping nodes of  T into nodes of  H such that if  a connector (A, A~, . . . ,  Ak) exists 
in T and is labeled with a, then a connector (h(A), h(A 0 . . . . .  h(Ak)) labeled with a 
must also exist in H. Furthermore, h must map the root of  T into node X. 

For  instance, the AND tree in Figure 3 is a solution tree of  the graph in Figure 2 
rooted at node X. In fact, the following suitable function h exists: 

h(X~) = h(X~) ffi h(X~) = X,  h(V~) ffi V, 

h(YO = h(Y2) = Y, h(Z 0 ffi Z. 

The concept of  a solution tree of  an A N D / O R  graph, together with the function 
mapping it into the graph, can be seen as a generalization of  the concept of  path in 
ordinary graphs (in fact it reduces to it i f  the graph contains only l-connectors). 

Finally we define the depth of  an AND tree t as follows: 

(a) if the root of  t has no outgoing connector, then the depth of  t is 0; 
(b) if the root of  t is input node of  a 0-connector, then the depth of  t is l; 
(c) if  the root of  t is input node of  a k-connector (k > 0), then the depth of  t is 

obtained by adding 1 to the maximum depth of  all subtrees rooted at the output 
nodes of  the connector. 

For instance, the depth of  the AND tree in Figure 3 is 3. 

2.3 CONTINUOUS ALGEBRAS. Let .4 be an algebra (a set with operations whose 
names are taken from a ranked alphabet) and I be the set of  its elements. Set I is 
called the carrier of  A [4]. Let us then assume a partial order ~_ over I. Algebra A is 
called continuous if  the following properties are satisfied: 

(i) The carrier I of  A is a complete partial order (cpo), namely, every chain Xo c 
xl =- x2 ~ . - - ,  x, E I, i = 0, 1, 2 . . . . .  has a least upper bound 1.1~.0 x, -- £ E I; 
and a bottom element ± exists, namely Vx ~ / ,  & ~_ x. 

(ii) Every (elementary) operation of  A is a monotone, continuous function, namely, 
if  OA is an n-adic operation of  A, then 

X p # P k . . . . . . .  = xk implies OA(Xl, ., Xk, ., Xn) = OA(Xl . . . .  Xk," . . . ,  Xn) 
(monotonicity), 

and 

f i  oa(x~ . . . . .  x ~  . . . . .  x . )  = o~(x~ . . . . .  f i  x'k . . . . .  x . ) ,  x°k =_ x ~  =_ . . .  
, =o , =o (continuity). 
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Given a continuous algebra A, it is possible to obtain its derived operations by 
composing its elementary operations. It is easy to see also that derived operations are 
monotone, continuous functions. Let us now write a system of  equations in A 

X l  m TI(X1, X2, • • • ,  Xn), 
X2 ffi "2 (Xl ,  X2, • . .  , Xn) ,  

(2.1) 

x .  ffi r . ( X l ,  x2 . . . . .  x . ) ,  

where xi, i = 1 . . . . .  n, are variables over 1 and I-, are (derived) operations. I f  we 
define a partial order over tuples of  L 

(x~ . . . . .  x~ . . . .  x~) =_ (xi' . . . . .  x~' . . . .  , x,") iff  x~ =_ xh', k = 1 . . . . .  n, 

we can apply thefixpoint theorem [20], namely, that system (2.1) has a least solution 
(~1 . . . . .  Yn) which is the least upper bound of  the chain of  n-tuples (x]  . . . .  , x~), 
i = 0, I . . . . .  obtained by starting with x~ ffi .1., k ffi 1 . . . . .  n, and iteratively applying 
the operators in the right member of  the equations: 

x'+l . xn), k = 1 . . . . .  n. k = l"~(x~ . . . .  i 

We now need to introduce some concepts concerning homomorphism between 
continuous algebras. 

Let A and B be two continuous algebras, la  and la be their carriers, and A and B 
have the same signature (i.e., the same operation names). A function h:Ia ~ IB 
defines a homomorphism from A to B iff  for every zeradic function (i.e., for every 
constant) name a, we have 

h(aa) = an, (2.2) 

and for every n-adic function name o, n = 1, 2 . . . . .  m, we have 

h(OA(Xx, x2 . . . . .  xn)) = oB(h(x1), h(x2) . . . . .  h(xn)). (2.3) 

Given a derived operation ~'a in algebra A, it is possible to define a corresponding 
derived operation ~'B in algebra B. It is sufficient to consider any expression in terms 
of  primitive operations of  A denoting l"a and evaluate it in terms of  the homonymous 
operations of  B. It is easy to see that ~'n does not depend on the particular chosen 
expression and that the commutative property holds for derived operations as well: 

h(Ta(Xl,  X2 . . . . .  Xn)) = I"B(h(x1), h ( x 2 )  . . . . .  h(xn)).  

A homomorphism is called strict i f  it maps bottom into bottom, 

h(-l-a) ffi -I-B, (2.4) 

and it is called monotone i f  it preserves the partial orders of  A and B, 

x ~a  y implies h(x) EB h(y).  (2.5) 

A monotone homomorphism is called continuous iff  it preserves the limits of  
chains, 

h(iUoAXI)  " iUoBh(Xt), XO -~- Xa ~- . . . .  ( 2 . 6 '  

We can now prove the following theorem, which is a generalization of  [4, Prop. 
5.1]. 
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THEOREM 2.1. Let  A and B be continuous algebras and h be a strict, continuous 
homomorphism f r o m  A to B. Le t  

xk = ~'kA(xi, X2 . . . .  , X,), k = 1 . . . . .  n, 

be a system o f  equations in algebra A and £ k A be its least solution. Let  

Xk = V~(Xl, X2 . . . .  , Xn), k = 1, . . . ,  n, 

be the corresponding system o f  equations in algebra B, obtained by replacing in the 
right members  o f  equations the derived operations o f  A with the corresponding derived 
operations orB ,  and let Y ~ be its least solution. We  have 

h(~) ~ = k, k =  1 , . . . , n .  

PROOF. Let ((xl  A'°, x~'°), (x~ '1, .. x a'la .. . . . . . . .  , . . . .  ) a n d  ( ( x ~  '°, . ,  x ~ ' ° ) ,  
(x~ 't, . . . ,  x ,  n'I) . . . .  ) be the approximating chains for £A and ~ obtained in A and 
B by applying the fixpoint theorem. We will prove inductively that 

A t x B , t  h ( x k ' ) =  k ,  k = l  . . . .  ,n ,  i = 0 , 1  . . . . .  

In fact, we have 

X Bo  h(x~ t'°) = h ( . L A )  = -LB = k '  , k = 1 . . . .  , n, 

since h is strict. Let us assume 

A t  k , k =  1, . . . , n .  h(xk '  ) = x n'' 

We have also 

h t x A , t + l ~  ~,~ A I x A  t A,t , rBehZx  A tx A,t ~. k ) = n t r k t  1', . . . .  X ,  ) ) =  ht ~. 1 ')  . . . . .  h(xn )) 
T B / x  B't . x B ' t ~  ~ X B t + l  = kK 1 , .  . ,  n J k' , k =  1, . . . , n .  

Finally, since h is continuous, it also preserves the limits of  the approximating chains, 
namely, 

h [ L I  x A ' t~  oo x A , t  
= L-V } = Yo ) 

~t B,t ~ B = ~ B X k  = k, k =  l , . . . , n .  [] 

We can represent the result of  this theorem with the commutativity of  the diagram 
in Figure 4. 

3. Interpreted Functional Equations 

In this section we introduce the concept of interpreted functional equations by 
defining a suitable algebra AR. The relation with functional equations of  dynamic 
programming is explained m Section 5. 
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Algebra AR has one carrier, IR, defined as the real numbers with an ordering 
which is the reciprocal of the usual ordering _< plus a "bottom" element +oo and a 
"top" element -oo, to obtain a complete partial order. 

The elementary operations on AR (the cost functions) are denoted by the symbols 
of a given ranked alphabet E. As we mentioned before, the property of cost functions 
which characterizes dynamic programming is monotonicity. Thus, given a function 
OR : 12 ~ IR, where o E En, we must have 

x '  _ x[ '  . ' " • Xn). k > implies OR(X1 . . . .  X k  . . . . .  X n )  ~ f iR(X1 . . . . .  Xk  . . . .  

Furthermore, we require these functions to be continuous from above; that is, 

lira OR(X1, . . . ,  Xk . . . . .  X,~) = OR(X1 . . . . .  2k . . . . .  Xn). 
X k---~ ~k 
xk>~k 

This property is required to guarantee the convergence of  the iterative algorithm for 
solving a system of equations. 

Besides these functions, algebra AR possesses a minimum operation. Since we have 

x '  -> x "  implies min(x', y)  _> min(x ", y)  

and 

limmin(x, y)  = rain(a?, y), 
x--~x 

min is a monotone continuous function as well. Therefore we can conclude that AR 
is a continuous algebra. 

A system o f  interpreted functional equations is a finite system of  equations in the 
algebra AR. 

4. Symbohc  Functional EquaUons and A N D ~ O R  Graphs 

We introduce here symbolic functional equations, that is, equations in an algebra AL 
defined as follows. 

Let E be the same ranked alphabet of  the previous section. The carrier lc  of AL 
consists of all sets of  fimte E-trees, with the following restricuons: 

(i) Prefix property: I f  a set contains a E-tree t, then it must also contain all ~-trees 
t '  such that t '  ~_ t. 

(i0 All sets must contain the empty E-tree 3_ = { ). In particular, the empty set does 
not belong to IL. 

Algebra AL has as many elementary operations as there are symbols in the ranked 
alphabet E, plus the union operation, which corresponds to the min operation of 
algebra A R. 

The result of applying the operation oz(o E Era), m = 0, 1 . . . .  to the m elements 
L1, L2 . . . . .  Lm E IL is defined as follows: 

oL(L1, Lz . . . . .  Lm) = (o(xl ,  xz . . . . .  x,~)[x~ ~ L ,  i = 1 . . . . .  m} U (_1_}, (4.1) 

where o(xl, x2 . . . .  , Xm) is a E-tree whose root is labeled with o and has the E-trees 
Xl, x2 . . . . .  xm as sons. Notice that the resulting set satisfies restrictions (i) and (ii). 
Notice also that the union operaUon commutes with any operation or, namely, 

or(L1 . . . . .  L'k CJ Lf f  . . . . .  L m )  = o L ( L 1  . . . . .  L'k . . . .  Lm) t.J OL(L~, . . . ,  L~' . . . .  Lm). 

As a consequence we can denote any derived operation with an expression having 
the union operations (if any) at the outermost level. Furthermore, it is easy to see 
that any derived operation can be represented as the union of a unique standard set 
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of terms. A set of terms is standard if no term contains the union operation and if, 
whenever a term of type tl(tz) appears in it, the term/l(.J.-) does not. In fact, the sets 
{tl(t2)} and {ta(t2), tl(±)} would represent the same derived operation in algebra AL, 
owing to the presence of  {±} in (4.1). In the following, we will often represent a 
derived operation in AL by its standard set of  terms. 

Algebra AL can now be given an ordering relation, that is, simply set inclusion 
among sets of  Z-trees. Thus the set {±} is the bottom element of  the partial order, 
and since every chain has a least upper bound (just the set union of  all sets o f  Z-trees 
in the chain), then the carrier I r  is a complete partial order. Furthermore, It is easy 
to see that all elementary operations defined above are monotone, continuous 
functions. Therefore algebra AL is a continuous algebra. 

As an example, let us consider the following system of symbolic functional 
equations: 

x = aL L) bL(X) U CL(X, y), 
y = bE(y )  t_J c~(v, z), 
z = bL(U), (4.2) 
u = ( ± } ,  

v = ( ± } .  

As a consequence of the fixpoint theorem, such a system can be solved lteratively. 
The solutions for z, u, and v are clearly {b(i) ;  ±}, {±}, and {Z}, respectively. Let us 
apply the iterative algorithm to the two first equations. We start with a pair of  bottom 
elements, 

xo = ( ± ) ,  yo = ( ± ) ,  

and at the first and second iteration we get 

x, = {a; b(±); e(±, ±); ±) ,  
yl = {b'(±); c '(±, 1); l ) ,  

xz = {a; b(a); b( i ) ;  b(e(±, l ) ) ;  b(b(±)); e(a, b'(±)); ¢(a, c'(.l., &)); 
c(a, ±); e(b(l) ,  b'(±)); c(b(±), c'(L, ±)); c(b(_l_), l ) ;  
c(e( l ,  l ) ,  b'(±)); e(c(±, ±), c ' ( i ,  _k)); c(c(l ,  l ) ,  l ) ;  
c(±, b'(±)); c(±, c '(±, l ) ) ;  c(±, ±); ±}, 

y2 = {b'(b'(±)); b ' ( c ' ( l ,  l ) ) ;  b'(±); c ' ( l ,  b( l )) ;  c '(L, ±); .l_}. 

Given a system of symbohc functional equations, it is very easy to put it in 
correspondence with a labeled A N D / O R  graph. Before doing this, we give the 
following definition. 

Definition. A derived operation of  algebra AL is called normal iff its standard set 
of terms is either {L} or a set of  terms of  the f o r m f L ( x l  . . . . .  Xn), w h e r e f  E Zn and 
x~ . . . . .  x ,  are variables. A system of symbolic functional equations is in normal f o r m  
ff all its derived operations are normal. 

For instance, system (4.2) is in normal form. 
Any system can be easily transformed into an equwalent system in normal form 

by applying well-known techniques for obtaining regular grammars from equivalent 
formalisms [6]. For instance, the system 

x = y U f (  g(x,  y)) ,  y = c U h(x), 

can be transformed into the system 

x = c U h(x) Of(z),  y = c U h(x), z = g(x,  y) ,  

whmh is in normal form. 
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Given a system of  symbolic functional equations in normal form, the corresponding 
AND~OR graph has as many nodes as there are variables of  the system. Furthermore, 
every term 6 = fL(Xl . . . . .  Xn) contained in an equation x = tl O . . .  U 6 0  . . .  
corresponds to an n-connector (X, X1 . . . . .  Xn) labeled with f ,  where X Is the node 
corresponding to variable x and X,, 1 _< i _< n, is the node corresponding to x~. The 
bottom element (£} does not correspond to any connector. For instance, the labeled 
A N D / O R  graph corresponding to system (4.2) is given in Figure 2. 

We can now prove the important result that, given a system of  symbolic functional 
equations in normal form and its corresponding A N D / O R  graph, the minimal 
solution of  the system coincides with the set of  all finite solution trees of  the A N D /  
OR graph. (Recall that solution trees are X-trees.) 

Let us first prove the following lemma. 

LEMMA 4.1. Let S be a system of  symbolic functional equations in normal form with 
a set of  variables V and G be the labeled AND ~O R graph corresponding to S. 
Furthermore, let x~ be the set of Z-trees which ts the value of  varlable x (x ~ V) at the 
ith step of  the iterative algorithm apphed to system S and T(x), be the set o f  all solution 
trees of  depth at most i rooted at the node corresponding to x m the graph G. Then 

x , - -  T(x)~, i=O,  1 . . . .  , x U  V. 

PRoof. By induction. We have x0 = T(x)o = {±). Let us now assume that x~ = 
T(x), for every x ~ V. 

Let b =fL(yl ,  . . . ,  ym) be the j th  term of  the equation whose left member is x in the 
system S. By applying such an operation in step t of  the iterative algorithm we get 
the set 

sj = fL((y , )  . . . . . .  (fro),) = {f(zl, . . . ,  Zm) lZk ~ (yk)~, k = 1 . . . . .  m} t3 (±) .  

Let us now consider the node corresponding to x in G, and let sj be the set of  
solution trees of depth _<i + 1 obtained through the connector corresponding to the 
above term 6- We have 

s~ = ( f(z l  . . . . .  Zm) IZk ~ T(yk),, k = 1 . . . . .  m) O {±}. 

Thus, since (yk), = T(yk),, k = 1 . . . . .  m, by our induction hypothesis, we have sj = 
sj. But 

x,+l = Usj and T(x),+l = Us~, 
J J 

and thus 

x,+l = T(x),+i. [] 

For instance, the value x2 m the iterative solution of  system (4.2) given above 
coincides with the set of  all solution trees of  depth _<2 rooted at node X in the A N D /  
OR graph of  Figure 2. 

Now we can prove 

THEOREM 4.1. Let S be a system of symbolic functional equations in normal form 
with a set of  variables V and G be the labeled AND ~O R graph corresponding to S. 
Furthermore, let Y be the minimal solution of  system S for  variable x (x ~ V) and T(x) 
be the set of  all finite solution trees rooted at the node corresponding to x in G. Then we 
have 

= T(x), x ~ E 
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PROOF. This result follows directly from Lemma 4.1, if we notice that the solution 
is given by 

t--O 

and that the set of all solution trees is given by 

T(x) = U T(x),. [] 
z--O 

5. Functional Equations of  Dynamic Programming 

A system of functional equations of  dynamic programming S is a symbolic system SS, 
as defined in the previous section, together with an interpretation/, which associates 
with each elementary operation OfAL a monotone function on R t.J {+~) O {-o0}. 
In particular it maps the union operation in the min operation. Given an interpre- 
tation L we thus obtain an algebra An having such functions as elementary operations. 

We can now define a homomorphism between AL and An through the function h 
computed as follows. Let T be a set of ~-trees belonging to IL. 

(i) For every tree in T, interpret every symbol o on the nodes as the operation OR 
and evaluate the tree. The empty tree evaluates to +~.  Let us call g this function 
which given a T returns a set of values belonging to In, namely, the set of"costs" 
of every tree. 

(ii) Take the greatest lower bound of all values obtained in (i). Thus h(T) ffi 
glb(g(T)). 

Notice that for the operation symbols belonging to ~, AL acts as the initial algebra 
and h as the evaluation homomorphism [4]. Thus for such operations conditions (2.2) 
and (2.3) are clearly satisfied. For the union-rain operation (2.3) is also valid: 

h(T1 t.J T2) = glb(g(T1 t.J T2)) = glb(g(t0 LI g(T2)) 
ffi min(glb(g(T1)), glb(g(T2))) 
-- min(h(T1), h(T2)). 

Thus h is a homomorphism. 
Given a system S -- (SS, I), its solution is obtained, by definition, as follows. One 

derives from the symbolic system SS an interpreted system IS using homomorphism 
h and solves it. 

For instance, let us consider again system (4.2): 

x = aL LI bL(X) t.) CL(X, y), 
y ---- bE(y) t.I c~(v, z), 
Z = bL(U),  

u = {±}, 
v = (±}, 

together with the interpretation 

aR = 5 ,  
X 

bR(X)  = i + 2 ,  

bE(x) 

CR(X, y) 

1 
- - i f  x_< l t h e n l e l s e 2 - - ,  

X 
X 

= ~ + Y ,  

c~(x ,  y )  = x + y.  
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The interpreted system IS is ( x x )  
x = m i n  5 , ~ +  2 , ~ + y  

1 
y = if y:_< 1 t h e n  1 e l s e  2 - - ,  

Y 

Z .=. U ~ .  V ..~. + o o .  

It is well known in the context of dynamic programming that functional equations 
are a means for describing the class of optimization problems characterized by the 
so-called "Bellman's principle of optimality" [2, 22]. According to this principle, the 
solution of an optimization problem can be reduced to the solution of several 
subproblems, whose solution, in turn, can be reduced to the solution of other 
subproblems. In the example of Section 1 the problem of finding a minimum length 
path from node 1 to node n is reduced to the subproblems of finding the minimum 
length path from node 1 to every node adjacent to node n, and similarly for all other 
nodes. Functional equations express the optimal solution of a problem in terms of 
the optimal solutions of its subproblems. 

In practice, the problem-subproblem relations often give rise to a partial ordering 
among problems. In this case functional equations can be solved efficiently using the 
technique, known as the "dynamic programming technique," of finding the optimal 
solution of all subproblems of a given problem before finding the optimal solution of 
the problem itself. In the general case, when cyclic relations among problems exist, 
a system of functional equations can be solved iteratively starting from an initial 
value of +oo for the variables. Of course, in our framework this is a consequence of 
the fixpoint theorem, since, as we showed, algebra An is continuous. In our example 
we have z = u = v = +oo, and for the remaining variables we get 

Xo ---- +o% ..Vo ~" +oo ,  

Xl = 5 ,  y l  = 2,  
x2 = 4.5, y2 = 1.5, 

---2, fi = l .  

6. A Commutativity Result 

Let us now apply Theorem 2.1 to algebras AL and AR introduced in Sections 3 and 
4. In order to do this we have to prove that the homomorphism h introduced in 
Section 5 is strict and continuous. In fact, (2.4) is satisfied, since 

h(.l-L) ---- glb(g(ZL)) ---- glb({+oo}) = +oo = ±n- 

Therefore h is strict. Moreover, (2.5) is satisfied, since 

Ti EL T2 implies T1 ~ T2 implies g(T1) C g(T2) 
implies glb(g(T~)) _> glb(g(T2)) implies h(T~) -=R h(T2). 

Thus h is monotone. Finally, (2.6) is satisfied, since 

o0 oo 

= glb (glb(g(T,))) -- Us h(T,), To -= T1 -= . . . .  
t ~ 0  ~--0 
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Therefore h defines a strict, continuous homomorphism, and Theorem 2.1 can be 
applied. Thus the solution of  a system of functional equations S = (SS, I )  can be 
obtained either by solving in algebra AR the interpreted system derived from the 
symbolic system SS using h or by solving in algebra AL the symbolic system SS and 
then interpreting the solution. 

A system of equations in algebra AL corresponds to an A N D / O R  graph, and its 
solution for the variable x, by Theorem 4.1, is exactly the set of all solution trees 
rooted at the node corresponding to x. Applying function h to such a set means 
evaluating the "cost" of every solution tree and taking the cost of  the "cheapest" 
solution tree (or the glb of  the costs of  all solution trees, if no cheapest solution tree 
exists). Alternatively, as defmed in Section 5, the same value can be obtained by first 
applying function h to the symbolic system, thus getting a system of  interpreted 
functional equations, and then solving the system for variable x. In short, we can 
state our main result as the commutativity of  the diagram in Figure 5. 

Since the diagram commutes not only for the fixpoint but also for all elements in 
the chains, the value obtained at the ith step of the iterative solution of  the interpreted 
system is the minimum cost of  all solution trees of depth at most i in  the corresponding 
A N D / O R  graph. For instance, for the system of functional equations given in the 
previous section we have, 

h(x~) = glb(g(xlz)) = glb(5, ~) = 5 = x~, 

h(yl L) = glb(g(y~)) = glb(2, o¢) = 2 = y~, 

h(x~) = glb(5, 4.5, oo) = 4.5 = x~, 
h(y~) = glb(l.5, 2, oo) = 1.5 = y2 R, 

where x~ and y n are the values of x and y at the ith step of  the iterative solution of  
the symbolic system, that is, by Lemma 4.1, the sets of  solution trees of  depth at most 
i in the A N D / O R  graph of Figure 2. 

The minimal cost ~ = 2 is achieved by the infinite tree, 

c(c(c(...), b'(b'(...))), b'(b'(...))), 

which does not belong to the solution of system (4.2), since the elements of  algebra 
AL are only sets of finite I-trees. In general, however, the glb may be not even 
achievable by an infinite tree. For instance, given the functional equation 

x -- min(4,f(x)) with f (x)  = ½x + 1, 

the minimal solution .~ = 2 is achieved as the limit of the costs 4, f(4), f ( f (4) )  . . . .  , 
whereas the cost of  the infinite t reef( f ( f ( . . . ) ) )  is ~. 



750 S. GNESI, U. MONTANARI, AND A. MARTELLI 

7. Conclusions 

The commutativity result stated in Section 6 has already been mentioned in the 
literature, to our knowledge, only for special cases. In [10] Karp and Held proved the 
result for monadic cost functions under the restriction that a cheapest finite path 
exists. In [15] Martelli and Montanari eliminated this restriction, but required that all 
functions be infinite-preserving (namely, o(+ao) = +oo; notice that b~(x)  in  our 
example is not infinite preserving). In [14] they extended the result to polyadic cost 
functions, still in the infinite-preserving case. The general case has been achieved in 
this paper by a suitable definition of  algebra AL, which guarantees the prefix property 
and the nonemptyness of  its elements. 

There are interesting computational applications based on the main result of  this 
and of  our previous papers [14, 15, 16], namely, that the solution of  a system of  
functional equations can always be reduced to the problem of  searching a minimal 
cost solution tree in an A N D / O R  graph. For instance, the iterative algorithm for 
solving a system of  functional equations can be immediately applied to an A N D / O R  
graph for finding a minimal cost solution tree. In fact, the kth step of  this algorithm 
corresponds to finding for every node the minimal cost of  all solution trees of  depth 
at most k, knowing the minimal cost of  all solution trees of  depth at most k - 1 of 
all adjacent nodes. The most interesting results from a computational viewpoint are 
achieved, however, by applying algorithms for searching A N D / O R  graphs to the 
solution of  systems of  functional equations, since efficient algorithms are known in 
important special cases, such as, for instance, acyclic graphs [8] or positively monotone 
cost functions, that is, functions such that 

f ( x l  . . . . .  xn) --> x ,  l _< i_< n. 

In the latter case a solution can be found efficiently by applying the Dijkstra-Knuth 
algorithm [ 12]. 

The most important cases in practice are those in which an estimate of  the cost of  
the minimal solution is provided for every node of the graph. In these cases, the so- 
called heuristic search algorithms can be used, such as the well-known algorithm by 
Hart, Nilsson, and Raphael [5], which can be applied to graphs with monadic and 
additive cost functions. 

Martelli and Montanari developed heuristic search algorithms for the general case 
of  monadic cost functions [16] and the case of  positively monotone polyadic cost 
functions [13, 17]. In [17] we have an example of  an important practical problem, 
optimal decision table conversion, which has been solved more efficiently using 
heuristically guided search than using standard dynamic programming techniques. 
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